
Velocity-Based Modeling of Physical Interactions in Multi-Agent Simulations

Sujeong Kim⇤

University of North Carolina at Chapel Hill
Stephen J. Guy†

University of Minnesota
Dinesh Manocha‡

University of North Carolina at Chapel Hill
http://gamma.cs.unc.edu/CrowdInteractions/

Abstract

We present an interactive algorithm to model physics-based interac-
tions in multi-agent simulations. Our approach is capable of model-
ing both physical forces and interactions between agents and obsta-
cles, while allowing the agents to anticipate and avoid collisions for
local navigation. We combine velocity-based collision-avoidance
algorithms with external physical forces. The overall formulation
can approximately simulate various physical effects, including col-
lisions, pushing, deceleration and resistive forces. We have inte-
grated our approach with an open-source physics engine and use
the resulting system to model plausible behaviors of and interac-
tions among large numbers of agents in dense environments. Our
algorithm can simulate a few thousand agents at interactive rates
and can generate many emergent behaviors. The overall approach
is useful for interactive applications that require plausible physical
behavior, including games and virtual worlds.

CR Categories: I.2.11 [Artificial Intelligence]: Distributed Artifi-
cial Intelligence—Multiagent systems

Keywords: Multi-Agent Simulation, Physical interactions

1 Introduction

Multi-agent simulations are frequently used to model a wide vari-
ety of physical systems, including human crowds; traffic; groups
of birds, bees, fish, ants; and etc. In many of these applications
it is important for the agents to interact in a physical manner with
each other and the environment. Agents often collide, push, and
impart forces on other agents and on the obstacles in the environ-
ment, changing their trajectory or behavior. A challenging goal is to
model these interactions in large multi-agent systems at interactive
rates. Many algorithms based on behavior modeling, social forces,
cellular automata, and velocity-based formulation have been pro-
posed for multi-agent simulation. Most of these techniques, how-
ever, focus on only the local navigation for each agent, and do not
explicitly take into account physical interactions between agents or
between agents and obstacles in the environment.

At a high level, there are two different sources of physical forces
which may affect an agent’s trajectories: interactions with other
agents and interactions with objects in the environments. For ex-
ample, dynamic objects such as falling boxes or moving cars may

⇤e-mail:sujeong@cs.unc.edu
†e-mail:sjguy@cs.umn.edu
‡e-mail:dm@cs.unc.edu

Figure 1: Wall Breaking. We demonstrate the physical forces ap-
plied by cylindrical agents to breakable wall obstacles. Our al-
gorithm can model such interactions between the agents and the
obstacles in dense scenarios at interactive rates.

collide with an agent, pushing it from its path. Likewise, an agent
may be pushed by, or bump into, other agents in dense scenarios.
This can happen because of agent’s intention (e.g. aggressive agent)
or because the agent was pushed by an external force.

While physical forces impact an agents trajectory, the agents mo-
tion will also impart forces upon the objects in his environment.
This effect becomes increasingly important when the forces from
many individual agents combine to produce a large effect on the
environment, such as when dense, aggressive crowds bend fences
or break walls. In order to simulate such scenarios, we need
to develop appropriate two-way coupling techniques between au-
tonomous agents and their physical environment.

Main Results: In this paper, we present a new method to model
physical interactions between agents and objects in an interactive
velocity-based multi-agent framework. Our approach incorporates
both an agent’s ability to anticipate the motion of other agents and
avoid collisions using velocity obstacles and respond to physical
forces in a single unified framework. We formulate the computation
of velocity of each agent for each timestep as a linear programming
problem in the velocity space. The linear constraints are computed
by approximating the motion induced on an agent through Newto-
nian dynamics. This allows agents to account for forces from their
environment and from other agents and generate a plausible trajec-
tory. The resulting approach is efficient and can be used to simulate
dense scenarios with thousands of agents at interactive rates. We
have integrated our approach with the Bullet Physics Engine [AMD
2012], and reciprocal velocity obstacles [van den Berg et al. 2011],
and demonstrate its performance in many complex scenarios with
large number of agents and multiple moving obstacles, In practice,
our approach can be used to generate physically plausible behavior
for interactive multi-agent simulation.

The rest of the paper is organized as follows. Section 2 gives a
brief review of related work. Section 3 gives an overview of our
approach, which combines velocity-based multi-agent simulation
and rigid body dynamics. We describe our approximate approach
to computing velocity constraints using Newtonian dynamics for
agent-agent interaction in Section 4 and for agent-obstacle interac-
tion in Section 5. In Section 6, we highlight the performance on
different scenarios and compare it with other techniques.

http://gamma.cs.unc.edu/CrowdInteractions/

2 Related Work

In this section, we give a brief overview of some related work in
multi-agent and physically-based character simulation.

2.1 Multi-Agent and Crowd Simulation Models

Many approaches have been proposed to simulate the motion of
large number of agents and crowds. Often these models are based
on rules, which are used to guide the movement of each agent.
An early example of such an approach is the seminal work of
Reynolds [1999], which uses simple rules to model flocking be-
havior.

Force-based methods, such as the social force model [Helbing and
Molnár 1995], use various forces to model attraction and repulsion
between agents. These forces are not physically based; rather, they
provide a mechanism to model the psychological factors that gov-
ern how agents approach each other. Helbing et al. [2000] model
panic behavior with two additional physical forces (body force and
sliding friction) in addition to the social forces. Yu and Johans-
son [2007] model the turbulence-like motion of a dense crowd by
increasing the repulsive force. Other approaches model collision-
avoidance behavior with velocity-based techniques [van den Berg
et al. 2011; Pettré et al. 2009; Karamouzas and Overmars 2012] or
vision-based steering approaches [Ondřej et al. 2010].

