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Figure 1: Comparison of simulations using default [(a), (c)] and optimized [(b), (d)] parameters. Left: Agents are initially in
a circle with anti-diametric goals. The ORCA algorithm, optimized to reduce time-to-completion, completes the task twice as
fast as its default configuration and exhibits a less turbulent pattern. Right: The SF algorithm, optimized to minimize effort,
requires a third of the energy spent by its default configuration, and produces a smoother, faster and tighter room evacuation.

Abstract

In the context of crowd simulation, there is a diverse set of algorithms that model steering. The performance of
steering approaches, both in terms of quality of results and computational efficiency, depends on internal param-
eters that are manually tuned to satisfy application-specific requirements. This paper investigates the effect that
these parameters have on an algorithm’s performance. Using three representative steering algorithms and a set of
established performance criteria, we perform a number of large scale optimization experiments that optimize an
algorithm’s parameters for a range of objectives. For example, our method automatically finds optimal parameters
to minimize turbulence at bottlenecks, reduce building evacuation times, produce emergent patterns, and increase
the computational efficiency of an algorithm. We also propose using the Pareto Optimal front as an efficient way of
modelling optimal relationships between multiple objectives, and demonstrate its effectiveness by estimating opti-
mal parameters for interactively defined combinations of the associated objectives. The proposed methodologies
are general and can be applied to any steering algorithm using any set of performance criteria.

1. Introduction

Simulating groups of autonomous virtual humans (agents)
in complex, dynamic environments is an important issue for
many practical applications. A key aspect of autonomous
agents is their ability to navigate (steer) from one location to
another in their environment, while avoiding collisions with
static as well as dynamic obstacles. The requirements of a
steering approach differ significantly between applications

and application domains. For example, computer games are
generally concerned with minimizing computational over-
head, and often trade off quality for efficiency, while evacua-
tion studies often aim to generate plausible crowd behaviour
that minimizes evacuation times while maintaining order.

There is no definitive solution to the steering problem.
Most of the established methods are designed for specific
classes of situations (scenarios), and make different trade-
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offs between quality and efficiency. The fine balance be-
tween these often competing performance criteria is gov-
erned by algorithm specific parameters that are exposed to
the user. Some of these parameters have intuitive direct ef-
fects. For example, the radius of a comfort zone affects how
close agents may come to each other, while the neighbour
horizon limits the distance from an agent within which other
agents are considered during steering. This significantly in-
fluences both the predictive power and computational effi-
ciency of the associated method. However, even when the
parameters are fairly intuitive, their combined effect, or their
effect on the macroscopic behaviour of a large crowd, is not
always easy to predict. For this reason, the inverse question
is particularly interesting. Given a pattern of behaviour, a
performance criterion (metric) or a trade-off between per-
formance metrics, can we automatically select the parameter
values of a steering algorithm that will produce the desired
effect? This is a timely and important question, and the main
focus of our work.

We present a methodology for automatically fitting the pa-
rameters of a steering algorithm to minimize any combina-
tion of performance metrics across any set of environment
benchmarks in a general, model-independent fashion. Using
our approach, a steering algorithm can be optimized for the
following: success; quality with respect to distance, time,
or energy consumption of an agent; computational perfor-
mance; similarity to ground truth; user-defined custom met-
rics; or, a weighted combination of any of the above. Opti-
mizing an algorithm’s parameters across a representative set
of challenging scenarios provides a parameter set that gen-
eralizes to many situations. A steering approach may also be
fitted to a specific benchmark (e.g., a game level), or a bench-
mark category (e.g., evacuations) to hone its performance for
a particular application.

We demonstrate our proposed methodology using three
established agent-based algorithms: (1) ORCA: a predictive
technique that uses reciprocal velocity obstacles for colli-
sion avoidance [vdBGLM11], (2) PPR: a hybrid approach
that uses rules to combine reactions, predictions, and plan-
ning [SKH∗11], and (3) SF: a variant of the social forces
method for crowd simulation [HFV00]. We thoroughly study
these algorithms and compute their optimal parameter con-
figurations for different metric combinations on a represen-
tative scenario set of local agent interactions and large-scale
benchmarks. For example, our method automatically finds
optimal parameters to minimize turbulence at bottlenecks,
reduce building evacuation times, produce emergent pat-
terns, and increase the computational efficiency of an al-
gorithm, in one case by a factor of two. Cross-validation
shows that, on average, optimal parameter values general-
ize across scenarios that were not part of the test set. Our
study includes an in-depth statistical analysis of correlations
between algorithmic parameters and performance criteria,
however, because of space limitations the complete analy-
sis can be found in the supplemental material.

