
GPU-based Dynamic Search on Adaptive Resolution Grids

Francisco M. Garcı́a1, Mubbasir Kapadia2, and Norman I. Badler2

1School of Computer Science, University of Massachusetts - Amherst
2Computer and Information Sciences Department, University of Pennsylvania

Abstract— This paper presents a GPU-based wave-front
propagation technique for multi-agent path planning in ex-
tremely large, complex, dynamic environments. Our work
proposes an adaptive subdivision of the environment with
efficient indexing, update, and neighbor-finding operations on
the GPU to address several known limitations in prior work.
In particular, an adaptive environment representation reduces
the device memory requirements by an order of magnitude
which enables for the first time, GPU-based goal path planning
in truly large-scale environments (> 2048 m2) for hundreds
of agents with different targets. We compare our approach to
prior work that uses an uniform grid on several challenging
navigation benchmarks and report significant memory savings,
and up to a 1000X computational speedup.

I. INTRODUCTION

Path finding has been extensively researched and still
remains one of the most fundamental problems in robotics,
artificial intelligence, and computer animation. Finding an
optimal route to a goal in a dynamic environment is a difficult
problem, which is further exacerbated when we deal with a
large number of goals and agents. In such scenarios, each
agent performs a search to obtain an initial solution, detects
environment changes that invalidate their current paths, and
reacts accordingly in an independent fashion. Furthermore,
traditional methods require agents to plan from scratch when
the goal changes.

GPU capabilities can be exploited to mitigate the impact of
multiple agents by simultaneously searching for an optimal
path for all agents sharing a common goal. The work in [1]
presents a GPU based planning technique that can compute
paths for multiple agents with the same goal simultane-
ously, while efficiently repairing solutions to accommodate
dynamic changes in the environment. However, due to its
considerable memory overhead of using a uniform grid
discretization for the environment, it is limited to agents
traveling to the same target, or small-scale environments. In
addition, even simple environments with large open spaces
require the search to explore an enormous state space, which
significantly impacts the computational performance, while
yielding little gains to ensure path optimality.

In this paper, we present a GPU based dynamic planner
which preserves the same search properties of the previous
work. We show a method that is able to handle a very large
number of goals with a large number of agents by addressing
the limitations described in [1]. We adaptively discretize
the environment into variable resolution quads, using finer
resolution only where necessary, thus significantly reducing

the size of the state space. This also reduces considerably
the memory footprint allowing us to handle very large
environments in GPU memory and also accelerates the search
process.

Using an adaptive environment representation on the GPU
has two main challenges: indexing is no longer constant time
and handling dynamic changes is computationally expensive,
since the number and location of neighbor quads varies as
obstacles move in the world. Given these properties, it is
impossible to know ahead of time how many neighbors
a given quad has, which ones those neighbors are, and
how many quads are needed to represent the state space.
In addition, dynamically allocating memory on the GPU
to accommodate these changes can be very expensive. We
address these challenges by: (1) using a quadcode scheme for
performing efficient indexing, update, and neighbor finding
operations on the GPU, and (2) efficiently handling dynamic
environment changes by performing local repair operations
on the quad tree, and performing plan repair to resolve state
inconsistencies without having to plan from scratch.

We demonstrate the benefits of our method on a vari-
ety of challenging benchmarks with empirical results and
discuss the trade-offs between using an adaptive-resolution
and an uniform grid. Our work addresses several important
challenges that furthers the efficient use of next generation
hardware for massively parallel path planning of autonomous
agents in large-scale dynamic environments.

II. PREVIOUS WORK

There has been a considerable amount of work in path
planning leading to current efforts. A* provides strict opti-
mality guarantees, but it is unable to handle dynamic world
updates without discarding previous search efforts. AD*
[2] addresses this issue while satisfying time constraints
by quickly generating sub-optimal solutions and gradually
converging to an optimal result. Other search techniques,
[3], [4] based on expanding trees have been developed
and improved by exploiting multiple processors, but these
methods are not well suited for massive parallelization on
graphics cards.