Other techniques have been proposed to model complex social in-
teraction. HiDAC [Pelechano et al. 2007] uses various rules and
social forces to model interactions between agents and obstacles;
collision avoidance and physical interactions between agents and
objects are handled using repulsive forces. The composite agent
formulation [Yeh et al. 2008] uses geometric proxies to model so-
cial priority, authority, guidance, and aggression. Many other multi-
agent simulation algorithms use techniques from sociology [Musse
and Thalmann 1997], biomechanics [Guy et al. 2012], and psychol-
ogy [Sakuma et al. 2005; Durupinar et al. 2011; Guy et al. 2011;
Kim et al. 2012] to model different aspects of agent behaviors and
decision models. These approaches are able to generate realisti-
cally heterogeneous behaviors for agents. Our approach to model
physical interactions can also be combined with many of these ap-
proaches.

Many researchers have proposed cognitive and decision-making
models to generate human-like behaviors [Shao and Terzopoulos
2005; Yu and Terzopoulos 2007; Ulicny and Thalmann 2002], or
use data-driven approaches to the problem [Lee et al. 2007; Lerner
et al. 2009].

Other approaches for modeling crowds are based on continuum or
macroscopic models [Hughes 2003; Treuille et al. 2006; Narain
et al. 2009]. In particular, Narain et al. [2009] present a hybrid
technique using continuum and discrete method for aggregate be-
haviors in large and dense crowds. They are mainly used to simu-
late the macroscopic flow and do not model the interaction between
the crowd and obstacles. In contrast, our approach simulates agent-
agent and agent-obstacles physical interaction.

2.2 Force-Based Techniques for Character Animation

There has been extensive work on using physics-based models to
improve character animation. Sok et al. [2010] use a force-based
approach to ensure that the resulting motions are physically plau-
sible. Other approaches consider geometric and kinematic con-
straints [Shum et al. 2012] or use interactive methods for character
editing [Kim et al. 2009]. These techniques, which are primarily
based on enhancing motion-captured data, can be used to simulate

behaviors of and interactions between the characters and obstacles
in their environment.

Many hybrid techniques have been proposed that bridge the gap
between physics-based simulation of character motion and pre-
recorded animation of characters to model responsive behavior of
character [Shapiro et al. 2003; Zordan et al. 2005]. Muico et
al. [2011] propose a composite method to improve the responsive-
ness of physically simulated characters to external disturbances by
blending or transitioning multiple locomotion skills.

Our approach is quite different from these methods. Unlike charac-
ter animation techniques that mainly focus on generating the full-
body motion of a relatively small number of characters, we focus on
generating physically plausible interactions between a large number
of agents in dense scenarios.

2.3 Crowd Simulation in Game Engines

Some commercial game engines or middleware products can sim-
ulate character motion or crowd behavior. This includes Natural
Motion’s Euphoria, which simulates realistic character behavior
based on biomechanics and physics simulation. There are also com-
mercial AI middlewares for game engines that combine crowd and
physics simulation: Kynapse, Havok AI, and Unreal Engine are ex-
amples of these. These systems primarily focus on the local and
global navigation of each agent using navigation meshes and local
rules. Our approach to generating physical interactions can be com-
bined with these systems to improve local interactions between the
agents and the obstacles in the scene.

3 Overview

Our framework simulates agents and objects differently, based on
two fundamental assumptions about the nature of their motion.
Agents are assumed to be autonomous and self-actuated. In the ab-
sence of external forces, we use velocity-based collision avoidance
techniques to control the paths of the agents, who avoid collisions
using anticipatory techniques. In contrast, objects in the environ-
ment move only when physical forces act on them. The positions
of objects are updated by solving Newton’s equations of motion;
contacts are handled with a constraint-based method. This section
gives an overview of our proposed approach to simulating agents
and objects together in a shared space.

Local navigation and anticipatory collision avoidance of agents can
be efficiently modeled using reciprocal velocity obstacles, which
imposes linear constraints on an agent’s velocity to help it navi-
gate its environment. We extend this framework by representing
the effect of physical forces on agents also as linearized velocity
constraints. This allows us to use linear programming to compute
a new velocity for each agent – one which takes into account both
the navigation and force constraints imposed upon that agent.

Agent simulation is typically performed over discrete timesteps.
Agents are assumed to have a preferred velocity. This is the ve-
locity at which the agent would travel if there were no anticipatory
collision-avoidance or physical constraints. This velocity is used to
define the cost function for linear programming or constrained op-
timization. At each timestep, an agent computes a new velocity that
satisfies the velocity constraints, then updates its position based on
this velocity. A new set of velocity constraints are then computed
based on the new positions and velocities.

There are two types of constraints which we impose on an agent’s
velocity:

0

ORCA Constraints

Constrained
Optimization

Rigid-Body
Dynamics

Force Constraint (FC)
Forces from Agents

Local Navigation (Anticipatory Collision Avoidance)

Forces from Objects

Agent-Agent Collision Avoidance

Agent-Object Collision Avoidance

Physical Interactions

Object Motion Agent Motion

Figure 2: System Overview. The motions for objects and agents are computed by a rigid-body dynamics solver and a constrained optimizer,
respectively. Physical interactions between agents and obstacles determine forces. For obstacles, the forces serve as inputs to the rigid-body
system; for agents, they become force constraints. These force constraints are combined with the original ORCA planning constraints and
serve as inputs to optimization algorithm.

