
Characterizing and Optimizing Game Level Difficulty

Glen Berseth1, M. Brandon Haworth1, Mubbasir Kapadia2 and Petros Faloutsos1
1York University

2Rutgers University

(a) (b) (c) (d)

Figure 1: Figures (a) and (b) illustrate how the location of an obstacle can affect a player’s difficulty path (thicker shaded path). Difficulty
is annotated with a gradient (hues, interpolated between light and dark, indicate low and high difficulty). Figures (c) and (d) result from
optimizing for a desired difficulty on a parameterized scenario. The desired difficulty for (d) is much higher than for (c), which is reflected in
the player’s difficulty path.

Abstract

Balancing the interactions between game level design and intended
player experience is a difficult and time consuming process. Au-
tomating aspects of this process with respect to user-defined con-
straints has beneficial implications for game designers. A change
in level layout may affect the available routes and subsequent player
interactions for a number of agents within the level. Small changes
in the placement of game elements may lead to significant changes
in terms of the challenge experienced by the player on the path to
their goal. Estimating the effect of this change requires that the de-
signer take into account new paths of all interacting agents and how
these may affect the player. As the number of these agents grow to
crowd size, estimating the effect of these changes becomes grows
difficult. We present a user-in-the-loop framework for tackling this
task by optimizing enemy agent settings and the placement of game
elements that affect the flow of agents within the level, with respect
to estimated difficulty. Using static path analysis we estimate diffi-
culty based on agent interactions with the player. To exemplify the
usefulness of the framework, we show that small changes in level
layout lead to significant changes in game difficulty, and optimiza-
tions with respect to the characterization of difficulty can be used
to attain desired difficulty levels.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation I.6.8 [Simulation and Model-
ing]: Types of Simulation—Animation;

Keywords: procedural content generation, static analysis, opti-
mization, game elements

1 Introduction

A significant challenge in game design is providing an engaging and
entertaining user experience for players with skill levels that vary
from beginner to expert. It is generally desired that the player be
challenged but not overwhelmed by the game’s difficulty. For cer-
tain types of games, adapting their difficulty to the user’s skill level
can be straightforward, such as the case of chess. For games where
the player competes with non player characters (NPCs) in varying
situations and environments, such as first person shooter games, this
adaptation is generally not straightforward. Dynamically adapting
the difficulty of such games to a player’s skill level is an important
research problem that is currently receiving significant attention.
In this paper, we take a first step towards addressing this problem.
Our goal is to provide an initial exploration of a framework that is
simple, practical, and fairly general.

The paths a player chooses during gameplay are directly influenced
by design choices made during the creation, or generation in pro-
cedural cases, of the game level. A small change such as the place-
ment of a box or the initial configuration of an NPC can directly
impact the user experience. These seemingly innocuous changes
may lead to drastic changes in available cover, agent and player
paths, behaviours, timing, etc. Simulating and analyzing all the
possible actions and interactions that may occur in a game would
be distinctly difficult. This is especially so in game scenarios where
the player is afforded significant autonomy.

We address these challenges by presenting a user-in-the-loop
framework for optimal NPC settings and placement of game ele-
ments that influence the flow of non-player characters in a game
level and impact their resulting interactions with the player(s). Mi-
nor changes in level layout and the initial configurations of NPCs
can dramatically impact the resulting difficulty of a level. Given an
author-specified objective (e.g., desired level difficulty) and con-
straints on what aspects of the level can be changed, our framework
can automatically generate plausible levels that satisfy the desired
criteria. Our framework is general and can be easily integrated into
existing game engines, and work for different game genres and AI
systems.

The main contributions of this paper include: (a) an empirical mea-
sure of game level difficulty obtained by statically analyzing the
game level for expected interactions between players, and NPCs (b)

an optimization framework to automatically synthesize new game
levels that satisfy the desired constraints on layout and difficulty.
We demonstrate the potential of our framework by optimizing the
placement of obstacles and certain parameters associated with the
NPCs for levels that have been used in a few popular games.

