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ABSTRACT
This paper evaluates the use of Behavior Trees (BT) for au-
thoring compelling narrative experiences with free-form user
interaction. We systematically study extensions to tradi-
tionally BT representations, which decouple the monitoring
of user input, the narrative, and how the user may influ-
ence the story outcome – referred to as Interactive Behavior
Trees (IBT’s). By quantitatively evaluating the authoring
complexity of BT formalisms with traditional story graph
representations, we show that IBT’s better scale with the
number of story arcs, and the degree and granularity of user
input. Our theoretical estimate of authoring complexity is
corroborated with a qualitative user study, which confirms
that subjects take lesser time with reduced effort to author
narratives using IBT’s. The subjective difficulty of IBT’s is
also lower than traditional story graphs.

Categories and Subject Descriptors
I.3.7 [Computer Graphics]: Virtual Reality; I.2.1 [Artificial
Intelligence]: Applications and Expert Systems—Games

Keywords
interactive narratives, behavior trees, augmented reality

1. INTRODUCTION
Interactive narratives place users in immersive virtual worlds
where they become an integral part of an unfolding story.
These users create or influence dramatic storylines through
their actions. The growing maturity of Augmented Reality
(AR) technologies opens up a new host of interaction pos-
sibilities and bridges the gap between the real world and
virtual content to create immersive experiences. However,
the ability to author interactive narrative content has not
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Figure 1: Augmented Reality application for Inter-
active Narratives authored using Interac-
tive Behavior Trees.

kept pace with the promise of AR technology. Modern and
compelling interaction has seldom been combined with deep
narrative experiences yet.

Computer games provide a prime example of interactive nar-
rative: at predefined points in time, the player is asked to
make a choice or take a certain action, which influences the
course of the story. The quality of the narrative experi-
ence generally increases with the number of possible choices.
However, the authoring complexity grows exponentially with
the number of choices. Therefore, to keep the content au-
thoring manageable in strong and compelling narratives the
interaction is limited. This keeps the set of possible actions
to alter the story minimal, and hence the player experiences
only little user agency to influence the outcome of the story.
Alternatively, a narrative with more interaction possibilities
is created but at the cost of a simple and trivial narrative
structure.

In this work we evaluate novel story authoring techniques,
which overcome the problem of exponential growth of au-
thoring complexity. Behaviour Trees (BT’s) [5] allow au-
thoring complex (non-interactive) stories containing vari-
ous branching story arcs. They are created in a modular
and thus extensible and easily maintainable fashion. As ex-
tension to BT’s, Interactive Behavior Trees (IBT’s) have
been recently proposed and handle free-form user interac-
tion, which is desirable in interactive narratives. IBT’s are



split into three subtress: one for monitoring the user input,
one defining the narrative, and one defining how the user
may influence the story outcome. This empowers content
creators to create compelling narratives involving free-form
user interactions with minimal authoring complexity.

We study the authoring complexity of designing interactive
narratives using BT formalisms and show that our IBT’s in-
crease the modularity, reusability, and maintainability of au-
thored narratives, in comparison to traditional approaches.
Our theoretical estimate of authoring complexity is corrob-
orated with a user study, which confirms that subjects take
lesser time with reduced number of errors to author narra-
tives using IBT’s. The subjective difficulty of BT’s is also
lower than traditional story graphs.

To demonstrate the potential of IBT’s, we author an inter-
active narrative for an AR application where the user can
freely interact with both real and virtual content to progress
the narrative along a direction of their choosing. Fig. 1 de-
picts the interaction between the user and an example AR
application. The user experiences an unfolding narrative
through the lens of his or her portable device where the
virtual characters are controlled using authored IBT’s. Sen-
sors on the device are used to register different interactions,
which branch the narrative in different directions. This al-
lows the user to freely engage with the characters and be an
active participant in the story.

2. RELATED WORK
Interactive narratives have been studied from many differ-
ent perspectives [21] and we provide a brief review below.
Scripted approaches [11, 12] describe stories as pre-defined
action sequences where small alterations often require far-
reaching modifications of monolithic scripts. Improv [17]
and LIVE [15] define rules, which govern how actors act
based on certain conditions. These systems are not designed
to generate complicated agent interactions that dramatically
impact the story outcome. Facade [13] executes authored
beats to manage the intensity of the story. A Behavior Lan-
guage (ABL) [14] provides a generalized scripting language
for single- or multi-character actions based on manually au-
thored preconditions for successful action execution.