• ORCA Constraints define the space of velocities which are
expected to remain collision-free for a given period of time.
The derivation of agent-agent ORCA constraints is given in
Section 3.1, and that of agent-object ORCA constraints in
Section 5.1.1.

• Force Constraints are constraints which arise out of forces
initiated by physical interactions with other agents and ob-
jects. The details are given in Sections 3.2, 4, and 5.

Fig. 2 gives an overview of the full simulation system for computing
these constraints and for updating an agent’s position and velocity.

3.1 Velocity Constraints for Local Navigation

ORCA constraints are defined by a set of velocities that are guaran-
teed to avoid upcoming collisions with other nearby agents [van den
Berg et al. 2011]. The constraints are represented as the boundary
of a half plane containing the space of feasible, collision-free ve-
locities. Given two agents, A and B, which we represent as 2D
discs, we compute the minimum vector u of the change in relative
velocity needed to avoid collision. ORCA enforces this constraint
by requiring each agent to change their current velocity by at least
1/2u. The ORCA constraint on A’s velocity induced by B would
be:

ORCAA|B = {v|(v � (vA +
1
2
u)) · û � 0}, (1)

where vA is A’s current velocity and û is the normalized vector u.

If A has multiple neighboring agents, each will impose its own
ORCA constraint on A’s velocity. Local navigation is computed
by finding the new velocity for A (vnew) which is closest to its pre-
ferred velocity (vpref) while respecting all the ORCA constraints.

3.2 Velocity Constraints from Physical Forces

The set of neighbors involved in physical interactions with an agent
include both nearby agents and obstacles. We define a radius and
an angle that are then used to define a range of physical interac-
tions for each agent. When an agent is pushed, either by another
agent or by an obstacle, the agent experiences an external force. By
Newton’s second law, the net force acting on an agent implies a net
acceleration. Given a known timestep, we can compute the change
in velocity exactly. We represent this change in velocity induced by
a force as an additional constraint on the agent velocity.

One benefits of applying forces as a form of constraint is the ability
of an agent to adapt to the forces. While the constraint guarantees
an acceleration at least as large as that implied by the dynamics,
the actual acceleration from the forces may be greater than that.
When pushed, rather than simply falling sideways, an agent could
accelerate faster to reach a stable, controlled state.

We classify these forces into two types, depending on the origin of
the force:

Forces from agents are generated when an agent pushes (or is
pushed into) another agent, or when there is a collision between
two agents. This effect of a pushing force can persist across mul-
tiple time-steps depending on the agent’s response. The effect of a
pushing force on an agent can also propagate to other agents as a
result of the first agent’s being pushed into others. The force im-
parted by the agent onto an object is given as an input to a rigid
body dynamic simulation, which we use to simulate the behavior
of the objects in the environment. This simulation accounts for the
impact of agent’s force on the motion of the object.

Forces from objects are the forces an agent receives from objects.
Note that forces acting upon agents from objects are only those
caused by the collision, i.e. the reaction force. These forces are then
summed up and represented as a Force Constraint, an additional
constraint to the velocity computation.

3.3 Velocity Computation Algorithm

We can summarize our new velocity computation algorithm as fol-
lows: Given an agent A with neighbors B, we define the permitted
velocities for A, PVA as the intersection of all velocity constraints.
We can state our agent update algorithm as an optimization prob-
lem. Formally:

PVA = FCA \
\

B 6=A

ORCAA|B (2)

vnew = argmin
v2PV

A

kv � vprefk. (3)

In conditions where the preferred velocity of an agent is only de-
termined by physical forces (i.e., in the absence of navigation con-
straints) the formulation will reproduce the motion based on New-
ton’s second Law. This is because the closest velocity to the agent’s
current velocity will be the perpendicular distance to the velocity
constraint FCA.

pref
iv

iv

kp
1kp

p

p
ki|f

p
ki 1| f


ip

ip

(a) Pushing Force

cf

cf

(b) Collision Force

Figure 3: Contact Forces An agent (orange disk) can affect nearby
neighbors (grey disks) through physical contact expressed as im-
pulse forces. These physical forces can be used to push other agents
as in (a) or resolve physical collisions as in (b). The red arrows dis-
play the direction of the resulting forces.

4 Force Computation

In this section, we present our approach for computing velocity con-
straints from physical forces. We propose an approximate approach
because we need to handle a large number of agents in dense envi-
ronments. As a result, we approximate the physical interactions
based on appropriate velocity constraints. We assume that these
forces are initiated from a collision or by pushing. When an agent
experiences these forces, the impact on its motion lasts more than
one timestep because of its effort to recover momentum. We ap-
proximate the effects of momentum by using two inferred forces:
a resistive force and a deceleration force. These two additional
forces have the net effect of propagating the momentum through
the crowd.

4.1 Contact Forces

Pushing Forces: Pushing is one of the ways for agents to physically
interact with each other [Pelechano et al. 2007]. Agents can impart
a pushing force on nearby agents. In our formulation, agents can
impart a pushing force to nearby agents; this pushing force follows
the approximate direction of the pushing agent’s preferred velocity
and pushes the blocking agent out of the pushing agent’s path (see
Fig. 3a). The pushing force imparts an impulse to the nearby agents
in the direction of the normal vector from the pushing agent towards
the pushed agent. Formally, the pushing force fpi|k exerted by an
agent i pushing another agent k can be given as:

fpi|k = ⇢kfp
pk � p+

i

kpk � p+
i k

, (4)

where pi and pk indicate the positions of agent i and k, respec-
tively, and p+

i = pi + vi�t is the pushing agent’s future position
at the next time step. fp is used to define the weight of pushing
force, and we formulate it as an inverse of number of agents that
are pushed.