2 Related Work

Game Level Evaluation and Generation. There are many meth-
ods for evaluating game level quality, such as [Liapis et al. 2013]
which uses player challenge as a quality metric. The work in [Bauer
and Popović 2012] uses Rapidly Expanding Random Trees (RRT)
to sample a level’s state space, then clusters the output tree of
the RRT using Markov Clustering (MCL) to form a representative
graph of the level. Recent simulation based analysis calculates ex-
pected scenario complexity with respect to a number of crowd sim-
ulation algorithms [Berseth et al. 2013].

Early work in [Güttler and Johansson 2003] outlines some spatial
principals of level design and shows the effects of altering parts of
the game level. The work in [Smith et al. 2012] uses constrained
state-based search to generate new levels with some control over
the style of the new level. Recent work in [Horswill and Foged
2012] uses constraint satisfaction propagation to generate game lev-
els meeting specific requirements. Smith et al. [2010] moves in the
direction of automating the whole game design process by forming
a declarative representation of a game using answer-set program-
ming.

Player Experience. The concept of flow [Csikszentmihalyi 1990]
is a popular player experience measure and is used to character-
ize the precise state game designers want the user to be in for an
optimal game experience. The work in [Nacke and Lindley 2008]
uses a number of sensors in an effort to measure flow as bio-electric
responses during game-play. Work by [Sweetser and Wyeth 2005]
creates a player experience model designed to measure a user’s flow
during game-play. There is also a large body of work on why peo-
ple enjoy computer games [Przybylski et al. 2010; Jansz and Tanis
2007; Yee 2006; Charles et al. 2005]

Game Level Optimization. We refer the readers to a recent sur-
vey in the area of Search-Based Procedural Content Generation
(SBPCG) [Togelius et al. 2011] and provide a brief description be-
low. The work in [Cardamone et al. 2011; Sorenson and Pasquier
2010b] uses evolutionary approaches for procedural level creation
and the placement of game level design elements. None of these
methods optimize the individual parameters that govern the control
and movement of non-player characters in the level. Other comple-
mentary work [Browne and Maire 2010] enables authors to gener-
ate and evaluate new types of board games. Similar work in [Soren-
son and Pasquier 2010a] optimizes platformer games to maximize
“fun”. In the area of parameter optimization, Berseth et al. [2014]
proposes a new method to improve the behaviour of crowd simula-
tions using combinations of objectives. Last, Togelius et al. [2013]
uses multi-objective optimization for RTS game levels in order to
generate a better game-play experience as a combination of objec-
tives.

Comparison to Prior Work. Our work is similar to [Shi and Craw-
fis 2013] which uses optimization to find interesting variations in
the game level, as well as [Bauer et al. 2013] which uses optimiza-
tion to find new play space configurations for platformer games.
However, we formulate a parameterization of the game level and
evaluate each game level’s expected difficulty. Additionally, the pa-
rameter space for optimization includes the level layout as well as
parameters that control the behaviour and movement of non-player
characters in the game, which in turn influence the overall level dif-
ficulty.

Figure 2: Example scenario S. The diamonds are enemy NPCs, a
is the starting position of the agent and b is the target location. The
rectangles are static obstacles. The larger light rectangle that con-
tains other rectangles is an optimize-area and the darker rectangles
inside the optimize-area are parameterized obstacles.

3 Framework

We introduce a parametrized representation of a game level which
describes its layout and the initial configuration of the player and
NPCs. By aggregating the expected interactions between a player
and NPCs over the player’s trajectory, we can compute a given
level’s expected difficulty.

3.1 Parametrized Game Levels

A scenario (game level) S = 〈u,A,E〉 is a closed game envi-
ronment which consists of a set of NPCs A, a set of environment
obstacles E and a player u. Each NPC, a ∈ A, is defined by the
tuple 〈xa,Ga, sa, ra, da, fa〉 where xa is its initial position, Ga

is a sequence of way-points along its desired path of travel, sa is
the agents speed, ra is the range of attack, da is the agent attack
damage and fa defines the agent’s attack accuracy. Each obstacle
e ∈ E is defined by its position and orientation, 〈xe,qe〉.