We also study the interesting and challenging problem of
dynamically tuning the parameters of an algorithm to sup-
port interactively defined combinations of objectives. For
most practical cases, it is not feasible to solve this problem
in real-time every time the combination changes. To address
this issue we precompute optimal trade-offs between the ob-
jectives in the form of a discrete approximation of the Pareto
Optimal front. During runtime, our method efficiently esti-
mates the parameters of the algorithm that optimally support
a new combination of the objectives.

2. Related Work

Since the seminal work of [Rey87, Rey99], crowd sim-
ulation has been studied from many different per-
spectives. We refer the readers to comprehensive sur-
veys [PAB08, HLLO, TM13] and present a broad review be-
low.

Continuum-based techniques [TCP06, NGCL09]
model the characteristics of the crowd flow to sim-
ulate macroscopic crowd phenomena. Particle-based
approaches [Rey87, Rey99] model agents as particles
and simulate crowds using basic particle dynamics. The
social force model [HBJW05, PAB07] simulates forces
such as repulsion, attraction, friction and dissipation
for each agent to simulate pedestrians. Rule-based ap-
proaches [LD04, SGA∗07] use various conditions and
heuristics to identify the exact situation of an agent.
Egocentric techniques [KSHF09] model a local variable-
resolution perception of the simulation. Data-driven
methods [LCHL07, LCL07, JCP∗10, BKSB13] use existing
video or motion capture data to derive steering choices that
are then used in virtual worlds, and recent work [OPOD10]
demonstrates a synthetic vision-based approach to steering.
The works of [PPD07, vdBGLM11] use predictions to steer
in environments populated with dynamic threats.

Crowd Evaluation. There has been a growing recent trend
to use statistical analysis in the evaluation and analysis of
crowd simulations. The work by Lerner et al. [LCSCO10]
adopts a data-driven approach to evaluating crowds by mea-
suring its similarity to real world data. Singh et al. [SKFR09]
proposes a compact suite of manually defined test cases
that represent different steering challenges and a rich set
of derived metrics that provide an empirical measure of the
performance of an algorithm. Recent extensions [KWS∗11]
propose a representative sampling of challenging scenarios
that agents encounter in crowds to compute the coverage of
the algorithm and the quality of the simulations produced.
Density measures [LCSCO10] and fundamental diagram-
based comparisons [SBK∗10] use aggregate metrics for
quantifying similarity. The work in [GvdBL∗12, POO∗09]
measures the ability of a steering algorithm to emulate the
behavior of a real crowd dataset by measuring its diver-
gence from ground truth. [MCJ12] presents a histogram-
based technique to quantify the global flow characteristics
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of crowds. Perceptual studies rely on human factors ex-
periments to measure the variety in appearance and mo-
tion [MLD∗08], or perceptual fidelity of relaxing colli-
sions [KOOP11] in crowds.

Parameter Optimization. Parameter fitting is widely used
in visual effects [BM10] to automate the tuning of model
parameters to meet certain user-defined criteria. The re-
sulting optimization problems tend to involve non-convex,
and high-dimensional spaces. For these problems, evo-
lutionary strategies are preferred because they generally
have less parameters to tune and do not require the com-
putation of derivatives. Such techniques have been suc-
cessfully demonstrated on a diverse set of application
domains [HMLP13, WFH10]. By selecting the right set
of parameters, researchers have shown improvements in
a steering algorithm’s ability to match recorded crowd
data [JHS07, POO∗09, PESVG09, DK11, LJK∗12].

Concurrent work [WGO∗14] explores parameter estima-
tion for steering algorithms to match reference data for spe-
cific scenarios. Our method is not tied to ground truth, and
can be used to optimize quantitative metrics such as the com-
putational performance of the algorithm. Additionally, we
leverage the use of different test sets, including small-scale
interactions and high-density crowds, to obtain optimal pa-
rameter values that generalize across the space of possible
scenarios. To offset the computational burden of optimizing
an algorithm for different criteria, we propose a method to
precompute the mapping between an algorithm’s parameters
and objective weights, thus allowing us to dynamically adapt
the crowd behaviour at real-time rates.

3. Parameter Fitting Methodology

We present an optimization based framework for automati-
cally fitting the parameters v ∈ V of an algorithm, Av. Our
framework automatically selects optimal parameter values
v∗ ∈ V such that the performance of Av∗ minimizes certain
performance criteria, over a set of benchmarks (test set). The
next sections describe the elements involved in this problem
and our approach to solving it.