Collisions: In case of collisions between agents, a collision res-
olution force is applied (Fig. 3b). This force is computed based
on the physically-based simulation approach proposed by [Baraff
1997], and depends on the mass and velocity of colliding agents.
We consider only linear momentum and simulate agents as radially
symmetric disks. As a result, we do not take into account the ori-
entation of the agents. For an agent i colliding with agent k, the


iv

iv

d
ki|f

dfkp

d

ip

(a) Deceleration Force

f
iv

r
ki 1| f

rf

r
ki|f

1kp

kp

r

ip
iv

(b) Resistive Force

Figure 4: Inferred Forces: Forces between agents can be inferred
based on local navigation. If an agent has a large change in ve-
locity in the absence of force applied to the agent, as in (a), then a
deceleration force, fd, is inferred to have caused the change, and is
applied to nearby agents. (b) Likewise, when a force is applied to
an agent which produces no change in agent’s velocity, we model
in terms of resistive force fr , which implicitly opposes this motion.
This inferred resistive force is also applied to nearby agents.

collision force f c is computed as follows:

f c = (�(1+✏)vrel

1/m
i

+1/m
k

· n)/�t, (5)

where n is the collision normal, pointing towards agent i from agent
j; vrel is relative velocity; and mi and mk are the mass of agent i
and agent k, respectively. ✏ is the coefficient of restitution.

4.2 Inferred Forces

We also define two forces, deceleration force and resistive force,
to model agent’s ability to adjust their motion when external force
is applied. The contact forces that result from agents colliding or
pushing each other are computed as impulses. After being bumped
or pushed, an agent will naturally exert forces in order to quickly re-
cover its preferred velocity. Forces will therefore propagate through
a dense crowd, since one agent is likely to push others in order to
recover from the external pushing force.

This kind of behaviors are inspired from biomechanics, an observa-
tion about how humans react to recover their balance in various con-
ditions including when the external forces are applied to the body.
More details are given in [Kim et al. 2013].

These propagation forces can be inferred when the motion com-
puted using constrained optimization does not match the motion
expected from external physical forces. For example, when an
agent decelerates at a faster rate than that implied by the external
forces, we infer that the agent must be pushing against other agents
or obstacles in order to be able to slow down so quickly. Like-
wise, when an agent accelerates at a rate less than that implied by
external forces, we infer the agent must be pushing against other
agents or obstacles, which resist the effect of the forces. These in-
ferred propagation forces are applied to the appropriate neighboring
agents during the subsequent timestep. We describe the formulation
for each of these forces below.

Deceleration Forces: When an agent reduces speed while preserv-
ing direction to within a certain threshold (✓d), we introduce a force
into the system based on this velocity change. The deceleration
force generated by agent i’s deceleration is defined as:

fdi =

⇢
kthreshmi�vi/�t if (�v̂i · v̂i) < �cos(✓d),
0 otherwise, (6)

where �vi = vi � v�
i is the change in velocity from the previous

time step to the current time step. Because agents are not rigid
bodies, they can absorb or transform forces. We approximate this
behavior by introducing a parameter kthresh.

We assume that the speed reduction arises from one of two sources:
self-will (e.g. sudden change of preferred velocity) or agent interac-
tion (e.g. impending collision avoidance). When there are no inter-
acting agents, we assume it is the former case, and the deceleration
force is applied back to the agent itself. In the latter case, where
the deceleration is caused by interaction with the agents neighbors,
the behavior of those neighbors should also change as a result of
the interactions; we thus distribute the deceleration force among
them in the case of collision avoidance. Furthermore, a neighbor-
ing agent k causes such behavior if it lies within a cone centered
on v�

i and is within an angular space of 2✓d degrees (as shown in
Fig. 4a). For each interacting neighbor k of agent i, the portion of
the deceleration force acting on agent k is defined as:

fdi|k = ��kf
d
i , (7)

where �k is a parameter that indicates how the deceleration force is
transferred to agent k. We set this parameter to 1/n, where n is the
number of interacting agents.

Resistive Forces: Resistive forces occur when an agent’s computed
velocity does not account for the entire change in velocity expected
from the external force. This difference is propagated to neighbor-
ing agents via the resistive forces. This force is computed by the
difference between the velocity v computed by (3) and the velocity
vf computed only from the net force applied to the agent. The re-
sistive force of an agent i experiencing the discrepancy between vf

and v is:

fri =

⇢
kthreshmi(vi � vf

i)/�t if vf
i 6= 0

0 otherwise. (8)

As in the case of deceleration force, the resistive force is applied
to the agent i when there is no interacting agent. Otherwise, the
resistive force is distributed equally among the interacting agents,
whose position is inside a cone centered on vf

i and with an angular
span of 2✓r degrees (as shown in Fig. 4b). The resistive force fri|k
applied to agent k is given as:

fri|k = ��kf
r
i , (9)

where �k is a weighting parameter for agent k (we use 1/n).

The resistive force and deceleration force can be viewed as comple-
mentary to one another. The resistive force is non-zero only in the
presence of external physical forces on an agent, and the decelera-
tion force is non-zero only in the absence of such forces.