A player u is characterized by the tuple 〈xu,qu, su,gu〉 where xu
is the player’s spawn position, qu is the player’s initial orientation,
su is the player’s movement speed, and gu is the player’s desired
target (goal location). This provides an abstract representation of
the player which can be used to estimate its expected movement in
the game level. More accurate player models (e.g., recorded player
input and movement trajectories) can easily be used instead, if ap-
propriate. Figure 2 illustrates a simple game level where a player
starts at a and has a final target at b. A parametrized version of the
game level Sp = 〈u,A,E, p〉 introduces a set of parameters p in
the parameter space P on NPC, Player, or Obstacle configurations,
NPC or Player parameter settings, and other Scenario parameters to
procedurally generate new level variations.

3.2 Static Analysis of Game Levels

The main goal of this work is to be able to estimate the expected
interactions between the player and the NPCs in the level with-
out running expensive dynamic simulations. For this reason, we
statically analyze game levels by computing expected paths of the
player and agents based on the current environment configuration

(scenario). For a given parametrized game level Sp, the result of the
static analysis is Φ(Sp) = 〈πu, {πa|a ∈ A},E〉 where πu is the
expected path of the player, and πa is the expected path of agent a
in the scenario.

A grid-based discretization of the game level proves to be insuffi-
cient for this analysis, where the result of the analysis would sub-
stantially differ based on granularity of discretization. Hence, we
use a polygonal representation of traversable space in the game
level which is used to compute collision-free paths. We chose to
use Recast1, a popular method for constructing navigation meshes
for any environment geometry. After the navmesh is constructed,
paths for the player and the agents are generated using traditional
A* and line of sight smoothing. The computed paths do not make
any assumptions about the behaviour or intentions of the agents in
the game, and can be easily replaced by more specific pathing so-
lutions, if desired. Similarly, the player’s path can also be replaced
with actual data available from game simulations. Player models
similar to the work done in [Tomai et al. 2013] are not used in this
system because optimization can not handle the random noise in
this method.

3.3 Game Level Difficulty

Given the static analysis Φ(Sp) of a game level, we can estimate if
the player u and agent a are interacting at some time t using:

ISp (u,a, t) = interact(πu(t), πa(t)), (1)

where

interact(πu(t), πa(t)) =

{
1 dist(πu(t), πa(t)) ≤ ra,
0 otherwise.

The expected difficulty for the player with respect to an agent a at
a particular time t is given by:

dSp (u,a, t) = (1− dist(πu(t)− πa(t))

ra
)dafaISp (u,a, t). (2)

The cumulative difficulty for all agents A at a particular time t is:

dSp (u, t) = (1.1)|A|
∑
a∈A

dSp (u,a, t), (3)

where da is the agent’s attack damage, and fa is the agent’s attack
accuracy. The multiplier (1.1)|A| that is dependent on the cardinal-
ity of A is used to model the fact that difficulty increases with the
number of simultaneously attacking agents. We wanted a particu-
lar trend of the curve when increasing the number of agents and this
was found to be most suitable in comparison to other functions. The
total expected difficulty in the time interval (ta, tb) is computed as
the line integral along the player’s path.

dSp (u, ta, tb) =

tb∫
ta

dSp (u, t)dt, (4)

where the net expected difficulty for the entire duration of the level
is dSp (u, 0, T) and T is the time it will take for the player to reach
his/her target2.

1https://github.com/memononen/recastnavigation
2T =

length(πu)
su

Figure 3: Two example scenarios with only a small obstacle lo-
cation change. The bottom scenario has moved one of the obsta-
cle slightly down and to the left, putting it out of the path between
player and the player’s final goal. This change results in the sce-
nario being almost twice as difficult as it was before.

3.4 Difficulty Annotations

To visually describe, or annotate, the expected difficulty over time
we use a normalized time-dependent difficulty path. This manifests
as a heatmap like visualization along the player path. By normal-
izing the damage along the path, providing the user with a gradient
legend, and displaying the total expected difficulty, we provide the
means for intra-scenario comparisons of difficulty along computed
paths. This path rendering allows the user to understand how diffi-
culty progresses through time and to quickly make informed design
decisions.