Wavefront based method are ideally suited for paralleliza-
tion and have successfully been implemented on the GPU.
The work in [5] presents a model for analyzing performance
of wavefront algorithms. [6] proposes a focused wavefront
expansion for path planning, where the expansion of the
algorithm is directed towards the solution instead of being



spread across the entire environment. Several GPU accel-
erated planners were proposed in [7] which provide great
performance boosts. Crowd simulation techniques [8], [9]
exploit multi-core CPU’s and GPU’s for parallelizing local
collision avoidance.

In addition, several techniques have been devised to effi-
ciently traverse and update quadtrees and octrees. The work
in [10] demonstrates a method to quickly perform point
location, search and insertion operations in randomized and
deterministic quad-trees by using compressed quad-trees.
Efficient adjacency detection algorithms for quad-trees were
proposed in [11] based on a series of arithmetic operations
performed on quadcodes [12]. The work in [13] describes
a method of rapidly creating an adaptive mesh based on
quadtrees, but is not well suited for a GPU implementation.

III. DYNAMIC SEARCH ON THE GPU FOR
UNIFORM GRIDS

The work in [1] presents an efficient GPU wavefront-based
planner by taking advantage of the parallel nature of a grid
representation of the state space. The cost g(s) of reaching a
given state s is defined as g(s) = g(s′) + c(s, s′)× cost(s),
where s is the current state, s′ its predecessor, c(s, s′) is
the cost of going from s′ to s. The cost of a particular state
cost(s) encodes untraversable regions such as obstacles
and areas of high cost (e.g., rough terrain, water). For a
given environment, a wave is propagated from the goal
to all other states in the environment to compute the cost
of reaching the goal from any other state. Once g(s) is
computed, the optimal path to the goal from any state in
the environment can be efficiently computed by tracing the
least cost path to the goal. A novel termination condition
is proposed which minimizes the number of GPU iterations
for wave propagation needed to guarantee optimal paths
for all agents in the environment. This approach requires
multiple copies of the map for each new goal, since g(s) is
computed by propagating a wave from a particular target.

Limitations. One of the major limitations of this approach
stems from the memory usage necessary to keep track of
all states in the environment. The entire map is subdivided
in cells of a fixed size, regardless of whether or not an
obstacle is present in that region. For large uniform spaces
this is extremely wasteful, both in terms of memory and
computation, as the wave needs to propagate through each
state in the region of same cost, which could be estimated in
a single iteration, at a slight compromise to path optimality.
Furthermore, this problem is exacerbated if we attempt to
handle multiple objectives. In these situations, a different
copy of the state space needs to be created for each goal. In
addition to wasting the limited GPU memory, this approach
makes the process much slower, for there are many more
states that need to be considered before reaching a solution.

Proposed Solution. Instead of representing the state space
as a uniform grid, we use an adaptive resolution grid which
reduces the number of states required to represent the same

map. This, in turn, significantly reduces the amount of mem-
ory needed in the GPU to keep track of search efforts and
greatly increases performance. There are several challenges
for porting a heirarchical representation of the environment
to the GPU, including the efficient indexing of neighbor
quads and update to accommodate dynamic environment
changes. We address these challenges and propose a GPU-
based wave propagation technique on adaptive resolution
grids for multi-agent planning in large, complex, dynamic
environments. Our solution preserves all the properties of [1],
while addressing the aforementioned limitations, enabling the
real-time planning of hundreds and thousands of autonomous
agents in extremely large, complex, dynamic environments.

IV. METHOD OVERVIEW

On the CPU, the environment is adaptively subdivided into
a hierarchical quad tree representation, which is ported onto
the GPU to compute an initial plan. Environment changes
are monitored on the CPU which triggers local repairs in the
quad tree. GPU memory is updated to reflect environment
changes, and the plan is efficiently repaired by updating
only the costs which have been invalidated as a result of
the change.

A heirarchical representation of the environment for GPU
computations presents several challenges. Quad tree traversal
is inherently a recursive operation an the number of neigh-
bors of a quad cannot be known in advance, which makes
it difficult to use a wavefront-propagation technique in a
massively parallel fashion. To address these challenges, we
use an efficient quadcode method for performing indexing,
update, and neighbor finding operations. Quadcodes can be
efficiently computed using simple arithmetic operations in an
independent fashion, which makes them amenable for GPU
processing. The main components of our system are enumer-
ated below, and elaborated in subsequent sections: Figure 1
provides an overview of the GPU-based planning framework
using adaptive-resolution grids on a simple benchmark.
• Initialization. Data structures used to represent the

environment, GPU memory allocation, and indexing to
reduce the performance impact of dynamically changing
environments.