4.3 Force Constraints

The net force f is the sum of all the forces applied to the agent.
Mathematically, force f used to compute force constraint FC (de-
scribed in (12)) is computed as follows:

f =
X

f c +
X

fd +
X

fr +
X

fp. (10)

The force constraint FC induced by the net force f is computed as
follows:

vf = v +
f
m

�t (11)

FC = {v|(v � vf) · f̂ � 0}. (12)

FC is a half plane whose boundary, a line through vf , is perpen-
dicular to the normalized force f̂ . This half plane contains a set
of velocities that is equal to or greater than the minimum veloc-
ity change required by the force f . This term is used for velocity
computation in Equation (2).

5 Interaction with Obstacles

A key part of our approach is to model interactions between the
agents and static and dynamic objects, i.e. two-way coupling be-
tween agents and obstacles. The behavior of agents towards the ob-
jects around them includes anticipatory collision avoidance, push-
ing, and unintended collisions. An agent might also impose forces
from its motion (e.g., resistive force and deceleration force) on ob-
stacles, as it does to other agents. If there is a collision, then objects
also exert forces on the agent. In this section, we present an efficient
algorithm to model these interactions for interactive applications.

5.1 Dynamic Objects

There are some significant differences between agent-agent and
agent-obstacle interactions, both in terms of the motion computa-
tion and in how an agent responds to those obstacles. Importantly,
the motion of obstacles (e.g. rigid bodies) is governed by Newto-
nian physics, since these objects have no will and are unable to ini-
tiate movement on their own. As a result, the agents cannot assume
that the obstacles will anticipate collisions and change trajectory to
avoid them. Moreover, the rigid body simulation is performed on
the obstacle motion in 3D space, while the agents are constrained
to move on a 2D plane.

5.1.1 Anticipatory Collision Avoidance

In our approach, agents attempt to anticipate and avoid collisions
with the obstacles. Since the agent’s navigation is performed in 2D
space, we project the boundary of the dynamic obstacle onto the 2D
plane (see Fig. 5).

The dynamic object O is represented, like the agents, as an open
disc centered at p with the radius r of the bounding sphere of the
object. While we use this bounding shape for collision avoidance
with the agents, the underlying rigid body simulation uses an exact
3D object representation for collision detection and for response to
other objects in the scene.

p஺ ORCAt
A|O

A

O

pை

vை

v஺

v஺
𝑝𝑟𝑒𝑓

𝑟

Figure 5: Collision Avoidance and Anticipation with a 3D object
projected onto 2D plane We take into account the object location
in computing appropriate collision avoidance constraints for agent
A, shown in the shaded region.

Agents try to avoid collisions with dynamic obstacles, just as they
try to avoid collisions with other agents, whenever the dynamic ob-
stacles are within agent’s visual range. However, agents do not

assume objects will reciprocate in avoiding collisions. Therefore,
assuming that a change in velocity of u (Section 3.1) is required to
avoid an anticipated collision with an obstacle, the agent will mod-
ify its velocity by at least u; this is twice as large as the velocity
bound using ORCA algorithm.

Therefore, the collision avoidance constraint for agent A induced
by object O is:

ORCA⌧
A|O = {v|(v � (vA + u)) · n � 0}. (13)

5.1.2 Agent-Object Collisions

When there is a collision between an agent and an object, the im-
pulse force f c is computed by the method used in [Baraff 1997].
We only consider rotational factors in the computation of object
motion, not for the agents. We can compute the impulse force f c

from the collision between an agent a and object o is as follows:

f c = (�(1+✏)vrel

1/m
a

+1/m
o

· n)/�t, (14)

where mo is the mass of object o, vrel and n are the relative veloc-
ity and the contact normal between the contact points, respectively.
A force with the same magnitude but with the opposite direction is
applied to the object, which also results in change of angular motion
generated by the torque ⌧ c:

⌧ c = f c ⇥ ro, (15)

where ro is the displacement vector for the contact point of the
object.

6 Results & Analysis

In this section, we highlight the performance of our algorithm in
different scenarios. We also analyze the approach and compare it
with other techniques.

6.1 Agent-Agent Interaction

We first demonstrate a few scenarios which highlight the effect of
forces propagating in agent-agent interactions.

Running Through Scenario: We demonstrate a scenario where an
agent runs at a high speed through a dense crowd of 25 agents that
are standing still. Figure 6 compares the result of our method to
those achieved using multi-agent simulation without any physical
interactions.

While Moving After

(a) without physical interactions

While Moving After

(b) with physical interactions

Figure 6: Rushing through still agents: The red agent tries to
rush through a group of standing agents, simulated (a) with only
anticipatory collision avoidance and (b) with physical interactions.
Using our method, the forces are propagated among the agents,
resulting in a new distribution pattern (b).

The left side of each image shows a pushing agent (red) passing
through the crowd, and the right side of each image shows the posi-
tion of all other agents in the crowd after the fast-moving agent has
passed. As Fig. 6 demonstrates, agents simulated without physics-
based interaction use minimal motion to avoid collisions. In con-
trast, agents simulated using our physically-based formulation re-
sist the pushing motion (in an attempt to stand still) and propagate
the effects of being pushed to other agents.

Figure 7: Pushing through dense crowd: The red agent pushes
through a dense crowd that moves perpendicular to its direction of
travel. Agents are simulated using (a) ancipatory collision avoid-
ance only, and (b) combination of anticipatory collision avoidance
and physically-based interaction. In the latter case, the red agent
can proceed to its goals quickly by pushing other agents through its
path.