3.5 Authoring a Scenario

As a user-in-the-loop framework, a number of workflows are pos-
sible for authoring a scenario. Many elements may be added or
edited to form a scenario. A basic workflow is described in Fig-
ure 4 as a realistic use case when generating an optimal scenario
configuration based on a user-defined difficulty objective.

First, static level geometry is defined. This may involve import-
ing entire game levels, typically from XML-based scene files, or
working directly with a scene editor. The user, in this case, makes
the decision to optimize an area of the level such that obstacles
are given configurations that affect not only the overall flow of the
NPCs and player but the expected difficulty. Using the annotations
on expected difficulty, the user can make decisions on new config-
urations.

Another use of the framework may be to generate a number of de-
sired configurations, which are later selected by some algorithm.
For example, level layout may change based on player performance
metrics. In this way, the final authoring of the level happens at run
time.

4 Optimization Formulation

In this section we outline the construction of an optimization objec-
tive. This includes the use of boundary constraints to enforce de-
sired conditions and penalty methods to discard poorly structured
scenarios.

4.1 Boundary Constraints

We use boundary constraints to force obstacles and agents to be
within an area determined by the level designer. Boundary con-
straints can be enforced in a number of ways. We choose to clamp
samples to be within a designated threshold and then add substantial
penalty with respect to the distance the sample is from the feasible
region. This avoids using values that might cause issues with the

Select and Place
Agents in Scene

Place Agent
Goals

Define an  
Obstacle Region

Choose Obstacle
Objects

Associate
Obstacles with

Region

Place Player and
Goals

Define Objective
and Desired/Max

Difficulty

Generate
Obstacle

Configuration

Review New
Configuration and

Difficulty
Annotations

Figure 4: Example workflow of a basic use of the framework. In
the left box, the user defines elements forming a parametrized sce-
nario Sp. In the right box, the user iterates on optimization results
converging to a desired configuration p′.

stability of the system and best compliments our penalty method
described in Section 4.2.

In Figure 5 we can see how obstacle locations can be constrained,
as illustrated by the bounding rectangle called an optimize-area
which contains the 9 obstacles being optimized. Each optimize-
area has a position and scale that is used to determine its bounds.
As well, the settings for the NPCs can be bounded by associating
them with an optimize-area. In this fashion NPCs can be grouped
together during optimization where each group can have different
parameter settings and bounds. With the introduction of these con-
straints (C) the definition for a parameterized scenario Sp becomes
〈u,A,E, p,C〉.

4.2 Penalty Method

We employ an additional penalty constraint to keep the parameter-
ized obstacles from overlapping. We can compute something close
to the max difficulty (dmax) for a scenario and add, or subtract de-
pending on the objective, the following penalty for every pair of
overlapping obstacles:

pSp (E) =
∑
e1∈E

∑
e2∈E

{
0 e1= e2

overlap(e1, e2)dmax. otherwise.
(5)

4.3 Optimization Objective

Under proper constraints we can make parts of a scenario modifi-
able. In Figure 2 a number of these items can be seen. The parts
of the scenario we can modify include: (1) obstacle locations, (2)
damage effect radius ra, agent speed sa, agent attack damage da,

Figure 5: The highlighted rectangle shows how the bounds for
obstacle location optimization can be defined. The location and
scale of the rectangle can be easily changed.

and agent accuracy fa. Given a set of parameters p, we can maxi-
mize the expected difficulty of a scenario Sp as follows:

p′ = arg max
p∈P
|dSp (u, 0, T)− pSp (E)|. (6)

The optimized scenario is S′ = 〈u,A,E, p′,C〉.

Desired Difficulty. It is not typically the goal of a level designer to
make the level as hard as possible. For a designer that wants a par-
ticular difficulty we can easily modify the difficulty metric and use
the magnitude of the difference between the calculated difficulty
and the desired difficulty (ddes) as follows:

dSp (u, 0, T, ddes) = |dSp (u, 0, T)− ddes|. (7)

Optimizing with this metric gives the author more control over the
difficulty for the generated scenario. To produce the most difficult
scenario one would only need to set the difficulty ddes to an ex-
tremely high value and multiply the penalty method described in
Section 4.2 by −1. In order for this method to work well we must
ensure dmax >> ddes.