• Plan Computation. Wavefront propagation on an adap-
tive resolution environment representation, with mini-
mal number of GPU iterations for plan computation.

• Plan Repair. Efficient plan repair to accommodate
dynamic changes in the environment.

V. METHOD INITIALIZATION

The environment is initially subdivided using a quad-tree
up to a predefined maximum depth, which prevents the tree
from growing to the point of practically becoming a uniform
grid in highly populated environments. Once the tree is cre-
ated, we transfer all the leaf nodes which correspond to quad
regions in the environment Q, the number of quad divisions
nq , and the number of goals ng to the GPU by calling
generateMap(Q, nq, ng)and createHashMap(Q, nq).



(a) (b) (c) (d) (e)

Fig. 1. Method overview. 1(a) shows an initial subdivision of the environment into quads. 1(b) shows the plan computed for the top goal (red circle)
for any quad. The arrows point to the predecessor quad and the colors correspond to each quad’s g-value relative to a scale where green = 0, blue =
max g-value and white = not computed. Figure 1(c) demonstrates an obstacle movement from the previous image, and how the corresponding quads are
locally repaired. In 1(d) the plan for the bottom goal is depicted. Finally, figure 1(e) shows the computed plan for all agents..

The function generateMap allocates memory for nq

quad structures and nq ×ng cost structures in host memory.
A quad structure is defined as Q= 〈(x,y),cost,code,index〉,
where (x, y) is the center position, cost is the cost of
transitioning to this quad, code is a unique quad identifier,
and index is the position the quad occupies in the quad list.
It is worth noting the importance of code and index. The
code is used as the key into the hashmap to retrieve the quad
structure, while index indexes into the computed costs for
all goals with respect to this quad.

As with a uniform grid method, a different copy of the map
has to be created for each goal in order to handle multiple
goals. Each copy of a map is represented as an array of costs,
and the cost associated with a particular goal for the same
quad can be retrieved by using index in the corresponding
cost array. A cost structure is defined as 〈g,pred code〉, where
pred code is the code of the neighbor quad q′ with minimum
g-value, and g is computed as:

g(q) = g(q′) + c(q, q′) · cost(q),

where cost(q, q′) is the Euclidean distance between the
centers of q and q′, and cost(q) is the cost of transitioning
to q. The reason why we create these two structures is
twofold. First, we save memory by creating several smaller
representations of a given quad when we have multiple goals
(since many attributes do not change for a quad regardless
of its goal), and only keeping one copy of the whole
quad structure. Second, accessing these smaller structures
in device memory can be done much faster on GPU because
memory becomes highly coalesced. As can be seen in Fig.
2, there is only one quad structure per quad and as many
cost structures as there are goals. While propagating the
wave for plan computation, we only need to access the cost
structures, instead of accessing the entire quad data structure.
The method createHashMap initializes a hash map in
device memory where the quad code code is the key used to
index into the associated quad structure.

The final initialization step is to compute the neighbors
for each quad. Given a predetermined maximum number
of neighbors per quad (we used 20), we allocate an array
large enough to be able to support our needs throughout
the lifetime of the planner. This array contains the indices
at which each neighbor is located in the cost struct array.

Fig. 2. Quad struct and cost struct layout. For each quad, there are as
many cost structs as goals in the map.

Fig. 3. Mapping neighbor array to a given quad. The index of each quad
corresponds to an offset on the neighbor array. A neighbor quad can be
found using the quad code in the GPU hashmap.

An index of -1 means that no neighbor has been computed
at that position. The neighbors for each quad are computed
as described in [11], and the planner is run to generate
the initial plan. Fig. 3 shows how a quad can identify its
corresponding neighbor. The image shows a simple map
divided into four quads and the corresponding tree. Each
node in the tree can calculate an offset, given its position,
in the neighbors array and find all adjacent quads. Having
a predefined maximum number of neighbors allows us to
easily identify the starting offset that corresponds to each
quad. We can iterate through the neighbor indices to find all
neighbors for a given quad; if we find an neighbor index
of -1 that means that there are no more neighbors for that
particular quad.