Dense Crossing Scenario: In this case, an agent attempts to cross
perpendicularly through a dense stream of crowd flow. Fig. 7 shows
a comparison between our method and using no physical interac-
tions.

As the figure shows, an agent who is only avoiding collisions (with-
out pushing) cannot effectively cut through the crowd’s flow, is
eventually swept up with the crowd, as that motion avoids all im-
pending collision. This is because moving with the crowd success-
fully avoids all impending collisions. However, the pushing force
based on our approach allows an agent to clear its path and move
freely.

Two Bottlenecks Scenario: In this scenario, long lines of closely
spaced walking agents attempt to pass through two narrow bottle-
necks, as illustrated in Fig. 8. The first bottleneck (shown as (2)) is
about the width of two agents; the second is narrower, about wide
enough for one agent (shown as (1)). A local navigation algorithm
that performs collision avoidance frequently results in congestion at
both the bottlenecks due to stable-arch formation of agents (high-
lighted with a yellow circle) in Fig. 8 (a). However, agents sim-
ulated by our physically-based method are able to break this con-
gestion at the bottleneck area by pushing the blocking agents. The
ability to break through bottlenecks also results in a quantitatively
higher rate of flow for agents using our approach. After seconds,
twice as many agents make it through both the bottlenecks, using
our algorithm.

6.2 Agent-object Interaction

We can also demonstrate the effect of two-way coupling between
dynamic objects and agents in multi-agent simulations. In the fol-
lowing scenarios, the Bullet Physics engine [AMD 2012] is used
to compute the 3D rigid body dynamics, which in turn are used to

(a) Multi-agent simulation with no physical interaction

(b) Physical interaction amongst agents and with the walls

Figure 8: Two bottlenecks scenario We simulate and compare
crowd behavior at two narrow bottlenecks in these scenarios, (1)
and (2), which are marked with red dotted lines. Bottleneck (1) is
barely wide enough for one person to pass through; bottleneck (2)
is about twice that width and allows two agents to pass through it at
a time. The result from collision-avoidance-only simulation results
in an arch-shaped arrangement of agents in the crowd (highlighted
with a yellow circle), which causes congestion at the bottleneck.
Our method breaks the congestion by allowing the agents to push
one other in congested conditions.

compute object motion (see Fig. 2). The effects of user interaction
in these scenarios can be seen in the supplemental video1.

Rolling Ball Scenario: In this scenario, a few agents interact with
varying numbers of dynamically generated balls. A user can inter-
act with the agents by moving around the dynamic obstacles, or by
generating new balls. Agents attempt to avoid these dynamically
moving balls and push them away when there is a collision.

Wall Breaking Scenario: In this scenario, long lines of agents
come at a constant rate into the simulated region, which is blocked
off with a movable wall made of 200 blocks glued together. This
wall can be broken into separate blocks if a large external force is
applied by the agents. Agents initially stop to avoid hitting the wall,
but as other agents start to push from behind, the wall breaks apart
and gets carried away with the agents. Fig. 1 shows stills from the
simulation.

Cluttered Office Scenario: In this scenario, several decomposed
3d models - a table, a chair, and a shelf, and several rigid bodies
(e.g. boxes) stacked on top of each other – are placed in the way
of the agents. A long stream of agents attempts to navigate past
the obstacles. Users can throw boxes, which push the agents and
knock over objects in the environment. Fig. 9 shows a still from the
simulation.

These scenarios demonstrate several features of our approach:

• Dynamic Obstacle Avoidance: Agents try to avoid collisions
with other agents and with dynamic obstacles.

• Agent-Object Interactions: Our method takes into account the
collisions which occur between the agents and the objects.

1Supplementary video can be found at
http://gamma.cs.unc.edu/CrowdInteractions/

The forces generated by these collisions affect both the ob-
jects and the agents.

• User Interactions: Our method is fast enough for real-time
interactive simulation. Users can participate in the simulation
by moving rigid bodies inside the scene; this movement dy-
namically changes the environment for the moving agent.

Figure 9: Office Scenario. Agents navigate to avoid office furni-
ture. As users insert flying pink boxes into the scene, the agents
get pushed, collide into each other, and avoid falling objects (see
video).

6.3 Performance

We measured the simulation timings for the demos we presented
(see Table 1). The timings were computed on a 3.4 GHz Intel i7
processor with 8GB RAM. Our method efficiently simulates large
numbers of agents, and also exhibits interactive performance when
integrated with the Bullet Physics Library.

Dynamic # Static
Scenario Agents Obstacles Obstacles fps
Pushing Through 1600 0 0 229.6
Two Bottlenecks 1000 0 20 829.7
Rolling Balls 10 1000 2 1205.9
Wall Breaking 1200 200 2 50.1
Office 1200 65 0 69.0

Table 1: Performance on a single core for different scenarios. Our
algorithm can handle all of them at interactive rates.

6.4 Analysis

Our approach is mainly designed for interactive applications that re-
quire plausible physical behavior (e.g. games or virtual worlds). By
using a combination of force and navigation constraints that affect
agents’ behavior, our approach can simulate many use effects and
emergent behaviors. For example, our formulation allows for inten-
tionally uncooperative agents to physically push their way through
a crowd by imparting physical forces to nearby agents. Addition-
ally, agents can use navigation constraints to avoid collisions with
dynamic obstacles as well as other agents. By expressing all inter-
actions as linear velocity constraints, we can naturally combine the
two different simulation paradigms of forces and navigation into
a unified framework and compute the new velocity for each agent
using linear programming. This is useful in generating physically
plausible simulations of large numbers of agents.