Optimization Method. The difficulty function can have large dis-
continuities. These discontinuities occur when nodes in a path are
exchanged for different nodes after obstacles are moved in the en-
vironment. Given that our problem has discontinuities and is in the
space of non-linear and non-convex functions there are few opti-
mization algorithms that can manage this type of problem. From
these options we choose to use the Covariance Matrix Adapta-
tion Evolution Strategy technique (CMA-ES) [Hansen and Oster-
meier 1996]. The CMA algorithm is well suited to this domain
for many reasons: it is straightforward to implement, it can han-
dle ill-conditioned objectives and noise and it is very competitive in
converging to an optimal value in few iterations.

5 Benchmarks and Experiments

We perform experiments that include slightly altering scenarios to
show the significant change in difficulty. Also, we show how our
framework performs, optimizing for minimum difficulty and for a
desired difficulty. The first benchmark scenario is a simple ware-
house layout with a number of patrolling agents and a few station-
ary enemies. In the second scenario, the player needs to cross a
street while being attacked by zombies traveling perpendicular to
the player’s path. The layout of the last scenario is from the com-
puter game Baldur’s Gate II. Here we add components from the
previously described experiments so as to make the scenario extra

challenging. We use the Unity game engine to render all our results.
The annotation of a scenario can be done in real time.

5.1 Warehouse Scenario

The first example scenario we evaluate is a basic warehouse with a
number of patrolling agents and a few turrets. An example of this
scenario can be seen in Figure 6.

Start

Goal

Turret

Patrolling

Patrolling

Patrolling

Figure 6: An example scenario of a simple warehouse. This ware-
house has a few patrolling agents and some stationary turrets.

For this example, we can change the settings for each agent in the
scenario to alter the resultant difficulty in the simulation. While it
might seem overly simplistic to lower the expected difficulty of this
scenario, the agent setting for speed makes the difficulty optimiza-
tion non-trivial.

We start by annotating a warehouse-like scenario and slightly alter-
ing the configuration of the scenario. This small change results in
a large difference in the difficulty value. This effect can be seen in
Figure 7(a) and (b) where the path for the player has been anno-
tated, where difficulty is expected to occur (in red).

Next we optimize the warehouse example for a number of desired
difficulties. We bound the settings for the agents in the scenario
with C and optimize for ddes = 20 and = 50. The min, max,
default and optimal settings for ddes = 20 can be found in Table 1,
while the associated result can be seen in Figure 7(c).

parameter default min max optimal
attack damage 2.30 1 5 2.00
attack radius 1.30 1 10 2.37

speed 1.33 1.00 1.50 1.25
accuracy 0.87 0.20 0.95 0.95

Table 1: The default parameter settings for the Warehouse sce-
nario and the lower and upper bounds for the optimization con-
straints (C). The last column are the optimal settings for difficulty
ddes = 20.

5.2 Zombie Scenario

This scenario is created to showcase a scene common in zombie
hoard computer games. The scenario shows a single player that has
to cross a street littered with obstacles. As well, there are a number
of enemy zombies travelling perpendicular to the player as can be
seen in Figure 8.

Start

Goal

Zombie
Goal Area

ZombiesObstacles

Figure 8: A street crossing scenario. When the player crosses the
street he/she is attacked by zombies coming from the right.

The parameters of this scenario are the locations of the obstacles in
between the player and its target. The setting for the enemy zombies
remains fixed.

In this scenario we showcase the framework’s ability to optimize
the locations of obstacles in the game level. Similar to the ware-
house example, we start by showing the effect of slightly modify-
ing the configuration of the scenario and observing the result of this
modification, see Figure 9(a) and (b). In this example, significant
changes in difficulty can be observed. The location difficulty is ex-
pected along the player’s path can change significantly.

The results in Figure 9(c) and (d) show how easy it is to optimize
for a particular difficulty. It is also interesting to note that there is a
significant number of configurations that have very similar difficul-
ties which can be generated by using the framework repeatedly for
the same ddes, are show in Figure 10(a)-(d).

