
Computer-Assisted Authoring of Interactive Narratives

Mubbasir Kapadia1,3 Jessica Falk2 Fabio Zünd2 Marcel Marti2 Robert W. Sumner1,2 Markus Gross1,2

1Disney Research Zurich 2ETH Zurich 3Rutgers University

Figure 1: We present a computer-assisted authoring tool for interactive narratives. Example narrative: (a,b) The player can freely interact
with characters in the authored story to dictate story progression. (c) The bear is distracted when his friend enters the scene and asks him
to play ball. (d) When no ball is to be found, the first bears turns to the player for help. (e) The bears aren’t happy with the soccer ball and
only want to play with the beach ball. (f, g) With the players help, the first bear gives his friend the ball so they can play a game of catch. (h)
At any time, the player can use different interactions (e.g., adding a honeypot into the scene) to branch the story in a different direction. (i,j)
Spawning bees wreaks havoc on the bears and the player must use flowers to distract the bees.

Abstract

This paper explores new authoring paradigms and computer-
assisted authoring tools for free-form interactive narratives. We
present a new design formalism, Interactive Behavior Trees (IBT’s),
which decouples the monitoring of user input, the narrative, and
how the user may influence the story outcome. We introduce au-
tomation tools for IBT’s, to help the author detect and automatically
resolve inconsistencies in the authored narrative, or conflicting user
interactions that may hinder story progression. We compare IBT’s
to traditional story graph representations and show that our formal-
ism better scales with the number of story arcs, and the degree and
granularity of user input. The authoring time is further reduced with
the help of automation, and errors are completely avoided. Our ap-
proach enables content creators to easily author complex, branching
narratives with multiple story arcs in a modular, extensible fashion
while empowering players with the agency to freely interact with
the characters in the story and the world they inhabit.

CR Categories: I.3.3 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Display Algorithms I.2.1 [Artificial Intel-
ligence]: Applications and Expert Systems—Games;

Keywords: interactive narrative, behavior trees, computer-assisted
authoring

1 Introduction

Interactive narratives strive to offer immersive digital experiences
in which users create or influence a dramatic storyline through their
actions in interactive virtual worlds. The far-reaching goal is to
immerse users in a virtual world where they become an integral
part of an unfolding narrative and can significantly alter the story’s
outcome through their actions.

Traditional linear narratives provide little user agency to influence
the outcome of the story. Computer games often use linear plots
interspersed with isolated interactive segments, with all users ex-
periencing the same plot during successive sessions. Branching
narratives [Gordon et al. 2004], where the narrative outcome de-
pends on the user’s decisions provide a discrete set of choices that
influence the story. The authoring complexity of these approaches
grows exponentially with the number of story arcs, the number of
interaction possibilities, and the granularity of interaction. Story
arcs are tightly coupled and new interactions require monolithic
changes where the authoring complexity is kept tractable only by
severely limiting user agency to discrete choices at key points in the
story. Hence, traditional interactive narrative applications such as
games either provide strong narrative experiences with limited user
agency or provide compelling interactive experiences with simple
narrative structure.

Creating an authoring platform that enables content creators to au-
thor free-form interactive narratives with multiple story arcs where
the players can influence the narrative outcome, while using au-
tomation to facilitate the authoring process and not hinder it, is the
main goal of this work. There are two main challenges that we face:
(1) An appropriate language for authoring interactive narratives that
scales with story complexity, and freedom of interaction. (2) Inte-
grated automation solutions to facilitate the story authoring process
without sacrificing author control.

In this paper, we explore the use of Behavior Trees (BT) [Isla 2005]
for authoring free-form interactive narratives. The hierarchical,
graphical nature of BT’s is ideal for authoring complex, branch-

ing narratives in a modular fashion. However, traditional BT for-
malisms are not suitable for handling state persistence and free-
form user interaction, which are essential for interactive narratives.
To meet these requirements, we extend the BT formalism to decou-
ple the monitoring of user input, the narrative, and how the user may
influence the story outcome. This decoupling provides users much
greater freedom in their ability to interact with the characters in the
story and the world they inhabit, and empowers content creators to
create compelling narrative experiences with free-form user inter-
action. Independent of the specification language, the author has to
consider all possible responses for each interaction during any point
of the narrative to provide complete freedom of user interaction.
To make this problem tractable, we provide a suite of automation
tools to detect and resolve story inconsistencies, as well as poten-
tial conflicts where user interactions may invalidate the story plot.
This empowers the author to truly focus on authoring stories, and
rely on automation to make the problem of integrating interactivity
tractable. Additionally, the same automation tools can be used to
dynamically detect and repair stories during an actual play session,
in response to unforeseen user intervention that was not detected
during authoring.

We demonstrate the potential of IBT’s and automation by author-
ing an interactive narrative for an AR application. Our approach
enables content creators to easily author complex, branching narra-
tives with multiple story arcs in a modular, extensible fashion while
empowering players with the agency to freely interact with the char-
acters in the story and the world they inhabit.

2 Related Work

We refer the readers to a comprehensive surveys on narrative au-
thoring [Riedl and Bulitko 2013; Kapadia et al. 2013] and provide
a brief review below.