Benefits of Our Method

Many techniques have been proposed in the literature for simulat-
ing large numbers of agents that display a wide variety of emergent
behaviors. However, the primary emphasis of these methods is on
collision avoidance – avoiding any physical contact between the

http://gamma.cs.unc.edu/CrowdInteractions/

agents. In other words, they model how agents move around each
other, but do not usually model explicit physical contacts, interac-
tions, and external forces.

Force-based methods such as [Helbing and Molnár 1995] use forces
to describe social factors (e.g. attraction and repulsion) between the
agents, not physical interactions. Most closely related to our work
are methods such as [Helbing et al. 2000; Yu and Johansson 2007;
Pelechano et al. 2007], which model crowd turbulence or physi-
cal interactions among panicking agents by adding explicit physical
force or by increasing repulsive forces. These methods are capable
of reproducing some important emergent crowd phenomena, but do
not account for the anticipation needed to efficiently avoid upcom-
ing collisions with other agents and obstacles [Curtis et al. 2012].

Force-based methods can also suffer from stability issues in dense
scenarios, which require careful tuning and small time steps in order
to remain stable [Curtis et al. 2011]. Our method provides stable,
anticipatory motion for agents while incorporating agent responses
to forces. It can be easily combined with other velocity-based ap-
proaches. Our approach is also stable in terms of varying the size
of time-steps. More details are given in [Kim et al. 2013].

Limitations

We use a physically-inspired approach to simulate the interactions
between a high number of agents and the obstacles. However, it is
only an approximation and may not be physically accurate. Sec-
ondly, we assume that agents are constrained to move along a 2D
plane, and we use the projected positions of 3D dynamic objects to
compute the interactions. Third, like other agent-based simulation
methods, we use a rather simple approximation for each agent (a
2D circle). This means that we cannot accurately simulate physical
interactions with human-like articulated models and 3D objects.

7 Conclusion and Future Work

We have proposed a novel method to combine physics-based in-
teractions with anticipatory collision-avoidance techniques that use
velocity-based formulation. Our method can generate many emer-
gent behaviors, physically-based collision responses, and propaga-
tion of forces to the agent’s nearby neighbors. In combination with
the Bullet Physics library, we were able to simulate complex inter-
actions between agents and dynamic obstacles in the environment.
The resulting approach is useful for interactive large-scaled simu-
lations and can generate physically plausible behaviors. This ap-
proach has been extended to model physical interactions between
dense crowds and applied to Tawaf simulation [Kim et al. 2013].

In our future work, we would like to further explore our method
by comparing the results with real-world crowd behaviors and by
performing more validation. We would like also to extend our
model to agents moving in 3D space or multi-layer frameworks, and
to consider using more complex shapes, or even articulated body
models, to represent agents, as this would allow for more accurate
force computation. Finally, we would like to use more accurate
physically-based modeling algorithms to generate appropriate be-
haviors.

Acknowledgements

We are grateful to the reviewers for their comments, we would like
to thank Sean Curtis, Ming C. Lin and Ioannis Karamouzas for their
help and feedback, and Karl Hillesland, Erwin Coumans, and Jason
Yang from AMD for their support. This research is supported in
part by ARO Contracts W911NF-10-1-0506, W911NF-12-1-0430,
NSF awards 0917040, 0904990, 100057, and 1117127, AMD, and
Intel.

References

AMD, 2012. Bullet Physics 2.80. http://bulletphysics.org.

BARAFF, D. 1997. An introduction to physically based modeling:
Rigid body simulation i - unconstrained rigid body dynamics. In
In An Introduction to Physically Based Modelling, SIGGRAPH
’97 Course Notes, 97.

CURTIS, S., GUY, S. J., ZAFAR, B., AND MANOCHA, D. 2011.
Virtual tawaf: A case study in simulating the behavior of dense,
heterogeneous crowds. In 1st IEEE Workshop on Modeling, Sim-
ulation and Visual Analysis of Large Crowds, 128–135.

CURTIS, S., ZAFAR, B., GUTUB, A., AND MANOCHA, D. 2012.
Right of way. The Visual Computer, 1–16.

DURUPINAR, F., PELECHANO, N., ALLBECK, J., GÜ ANDDÜ
ANDKBAY, U., AND BADLER, N. 2011. How the ocean person-
ality model affects the perception of crowds. Computer Graphics
and Applications, IEEE 31, 3 (may-june), 22 –31.

GUY, S. J., KIM, S., LIN, M. C., AND MANOCHA, D. 2011. Sim-
ulating heterogeneous crowd behaviors using personality trait
theory. In Symposium on Computer Animation, ACM, 43–52.

GUY, S. J., CURTIS, S., LIN, M. C., AND MANOCHA, D. 2012.
Least-effort trajectories lead to emergent crowd behaviors. Phys.
Rev. E 85 (Jan), 016110.

HELBING, D., AND MOLNÁR, P. 1995. Social force model for
pedestrian dynamics. Phys. Rev. E 51 (May), 4282–4286.

HELBING, D., FARKAS, I., AND VICSEK, T. 2000. Simulating
dynamical features of escape panic. Nature 407, 6803 (Sept.),
487–490.

HUGHES, R. L. 2003. The flow of human crowds. Annual Review
of Fluid Mechanics 35, 1, 169–182.