(a) (b) (c)

Fig. 4. Quadcode computation for dynamic quads. The black obstacles
subdivides the tree differently depending on its position. The numbers in
each quad correspond to its specific quadcode.

VI. ENVIRONMENT REPRESENTATION

We subdivide the environment by using a quad-tree up to
a predefined maximum depth. In our tests a depth of 7 gave
a good trade-off between plan quality and performance. As
the tree is being created, a code is assigned to each quad
in the following manner: the root is assigned 0 and it is
always subdivided into four children. The top left child is
assigned a code of 1, top right is assigned 2, bottom left
child 3 and the bottom right child is assigned a code of
4. For each child node if we find that the quad contains
an obstacle, it is subdivided into four child quads, and its
code is equal to the code based on its relative location to
its parent, appended to the parent’s code. Quadcodes are an
efficient method for computing unique identifiers for quads
using simple arithmetic operations in an independent fashion,
which can be used for indexing, checking if a particular quad
exists, and computing neighbors in parallel. For more details
on how quadcodes are computed, please refer to [11], [12].

Fig. 4 depicts a simple quad-tree being subdivided by a
moving obstacle. In 4(a) we observe the initial tree subdivi-
sion where no obstacles are present. We divide the root of
the tree in four high-level quads with their corresponding
quadcodes. In 4(b) an obstacle enters the region defined
by quad 1, thus dividing it into four quads and the code
corresponding to their positions are appended to the parent
code, resulting in quads 11, 12, 13 and 14. The obstacle
moves again in 4(c) and now intersects quads 13 and 14,
requiring them to subdivide into four more quads each.

At the end of the process, a reference for each quad is
inserted into the hashmap which resides in GPU memory.
The quad code serves as the key and the index in the host
memory array is the value. The quads themselves reside in
an array in CPU memory. In the case of large environments,
a given quad can contain multiple obstacles since it cannot
be divided further after a maximum depth is reached. In
these scenarios, rather than considering a quad as either an
obstacle or a free space, we compute its cost as the relative
area that is occupied by obstacles, producing high g-values
for highly populated quads. This allows the planner to favor
a path through empty quads, but we allow an agent to go
through a quad containing obstacles if needed. If a quad
area is occupied by obstacles more than a given threshold
(we used 90%), the entire quad is deemed untraversable.

VII. DYNAMIC SEARCH ON THE GPU FOR
ADAPTIVE RESOLUTION GRIDS

The same underlying approach used with uniform grids [1]
is applied here, where individual states represent quads of
varying sizes instead of a grid cell. The propagation of the
wave accounts for the cost of transitioning the quad as well
as its area. At the end of the propagation process, the minimal
cost of reaching any quad center from the goal is computed
which is used to efficiently trace paths to the goal from any
position in the environment.

A. Main Kernel

The main kernel creates two copies of the entire map of
cost structs in device memory, one is used as read-only and
the other one as write-only to avoid synchronization issues
when running the kernel on multiple threads. It also creates
a copy in device memory of all quad structures to access
the data that is common to all cells regardless of which goal
is associated with them. At the end of the kernel execution,
these maps are swapped and the kernel is run again until the
termination condition is satisfied and the costs converge to
their optimal values.

Algorithm 1 computePlan(mcpu)
mr ← mcpu

mw ← mcpu

repeat
flag ← 0
plannerKernel(quads, neighbors,mr, mw, flag)
swap (mr,mw)

until (flag = 0)
mcpu ← mr

Wavefront Expansion

Algorithm 2 describes the plannerKernel. The planner
initializes the cost of every quad q to a default value, g(q) =
−1, indicating that it needs to be updated. Quads containing
obstacles take a transition value relative to the total area
occupied by obstacles:

cost(q) = MAX COST ·

∑
∀o∈q

area(p)

area(q)

where a value of MAX COST indicates that the entire quad
is occupied by an obstacle. The goal quad is initialized with
a value of 0, g(goal) = 0. The planner finds the value g of
reaching any quad q from the goal by launching a kernel at
each iteration that computes g(q) as follows:

g(q) = min
q′∈succ(q)∧g(q′)≥0

(g(q′) + c(q, q′) · cost(q))

for each successor q′ ∈ succ(q) that has been updated (i.e.
g ≥ 0), where cost(q, q′) is the Euclidean distance between
the centers of q and q′, and cost(q) is the cost of traversing q.
This process continues until the minimum g-value expanded



in an iteration is larger than the g-value found for the agent
quad.