5.3 Baldur’s Gate II Scenario

This scenario is from the movingAI benchmarks [Sturtevant 2012]
and is originally from the Baldur’s Gate II video game. Here, we
modify it to include many of the elements from the previous two
examples. There is a large group of enemies travelling somewhat
perpendicular to the player’s path. There are a number of patrolling
agents that will be difficult for the player to avoid.

The scenario elements that are modified by the optimization in-
clude the settings for different groups of agents, the locations of the
two separate groups of obstacles, and the settings for the patrolling
agents.

In this last example we combine many of the elements from previ-
ous examples. There are two optimizing areas in this example with
many obstacles of different sizes in each. There are also different
kinds of agents, one large set of enemies sweeping across the sce-
nario from top to bottom, one set of patrolling agents in the middle
of the level and another closer to the player’s goal. Two variations
of this scenario can be seen in figures 12(a) and (b).

In figures 12(c) and (d) the difference in difficulty can be clearly
seen from the annotated player’s path. The first example in (c)
is optimized for ddes = 200 and for ddes = 1200 in (d). Even
though the player paths are similar, changes in the scenario affect
the agents. The affected agents in turn significantly affect the ex-
pected difficulty of the scenario.

(a) (b) (c) ddes = 20 (d) ddes = 50

Figure 7: Scenarios (a) and (b) show the effect on expected difficulty of slightly altering the initial position of the player. Scenarios (c) and
(d) are the result of optimizing for desired difficulties 20 and 50.

(a) (b) (c) ddes = 20 (d) ddes = 50

Figure 9: Figure (a) is the default scenario. Figure (b) shows the effect of slightly modifying the starting position of the player. Figures (c)
and (d) show the result of optimizing for specific desired difficulties.

(a) (b) (c) (d)

Figure 10: Potential scenario variations for the same desired difficulty ddes = 20.

Figure 11: The basic layout for this scenario was taken from a
game level in Baldur’s Gate II. We added a number of elements to
make it more complex and challenging. These elements include a
large groups of agents, and multiple optimization-areas which are
associated with multiple obstacles and agents.

5.4 Performance

The running time for our framework is dependent on the number
of polygons in the scenario as well as the number of items that
are being optimized. Optimizations are performed on a quad-core

2.4ghz computer and optimizing the zombie example for 200 itera-
tions with a population of 20 takes less than a minute. The Baldur’s
Gate II example can take much longer because of the number of
polygons in the scenario.

It is important to note that scenarios need to be sufficiently difficult
for the optimization to work well. If the scenario is simple it could
be trivial to get a difficulty of 0. This will cause the optimization to
terminate quickly with a simple result.

Given the dimensionality of the problem, when working with large
and complex scenarios the population size should be increased.
This will increase the chances of the system finding the global op-
timum. The system is initialized with the user provided initial sce-
nario. This initial configuration should be a best guess at what is
the optimal solution (p′) to start the optimization.

6 Conclusion

In this paper we have explored the possibility of characterizing the
difficulty of a game level by predicting the expected interactions
between players and non-player characters. Based on this notion of
difficulty, we have developed an optimization framework for auto-
matically synthesizing level variations that meet author constraints
while optimizing for a desired level of difficulty. Our framework
allows level designers to interactively generate potentially multiple
variations of a game’s level that satisfy given constraints on layout
while maintaining a desired level of difficulty.

Our difficulty measure is general, robust, and sensitive to small

(a)

(b)

(c) ddes = 200

(d) ddes = 1200

Figure 12: Figures (a) and (b) illustrate the change in the amount
and location of expected difficulty by altering the initial location of
the player. In Figures (c) and (d), the parameterized scenario was
optimized for ddes = 200 and = 1200.

changes in the level definition which may drastically impact how
the level plays out. We demonstrate our framework on different
game benchmarks from popular games by computing their diffi-
culty scores as well as proposing minor variations that significantly
improve the players experience, by either making them more chal-
lenging, or reducing the difficulty for an easier playthrough.

Assumptions for NPC Behaviour. Defining what behaviour the
NPCs should exhibit is a difficult task, and is also specific to the
game genre and the type of AI techniques used. For instance, our
current NPC model does not account for the fact that an agent might
follow the player once the agent sees the player. Such a behaviour
would require a formulation of “interaction persistence”, which in
turn would require modelling the player’s ability to evade enemies.
Our current implementation models NPC behaviour as an author-
specified sequence of waypoints which can be a cycle to define a
patrolling behaviour. This simple model can be easily replaced with
game-specific logic that governs NPC AI, if appropriate.