Dialogue Trees [18] and Story Graphs [4] accommodate user
interaction as discrete choices at key points in the authored
narrative. Behavior Trees (BT’s) are gaining popularity in
the computer gaming industry for designing the artificial
intelligence logic for non-player characters [5, 6]. BT’s of-
fer graphical constructs for authoring modular, extensible
behaviors which can be extended to control multiple inter-
acting characters [24]. For communication between nodes,
BT’s rely on a blackboard [16], which is a centralized, flat
repository of data that can be accessed by nodes in the tree.
Animation systems [28, 27] can be used to visualize the exe-
cution of these behaviors on fully articulated virtual humans.

Computational tools have also been developed that auto-
matically generate digital stories [10, 9]. Event-centric plan-
ning [25, 26] plans in the space of pre-authored behavior
trees, thus mitigating the combinatorial explosion of plan-
ning in the action space of individual character actions. Re-
cent work explores the use of partial-order planning to pro-

vide a computational tool for authoring interactive narra-
tives [8]. PaSSAGE [29] and the Automated Story Direc-
tor [22] monitor a user’s experience through the story to
choose between scenes and character behavior. The focus
of this work is to revisit and evaluate the underlying repre-
sentations of the stories themselves, in order to reduce the
complexity of authoring interactive narratives.

User Interaction. Rapid advances in interaction modal-
ities [30] have helped bridge the divide between real and
virtual content where natural user interfaces are effectively
invisible and heighten the degree of immersion. However,
the ability to author interactive narrative content that can
truly harness the power of these interaction experiences still
remains an open challenge. Augmented Reality [31] helps
bridge the gap between real and virtual content to create im-
mersive experiences. Combining different input modalities
such as touch, gestures, and voice with the inherent cam-
era control in AR applications empowers content creators
to create new forms of interactive experiences that were not
possible before.

3. INTERACTIVE NARRATIVES
We identify three main requirements towards authoring free-
form interactive narrative experiences:

1. Modular Story Definition. Complex interactive
narratives have many interconnected story arcs that
are triggered based on user input leading to widely
divergent outcomes. The complexity of authoring nar-
ratives must scale linearly with number of story arcs,
which can be defined in a modular and independent
fashion.

2. User Interactions. User interaction should be free-
form, and not limited to discrete choices at key stages
of the story, with far-reaching ramifications on the out-
come of the narrative. Monitoring user input and story
logic should be decoupled to facilitate the modifica-
tion of user interactions without requiring far-reaching
changes to the story definition.

3. Persistent Stories. The actions and interactions
between the user and characters over the entire course
of the narrative must persist and influence story pro-
gression.

3.1 Behavior Trees for Narrative Authoring
Behavior Trees (BT’s) enable graphical and modular author-
ing of complex narratives. Branching narratives can easily
be created using BT control nodes that connect multiple
subtress, which represent independent story arcs. Recent
work [24] facilitate the authoring of complex multi-actor in-
teractions in a parametrizable fashion, enabling the reuse of
modular plot elements, and ensures that the complexity of
the narrative scales independently of the number of char-
acters. These properties of BT’s make them ideally suited
for authoring complex, branching narratives (Requirement
1). However, BT’s are not suited to to handle free-form
interactions and persistent state (requirements 2 and 3).

Monitoring User Interactions. Fig. 2 illustrates a naive
approach to monitoring user interactions in a BT. This re-



quires the subtree that monitors user input to be inserted
into the narrative tree at all points where user selects how
the narrative proceeds, thus producing a tight coupling be-
tween the narrative definition and user interaction. Reduc-
ing the number of instances in the narrative where user input
is monitored severely limits interactivity, while free-form in-
teraction increases the complexity of the tree. Also, user
input can be monitored only at the granularity of a single
node in the tree, and not at every frame. These complica-
tions produce a tradeoff between complexity in the narrative
and degree of interactivity.