3.1. Steering Algorithms

Our approach can be applied to any steering algorithm.
For demonstration reasons, we use the following estab-
lished steering approaches. (1) PPR: [SKH∗11] combines
reactions, predictions and planning in one single frame-
work with 38 tunable parameters. (2) ORCA: [vdBGLM11]
uses reciprocal velocity obstacles for goal-directed collision
avoidance. (3) SF. [HFV00] uses hypothetical social forces
for resolving collisions between interacting agents in dense
crowds. These algorithms represent the broad taxonomy of
crowd approaches with mutually exclusive parameter sets
that can be tuned to produce widely differing variations in

the resulting crowd behavior. Additional details of the algo-
rithm parameters can be found in the supplementary docu-
ment.

3.2. Test Sets

We employ different benchmark sets including local agent
interactions and high-density crowds to find the optimal val-
ues of an algorithm’s parameters that generalize across the
wide range of situations that agents encounter in crowds.
Note that certain performance metrics may have more mean-
ing for specific test sets. For example, computational effi-
ciency is more meaningful for situations that involve suffi-
ciently large numbers of agents.

Large Scale Sets. S contains most of the large-scale bench-
marks in Table 1 that define large environments with many
agents. Sv is a set of similar but different large-scale bench-
marks that will be used to validate the results of parameter
optimization on previously unseen cases (cross-validation).

Benchmark # Agents Description
Random 1000 Random agents in open space.
Forest 500 Random agents in a forest.
Urban 500 Random agents in an urban environment.
Hallway 200 Bi-directional traffic in a hallway.
Free Tickets 200 Random agents to same goal, then disperse.
Bottleneck 1000 Tight bottleneck.
Bottleneck evac 200 Evacuation through a narrow door.
Concentric circle 250 circle with target on opposite side.
Concentric circle 500 circle with target on opposite side.
Hallway 400 4-way directional traffic.

Table 1: Large scale benchmarks. The bottom three sce-
nario are part of Sv. All are designed to stress the steering
algorithms computational efficiency.

Representative Set. The representative scenario set, R, in-
cludes 5000 samples of a wide range of local interactions. It
is designed to include challenging local scenarios and to ex-
clude trivial or invalid cases. We construct it in a fashion
similar to [KWS∗11], following these general guidelines:
(a) The reference agent is placed near the center of the sce-
nario, (b) agent targets are placed at the environment bound-
ary, and (c) non-reference agents are distributed at locations
that maximize the likelihood that their static paths will in-
tersect the reference agent’s static path to its target. We use
the same method to generate another set of the same size,
Rv, for cross-validation. We use the representative set be-
cause it provides the best sampling of the full space of pos-
sible scenarios. Therefore, optimizing for the representative
set should give good results in general for any scenario.

Combined Test Set. The union of the large scale set, S, and
the representative set,R, T = S ∪R is the main test set that
we use for algorithm analysis and parameter fitting in a sta-
tistically significant general fashion. Here we use statistical
significance to contrast against common practice in crowd
simulation where results are demonstrated on a very limited
number of test cases.
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Combined Validation Set. Similarly, the combined cross-
validation set is T v = Sv∪Rv.

Custom Scenario Set. A user can specify a subset of sce-
narios in T or even design custom benchmarks to focus
the parameter fitting on application-specific requirements.
Random permutations in the environment configuration and
agent placement can generate multiple samples of a custom
benchmark category. For example, one can create a set of
test cases that capture two-way traffic in orthogonally cross-
ing hallways as is common in large buildings.

Ground Truth Test Set. There are few publicly available
data sets of recorded crowd motion which can be used to test
a steering algorithm’s ability to match real world data. We
use a ground truth test set G, published by [SBK∗10], for
our experiments.

3.3. Normalized Performance Measures

This section defines a variety of intuitive measures to char-
acterize the performance of a steering algorithm on the
test set T . These include: (1) the fraction of scenarios
that an algorithm was unable to solve in the representa-
tive set of scenarios, (2) quality measures with respect to
distance travelled, total time taken, or energy consumption
of an agent, (3) computational performance of the algo-
rithm, or (4) statistical similarity with respect to ground
truth. The specific metrics we use are briefly described be-
low and we refer the reader to more detailed explanations
in [KWS∗11, GCC∗10, GvdBL∗12]. In addition, users may
define their own custom metrics to meet application-specific
requirements.

Failure Rate. The coverage c(Av) of a steering algorithm Av
over a test set T is the ratio of scenarios that it successfully
completes in T . An algorithm successfully completes a par-
ticular scenario if the reference agent reaches its goal with-
out any collisions and the total number of collisions among
non-reference agents is less than the number of agents in
the scenario. The failure rate is the complement of coverage
d(Av) = 1− c(Av).

Distance Quality. The distance quality qd(Av) of Av for a
single scenario s is the complement of the ratio between the
length of an ideal optimal path od

s , and the length of the
path that the reference agent followed, ad

s . It is computed

as: qd(Av) = 1− od
s

ad
s
. The ideal optimal path is the shortest

static path from the agent’s initial position to its goal. If the
algorithm does not successfully complete the scenario then
the associated distance quality metric is set to the worst-case
value of 1.