We utilize two copies of the map representation (arrays of
cost structs): a write-only map mw and a read-only map mr,
to deal with concurrency issues that are common in parallel
applications. We also pass to the kernel the array of quad
structs to access quad information that is goal independent,
and an array containing all the precomputed neighbor indices
for efficient neighbor access. Each thread in the kernel reads
the necessary values to calculate the cost of its corresponding
quad from mr, and writes it to its corresponding quad in
mw. This ensures that the data we read is always consistent.
Once the kernel is done executing, we swap mr and mw,
thus allowing the threads to read the most recent map while
preventing race conditions.

Algorithm 2 plannerKernel(quads, neighbors, mr, mw,
flag)

1: q ← threadQuad
2: if q 6= INVALID ∧q 6= goal then
3: for all q′ ∈ neighbor(q) do
4: if index(q′) ≥ 0 then
5: newg ← g(q′) + c(q, q′) · cost(q′)
6: if (newg < g(q) ∨ g(q) = −1) ∧ g(q′) > −1

then
7: pred code(q)←code(q′)
8: g(q)← newg
9: if g(s) < g(start) ∨ g(agent) = −1 then

10: flag = 1

Minimal Map Convergence. It is not necessary to run the
planner until the entire map costs converge to their optimal
values. At every planner iteration, we keep track of the
minimum g-value expanded for any quad. If at a given
iteration the minimum g-value is larger than the g-value
of the agent quad and the agent quad has been expanded,
then we can terminate the search and follow the least cost
path to retrieve the solution. This ensures that only those
quad costs are considered which are required to compute the
least cost path from the goal to all agent positions. This exit
condition is specified in Lines 9,10 of Algorithm 2 which
ensures that the planner terminates execution once the two
previously mentioned conditions have been met. The error of
the plan found by using an adaptive resolution environment
scheme depends on the size of the largest quad found as part
of the solution.

B. Plan Repair

Quickly repairing the quad-tree and updating the GPU
hashmap is imperative to handle dynamic environments. We
locally repair the tree as follows: when an obstacle moves,
we find the quads the obstacle previously occupied and
examine its parent. If the parent contains an obstacle we
finish traversing the tree, otherwise, we remove all children
for that parent and recursively repeat the process for its
parent. Then, we find the quads to which the obstacle has
moved, and construct the sub-trees corresponding to each of

those quads. As we repair the tree, we keep track of which
quads have been added, removed, and the ones that need to
be updated. A quad may need to be updated when an obstacle
movement invalidates its current g-value, requiring its cost
to be recomputed. The list of quads that have been inserted,
removed, and need to be updated, are processed on the GPU
as follows:

1) For each quad to be updated, we compute its quad-
code to find its index by querying the hashmap and
invalidate its cost values by setting them to −1, which
mandates a recomputation the next time the planner
kernel is launched.

2) A kernel is launched to account for all removed quads
which retrieves their indices and invalidates them in
the hash map, as well as its corresponding g-values in
the cost map. Additionally, all references to invalidated
quads in the precomputed neighbor list is detected and
removed.

3) We insert the new quads into our quads array and
cost map. We recycle memory that is occupied by
invalidated quads that were previously removed, or
append the newly created quads at the end of the list.
We also keep track of the locations where these new
quads were inserted and launch a kernel that updates
the hashmap with the indices and quadcodes for each
quad.

4) A kernel is launched (Algorithm 3) which computes
the neighbors of each inserted quad, and updates the
neighbors of surrounding quads, if needed.