MonitorTap(input)

ThrowBall

PickUpBall

 Sequence (AND)

NaiveUserInteraction(a1: Actor, a2: Actor, input: InputSignal)

Loop 
(until success)

 Sequence (AND)
a1

MonitorUserInput

PlayBall(a1, a2)

MonitorUserInputMonitorUserInput

Figure 2: Handling user interaction in a traditional
Behavior Tree. The MonitorUserInput
subtree is required at all points in the nar-
rative tree where the user selects how the
narrative proceeds, resulting in unneces-
sary large trees.

MonitorRub(input) Story

Selector (OR)

NaiveStatePersistance(a1: Actor, a2: Actor, input: InputSignal)

Story

PlayBallWithUser(a1, a2)

 Sequence (AND)

PlayBall(a1, a2)

a1

Figure 3: A naive approach to handle state persis-
tence in Behavior Trees.

State Persistence. Behavior Trees traditionally don’t have
any means of explicitly storing the past state of the charac-
ters involved in the narrative, where the current state of the
story is implicit in the current active node. Fig. 3 illustrates
a simple narrative where the bears choose to include the
user in the game of catch contingent on whether the user
playfully interacted with the bear at the beginning of the
story. A traditional BT requires a branch at the very begin-
ning of the narrative where the presence or absence of the
playful rub produces two largely redundant tree definitions

with minor variations in its ending.

3.2 Interactive Behavior Trees
To address the challenges described above, Interactive Be-
havior Trees facilitate free-form user interaction and state
persistence. We refer the readers to [8] for a detailed sum-
mary of IBT’s and provided a brief overview below.

IBT’s are divided into 3 independent sub-trees that are con-
nected using a Parallel control node. An IBT

tIBT = 〈tui, tstate, tnarr = {tarci |tarc1 . . . tarcm }, β〉 (1)

comprises the following subtrees: (1) Story Subtree. tnarr
is responsible for handling the narrative progression and is
further subdivided into subtrees {ai} that represent a sepa-
rate story arc. (2) MonitorUserInput Subtree. tui mon-
itors the different interactions that are available to the user
and can be easily changed depending on the application or
device. Since tui is executed in parallel with the other sub-
trees, IBT’s are able to immediately respond and register
the interactions of the user and use it to influence the nar-
rative outcome. (3) MonitorStoryState Subtree. tstate
monitors the state of the story to determine if the current
story arc needs to be changed.

The overall design of the IBT results in three subtrees that
execute independently in parallel with one another. A black-
board β is used to store the states of the characters and the
story and is used to communicate between the subtrees and
also to maintain state persistence. tui updates β when any
input signal is detected, which is queried by tstate to deter-
mine the current state of the story, and the active story arc.
tstate contains separate subtrees for each story arc which
checks if the precondition for the particular arc is satisfied.
If so, β is updated to reflect the newly activated story arc
which is used to switch the active story in tnarr.

4. AUTHORING COMPLEXITY

4.1 Cyclomatc Complexity
Cyclomatic complexity [7] quantifies the number of linearly
independent paths through the program by measuring the
number of branches in the code, and serves as a standard
criteria for optimizing the testability and maintainability of
the code without the need for dynamic code analysis. Cyclo-
matic complexity estimates the number of decisions made by
the source code where a complex, often poorly written pro-
gram with many branches leads to a high value of cyclomatic
complexity, indicating that the program is difficult to test,
maintain and prone to errors. By analogy, narratives that
account for the different ways a user may influence the story
outcome require many decision points, and are complex to
author. For this reason, we use cyclomatic complexity to
quantify authoring complexity for interactive narratives.

Cyclomatic complexity, c(g) is computed by first converting
the program into its equivalent control flow graph (CFG)
representation g, where the nodes correspond to atomic com-
mands, and the directed edges connect commands that ex-
ecute in sequence. c can be calculated in a variety of ways,
including:



c(g) = p(g) + 1 (2)

where p(g) is the number of decision points (e.g., if, while, ...
etc.) in the program. However, Eq. 2 assumes that there is a
single termination point in the program which is not the case
with BT’s where every node may terminate with success or
failure. Additionally, there is a third “runnning” state that
is returned at each frame while the node is still executing.
To generalize the measure of c(g) for multiple termination
points, we use a modified equation shown below where s(g)
denotes the number of exit points in g.

c(g) = p(g)− s(g) + 2 (3)

4.2 Computing Cyclomatic Complexity for Be-
havior Trees

Fig. 4 illustrates the equivalent control flow representations
for the different control nodes used for defining behavior
trees, which are used to compute its cyclomatic complex-
ity. All subsequent calculations of c(.) assuming that the
behavior trees are converted to their equivalent control flow
graphs.