Time Quality. Similarly, qt(Av) characterizes how much
longer the reference agent took to reach its goal compared
to an ideal optimal time. The ideal optimal time for a sin-
gle scenario corresponds to the agent reaching its goal when
moving with its desired velocity along the ideal optimal path.

PLE Quality. The PLE quality metric is computed as
qe(Av) = 1− oe

ae , where oe
s = 2 ·od

s · (es · ew) is the ideal op-
timal effort and ae the actual effort of the agent [GCC∗10].
The distance, time, and PLE quality measures can be aver-
aged across a large set of benchmarks to provide aggregate
quality measures for a test set.

Computational Efficiency. The computational efficiency
e(Av) metric is the average CPU time consumed by all
agents in all scenarios in a test set S. To provide a basis
for normalization, we assume that 10% of all computational
resources are allocated to the steering algorithm. Hence, the
maximum time allocated to a steering algorithm every frame
is n−1

des seconds for a desired framerate of ndes fps. For every
scenario s, the maximum time ts

max allocated to every steer-
ing agent per frame is (N · ndes)

−1 seconds, where N is the
number of agents in s. Let ts

avg be the average time spent per
frame for all agents to reach a steering decision. The average
computational efficiency e over a test set S is computed as
follows:

e(Av) = 1−
∑

s∈S
es(Av)

|S| , es(Av) =
ts
max
ts
avg

(1)

where es(Av) is the efficiency of Av for a particular scenario
s, and |S| is the cardinality of the test set S. The desired
framerate, ndes, provides an ideal upper bound for efficiency,
analogous to the ideal upper bounds of the other metrics, and
allows us to define a normalized efficiency metric. Normal-
ized metrics can be combined more intuitively into optimiza-
tion objectives in the forthcoming analysis. Alternatively, we
could set the desired framerate to a very high value for all al-
gorithms and attend to scaling issues later.

Similarity to Ground Truth. In addition to quantita-
tively characterizing the performance of a steering algo-
rithm, we can also measure its ability to match ground
truth. We compute a simulation-to-data similarity measure
g(Av,G) [GvdBL∗12] which computes the entropy measure-
ment of the prediction errors of algorithm Av relative to a
given example dataset, such as the test set G defined in Sec-
tion 3.2.

3.4. Parameter Optimization

Given a set of performance metrics such as the ones defined
in Section 3.3, M = 〈d,qd,qt,qe,e〉, we can define an ob-
jective function as a weighted combination of these metrics:

f (Av,w) = ∑
mi∈M

wi ·mi, (2)

where w = {wi} contains the weights which determine the
relative influence of each individual metric. By choosing dif-
ferent sets of metrics and associated relative weights, we can
define custom objectives. For a steering algorithm Av with
internal parameters v ∈ V, a set of test cases, and a desired
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objective f (Av,w), our goal is to find the optimal parameter
values v∗w that minimize the objective over the test set. This
can be formulated as a minimization problem:

v∗w = argmin
v∈V

f (Av,w). (3)

This is generally a non-linear and non-convex optimization
problem for the independent parameters, v ∈ V. The Co-
variance Matrix Adaptation Evolution Strategy technique
(CMA-ES) [HO96, Han11] is one of the many methods that
can solve such problems. We chose CMA-ES because it is
straightforward to implement, it can handle ill-conditioned
objectives and noise, it is very competitive in converging
to an optimal value in few iterations, and it has support for
mixed integer optimization. The CMA-ES algorithm termi-
nates when the objective converges to a minimum, when
very little improvement is made between iterations, or af-
ter a fixed number of iterations. In most of our experiments,
the algorithm converged within 1000 evaluations.

For practical reasons, we have to limit the range of the al-
gorithm’s parameters. The bounds are chosen separately for
each parameter based on intuition, physical interpretation of
the parameter, or default values provided by the algorithm’s
creators. Limiting the values of an algorithm’s parameters
transforms the problem of optimizing over an unbounded do-
main to a bounded one, which generally decreases the num-
ber of iterations needed for the optimization to converge. The
supplementary document reports the chosen minimum and
maximum bounds for each parameter of PPR, ORCA and
SF for reference.

4. Large Scale Study

We study the effects of parameter fitting using the combined
test sets, T and T v. Our goal is to identify whether parame-
ter fitting has a significant effect and to understand the rela-
tion between algorithmic parameters and performance. For
each of the three algorithms, PPR, ORCA and SF, we com-
pute the optimal parameter values for each of the five met-
rics, failure rate d(Av), distance quality qd(Av), time quality
qt(Av), PLE qe(Av), efficiency e(Av), as well as a uniform
combination of these metrics, u(Av), over the entire com-
bined set, T . For comparison, we also compute the same
metrics for all algorithms with their parameters set to de-
fault values. The results in Figure 2 show a strong increase
in optimality for all metrics.