Algorithm 3 UpdateNeighborsKernel(inserted,
hashmap)

q ← threadQuad
computeNeighbors(q)
for all q′ ∈ neighbors(q) do

if code(q′) > 0 then
index← hashmap[code(q′)]
if index ≥ 0 ∧ q′ 6∈ inserted then
computeNeighbors(q′)

An obstacle movement could leave a quad q in an incon-
sistent state. A quad is considered inconsistent when

g(q) 6= g(q′) + c(q, q′) · cost(q)

Repairing Inconsistent States. After updating the neigh-
bors, we fix any inconsistency in the state space and prop-
agate this repair until there are no inconsistent states left,
as described in Algorithm 4. The algorithm runs in a loop
which sets the flag propagateUpdate to 0 before running
the kernel. The loop is repeatedly executed until no changes
are made in the most recent kernel execution (i.e. the flag
is not modified). The kernel checks if the g-value of a quad
is inconsistent or its predecessor had been invalidated. If so,
the quad g-value is set to -1 and its pred code is set to 0,
which marks it for update the next time the planner kernel
is launched,



Algorithm 4 UpdateAfterObstacleMove(quads,
hashmap, propagateUpdate)

q ← threadQuad
if pred code(q) > 0 then
predIndex← hashmap[pred code(q)]
if predIndex < 0 ∨ g(q) 6= g(q′) + c(q, q′) × cost(q)
then
g(q) = −1
pred code(g) = 0
propagateUpdate = 1

VIII. MULTI-AGENT AND MULTI-GOAL
PLANNING

The proposed planner is able to handle multiple agents,
similar to [1], while scaling to handle much larger environ-
ments, as well as multiple goals. We use RVO2 [14] for local
collision avoidance and interleave planning and execution on
background threads.

We create a copy of the environment cost map for each
goal, but since this structure has a very small memory
footprint, we can handle many goals as well as much
larger environments. The running time which depends on
the number of GPU iterations required for map convergence
is greatly reduced as the number of states linking the goal
from the farthest agent is much smaller in an adaptive
environment representation. Each agent is also able to change
its target to any other preexisting goal configuration without
any additional computation, by simply assigning the agent
to the cost map associated with that particular goal. This is
particularly useful for simulating large crowds of agents that
travel between predefined locations in the environment.
Path Smoothing. Our current implementation of the system
searches the neighbors of a given quad in the four cardinal
directions. The plan quality can be improved by considering
diagonal directions as well. To improve path smoothness,
we perform a raycast from the agents current position to its
next set of waypoints along the path to check for the farthest
waypoint that does not have an obstacle along a straight-line
path. This allows us to disregard waypoints along the path
which would otherwise produce jagged agent movement.
There exist many other smoothing techniques which can be
employed to further improve the quality of the simulations.

IX. RESULTS

We tested our planner on several challenging navigation
benchmarks to demonstrate the benefits of our proposed
method over a uniform grid. Tests where performed on
different environments sizes: 128 × 128, 256 × 256, 512 ×
512, 1024 × 1, 024 and 2, 048 × 2, 048. All sizes are given
in units, where a unit maps to a single grid cell in a
uniform grid. Figure 5 shows the number of states required
to represent the state space using a quad-tree of depth
7 vs. a uniform grid. On a 128 × 128 world map, the
uniform grid needs 16, 384 states to represent the map while
a quad-tree representation only requires 1, 303 states. This

Fig. 5. Comparison of number of states required to represent the same map
using a uniform and adaptive grid. For a world of 128× 128, an adaptive
grid need about 10 times fewer states, while for a world of 2048 × 2048
it utilizes about 200 times fewer states.

difference keeps increasing with larger sizes. We can observe
an enormous difference for a map of size 2, 048 × 2, 048,
where a uniform grid requires 4, 194, 304 states while only
21, 312 is required for a quad-tree. It is worth noting that
the number of states for a uniform grid depends directly on
the size of the environment, while the number of quads in
the quad-tree depends on the distribution of obstacles in the
map.

Figure 6 compares GPU memory usage for different
world sizes using different tree depth. We can observe that
for smaller world sizes, our approach requires some extra
memory compared to the uniform grid. This is due to the
fact that we maintain a precomputed list of neighbors and a
hashmap in GPU memory that is not required for the uniform
grid. Starting at a grid size of 512 × 512 we observe the
benefits of representing the state space with quad-trees. For
quad-trees with a maximum depth of 5 and 7, the final plan is
not as accurate for large worlds because of lack of resolution.
For a quad-tree with depth 9, the resulting plan resembles the
result of the uniform grid while utilizing significantly fewer
resources.