Manual Authoring. Scripted approaches [Loyall 1997] de-
scribe behaviors as pre-defined sequences of actions where small
changes often require far-reaching modifications of monolithic
scripts. Approaches such as Improv [Perlin and Goldberg 1996]
and LIVE [Menou 2001] describe behaviors as rules which govern
how actors act based on certain conditions. These systems produce
pre-defined behaviors corresponding to the current situation, and
are not designed to generate complicated agent interactions with
narrative significance. Facade [Mateas and Stern 2003] executes
authored beats to manage the intensity of the story and uses a gen-
eralized scripting language [Mateas and Stern 2004] for manually
authoring character interactions by encoding their preconditions for
successful execution.

Story Graphs [Gordon et al. 2004] accommodate user interaction
as discrete choices at key points in the authored narrative. Behav-
ior Trees (BT’s) are gaining popularity in the computer gaming in-
dustry for designing the artificial intelligence logic for non-player
characters [Isla 2005]. BT’s offer graphical constructs for author-
ing modular, extensible behaviors, which can be extended to control
multiple interacting characters [Shoulson et al. 2014]. For commu-
nication between nodes, BT’s rely on a blackboard [Millington and
Funge 2009], which is a centralized, flat repository of data that can
be accessed by nodes in the tree.

Automated Narrative. The use of domain-independent plan-
ners [Sacerdoti 1975] is a promising direction for automated narra-
tive synthesis – but requires the specification of domain knowledge.
The work in [Kapadia et al. 2011b; Kapadia et al. 2011a] synthe-
sizes complex multi-actor interactions while conforming to narra-
tive constraints, which cannot be dynamically changed to accom-
modate user input. Narrative mediation systems [Riedl and Young
2006] builds on top of traditional story graph representations by

considering the ramifications of possible user interactions, and au-
tomatically synthesizing sub stories to accommodate them. This
produces story graphs with high branching that are difficult to edit
by humans.

Virtual directors or drama managers [Magerko et al. 2004] are
responsible for steering agents towards pre-determined narrative
goals [Weyhrauch 1997] while accommodating user input. Thes-
pian [Si et al. 2005] uses decision-theoretic agents to create ac-
tors with social awareness, while PaSSAGE [Thue et al. 2007]
guides a player through predefined encounters based on the sys-
tem’s estimation of the player’s ideal experience. Event-centric
planning [Shoulson et al. 2013a; Shoulson et al. 2013b] plans in the
space of pre-authored narratively significant interactions, thus mit-
igating the combinatorial explosion of planning in the action space
of individual character actions.

Comparison to Prior Work. Intelligent systems monitor the fic-
tional world and intervene to drive the narrative forward, thus ef-
fectively replacing the human author. Since the underlying nar-
rative still lies within traditional branching representations, it be-
comes intractable for the human author to iteratively build upon
or replace automatically generated content. Previous work either
provides complete authorial control or relies on automation to syn-
thesize emergent stories with minimal specification. In contrast,
our goal is to empower content creators to author compelling free-
form interactive narratives, by leveraging automation to facilitate
the creative process instead of replacing it.

3 Authoring Interactive Narratives

An interactive narrative is traditionally represented as a branching
story graph where the vertices correspond to story atoms during
which the user has no outcome on the narrative, and the directed
edges represent a discrete set of choices, which allow the user to
influence the story outcome. To provide the user a dramatic story-
line in which he can heavily influence the progression and outcome
of the narrative, it is important to offer many decision points and
a high branching factor. However, increasing the involvement of
the user also heavily increases the combinatorial complexity of au-
thoring such a story graph. We identify three main requirements
towards authoring free-form interactive narrative experiences:

1. Modular Story Definition. Complex interactive narratives
have many interconnected story arcs that are triggered based
on user input leading to widely divergent outcomes. The com-
plexity of authoring narratives must scale linearly with the
number of story arcs, which can be defined in a modular and
independent fashion.

2. User Interactions. User interaction should be free-form,
and not limited to discrete choices at key stages of the story,
with far-reaching ramifications on the outcome of the narra-
tive. Monitoring user input and story logic should be decou-
pled to facilitate the modification of user interactions without
requiring far-reaching changes to the story definition.

3. Persistent Stories. The actions and interactions between the
user and characters over the entire course of the narrative must
persist and influence story progression.

3.1 Interactive Behavior Trees

Behavior Trees (BT’s) provide a graphical paradigm for authoring
complex narratives in a modular and extensible fashion. Story arcs
can be independently authored as subtrees and then connected to-
gether using BT control nodes to author branching narratives. Re-
cent extensions [Shoulson et al. 2014] facilitate the authoring of

complex multi-actor interactions in a parametrizable fashion, en-
abling the reuse of modular plot elements, and ensures that the com-
plexity of the narrative scales independently of the number of char-
acters. These properties of BT’s make them ideally suited for au-
thoring complex, branching narratives (Requirement 1). However,
BT’s cannot easily handle free-form interactions (Requirement 2)
and don’t have any means of explicitly storing the past state of char-
acters involved in the narrative (Requirement 3). These challenges
are described in the supplementary document in detail.