The default parameters for PPR, ORCA and SF cannot
solve 39%, 56%, and 26% of the sampled scenarios respec-
tively. Using the optimal parameter selection for PPR, the
algorithm only fails in 9% of the scenarios, an improvement
of 30% over the default settings. The significant optimiza-
tion in time quality, qt(Av), for the PPR algorithm is impres-
sive as well. ORCA does not show significant results over
the metrics with the exception of qt. On the other hand SF
shows impressive improvement over most metrics, achieving
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Figure 2: Relative percent improvement of failure rate d,
distance quality qd, time quality qt, effort quality qe, compu-
tational efficiency e, and a uniform combination of metrics u
for the three steering algorithms.

the smallest failure rate d and the minimum energy expen-
diture, qe. The supplementary document provides the corre-
sponding optimal parameter values for these experiments.

Validation. We verify the statistical significance of the re-
sults shown in Figure 2 in two ways. First, we observe that
for all three algorithms and for all the scenarios in the test
set, T , which are more than 5000, the optimization did
not time out but converged to at least a local minimum. In
the context of numerical optimization, that is a sufficiently
strong indication that the results are not random. Second,
we perform a cross-validation study on an equally large test
set of similar, but previously unseen scenarios, T v. Compar-
ing the values of the objectives for the default parameters
of the algorithms, and for the optimized ones, we see that
the optimized parameters on average perform better even on
scenarios that were not used during the optimization. The
full cross-validation study can be found in the supplemen-
tary document.

Relationship Between Performance Metrics. It is interest-
ing to investigate whether relationships exist between perfor-
mance metrics. For example, does optimizing for distance
quality, qd, also optimize time quality, qt? To answer such
questions, we compute the value of each metric obtained
with parameter values that are optimized for the other met-
rics, Table 2. We observe that the optimal parameters for dis-
tance quality, qd(Av), produce near-optimal results for fail-
ure rate, d(Av), for PPR and ORCA. However, the opposite
does not hold true. Optimizing for failure rate does not yield
optimal results for distance quality.

A correlation analysis clarifies the dependencies across
metrics for a given algorithm. We generate 1000 samples in
the parameter space of ORCA, and use them to compute
each metric over the 5008 cases in T . We then compute the
Spearman correlation coefficients between pairs of metrics,
shown in Table 3. We can identify the following correlations:

1. A weak negative correlation between computational effi-
ciency, es(Av), and the other metrics.

2. A strong negative correlation between time quality,
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ORCA PPR SF
d qd qt qe e u d qd qt qe e u d qd qt qe e u

d(Av) 0.47 0.46 0.49 0.48 0.65 0.48 0.09 0.09 0.15 0.12 0.32 0.13 0.04 0.05 0.05 0.05 1.00 0.05
qd(Av) 0.59 0.56 0.58 0.57 0.71 0.57 0.23 0.20 0.26 0.23 0.44 0.26 0.20 0.20 0.20 0.20 1.00 0.20
qt(Av) 0.39 0.52 0.30 0.63 0.43 0.32 0.61 0.64 0.07 0.30 0.73 0.06 0.30 0.28 0.29 0.28 1.00 0.29
qe(Av) 0.73 0.66 0.71 0.63 0.79 0.71 0.41 0.42 0.34 0.28 0.57 0.34 0.24 0.23 0.24 0.23 1.00 0.23
e(Av) 0.72 0.74 0.71 0.74 0.67 0.74 0.98 0.96 0.97 0.94 0.89 0.90 0.83 0.83 0.83 0.83 0.80 0.83
u(Av) 0.59 0.59 0.56 0.61 0.65 0.55 0.46 0.46 0.36 0.38 0.59 0.34 0.32 0.32 0.32 0.32 0.96 0.32

Table 2: Comparison of failure rate d, distance quality qd, time quality qt, effort quality qe, computational efficiency e, and a
uniform combination of all metrics u for the three steering algorithms. Each coulmn is the optimal parameter set for optimizing
that algorithm for that objective. The row value is the result of computing that metric with the columns optimal parameters.

qt(Av), and effort quality, qe(Av), which, in general, can
be expected as faster motion requires more energy.

3. A weak positive correlation between time quality, qt(Av),
and distance quality, qd(Av), as expected since a shorter
path often results in shorter completion time.