Leaf Node. A leaf node tleaf represents an atomic com-
mand in a BT which returns either success or failure. If it
is in the “running” state, it continues executing itself until it
succeeds or fails. Fig. 4(a) shows the CFG for a leaf node.
Depending on the number of return states in the particu-
lar leaf node implementation, we have p(tleaf) = {0, 1, 2}
and s(tleaf) = {1, 2}. If the leaf node immediately returns
success or failure without using the running state, we have
c(tleaf) = 1. If the leaf node can enter the running state,
the complexity is c(tleaf) = 2.

Sequence Node. A sequence node tseq returns failure
if any one of its child nodes fails, else it returns success.
If a child returns “running”, it simply continues executing
this child until it has reached failure or success. Fig. 4(b)
illustrates the CFG for tseq. To calculate c(tseq) of tseq with
a set of m child nodes {ti|t1, t2 . . . tm}, we need to consider
that each child node may be its own subtree with multiple
decision points.

p(tseq) =

m∑
i=1

p(ti), s(tseq) = 2,

∴ c(tseq) =
m∑

i=1

p(ti) (4)

Selector Node. The selector node tsel returns success as
soon as its first child node returns success, and produces a
similar control flow graph as compared to tseq (Fig. 4(c)).
Hence, c(tsel) = c(tseq).

Loop Node. The loop node tloop is used to repeatedly
execute its child node tc until a certain condition is met. A
loop node may only have a single decorator or leaf node as its

child and does not define how to traverse through multiple
children. The following termination conditions may be used:
(1) loop until success, (2) loop until failure, (3) loop N times,
(4) loop forever. Fig. 4(d) illustrates the loop node which
terminates when its child node returns success. It has only
one termination node, and an additional decision point is
introduced for looping.

p(tloop) = 1 + p(tc), s(tloop) = 1,

∴ c(tloop) = p(tc) + 2 (5)

The same calculations apply for a loop node that repeats
until failure. For tloop which repeats a fixed number of times.

p(tloop) = 1 + p(t), s(tloop) = 2,

∴ c(tloop) = p(t) + 1 (6)

Fig. 4(e) illustrates a loop node that never returns. Since
the node never terminates and has neither a decision point
nor an exit point, we only need to consider the child of the
loop node.

p(tloop) = p(t), s(tloop) = 0,

∴ c(tloop) = c(t) (7)

Parallel Node. The parallel node tpar executes its child
nodes in parallel and has two types depending on the ter-
mination condition: (1) Selector Parallel: It executes until
any child node returns success or all of them return failure.
(2) Sequence Parallel: It executes until any child node re-
turns failure or all of them succeed. Fig. 4(f) illustrates the
control flow graph of a selector parallel node. An additional
node “Sync” is used to symbolize the synchronization bar-
rier between the child nodes and termination. The sequence
parallel node exhibits similar behavior and both their com-
plexity measures can be calculated as shown below.

p(tpar) = 2 ·
m∑

i=1

p(ti), s(tpar) = 2,

∴ c(tpar) = 2 ·
m∑

i=1

p(ti) (8)

4.3 Complexity Comparison
Using the complexity measure described above, we compare
the authoring complexity of traditional story graphs, naive
BT definitions for interactive narratives, and IBT’s.

Story Graphs. A story graph gs is a directed graph where
the vertices correspond to story atoms during which the user
has no outcome on the narrative, and the edges represent a
discrete set of choices that the user has to influence how the
story ends. A linear narrative represents a lower bound on
c(gs) = 1 with no decision points. For interactive narratives
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Figure 4: Control flow graphs for the different control nodes used in Behavior Trees.

however, an upper bound on the complexity represents a
branching story graph where all possible user interactions
are possible at each stage in the story, which is supported
by IBT’s.