To meet these requirements, we introduce a new BT design for-
malism that facilitates free-form user interaction and state persis-
tence. Interactive Behavior Trees (IBT’s), as illustrated in Fig. 2(a)
are divided into 3 independent sub-trees that are connected using
a Parallel control node. An IBT tIBT = 〈tui, tstate, tnarr =
{tarci |tarc1 . . . tarcm }, β〉 where: (1) tnarr is the narrative definition
with modular story arcs {ai}, each with their own independent sub-
tree {tarci }. (2) tui processes the user interactions. Fig. 2(b) illus-
trates the story subtree. (3) tstate monitors the state of the story to
determine if the current story arc needs to be changed. Fig. 2(b)
illustrates the story subtree. (4) The blackboard β stores the state
of the story and its characters. (5) A fourth subtree tcr is added for
conflict resolution, and will be described in § 4.

Story Definition. tnarr is responsible for handling the narrative
progression and is further subdivided into subtrees that represent
a separate story arc. Fig. 2(b) provides an example of tnarr while
Fig. 2(c) illustrates each arc definition tarc, which is encapsulated
as a separate subtree. This introduces an assertion node, which is
checked at every frame whether the current arc is still active before
proceeding with its execution. This minor extension to the story
arc definition allows the story to instantaneously switch arcs at any
moment in response to the user’s interactions.

Monitoring User Input. tui monitors the different interactions that
are available to the user and can be easily changed depending on
the application or device. Once an input is detected, it sets the
corresponding state in the blackboard β, which is queried by tstate
to determine the current state of the story, and the active story arc.
Since tui is executed in parallel with the other subtrees, we are able
to immediately respond and register the interactions of the user and
use it to influence the narrative outcome. Fig. 2(d) illustrates an
example.

Monitoring Story State. tstate contains separate subtrees for each
story arc, which checks if the precondition for the particular arc is
satisfied. If so, β is updated to reflect the newly activated story
arc, which is used to switch the active story in tnarr. Fig. 2(e,f)
illustrates tstate and a subtree used for checking the preconditions
for an example story arc. It may be possible for the preconditions
of multiple story arcs to be satisfied at any instance, in which case
the story arcs are activated in order of priority (the order in which
they appear in tnarr). It is also possible for multiple story arcs to be
active simultaneously if they are operating on mutually exclusive
characters and objects.

Message Passing and State Persistence. The overall design of the
IBT results in three subtrees that execute independently in parallel
with one another. The blackboard β stores internal state variables
(e.g., the current active story arc) to facilitate communication be-
tween the subtrees, and maintains state persistence. tui updates β
when any input signal is detected. Tree tstate monitors β to check
if the preconditions of a particular story arc are satisfied, and up-
dates the current arc. Finally, each arc subtree in tnarr checks if it
is the current active arc before continuing. Also, the user input and
the narrative execution can update the story and character state to
influence the progression of the narrative at a later stage.

4 Automation Tools for Authoring Interactive
Narratives

Independent of the specification language (story graphs, behavior
trees or any other authoring paradigm), interactive narratives re-
quire the author to consider the ramifications of all possible user
interactions at all points in the story, which is prohibitive for com-
plex stories with many different interaction modalities. To address
this challenge, we introduce a suite of automation tools that ex-
ploit domain knowledge to automatically identify and resolve in-
valid story specifications (§ 4.3), potential user actions that may in-
validate story arcs (§ 4.4, § 4.5), and even automatically synthesize
complete stories (§ 4.6).

4.1 Domain Knowledge

In order to use automated planning tools to facilitate the authoring
process, we need to add additional domain knowledge, which can
be used by an intelligent system for inference. This includes anno-
tating semantics that characterize the attributes and relationships of
objects and characters in the scene (state), different ways in which
they interact (affordances), and how these affordances manipulate
their state. Our framework is no different from other intelligent
systems [Riedl and Bulitko 2013] in this regard. However, the cost
of specifying domain knowledge is greatly mitigated by the ability
of computational tools to consider all possible interactions between
smart objects, how user input may change story state, and use it to
detect and resolve invalid stories. Below we describe our represen-
tation of domain knowledge, which balances ease of specification
and efficiency of automation.

Smart Objects. The virtual world W consists of smart objects
with embedded information about how an actor can use the object.
We define a smart object w = 〈F, s〉 with a set of advertised af-
fordances f ∈ F and a state s = 〈θ,R〉, which comprises a set of
attribute mappings θ, and a collection of pairwise relationships R
with all other smart objects in W. An attribute θ(i, j) is a bit that
denotes the value of the jth attribute for wi. Attributes are used
to identify immutable properties of a smart object such as its role
(e.g., a ball or a bear) which never changes, or dynamic properties
(e.g., IsHappy) which may change during the story. A specific re-
lationship Ra is a sparse matrix of |W| × |W|, where Ra(i, j) is a
bit that denotes the current value of the ath relationship betweenwi

and wj . For example, an IsFriendOf relationship indicates that
wi is a friend of wj . Note that relationships may not be symmetric,
Ra(i, j) 6= Ra(j, i) ∀ (i, j) ∈ |W| × |W|. Each smart object’s
state is stored as a bit vector encoding both attributes and relation-
ships. The overall state of the world W is defined as the compound
state s = {s1, s2 · · · s|W|} of all smart objects w ∈ W, which is
encoded as a matrix of bit vectors. sw denotes the compound state
of a set of of smart objects w ⊆W.