ORCA d qd qt qe e
d 1 1.00 0.20 0.35 −0.18
qd 1.00 1 0.21 0.36 −0.16
qt 0.20 0.21 1 −0.63 −0.02
qe 0.35 0.36 −0.63 1 −0.01
e −0.18 −0.16 −0.02 −0.01 1

Table 3: Spearman correlation coefficients between perfor-
mance metrics for 1000 parameter samples with ORCA.

Relationship Between Parameters and Metrics. It is inter-
esting to identify which parameters change in relation to the
objectives, and study the trade-offs that the algorithms essen-
tially make with these changes. We present relevant data for
ORCA in Table 4 and refer the readers to the supplemental
material for the supporting data on the other two algorithms.

To optimize failure rate, d(Av), PPR chooses very high
values for predictive avoidance parameters and minimal val-
ues for speed thresholds, and trades off performance by se-
lecting higher spatial querying distances. When optimizing
distance quality qd(Av) PPR changes different speed mul-
tipliers in an attempt to minimize any extra distance cov-
ered around corners. To minimize failure rate and meet the
time limit, ORCA raises its time horizon and increases its
max speed. This increases the number of agents it consid-
ers in its velocity calculations and ensures agents cover as
much distance as possible, respectively. For distance quality,
qd(Av), ORCA reduces max speed just like PPR. In gen-
eral, SF reduces acceleration parameters to minimum values
for all quality metrics to prevent agents from overreacting.
Looking at the correlation coefficients for ORCA in Table 4
and in the supplementary material for PPR and SF, we can
make the following observations:

1. For ORCA, the maximum number of neighbours consid-
ered has the highest correlation with most metrics. The
max speed seems to be the second most important pa-

rameter. It affects effort quality, qe(Av), negatively and
time quality qt(Av) positively.

2. For PPR, the max speed factor, which is a multiplier that
increases the speed of an agent, is strongly correlated
with the efficiency metric, e, and has a negative effect
on all quality metrics.

3. For SF, the parameters with the highest correlation to
computational efficiency, e, have to do with proximity
forces. When these are increased, agents push each other
away forcefully, decreasing the likelihood that they will
interact again in the the next frame.

Parameter d qd qt qe e
max speed 0.02 0.03 −0.34 0.58 0.14

neighbour distance −0.09 −0.07 −0.13 −0.03 0.03
time horizon −0.12 −0.08 0.10 0.04 0.07

time horizon obs −0.09 −0.09 0.17 0.04 0.11
max neighbors 0.42 0.47 0.54 0.29 0.37

Table 4: Spearman correlation coefficients between five
metrics and the parameters of ORCA. The maximum amount
of neighbours considered seems to have a significant effect
on all metrics. For the effort metric, qe, the maximum speed
parameter has a large inverse effect.

The above analysis is not meant to be definite or com-
plete, but rather to demonstrate that the proposed methodol-
ogy can be notably more effective than manual tuning. The
framework is an effective way to optimize, probe and ana-
lyze the behaviour of a steering algorithm in relation to its
parameters, over a small or large set of test cases.

5. Optimal Parameter Mapping for Multiple Objectives

Optimizing a steering algorithm’s parameters across a large
test set is computationally expensive. The computational
complexity increases with the number of parameters and the
cardinality of a test set. For example, it takes ∼ 20 hours
to optimize the 11 parameters of SF over the representative
test set T . In a weighted multi-objective optimization ap-
plication, it is desirable to model the relationship between
objectives and algorithm parameters. This avoids running an
expensive optimization every time we wish to change the as-
sociated weights. This can be accomplished by computing
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the optimal parameters for a discrete set of weighted combi-
nations that can then be interpolated. There are two problems
with this approach. First, it can waste significant amounts of
computation since each sample point is a result of an inde-
pendent process that could be visiting the same points in the
domain. Second and most important, it is not looking at rela-
tionships between the objectives but rather at their weighted
combination. Both of these problems can be addressed by
computing a Pareto Optimal Front. Pareto optimality is a
very important concept in optimization which has sparingly
been used in computer animation. Our method based on
Pareto Optimality not only avoids unnecessary computation
but also provides a more principled model of the optimal re-
lationships between multiple objectives.

5.1. Pareto Optimality

Pareto Optimality (or Efficiency) refers to a situation where
no objective can be improved further without worsening one
of the other objectives. The set of points that are Pareto opti-
mal constitute the Pareto Optimal front, a hyper-surface that
captures the optimal relationships between the objectives.
Computing this front is not trivial and is, in fact, an active
area of research. Current state of the art techniques are pri-
marily based on genetic algorithms. We have chosen to use
DEAP [FDG∗12] and NSGA-II [DPAM02] to estimate the
Pareto Optimal front.