For a story graph gs with m story arcs {ai|a1 . . . am}, each
with |ai| number of nodes, and d possible user interactions,
there will be a maximum of d +1 outgoing edges per node in
gs. Therefore, each node represents d decision points. Ad-
ditionally, the number of exit points depends on how many
story arcs can end the story 1 ≤ s(gs) ≤ m. We calculate
c(gs) as follows:

c(gs) = d ·

(
m∑

i=1

|ai|

)
− s(gs) + 2 (9)

Behavior Trees (Naive Approach). Fig. 2 illustrates
the naive approach to authoring interactive narratives us-
ing BT’s. This BT tBT = 〈tmu, {ai|a1 . . . am}〉 comprises a
subtree tmu which monitors user input and story branching,
and m story arc subtrees, where ai represents the ith arc
with |ai| nodes. However, these subtrees are tightly cou-
pled together as the user input must be monitored between
each node of each story arc to ensure free-form user inter-
action. The number of decision points for each story arc ai,
p(ai) = |ai| · p(tmu) + p(ai), and tBT has two exit points.
Hence, the cyclomatic complexity c(tBT) is calculated as
follows:

c(tBT) =

m∑
i=1

(|ai| · p(tmu) + p(ai)) (10)

Interactive Behavior Trees. The benefit of the IBT for-
malism is that the 3 subtrees 〈tui, tstate, tnarr〉 are all inde-
pendent to each other and run in parallel using a Parallel
Sequence node. Additionally, each subtree has a Loop for-
ever node at its top, Hence, we can consider each subtree as
an independent program and the total complexity c(tIBT)
can be computed by adding the complexities of each inde-
pendent subtree.

MonitorUserInput Subtree. tui monitors all possi-
ble user interactions which sets the appropriate state in the

blackboard β. In our proposed solution, all the leaf nodes
that monitor the respective user inputs were modified to only
return success and thus have no decision points. tui simply
checks the different interactions in a sequence without any
branching. As a result, c(tui) = 1.

MonitorStoryState Subtree. tstate checks if all the
preconditions for each arc are satisfied and sets the current
story arc if needed. For li nodes per story arc ai, (li − 1)
of those node are assertion nodes that represent a decision
point and the last one sets the current story arc. Hence, the
complexity c(tstate) is calculated as follows:

c(tstate) =

m∑
i=1

(li − 1) (11)

Story Subtree. tnarr = {tarci |tarc1 · tarcm } consists of a sub-
tree for each story arc ai which additionally checks if it is
the current story arc before proceeding to execute the nar-
rative. This ensures that story arcs can be switched seam-
lessly at any point in the narrative. This introduces 2 more
decision points per arc, in addition to the arc complexity.
The number of decision points p(tarci ) for the ith story arc,
p(tarci ) = 2 · (2 + p(ai)). The resulting complexity, c(tnarr):

c(tnarr) = 4 ·m +

m∑
i=1

(2 · p(ai)) (12)

The overall complexity c(tIBT) is calculated as follows:

c(tIBT) = c(tui) + c(tstate) + c(tnarr)

= 1 + 4 ·m +

m∑
i=1

(2 · p(ai) + (li − 1))
(13)

Conclusion. Eq. 9 shows that the number of user interac-
tions and the number of nodes in the story arcs have a multi-
plicative effect on the authoring complexity for story graphs.
This limits content creators to choose between freedom of in-
teraction and the complexity of the narrative to prevent the
authoring complexity from becoming prohibitive. In con-
trast, the number of decision points in the story arc have a
linear effect on c(tIBT), while the number of ways a user can



interact has no impact on the authoring complexity. This
allows content creators to create compelling interactive nar-
rative experiences with free-form user interaction, without
being burdened by limitations in the specification language.

5. APPLICATION
We developed an interactive narrative application in an AR
setting, authored using IBT’s, where the user can freely in-
teract with the characters in the story (two bears) and his
interactions influence the outcome of the narrative.

5.1 Augmented Reality Framework
Augmented Reality (AR) applications benefit from intuitive
and versatile input mechanisms where the user can seem-
ingly physically interact with the virtual world. For see-
through AR applications, the physical movement of the mo-
bile device serves as a direct means of exploring the digital
content superimposed in a real environment, where, not only
can the user interact with the virtual characters using the
host of sensors available on the device, but the virtual char-
acters can interact with the physical world as well.