Affordances. An affordance f = 〈wo,wu,Φ,Ω〉 is an advertised
capability offered by a smart object that takes the owner of that
affordance wo and one or more smart object users wu, and ma-
nipulates their states. For example, a smart object such as a ball
can advertise a Throw affordance, allowing another smart object to
throw it. A precondition Φ : sw ← {TRUE,FALSE} is an ex-
pression in conjunctive normal form on the compound state sw of
w : {wo,wu} that checks if f can be executed based on their cur-
rent states. A precondition is fulfilled by w if Φf(w) = TRUE.
The postcondition Ω : s → s′ transforms the current state of
all participants, s to s′ by executing the effects of the affordance.
When an affordance fails, s′ = s . Fig. 3 describes the general
definition of an affordance.

An affordance instance h = 〈f,w〉 includes a set of smart objects

"""

)

(a) (b) (c)

MonitorBallMarker MonitorBeeMarker

MonitorHoneyMarker

(d) (e) (f)

Figure 2: (a) Design formalism of Interactive Behavior Trees (IBT’s) with decoupled specification of user input, narrative definition, and
the impact of user input on story state. (b) Narrative subtree with modular story arcs. (c) Each story arc definition is encapsulated in its own
independent subtree, which first checks if this is the current active arc before proceeding with the narrative execution. (d) Subtree to monitor
user input. (e) Subtree that changes story state based on user input, which triggers branches in story arc. (f) An example subtree from (e)
which checks if all the preconditions for a particular story arc are satisfied before setting it as the current active arc.

w ⊂W such that Φf(sw) = TRUE. To map affordance instances
as leaf nodes of a BT, execution of an affordance returns a status
that takes three possible values. It returns Running if the affordance
is still executing. If it succeeds, the postconditions Ωf are applied
to the state of all smart object participants. If it fails, there is no
change in state. This ensures that affordances are considered as
atomic units.

Affordance f (wo, wu):
Precondition Φf :

CNF expression on compound state s of wo and wu

Postcondition Ωf :
Change in state of wo and wu after successfully executing f

Status γ:
Running: Continue executing f
Success: s′ = Ωf (s);
Failure: s′ = s ;

Figure 3: Affordance definition.

User Interactions. We define a set of user interactions u ∈ U,
which define the different ways in which a user can interact with
smart objects in the world W. User interactions are treated as spe-
cial kinds of affordances where the user is one of the affordance
participants. This allows any underlying planning framework to ac-
commodate user interactions during the planning process.

4.2 Problem Definition

Given the terminology defined in § 4.1, we define a general prob-
lem description P = 〈s0,Φg,A〉 consisting of an initial state s0,
a set of preconditions to satisfy the goal state Φg , and the set of af-
fordance instances A = {hi}, which may include instances of user

interactions. The problem instance P will be defined in a variety of
ways to resolve inconsistencies in the story, or potential conflicts,
described in the remainder of this section.

Causal Links. We introduce the concept of a causal link to sym-
bolize a connection between two affordance instances such that
executing the postconditions of one affordance satisfies a clause
in the preconditions of the other. Causal links are represented
as l = 〈h1, φ

i
2,h2〉. φi

2 defines the ith clause in Φ2 such that
φi
2(Ω1(s)) = TRUE.

We interpret P as a search problem in the space of possible partial
plans. We define a partial plan π = 〈H,Φopen,L,O〉 where H is
the set of affordance instances currently in π, Φopen is a set of pairs
φopen = 〈h, φh〉 where h ∈ H and φh defines one condition in
the precondition expression Φh . L defines the set of all causal links
between pairs of affordance instances in H, and O defines a set of
transitive and asymmetric partial orderings of affordance instances
{hi ≺ hj} representing a “before” relation, where hi,hj ∈ H.
This means that hi must occur before hj in the partial order plan.
A partial plan πp is a plan that has not yet satisfied all open pre-
conditions: |Φopen| > 0, while a complete plan πc has no open
preconditions: Φopen = ∅.

Partial Order Planning. We use a partial order planner
(POP) [Sacerdoti 1975] to compute a plan πc = Plan(P) that
generates an ordering of affordance instances from s0 which sat-
isfies the preconditions Φg . While POP requires more computa-
tional power for processing a single node, it has been shown to out-
perform total-order planning (TOP) approaches [Pearl 1984] when
dealing with goals that contain subgoals [Minton et al. 1994], al-
lowing the planner to efficiently operate in the search space of par-
tial plans. POP employs the Principle of Least Commitment where
affordance execution is ordered only when strictly needed to ensure

a consistent plan. This ensures efficiency when dealing with prob-
lems where there may exist multiple possible solutions that differ
only in their ordering of affordance execution. In contrast, TOP
strictly sequences actions when finding a solution. POP is also able
to efficiently work for problem definitions where the goal state is
partially specified – containing only the desired preconditions that
must be satisfied. We provide a brief overview of the algorithm
below.

At each iteration, POP selects a clause φopen = 〈hi, φi〉 from
the set of open preconditions Φopen and chooses an affordance in-
stance hj ∈ A that satisfies φi. If hj is not already present, it is
inserted into the partial plan πp. hj must execute before hi, which
is specified by adding a causal link l = 〈hj , φi,hi〉. Any instance
h ∈ H that contradicts φi must happen either before hj or after
hi, and is resolved by introducing additional causal links, as de-
fined by the method Protect(). If hj is added for the first time, its
preconditions are added to Φopen, and the process continues until
all preconditions are satisfied: Φopen = ∅. Alg. (1) outlines the de-
tails of the algorithm and we refer the readers to [Sacerdoti 1975]
for additional details.