The graph shown in figure 7 compares the running time
between quad-trees and uniform grid for computing an initial
plan and performing several repairs due to dynamic changes
in the environment. The adaptive environment representation
outperforms the uniform grid with significant performance
gains achieved during initial plan computation. However, it
could be the case that an obstacle movement does not affect
a plan in a uniform grid, but does affect it for quad-trees.
If a change forces a quad that was part of the solution to
subdivide, this will require some effort to repair the plan,
but the same change could have no effect on a solution
for uniform grid. In the last repair comparison we can
observe the grid outperforming the quad-tree because of this
situation.

Table I compares the running time of the different test
scenarios for the uniform and adaptive grid. The last column
shows the running time of the quadtree as a percentage of



(a) (b) (c) (d)

Fig. 8. Several frames of a multi-agent simulation in a game environment. The environment is not axis-aligned which is handled by the quad subdivision
of the environment.

Fig. 6. GPU memory used for different world sizes. We compare results
between a uniform grid and a quad-tree of depths 5, 7 and 9.

Fig. 7. Comparison of running times between uniform grid and quad-trees
of the initial plan and several repairs in a map of size 512× 512 units.

the uniform grid. From the data we can observe that the
world size is not the major determinant of the required
running time for quad trees, and instead mostly depends
on obstacle distribution. We observe a significant perfor-
mance boost when using an adaptive grid, with a 1000X
speedup for a world size of 2048 × 2048. In the worst
case our proposed method will perform as poorly as a
uniform grid, but this scenario rarely happens in practice.
Figure 9 compares the solution obtained using a uniform and
adaptive grid. Although, plan quality is sacrificed by using a
coarser environment representation, the performance benefits
far outweigh the reduction in quality, which is reasonable for
real-time applications. Fig. 10 compares the path lengths of
the adaptive grid in various scenarios with the uniform grid.

TABLE I
ALGORITHM PERFORMANCE FOR DIFFERENT ENVIRONMENTS. (TIME

IN SECONDS)

World Size GPU
Uniform Grid Quad Tree - depth 7 Reduction as %

128× 128 0.9 0.012 1.3
256× 256 1.25 0.04 3.2
512× 512 10.8 0.187 1.73

1024× 1024 14.12 0.04 0.28
2048× 2048 196.14 0.234 0.11

(a) (b)

Fig. 9. Comparison of paths obtained using an uniform grid (a) vs. an
adaptive resolution grid (b). Red dots mark each waypoint in the final plan.
(a) retrieves optimal paths by searching many more states. (b) sacrifices
plan quality but results in enormous memory and performance gains.

We can observe that solutions given using quads is a little
over 20% longer than the optimal solutions on average, but
just above 10% when we use path smoothing.

Figure 11 shows the planner running with two hundred
and fifty agents distributed among 8 goals. The world size
for this scenario is 1024× 1024. On the machine we tested,
the uniform grid was not able to handle such a large problem
while the quad planner returned a solution for all agents in
under 4 seconds.

X. CONCLUSION AND IMPROVEMENTS

There has been a recent influx of work that exploits graph-
ics processing hardware for other applications including
pathfinding for autonomous agents. In this work, we address
several known limitations that arise when porting wavefront-
based algorithms for path planning on the GPU. Our pro-
posed solution uses an adaptive environment representation
with efficient queries for quad indexing and neighbor finding,
which facilitates wave propagation for path computation in a



Fig. 10. Comparison of path lengths in adaptive resolution with and without
path smoothing vs. uniform grid. The figure shows the ratio of the average
path lengths for all agents in various test cases with the average path lengths
for the uniform grid.

Fig. 11. Computed plans for 700 agents traveling to different goals in a
1024 × 1024 environment. Lines show the computed plan and line color
corresponds to different destinations.

massively parallel fashion. While previous approaches were
severely limited in environment size and number of goals
due to its prohibitive memory requirements, our approach
can scale to handle massively large, complex, dynamic
environments with thousands of agents with different targets.
In addition to addressing these memory limitations, our
approach gains a significant performance boost and still
preserves the dynamic properties, while keeping optimality
guarantees within the resolution bounds of the adaptive
environment representation.