A standard evolutionary approach to solving a multi-
objective optimization problem models the fitness of sam-
ples using a single objective function that is the weighted
sum of multiple objectives, where the samples chosen in
each iteration minimize the combined objective. In contrast,
the goal of Pareto Optimal front approximation is to max-
imize the hyper-volume constructed by the non-dominated
samples (see Figure 3(a)). A point dominates another if it is
superior in all Pareto dimensions.

Figure 3(b-d) demonstrates the Pareto Optimal front for
three cases. First, we optimize the ORCA steering algorithm
for e and qe over a bottleneck scenario. The process and re-
sulting Pareto Optimal front can be seen in Figure 3(b). Sec-
ond, we optimize the SF algorithm for the same scenario
and three metrics, e, qe and g(Av,G) (the result can be found
in Figure 3(c)). The ground truth set, G, is a recording of
people funnelling into a small bottleneck, very similar to
the scenario used. We optimize for the same objectives with
the ORCA steering algorithm and the resultant Pareto Opti-
mal front can be see in Figure 3(d). The pareto front is able
to capture the non-linear relationships between contradic-
tory objectives and efficiently encodes the tradeoffs between
them. For example, optimizing qe has an adverse effect on
g(Av,G), as shown in Figure 3(c and d).

The Pareto Optimal front provides a principled model of
the optimal relationships between the objectives. The num-
ber of dimensions is equal to the number of objectives, so

for two objectives the result is a 2D curve and for three ob-
jectives a 3D surface. For most practical applications three
objectives should be sufficient.

5.2. Pareto Optimal Front Interpolation

Having an estimate of the Pareto Optimal front for a set of
objectives provides us with the basis to estimate optimal pa-
rameters for the associated algorithm with arbitrary combi-
nations of the objectives.

The first step in developing an interpolation model for ar-
bitrary combinations of the objectives is to transform the
Pareto Optimal front from objective space to weight space.
For m objectives the Pareto Optimal front contains a set of
m-dimensional points, P = {bp|∀p = 1, ...,N}, including a
set of points PO = {bO

p |∀p = 1, ...,m}, that correspond to
minimizing each objective while ignoring the others. These
latter points have known coordinates in weight space that
correspond to the standard unit vectors, and hold the mini-
mum value in the associated dimension.

We transform the Pareto Optimal front from the m-
dimensional objective space, [bi], to the m-dimensional
weight space, [wi], using the following steps: (a) we normal-
ize the Pareto Optimal front so that each dimension maps to
[0,1], (b) we replace each point with its distances from the
normalized points inPO, (c) we project the points, b′, result-
ing from the previous stage onto the ∑i b′i = 1 plane and (d)
we subtract them from 1. The transformed Pareto Optimal
front is now mapped onto a normalized simplex from which
we can compute the relative weights of each original point
as its barycentric coordinates, (Figure 4).
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Figure 4: Projecting a 3D Pareto Optimal front onto a tri-
angular normalized weight domain.

Having the Pareto Optimal front in weight space, we can
now use a standard multidimensional interpolation method
such as Mardy quadratics or variants of Shepard’s method.
A common choice within the Mardy quadratics family of
methods is radial basis function interpolation. For three ob-
jectives, the associated domain forms a triangle. In this case,
given a new set of weights, we can use Delaunay triangula-
tion to compute the three points that make up the bounding
simplex whose associated parameters will be interpolated
with a standard inverse distance approach.
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Figure 3: Each point in (a) dominates any other point in the shaded area defined by that point and adding the green point
improves the pareto front equivalent to the green patch it defines. Figure (b) shows the final Pareto Optimal front of non-
dominated points (in green) for the ORCA steering algorithm over two objectives. Figures (c and d) show the final computed
Pareto Optimal front for three objectives for the SF and ORCA steering algorithms.

6. Applications and Results

Section 4 demonstrates that it is both beneficial and reveal-
ing to fit the parameters of a steering algorithm to perfor-
mance objectives over a large set of test cases. This section
presents a series of experiments that demonstrate the poten-
tial applications of parameter fitting for more specific cases.
We refer the reader to the accompanying video for a visual
demonstration of the results and additional experiments.

Circlular Benchmark. A popular and challenging scenario,
often used to test the effectiveness of a steering algorithm,
distributes the agents on a circular fashion with diametri-
cally opposite goals. Such a configuration forces dense si-
multaneous interactions in the middle of the circle. Using a
group of 500 agents, we compare the results of ORCA with
the default and optimized parameter values that minimize
time quality qt(Av). With the optimal parameters, ORCA
takes 50% less time to complete the benchmark and exhibits
a more organized emerging behaviour. Agents seem to form
groups that follow a smooth curved trajectory, Figure 1(a and
b).