Algorithm 1 Partial Order Planner

function Plan (P = 〈s0,Φg,A〉)
Φopen = {〈hΦg , φ〉| ∀φ ∈ Φg}
H = {hs0 ,hΦg}
O = {hs0 ≺ hΦg}
L = ∅
while Φopen 6= ∅ do
〈hc, φc〉 = SelectAndRemoveCondition(Φopen)
if φc(h) == FALSE ∀ h ∈ H then

hs = ∃h ∈ A s.t. φc(h) = TRUE
H = H ∪ hs

O = O ∪ (hs0 ≺ hs)
for all l ∈ L do

O = Protect(l,hs,O)
Φopen = Φopen ∪ {〈hs, φs〉| ∀ φs ∈ Φs}

else
h = ∃ h ∈ H s.t. φ(h) = TRUE

O = O ∪ (hs ≺ hc)
L = L ∪ 〈hs, φc,hc〉
for all h ∈ H do

O = Protect(〈hs, φc,hc〉,h,O)
π = 〈H,Φopen,L,O〉
return π

Integrating Plan into IBT. The plan πc generated by POP repre-
sents an ordering O of affordance instances H, which can be eas-
ily integrated into an existing behavior tree definition by choosing
appropriate control nodes that constrain the order in which affor-
dances in the plan can be executed. Fig. 4 illustrates an example of
how a plan is converted into its corresponding BT definition.

4.3 Narrative Consistency

A consistent narrative does not violate the preconditions of any af-
fordance instances that are executed during the narrative. A story
author may not consider all possible preconditions when defining a
story, leading to the definition of an inconsistent story. We define
an inconsistent node t in a story arc as an affordance instance ht

associated with t such that Φt(st) = FALSE where st is the com-
pound state of smart objects in the scene obtained by executing all
nodes in the IBT leading to t.

Belief States. Interactive narratives authored using IBT’s can
branch in many directions, depending on user interaction and the

execution trace of nodes in the IBT. Hence, there may be many pos-
sible states that the smart objects are in at a current node t. There-
fore, we introduce the notion of a belief state bt = {s1

t , s
2
t · · · sn

t },
which represents a set of partially specified states of all smart ob-
jects that may be reached at t due to different possible execution
traces of the IBT. A partially specified state may contain attributes
whose values cannot be determined. By considering the belief state
of all possible executions of the narrative that led to t, we can de-
termine whether the preconditions of an affordance instance might
be violated by any possible execution of the story arc. The supple-
mentary document details the static analysis of different types of
nodes in an IBT definition to compute the belief state at each node.

Inconsistency Detection and Resolution. When an inconsistent
node t is detected in the story definition tnarr of an authored IBT
tIBT, we compute the belief state b of all possible states that could
arise from different execution traces of tIBT up to t. For each of
these states s ∈ b, we define a problem instance P = 〈s ,Φt,A〉
and generate a plan π to add additional nodes in the tree such that
Φt is satisfied. Alg. (2) outlines the algorithm for inconsistency
detection and resolution.

Algorithm 2 Inconsistency Detection and Resolution

function DetectAndResolveInconsistencies (tIBT)
for all tarc ∈ tnarr do

for all t ∈ tarc do
b = ComputeBeliefState(t, tIBT)
for all s ∈ b do

if Φt(s) == FALSE then
P = 〈s ,Φt,A〉
π = Plan(P)
tIBT = IntegratePlan(π, t, tIBT)

return b

4.4 Conflicts

The players actions may invalidate the successful execution of con-
sistent narratives, and the author must consider the ramifications of
all possible interactions at all possible points in the narrative defi-
nition. In order to make this problem tractable, we present automa-
tion tools that automatically detect potential user interactions that
may invalidate affordance preconditions at any stage in the narra-
tive, and provide resolution strategies to accommodate user inter-
ference, while still ensuring that the narrative is able to proceed
down the intended path.

Before we define a conflict, we first differentiate between two sets
of causal links. A link l = 〈h1, φ

i
2,h2〉 is active if the affordance

instance ht associated with the current node t has the following
ordering: h1 ≺ ht � h2. These include all the links that are active
when considering the current node t. Keeping track of active causal
links allows us to maintain a list of conditions on state attributes
which may not be violated by any user interactions while executing
t. A link is needed to ensure the progression of the narrative at
a particular node t in the IBT if h1 � ht ≺ h2. These include
links that are active after the execution of the current node t, and
determine conditions on attributes which need to be met even after
the execution of an user interaction, to ensure progression of the
narrative.

Conflicts. This allows us to formally define a conflict c as a pair
〈u, l〉 where l = 〈hi, φ

i
j ,hj〉 is an active causal link, such that if

the user performs a particular interaction u ∈ U during the execu-
tion of hi, φi

j may be violated. Conflicts are detected at a particular
node t if any active causal links at t are violated and can be resolved
by generating a plan that satisfies the conditions of all needed links.