Limitations and Future Work. The current penalty function
used in the optimization can be made smoother by calculating the
amount of overlapping area between obstacles. The player and NPC
models could be enhanced to capture more complex behaviour pat-
terns and game-specific AI. The current navigation mesh needs to
be recomputed for each new environment configuration. Repair-
ing strategies can be employed to refine the navigation mesh and
avoid expensive re-computation within the optimization loop. In
the future we would like to explore sampling methods over possi-
ble player paths. Dealing with cooperative and competitive multi-
player scenarios is also a subject for future exploration. We could
also perform dynamic analysis where we execute agent simulations
using a steering algorithm such as [Singh et al. 2011a; Kapadia
et al. 2009; Helbing et al. 2000] to analyze difficulty. We could also
use more complex agent models for example [Singh et al. 2011b]
for simulation. We could also explore the enforcement of group
constraints, using methods similar to the work done in [Schuerman
et al. 2010], in the enemy agents when running the analysis. Lastly,
this work could benefit from the collection of user play data, to
compare the subjective difficulty of scenarios.

References

BAUER, A., AND POPOVIĆ, Z. 2012. Rrt-based game level anal-
ysis, visualization, and visual refinement. In Proceedings of the
AAAI Artificial Intelligence for Interactive Digital Entertainment
Conference.

BAUER, A. W., COOPER, S., AND POPOVIC, Z. 2013. Automated
redesign of local playspace properties. In FDG, Citeseer, 190–
197.

BERSETH, G., KAPADIA, M., AND FALOUTSOS, P. 2013. Steer-
plex: Estimating scenario complexity for simulated crowds. In
Proceedings of Motion on Games, ACM, New York, NY, USA,
MIG ’13, 45:67–45:76.

BERSETH, G., KAPADIA, M., HAWORTH, B., AND FALOUTSOS,
P. 2014. SteerFit: Automated Parameter Fitting for Steering
Algorithms. Eurographics Association, Copenhagen, Denmark,
V. Koltun and E. Sifakis, Eds., 113–122.

BROWNE, C., AND MAIRE, F. 2010. Evolutionary game design.
Computational Intelligence and AI in Games, IEEE Transactions
on 2, 1 (March), 1–16.

CARDAMONE, L., YANNAKAKIS, G. N., TOGELIUS, J., AND
LANZI, P. L. 2011. Evolving interesting maps for a first person
shooter. In Applications of Evolutionary Computation. Springer,
63–72.

CHARLES, D., KERR, A., MCNEILL, M., MCALISTER, M.,
BLACK, M., KCKLICH, J., MOORE, A., AND STRINGER, K.
2005. Player-centred game design: Player modelling and adap-
tive digital games. In Proceedings of the Digital Games Research
Conference, vol. 285. 00100.

CSIKSZENTMIHALYI, M. 1990. Flow: The psychology of optimal
experience. Perennial Modern Classics. Harper & Row.

GÜTTLER, C., AND JOHANSSON, T. D. 2003. Spatial principles
of level-design in multi-player first-person shooters. In Proceed-
ings of the 2Nd Workshop on Network and System Support for
Games, ACM, New York, NY, USA, NetGames ’03, 158–170.

HANSEN, N., AND OSTERMEIER, A. 1996. Adapting arbitrary
normal mutation distributions in evolution strategies: the covari-
ance matrix adaptation. In IEEE International Conference on
Evolutionary Computation, 312–317.

HELBING, D., FARKAS, I., AND VICSEK, T. 2000. Simulating
dynamical features of escape panic. Nature 407, 6803, 487–490.

HORSWILL, I. D., AND FOGED, L. 2012. Fast procedural level
population with playability constraints. In AIIDE.

JANSZ, J., AND TANIS, M. 2007. Appeal of playing online first
person shooter games. CyberPsychology & Behavior 10, 1, 133–
136.