Room Evacuation. Evacuation benchmarks are important
for a range of application domains. In this benchmark, a
group of 500 agents must exit a room. For this experiment,
we use the social forces, SF, method with the default as well
as optimized parameter values that minimize the effort qual-
ity metric, qe(Av). SF with optimal parameters spends 66%
less energy on average per agent, exhibits tighter packing,
and visibly reduces the turbulence of the crowd’s behaviour,
Figure 1(c and d).

Office Evacuation. A more challenging evacuation scenario
places 1000 agents in a complex, office-like ground floor.
Optimizing ORCA for time quality, qt(Av), reduces the av-
erage time it takes to exit the building by almost 60%.
In addition, it exhibits higher crowd density and higher
throughput at the exits, as seen in Figure 5. Here we use
ADAPT [KMB14] to render bipedal characters.

Optimizing for Ground Truth. There are a few methods
that use recorded crowd motion to influence and direct vir-

Figure 5: Office evacuation with ORCA. Simulation with
parameters optimized for time quality (right) take half the
time to complete as compared to the default parameters
(left).

tual crowds. Here, we simply show that our methodology can
also support this application. We optimize the behaviour of
the three test algorithms to match real world data contained
in the ground truth test set, G, Section 3.2. Our experiments
showed that, in most cases, the optimization was able to sig-
nificantly alter the resulting steering behaviour and increase
the similarity to the recorded data. Figure 6 reports the re-
duction in the entropy metric, g, (increase in similarity) as a
result of parameter optimization for all three algorithms and
two different benchmarks.
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Figure 6: Relative percent improvement of entropy metric
values after optimization on two benchmarks.

Interactive Parameter Blending. Using a precomputed
Pareto Optimal front, Section 5, we can automatically adapt
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an algorithm’s parameters to provide optimal trade-offs for
interactively defined combinations of the associated objec-
tives. Figure 7 shows a snapshot of such blending between
three objectives. This process is best demonstrated in the ac-
companying video.

Figure 7: Blending interactively three objectives (Effi-
ciency, Entropy, and Effort) using a precomputed Pareto Op-
timal front.

Implementation details. The primary factors affecting the
computational performance of the optimization are the size
of the test set, the number and range of parameters that are
fitted, and the number of agents in the test cases. Although
CMA-ES is an efficient optimization method, fitting a large
number of parameters over a sizeable test set is computation-
ally expensive. For reference, a 12 core, 2.4 GHz, 12 GB,
computer (with hyper-threading), using 10 parallel threads,
takes ∼ 20 hours to optimize the SF algorithm over the test
set T . It takes ∼ 3 days running 16 parallel threads to com-
pute a Pareto Optimal front with 3 objectives. Interactive
blending of the Pareto Optimal front is in realtime.

7. Conclusion

We have presented a framework for optimizing the param-
eters of a steering algorithm for multiple objectives. Using
cross-validation, we show that optimizing over a representa-
tive set of scenarios produces optimal parameters that gener-
alize well to new test cases. We have also proposed a method
to model trade-offs between the objectives using a Pareto
Optimal front. The Pareto Optimal front essentially captures
the optimal relationships between objectives. Although our
approach can be applied to any number of objectives, three
is a practical choice. Thus, we have demonstrated an inter-
active example that uses the computed Pareto Optimal front
to blend between three objectives.

Our study shows that parameter fitting not only can be
used to improve the performance of an algorithm, but it can
also serve as an analysis tool to produce a detailed view of
an algorithm’s range of behaviour relative to its internal pa-
rameters. This detailed view can be the basis of a thorough
introspective analysis that allows both developers and end-
users to gain insights on the performance and behaviour of
an algorithm. Our framework and methodology are general.

Most elements can be tailored to the needs of a particu-
lar application. For example, one can use different perfor-
mance metrics, objectives, test sets, and optimization meth-
ods. The supplementary document provides the optimal pa-
rameter values of the three steering algorithms for the dif-
ferent objectives which AI developers and enthusiasts can
directly use to improve the performance of their crowd sim-
ulations. The computational expense of optimizations, espe-
cially for large-scale crowds, is one of the reasons why we
are committed to sharing our results with the community.

Limitations. Optimization-based methods have certain
well-known limitations. For example, it might not be easy
or even possible for an optimization process to construct
what is essentially a relationship between the parameters of
a steering algorithm and global, or long-term, type of objec-
tives. Furthermore, describing desired behaviours as combi-
nations of objectives is not always straightforward and may
require experimentation. Although estimating the Pareto Op-
timal front is much more efficient and effective than naive
domain sampling, it still requires significant offline compu-
tation.

Future Work. We would like to address heterogeneous
crowds by using different parameters per agent or group of
agents. We plan to thoroughly investigate the sampling and
complexity issues related to the estimation of the Pareto Op-
timal front, focusing on objectives that are common in crowd
simulation.
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