Implementation. We used a natural image-based tracking
approach [1], which registers the 2D marker image and esti-
mates the camera location and pose in real-time for stable
tracking. We used the implementation provided by Vufo-
ria [19]. Additional image markers can also be tracked and
used as triggers in the AR application, for example, to in-
stantiate new objects in the world, which may branch the
narrative in a different direction. The game application was
implemented using the Unity3D game engine using a data-
driven character animation system. The animation func-
tionality is exposed to the author using a set of routines
including LookAt(obj), Reach(target) etc., which can be
invoked from BT’s. For more details of the animation sys-
tem, please refer to [28]. The narrative was authored us-
ing an extended version of the BT library described in [24].
The current version of the game was deployed and tested
on multiple portable devices including Sony Xperia Tablet
Z, Apple iPad 3rd generation, Apple iPad Mini Retina, and
Apple iPad Air.

Interaction Vocabulary. Using the sensors available on
the mobile device, the user can interact with the virtual
characters in the following ways: (1) Moving the device to
focus on different objects and characters. (2) Tapping on ob-
jects and characters to pick them up or interact with them.
(3) Shaking the device. (4) Gestures to communicate user
intent. (5) Using image markers to trigger objects (e.g., a
honey pot sticker can be used to create a honey pot for the
bears) in the world. The mode and effect of interactions is
completely decoupled from the narrative and can be easily
changed depending on the platform used without impacting
the narrative definition.

5.2 Story Definition
We author an interactive narrative involving two bears. We
provide a brief description below and refer the readers to the
supplementary video for more details.

Playing Catch. The first bear B1, enters the scene and
looks up at the player with curiosity. The player can ex-
periment with the bear by trying out different interaction

possibilities including rubbing the bear, asking him to twirl
using a circular gesture, tapping him to attract his atten-
tion, or zooming in to get a closer look. Soon, the second
bear B2 enters and asks B1 for a beach ball so they can play
catch. B1 is unable to find a ball and turns to the player
for help. The player may choose to give a soccer ball to the
bears but they only want to play with the beach ball. De-
pending on where the player throws the beach ball, different
branches of the story are triggered where giving the ball to
B1 enables him to help his friend.

State Persistence. The user’s choices have ramifications
later on in the story. For example, B1 remembers if the
player rubbed him at the beginning and includes him in the
game by throwing him the ball. If the player chooses not
to interact with the bear, the bears are less friendly and
exclude him from the game of catch.

Additional Interactions. At any point, the player may
use a honey pot sticker to trigger a honey pot in the world.
The bears who are obsessed with honey leave aside whatever
they are doing, even their beloved ball, and make a beeline
towards the honeypot which represents one possible conclu-
sion of the story. A more mischievous player may choose to
trigger bees into the world which chase the bears and disrupt
their game of catch. Only flowers may then be used to dis-
tract the bees and save the bears. These different story arcs
are authored as modular, independent units in the IBT and
can be triggered at any stage without the need for complex
connections and state checks in the behavior tree definition.

Freedom of Interaction. The above narrative represents
a very simple baseline to demonstrate the ability to author
compelling interactive narrative experiences. Unlike tradi-
tional approaches where the user was limited to discrete
choices at certain stages in the narrative, IBT’s empower
the player with complete freedom of interaction where he
may choose to play ball with the bears, give them honey, or
simply wreak havoc by releasing a swarm bees at any point
of time. The interactions elicit instantaneous and plausible
interactions from the characters while staying true to the
narrative intent.

6. USER STUDY
We conducted a preliminary user study to assess the in-
fluence of the authoring methods on the user’s authoring
performance. Each subject was asked to implement a pre-
defined, moderately complex narrative using two methods:
(1) Story Graphs SG and (2) Interactive Behavior Trees IBT.
We used a basic implementation of story graphs where nodes
represent the execution of one or more affordances in se-
quence, and edges represent a condition on the status of the
previous node, or a user interaction. Recent extensions [23]
encapsulate state machines within individual graph nodes
to create more complex narrative atoms. However, since
our goal is to allow the user to interact at any point in the
story, narrative atoms in story graphs are restricted to the
set of available affordances.