KAPADIA, M., SINGH, S., HEWLETT, W., AND FALOUTSOS, P.
2009. Egocentric affordance fields in pedestrian steering. In
Proceedings of the 2009 symposium on Interactive 3D graphics
and games, ACM, New York, NY, USA, I3D ’09, 215–223.

LIAPIS, A., YANNAKAKIS, G. N., AND TOGELIUS, J. 2013. To-
wards a generic method of evaluating game levels. In Proceed-
ings of the AAAI Artificial Intelligence for Interactive Digital En-
tertainment Conference.

NACKE, L., AND LINDLEY, C. A. 2008. Flow and immersion in
first-person shooters: Measuring the player’s gameplay experi-
ence. In Proceedings of the 2008 Conference on Future Play:
Research, Play, Share, ACM, New York, NY, USA, Future Play
’08, 81–88.

PRZYBYLSKI, A. K., RIGBY, C. S., AND RYAN, R. M. 2010.
A motivational model of video game engagement. Review of
General Psychology 14, 2, 154.

SCHUERMAN, M., SINGH, S., KAPADIA, M., AND FALOUTSOS,
P. 2010. Situation agents: agent-based externalized steering
logic. Comput. Animat. Virtual Worlds 21 (May), 267–276.

SHI, Y., AND CRAWFIS, R. 2013. Optimal cover placement against
static enemy positions. In FDG, 109–116.

SINGH, S., KAPADIA, M., HEWLETT, B., REINMAN, G., AND
FALOUTSOS, P. 2011. A modular framework for adaptive agent-
based steering. In ACM I3D, 141–150.

SINGH, S., KAPADIA, M., REINMAN, G., AND FALOUTSOS, P.
2011. Footstep navigation for dynamic crowds. Computer Ani-
mation and Virtual Worlds 22, 2-3, 151–158.

SMITH, A., AND MATEAS, M. 2010. Variations forever: Flexi-
bly generating rulesets from a sculptable design space of mini-
games. In Computational Intelligence and Games (CIG), 2010
IEEE Symposium on, 273–280.

SMITH, A. M., ANDERSEN, E., MATEAS, M., AND POPOVIĆ,
Z. 2012. A case study of expressively constrainable level de-
sign automation tools for a puzzle game. In Proceedings of the

International Conference on the Foundations of Digital Games,
ACM, New York, NY, USA, FDG ’12, 156–163.

SORENSON, N., AND PASQUIER, P. 2010. The evolution of fun:
Automatic level design through challenge modeling. In Pro-
ceedings of the First International Conference on Computational
Creativity (ICCCX). Lisbon, Portugal: ACM, 258–267.

SORENSON, N., AND PASQUIER, P. 2010. Towards a generic
framework for automated video game level creation. In Pro-
ceedings of the 2010 International Conference on Applications
of Evolutionary Computation - Volume Part I, Springer-Verlag,
Berlin, Heidelberg, EvoApplicatons’10, 131–140.

STURTEVANT, N. 2012. Benchmarks for grid-based pathfinding.
Transactions on Computational Intelligence and AI in Games 4,
2, 144 – 148.

SWEETSER, P., AND WYETH, P. 2005. Gameflow: A model for
evaluating player enjoyment in games. Comput. Entertain. 3, 3
(July), 3–3.

TOGELIUS, J., YANNAKAKIS, G. N., STANLEY, K. O., AND
BROWNE, C. 2011. Search-based procedural content genera-
tion: A taxonomy and survey. Computational Intelligence and
AI in Games, IEEE Transactions on 3, 3, 172–186.

TOGELIUS, J., PREUSS, M., BEUME, N., WESSING, S.,
HAGELBÄCK, J., YANNAKAKIS, G. N., AND GRAPPIOLO, C.
2013. Controllable procedural map generation via multiobjec-
tive evolution. Genetic Programming and Evolvable Machines
14, 2 (June), 245–277.

TOMAI, E., SALAZAR, R., AND FLORES, R. 2013. Mimicking
humanlike movement in open world games with path-relative re-
cursive splines. In AIIDE.

YEE, N. 2006. Motivations for play in online games. CyberPsy-
chology & behavior 9, 6, 772–775.