Enter(bear2)

Pickup(ball, bear1)

Give(bear1, bear2, ball))Start State

nInScene(bear2) InScene(bear2)

nHolds(ball, bear2)

nHolds(ball, bear1)
a nIsAttached(ball)
a InScene(bear1)
a InScene(ball)

InScene(bear1)
a Holds(ball, bear1)

Start State: nHolds(ball, bear) a InScene(bear1) a InScene(ball)
 a nHolds(ball, bear2) a nIsAttached(ball) a nInScene(bear2)

Goal State: Holds(ball, bear1) a InScene(bear1)
 a nHolds(ball, Bear2) a InScene(bear2)

¬

¬

¬

¬
¬

¬

¬¬

¬
∧∧

∧
∧

∧
∧

∧
∧∧

∧ ∧
∧

(a) (b)

Figure 4: (a) Illustrates a sample plan constructed by POP. The edges represent the causal links between the different affordances. (b) A
concrete mapping of the plan to a BT.

Conflicts can be handled in two ways: (1) Accommodation. We
allow the user to interfere with the narrative by successfully execut-
ing u such that h fails. In this case, we need to generate a conflict
resolution strategy that is able to accomplish the same result, as
executing h. (2) Interference. The affordance instance h is suc-
cessfully executed and u fails. No plan is needed in this case. It is
up to the author to decide whether to accommodate or interfere for
a particular conflict. For conflicts where no plan is possible, we are
limited to interference where the user interaction is perceived to be
unsuccessful.

Conflict Resolution Subtree. We add a new subtree into the IBT
formalism tcr that is automatically populated and contains the con-
flict resolution strategies (plans) for all potential conflicts. During
narrative execution, whenever a conflict occurs, control is trans-
ferred to the corresponding subtree in tcr that contains the plan for
resolving that particular conflict.

Conflict Detection and Resolution. Alg. (3) provides algorithmic
details of detecting and resolving conflicts at a particular node t
in the IBT tIBT. We check if any interaction violates the active
links at that node. For a potential conflict c = 〈u, l〉, we consider
the belief state b up to the execution of the current node t in the
IBT. For each state s ∈ b, we define a problem instance P =
〈s0 = Ωu(s),Φg = Φneeded〉, where Φneeded are the combined
conditions of all needed links. A plan π is generated for P and
inserted into the conflict resolution subtree tcr to accommodate u.
If no plan is found, then we choose to interfere where u is said to
fail. The appropriate conflict resolution strategy is added into tcr.

Dynamic Conflict Detection and Resolution. Static analysis of
the IBT is not able to detect all possible conflicts that may occur
during execution of the narrative. In particular, we cannot detect
conflicts (1) that occur while executing nodes in the conflict reso-
lution subtree, (2) due to user actions in one story arc that violate
the preconditions of nodes in another story arc. These unforeseen
conflicts can be handled by using a modified version of Alg. (3)
during the execution of the narrative to dynamically detect and re-
solve conflicts. This works well in practice as only a small number
of conflicts remain undetected during static analysis and the algo-
rithm for conflict resolution is very efficient and able to instantly
generate plans for reasonably complex problem domains.

Algorithm 3 Conflict Detection and Resolution

function DetectAndResolveConflicts (t,L, tIBT)
b = ComputeBeliefState(t, tIBT)
for all s ∈ b do

Φactive = ∅
Φneeded = ∅
for all l = 〈hi, φj ,hj〉 ∈ L do

if (hi ≺ ht ∧ ht � hj) == TRUE then
Φactive = Φactive ∪ φj

if (hi � ht ∧ ht ≺ hj) == TRUE then
Φneeded = Φneeded ∪ φj

for all u ∈ U do
if Φactive(Ωu(s)) == FALSE then

P = 〈Ωu(s),Φneeded,A〉
π = GeneratePlan (P)
if π 6= ∅ then

Accommodate(tcr, t, u, π)
else

Interfere(tcr, t, u)

4.5 User Inaction

The user may choose not to execute actions that are required to
progress the narrative further. For example, a narrative may require
the user to throw a ball into the scene for two bears to play catch.
To account for potential user inaction, our automation framework
generates contingency plans where the characters in the story may
adopt alternate means to accomplish the same effect of the user
interaction. For each node t corresponding to an interaction u, we
define a problem instance P = 〈s ,Ωu(s),A−U〉where the action
space A−U only considers affordance instances with smart objects
and discounts user interactions. This is used to generate a plan that
achieves the same effect as Ωu(s) and is integrated into the original
IBT definition, as shown in Fig. 5. During narrative execution, if the
user does not perform the desired interaction within a reasonable
time threshold, it is said to fail and the contingency plan is executed.

4.6 Automated Narrative Synthesis

Authors may harness the power of automation to automatically syn-
thesize narratives which can be integrated into the IBT and edited to
meet author requirements. At a given node t in the IBT, the author

Figure 5: Plan generation to accommodate user inaction. Our
system automatically generates an alternate strategy (highlighted
nodes) to accommodate potential user inactions that may hinder
narrative progression.

simply specifies a desired set of preconditions Φg . This translates
into multiple problem instances P = 〈s ,Φg,A〉 for each state s in
the belief state b, obtained as a result of executing the IBT up to t.
A plan π is generated for each problem instance P and inserted into
the IBT, to provide a narrative that accommodates author-specified
preconditions Φg .

5 Application

We developed an interactive narrative authored using the tools de-
scribed above and deployed it as an Augmented Reality application
on mobile devices. AR applications on mobile devices with mul-
tiple sensors benefit from versatile input mechanisms and provide
a strong use case for free-form interactive narratives with a host
of interaction possibilities. The game application was implemented
using the Unity3D game engine with a data-driven character anima-
tion system. The animation functionality is exposed to the author as
affordances (e.g., LookAt(obj), Reach(target)) which can be in-
voked as leaf nodes in BT’s. For more details of the animation sys-
tem and BT implementation, please refer to [Shoulson et al. 2013c].
We used Vuforia [Qualcomm 2010] for image-based tracking and
camera pose estimation. Smaller marker images were used as an
additional interaction modality to trigger state changes and branch
the story in different directions. Please refer to the supplementary
document for additional implementation details.