6.1 Method
All subjects carried out the study on a similar PC with two
monitors, where they used an extended version of the Unity
game engine for authoring. Both methods were implemented



within the same GUI to mitigate the influence of the inter-
face on the analysis. Each subject was first provided with
a tutorial document to introduce each method and get ac-
customed to the application. For each tutorial, the subject
could freely interact with the software and experiment with
its functionality without a time limit. Following each tuto-
rial, the subject was asked to author the narrative described
below during which a variety of metrics were measured and
logged.

Narrative. The subjects were presented with the follow-
ing textual description of the narrative, which they had to
author using each method. While relatively simple, the nar-
rative exercises the use of multiple interconnected story arcs
and freedom of user interaction. (1) Start Arc: Bear1 enters
the scene. Bear1 is bored. After 2 seconds Bear1 realizes
that the user is watching and waves at him. Bear2 enters
the scene. (2) Conversation Arc: Bear2 greets Bear1. They
start arguing. After 10 seconds Bear2 apologizes to Bear1.
The story ends. (3) Bee Arc: The player may trigger the
bees at any time. If the bees are in the scene, the bears run
away from the bees and completely ignore any other story
elements or user interactions. (4) Flower Arc: The users
can spawn flowers at any time. If flowers are in the scene,
the bees (if present) stop chasing the bears and fly to the
flower. The bears are then free to continue with the previ-
ously active story arc, or respond to other user interactions.

6.2 Metrics
Independent Variables. The method of authoring and
author proficiency are treated as independent variables (IV)
in our experiment. Subjects were instructed to author the
same narrative using the 2 methods: Story Graphs SG and
Interactive Behavior Trees IBT. The order in which the user
authored the story using each method was chosen at random.
At the beginning of the study, the subject was asked to select
his proficiency as an expert who has previous experience with
BT’s, or a novice with little or no experience.

Dependent Variables. We logged a variety of metrics
to capture the authoring performance, which are treated as
dependent variables (DV) in our experiment. (1) We mea-
sured the time in minutes ta needed to author the narrative
for each method. (2) We counted the number of mouse clicks
nc during each authoring session as an estimate of the effort
to author a story. (3) For each authoring method, the user
was asked to rate its subject difficulty ds as a nominal value
from 1 (very easy) to 5 (very hard).

6.3 User Study Results
We recorded 12 subjects at the age between 21 years and 35
years, 90 % male. They were Computer Science students (4
undergraduate, 8 graduate) and were proficient with using
the Unity editor. Additionally, expert users had previous
experience with Behavior Trees. All subjects (6 experts,
6 novice users) authored the same story using both meth-
ods. A MANOVA was conducted with Method and Pro-
ficiency as independent variables, with ta, nc, and ds as
dependent variables, and with the user’s ID as covariate.

Findings revealed a statistically significant difference in user
performance based on the Method prior (Roy’s Largest
Root = 6.282, F(3, 17) = 35.587, p < 0.001, partial η2 =

0.863) as well as based on the Proficiency prior (Roy’s
Largest Root = 5.525, F(3, 17) = 31.309, p < 0.001, par-
tial η2 = 0.847). Furthermore, the multivariate model ex-
hibits high R2 values: ta: R2 = 0.888, nc: R

2 = 0.571,
ds: R2 = 0.785.

The univariate effects of Method and Proficiency are
summarized in Table 1. The estimated means for both IVs
are depicted in Table 2. Fig. 5 depicts the correlation ma-
trix with Pearson’s Correlation coefficients for all IVs and
DVs. Red coefficients indicate a significant (α = 0.05) cor-
relation. The strongest significant correlation is observed
between Method and ds (r = −0.87).

Table 1: Univariate tests analysis for Method and
Proficiency.

IV DV df Error df F p

Method ta 1 19 30.320 < 0.001
nc 1 19 11.761 0.003
ds 1 19 67.308 < 0.001

Proficiency ta 1 19 103.665 < 0.001
nc 1 19 11.472 0.003
ds 1 19 0.731 0.403

Table 2: Estimated means for the multivariate
model (Method and Proficiency interac-
tion). Lower and upper bounds (LB, UB)
are provided for 95% confidence intervals.