There are still further improvements that could be done
to our method. We currently allocate a predefined number
of neighbors for each quad in GPU memory. This can be
very wasteful for quads with only a few neighbors since we
have to accommodate for a maximum number of expected
neighbors. A possible solution would be to dynamically
adjust the array of neighbors and have each quad know about
its neighbor position in the array and how many neighbors it
has. This, of course, would require more computation time,
providing a tradeoff between memory and computation. An-
other possible improvement would be to replace the hashmap
and use a combination of radix sort and binary search on

the GPU. Insertions and queries in a GPU hashmap result
in highly divergent branches. Radix sort and binary search
have been optimized for the GPU and they could potentially
bring better performance for insertion and indexing.

We described our method in terms of the application to
path planning, but there are many applications where this
technique could be beneficial. Some examples include: (1)
crowd simulation for visual effects, urban evacuation, and
security applications. (2) Multi-robot motion planning. (3)
Planning in high-dimensional search spaces like kinematic
linkages for end-effector motion planning.

REFERENCES

[1] Mubbasir Kapadia, Francisco Garcia, Cory D. Boatright, and Nor-
man I. Badler. Dynamic search on the gpu. In Proceedings of the
IEEE/RSJ International Conference on Intelligent Robots and Systems,
IROS ’13. IEEE, 2013.

[2] Maxim Likhachev, Dave Ferguson, Geoff Gordon, Anthony Stentz,
and Sebastian Thrun. Anytime dynamic a*: An anytime, replanning
algorithm. In ICAPS, 2005.

[3] Curt Powley, Chris Ferguson, and Richard E. Korf. Depth-first
heuristic search on a simd machine. Artif. Intell., 60(2):199–242, 1993.

[4] Chris Ferguson and Richard E. Korf. Distributed tree search and its
application to alpha-beta pruning. In AAAI, pages 128–132, 1988.

[5] Adolfy Hoisie, Olaf M. Lubeck, and Harvey J. Wasserman. Perfor-
mance analysis of wavefront algorithms on very-large scale distributed
systems. In Wide Area Networks and High Performance Computing,
pages 171–187, 1998.

[6] Anshika Pal, Ritu Tiwari, and Anupam Shukla. A focused wave front
algorithm for mobile robot path planning. In HAIS (1), pages 190–197,
2011.

[7] Giuseppe Caggianese and Ugo Erra. Gpu accelerated multi-agent path
planning based on grid space decomposition. Procedia CS, 9:1847–
1856, 2012.

[8] Stephen J. Guy, Jatin Chhugani, Changkyu Kim, Nadathur Satish,
Ming C. Lin, Dinesh Manocha, and Pradeep Dubey. Clearpath:
Highly parallel collision avoidance for multi-agent simulation. In ACM
SIGGRAPH/EUROGRAPHICS SCA, pages 177–187, 2009.

[9] Mubbasir Kapadia, Shawn Singh, William Hewlett, Glenn Reinman,
and Petros Faloutsos. Parallelized egocentric fields for autonomous
navigation. The Visual Computer, 28(12):1209–1227, 2012.

[10] Michael T. Goodrich and Jonathan Z. Sun. The skip quadtree: a simple
dynamic data structure for multidimensional data. In In Proc. 21st
ACM Symposium on Computational Geometry, pages 296–305. ACM,
2005.

[11] Shu-Xiang Li and Murray H. Loew. Adjacency detection using
quadcodes. Commun. ACM, 30(7):627–631, July 1987.

[12] Shu-Xiang Li and Murray H. Loew. The quadcode and its arithmetic.
Commun. ACM, 30(7):621–626, July 1987.

[13] Pascal J. Frey and Loc MARECHAL. Fast adaptive quadtree mesh
generation. In in: Proceedings of the Seventh International Meshing
Roundtable, pages 211–224, 1998.

[14] Jur Berg, StephenJ. Guy, Ming Lin, and Dinesh Manocha. Reciprocal
n-body collision avoidance. In Cdric Pradalier, Roland Siegwart, and
Gerhard Hirzinger, editors, Robotics Research, volume 70 of Springer
Tracts in Advanced Robotics, pages 3–19. Springer Berlin Heidelberg,
2011.