5.1 Scenario and Story Definition

We author a narrative with two male bears B1, B2, and a female
bear B3. A shopkeeper B4 is also present who is able to sell toys
to the other bears. The characters have generic state attributes such
as InScene, IsHappy, IsPanicked, IsPlaying, and rela-
tionships with other characters and smart objects such as Knows,
Holds, and Loves. Other smart objects include a soccer ball, a
beach ball (can be picked up by the bears and used to play catch), a
honeypot (can be consumed to make the bears happy), bees (scare
the bears away), and flowers (distract the bees). The smart objects
are equipped with a variety of affordances including Converse,
Argue, ThrowBall, and EatHoneywhich may include the user
as a participant. For example, the ball has a PickUp affordance
which the user can trigger to pick the ball from the scene. The rep-
resentative affordances defined for the smart objects used to author
the interactive narrative are outlined in the supplementary document
for reference.

Baseline Story. The first bear B1, enters the scene and looks up
at the player with curiosity. The player can freely interact with

B1 using a host of interaction possibilities or introduce the second
bear B2 into the scene. B2 asks B1 for a beach ball so they can
play catch. B1 is unable to find a ball and turns to the player for
help. The player may choose to give a soccer ball to the bears but
they only want to play with the beach ball. Depending on where
the player throws the beach ball, B1 or B2 may pick it up which
influences future branches in the story. For example, B1 chooses to
involve the player in the game of catch if the player gave him the
ball.

Additional Interactions. At any point, the player may use a hon-
eypot image marker to trigger a honeypot in the world. The bears
leave aside whatever they are doing, and make a beeline towards
the honeypot, which represents one possible conclusion of the story.
The player may also choose to trigger bees into the world, which
chase the bears and disrupt the current arc (e.g., having a conversa-
tion, playing catch). Flowers may then be used to distract the bees
and save the bears. Fig. 1 illustrates an example execution of the
authored narrative.

State Persistence. The player’s choices have ramifications later on
in the story. For example, B1 remembers if the player interacted
him with at the beginning of the narrative, or helped him by giving
him the ball, and includes him in the game of catch by periodically
throwing him the ball. If the player adopts an antagonistic approach
(e.g., by triggering bees), the bears are less friendly towards him.

Freedom of Interaction. Note that each of these interactions are
possible at any point, and are not limited to discrete events at key
stages in the narrative. For example, the player may choose to trig-
ger the bees or the honeypot at the very beginning of the story, or
while the bears are playing ball, and the story will naturally pro-
ceed as per the author’s intentions. These different story arcs are
authored as modular, independent units in the IBT and can be trig-
gered at any stage without the need for complex connections and
state checks in the story definition. The above narrative represents
a very simple baseline to demonstrate the potential to author free-
form interactive narrative experiences. IBT’s empower the player
with complete freedom of interaction where he may choose to play
ball with the bears, give them honey, or simply wreak havoc by re-
leasing a swarm bees at any point of time. The interactions elicit
instantaneous and plausible interactions from the characters while
staying true to the narrative intent.

Benefits of Automation. The automation tools described in § 4
facilitate the authoring process in a variety of ways.

Inconsistencies. The author specifies a story where B1 gives the
ball to B2 without having the ball in his possession. The invalid
preconditions are automatically detected and the appropriate nodes
in the authored story arc are highlighted. Our system can automat-
ically resolve inconsistencies by generating additional nodes in the
story definition to satisfy the invalid preconditions. In this example,
B1 requests the player to throw the ball before proceeding to hand
it to B2.

Conflicts. Our system automatically detects potential user actions
(or inactions) that may cause conflicts in the story. For example, the
player may steal the ball from the bears during their game of catch
thus invalidating the PlayBall arc, and our system automatically
generates a strategy for the bears to request the player to return
the ball. If player does not perform the expected interaction (e.g.,
does not give the bears the ball), an alternate strategy is generated
where the bears find an alternative means to finding the ball. In
this scenario, the bear purchases the ball from a vendor who in turn
requires him to get money.

Automatic Story Synthesis. The author can simply specify desired
preconditions and our system can generate story arcs that lead to

the desired outcome. For example, the author may specify that the
female bear B3 must fall in love with B2. A plan is generated
whereby B2 acquires the beach ball, which is desired by B3 in
order to win her heart.

6 Conclusion

This paper demonstrates the potential benefits of new design for-
malisms for authoring interactive narratives based on Behavior
Trees, and the use of computer-assisted tools for reducing the au-
thoring burden without sacrificing control. Compared to traditional
story graph representations, IBT’s better scale with story complex-
ity and freedom of user interaction, and authoring stories takes
lesser time with reduced number of errors. The authoring com-
plexity is further reduced with the help of automation, and errors
are completely avoided.