DV Proficiency Method LB Mean UB

nc Expert IBT 131.52 367.16 602.81
SG 654.18 889.83 1125.48

Novice IBT 649.86 885.50 1121.15
SG 899.19 1134.84 1370.48

ta Expert IBT 12.87 25.52 38.16
SG 46.04 58.68 71.32

Novice IBT 74.34 86.99 99.63
SG 107.68 120.32 132.96

ds Expert IBT 2.25 2.83 3.40
SG 4.42 4.99 5.57

Novice IBT 1.93 2.51 3.08
SG 4.27 4.84 5.42

Interpretation of Results. The results clearly show that
independent of the user’s proficiency with IBT’s, there is
a significant decrease in authoring time, number of clicks,
and subjective authoring difficulty when comparing SG and
IBT. The novice users consistently performed worse than
the expert users, which confirms that our performance met-
rics were appropriate. Finally, while the method indicates
a strong effect on the subjective difficulty, no significant ef-
fects of the subject’s proficiency with IBT’s on the subjective
difficulty could be measured.

The study yielded positive results. However, it must be
noted that the scope of the study was limited due to the
significant amount of time it took to author even the mod-
erately complex narrative described above. The average
time to complete the study for the novice group was over
2 hours. More complex narratives and a larger user base
are needed to create more substantial results. Furthermore,
the quality of the tutorial documents explaining the meth-
ods have certainly a strong influence on how well the sub-
jects perform with that method. Yet it is inherently difficult
to teach all methods to exactly the same extent. In a fu-
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Figure 5: Correlation matrix for the IVs and DVs
depicting Pearson’s Correlation Coeffi-
cients. A red coefficient indicates a statis-
tically significant correlation. The plots
on the diagonal depict a histogram for
each distribution.

ture study, maybe carefully created video tutorials for each
method might mitigate the effect of training on the study
outcome. Our user study confirms the theoretical measures
of authoring complexity that were described earlier.

7. DISCUSSION AND FUTURE WORK
In this paper, we demonstrate the benefits of using Interac-
tive Behavior Trees for authoring free-form interactive nar-
ratives. The hierarchical, graphical nature of BT’s makes
them suitable for authoring complex narratives with branch-
ing story arcs in a modular, extensible fashion. By decou-
pling the monitoring of user input and the narrative defini-
tion, users who experience the narratives can freely interact
with the characters in the story, limited only by their cre-
ativity and interaction device. This enables content creators
to author compelling interactive narrative experiences with
free-form user interaction.

We calculate the authoring complexity of authoring narra-
tives by mapping different narrative specifications to their
corresponding control flow representations, which can be
used to compute their cyclomatic complexity. Comparing
the cyclomatic complexity of IBT’s vs. traditional story
graphs reveals that IBT’s scale better with the number of
story arcs, and degree and granularity of interactions. This
makes them suitable for authoring complex narratives with
free-form user input. Our user study confirms the premise
that users, be it expert users, who are familiar with IBT’s, or
novice users, spend in average less time, require less effort,
and rate it subjectively easier to author a predefined narra-
tive employing IBT’s compared to traditional story graphs
in our Unity authoring editor.

Limitations and Future Work. IBT’s enable content cre-
ators to easily author complex interactive narratives without
being burdened by limitations in the specification language.
However, all the story arcs and responses to different user

inputs need to be authored beforehand and there are no
emergent responses to unforeseen situations which may often
arise in interactive applications. There is a growing trend
to use automated narrative tools [21] to produce emergent
interactive experiences. Recent work [8] explores the use
of automated narrative tools to assist content creators to
handle all possible user interactions during the authoring
process. For future work, we would like to study the po-
tential benefits and tradeoffs of automation for authoring
interactive narratives.

The cyclomatic complexity provides an estimate of the num-
ber of decision points in the authored story, but does not
account for the number of decisions needed while author-
ing the narrative. Additional measures [2] that account for
the high-level structure of a story may also be used to com-
plement this analysis. The use of story graphs provides a
suitable baseline for comparing the benefits and tradeoffs of
IBT’s for interactive narratives. For future work, we would
also like to compare IBT’s with many additional alterna-
tives including hierarchical task networks [3], narrative me-
diation [20], and other planning based approaches.
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