Limitations and Future Work. The use of computational intelli-
gence to facilitate the authoring process requires the specification
of domain knowledge, which is currently limited to domain ex-
perts. For future work, we will explore better representations and
automatic acquisition of domain knowledge. While IBT’s signifi-
cantly reduce the authoring complexity, it has a learning curve and
is not immediately accessible to end users without a computer pro-
gramming background. The task of authoring interactive narratives
requires expertise and takes effort and time. Improved design for-
malisms are thus needed to meet the growing demand of casual
content creation.

The proposed automation features can in principle be applied to
other formalisms as well, and future studies may use improved story
graphs with hierarchical node structures to study the benefits of au-
tomation with alternate story representations. For future work, we
will conduct a user study to assess the authoring complexity of the
different design formalisms, and the benefits of automation during
the authoring process. Additional experiments should be conducted
to capture and analyze the playability of the authored narratives.
Strong playability metrics that reflect the semantic quality of the
authored narratives need to developed. Finally, we would like to
evaluate the scalability of our approach to handle the complexity
and diversity of narratives present in commercial games.

References

GORDON, A., VAN LENT, M., VELSEN, M. V., CARPENTER, P.,
AND JHALA, A. 2004. Branching Storylines in Virtual Reality
Environments for Leadership Development. In AAAI, 844–851.

ISLA, D. 2005. Handling Complexity in the Halo 2 AI. In Game
Developers Conference.

KAPADIA, M., SINGH, S., REINMAN, G., AND FALOUTSOS, P.
2011. A Behavior-Authoring Framework for Multiactor Simula-
tions. IEEE CGA 31, 6 (Nov), 45–55.

KAPADIA, M., SINGH, S., REINMAN, G., AND FALOUTSOS, P.
2011. Multi-actor planning for directable simulations. In Digital
Media and Digital Content Management (DMDCM), 111–116.

KAPADIA, M., SHOULSON, A., DURUPINAR, F., AND BADLER,
N. 2013. Authoring Multi-actor Behaviors in Crowds with Di-
verse Personalities. In Modeling, Simulation and Visual Analysis
of Crowds, vol. 11. 147–180.

LOYALL, A. B. 1997. Believable agents: building interactive per-
sonalities. PhD thesis, Pittsburgh, PA, USA.

MAGERKO, B., LAIRD, J. E., ASSANIE, M., KERFOOT, A., AND
STOKES, D. 2004. AI Characters and Directors for Interactive
Computer Games. Artificial Intelligence 1001, 877–883.

MATEAS, M., AND STERN, A. 2003. Integrating plot , character
and natural language processing in the interactive drama facade.
In TIDSE, vol. 2.

MATEAS, M., AND STERN, A. 2004. A behavior language: Joint
action and behavioral idioms. In Life-Like Characters. Springer,
135–161.

MENOU, E. 2001. Real-time character animation using multi-
layered scripts and spacetime optimization. In ICVS, Springer-
Verlag, London, UK, 135–144.

MILLINGTON, I., AND FUNGE, J. 2009. Artificial Intelligence for
Games, Second Edition, 2nd ed. Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA.

MINTON, S., BRESINA, J., AND DRUMMOND, M. 1994. Total-
order and partial-order planning: A comparative analysis. Jour-
nal of Artificial Intelligence Research 2, 227–262.

PEARL, J. 1984. Heuristics: Intelligent Search Strategies for Com-
puter Problem Solving. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA.

PERLIN, K., AND GOLDBERG, A. 1996. Improv: a system for
scripting interactive actors in virtual worlds. In Proceedings of
ACM SIGGRAPH, ACM, New York, NY, USA, 205–216.

QUALCOMM, 2010. Vuforia Developer SDK.

RIEDL, M. O., AND BULITKO, V. 2013. Interactive narrative: An
intelligent systems approach. AI Magazine 34, 1, 67–77.

RIEDL, M. O., AND YOUNG, R. M. 2006. From linear story
generation to branching story graphs. IEEE CGA 26, 3, 23–31.

SACERDOTI, E. D. 1975. The nonlinear nature of plans. In IJCAI,
206–214.

SHOULSON, A., GILBERT, M. L., KAPADIA, M., AND BADLER,
N. I. 2013. An event-centric planning approach for dynamic
real-time narrative. In Proceedings of Motion on Games, ACM,
New York, NY, USA, MIG ’13, 99:121–99:130.

SHOULSON, A., KAPADIA, M., AND BADLER, N. 2013. PAStE:
A Platform for Adaptive Storytelling with Events. In INT VI,
AIIDE Workshop.

SHOULSON, A., MARSHAK, N., KAPADIA, M., AND BADLER,
N. I. 2013. Adapt: the agent development and prototyping
testbed. In ACM SIGGRAPH I3D, 9–18.

SHOULSON, A., MARSHAK, N., KAPADIA, M., AND BADLER,
N. 2014. ADAPT: The Agent Developmentand Prototyping
Testbed. IEEE TVCG 20, 7 (July), 1035–1047.

SI, M., MARSELLA, S. C., AND PYNADATH, D. V. 2005. Thes-
pian: An architecture for interactive pedagogical drama. In Pro-
ceeding of the 2005 Conference on Artificial Intelligence in Ed-
ucation. 595–602.

THUE, D., BULITKO, V., SPETCH, M., AND WASYLISHEN, E.
2007. Interactive storytelling: A player modelling approach. In
AIIDE.

WEYHRAUCH, P. W. 1997. Guiding interactive drama. PhD thesis,
Pittsburgh, PA, USA. AAI9802566.