KARAMOUZAS, I., AND OVERMARS, M. 2012. Simulating and
evaluating the local behavior of small pedestrian groups. IEEE
Trans. on Visualization and Computer Graphics 18, 3, 394–406.

KIM, M., HYUN, K., KIM, J., AND LEE, J. 2009. Synchronized
multi-character motion editing. ACM Trans. Graph. 28, 3 (July),
79:1–79:9.

KIM, S., GUY, S. J., MANOCHA, D., AND LIN, M. C. 2012.
Interactive simulation of dynamic crowd behaviors using general
adaptation syndrome theory. In Symposium on Interactive 3D
Graphics, ACM, New York, NY, USA, I3D ’12, 55–62.

KIM, S., GUY, S. J., ZAFAR, B., GUTUB, A., AND MANOCHA,
D. 2013. Velocity-based modeling of physical interactions in
multi-agent simulations in dense crowd. Tech. rep., Department
of Computer Science, University of North Carolina at Chapel
Hill.

LEE, K. H., CHOI, M. G., HONG, Q., AND LEE, J. 2007. Group
behavior from video: a data-driven approach to crowd simula-
tion. In Symposium on Computer Animation, 109–118.

LERNER, A., CHRYSANTHOU, Y., SHAMIR, A., AND COHEN-
OR, D. 2009. Data driven evaluation of crowds. In MIG, 75–83.

MUICO, U., POPOVIĆ, J., AND POPOVIĆ, Z. 2011. Composite
control of physically simulated characters. ACM Transactions
on Graphics 30, 3.

MUSSE, S. R., AND THALMANN, D. 1997. A model of human
crowd behavior: Group inter-relationship and collision detection

analysis. In Proc. Workshop of Computer Animation and Simu-
lation of Eurographics’97, 39–51.

NARAIN, R., GOLAS, A., CURTIS, S., AND LIN, M. C. 2009.
Aggregate dynamics for dense crowd simulation. ACM Trans.
Graph. 28, 5 (Dec.), 122:1–122:8.

ONDŘEJ, J., PETTRÉ, J., OLIVIER, A.-H., AND DONIKIAN, S.
2010. A synthetic-vision based steering approach for crowd sim-
ulation. ACM Trans. Graph. 29, 4 (July), 123:1–123:9.

PELECHANO, N., ALLBECK, J. M., AND BADLER, N. I. 2007.
Controlling individual agents in high-density crowd simulation.
In Symposium on Computer animation, 99–108.

PETTRÉ, J., ONDŘEJ, J., OLIVIER, A.-H., CRETUAL, A., AND
DONIKIAN, S. 2009. Experiment-based modeling, simulation
and validation of interactions between virtual walkers. In Sym-
posium on Computer Animation, ACM, SCA ’09, 189–198.

REYNOLDS, C. 1999. Steering Behaviors for Autonomous Char-
acters. In Game Developers Conference 1999.

SAKUMA, T., MUKAI, T., AND KURIYAMA, S. 2005. Psycholog-
ical model for animating crowded pedestrians: Virtual humans
and social agents. Comput. Animat. Virtual Worlds 16, 343–351.

SHAO, W., AND TERZOPOULOS, D. 2005. Autonomous pedestri-
ans. In Symposium on Computer animation, 19–28.

SHAPIRO, A., PIGHIN, F., AND FALOUTSOS, P. 2003. Hybrid
control for interactive character animation. In Pacific Confer-
ence on Computer Graphics and Applications, IEEE Computer
Society, Washington, DC, USA, PG ’03, 455–.

SHUM, H. P. H., KOMURA, T., AND YAMAZAKI, S. 2012. Simu-
lating multiple character interactions with collaborative and ad-
versarial goals. IEEE Transactions on Visualization and Com-
puter Graphics 18, 5 (May), 741–752.

SOK, K. W., YAMANE, K., LEE, J., AND HODGINS, J. 2010.
Editing dynamic human motions via momentum and force. In
Symposium on Computer Animation, Eurographics Association,
Aire-la-Ville, Switzerland, Switzerland, SCA ’10, 11–20.

TREUILLE, A., COOPER, S., AND POPOVIĆ, Z. 2006. Continuum
crowds. In ACM SIGGRAPH 2006, ACM, 1160–1168.

ULICNY, B., AND THALMANN, D. 2002. Towards interactive real-
time crowd behavior simulation. In Computer Graphics Forum,
vol. 21, Wiley Online Library, 767–775.

VAN DEN BERG, J., GUY, S. J., LIN, M., AND MANOCHA, D.
2011. Reciprocal n-body collision avoidance. In Robotics Re-
search: 14th ISRR (STAR), vol. 70, 3–19.

YEH, H., CURTIS, S., PATIL, S., VAN DEN BERG, J., MANOCHA,
D., AND LIN, M. 2008. Composite agents. In Symposium on
Computer Animation, 39–47.

YU, W., AND JOHANSSON, A. 2007. Modeling crowd turbulence
by many-particle simulations. Phys. Rev. E 76 (Oct), 046105.

YU, Q., AND TERZOPOULOS, D. 2007. A decision network frame-
work for the behavioral animation of virtual humans. In Sympo-
sium on Computer animation, 119–128.

ZORDAN, V. B., MAJKOWSKA, A., CHIU, B., AND FAST, M.
2005. Dynamic response for motion capture animation. ACM
Trans. Graph. 24, 3 (July), 697–701.

SPECIAL ISSUE PAPER

Footstep navigation for dynamic crowds

Shawn Singh*, Mubbasir Kapadia, Glenn Reinman and Petros Faloutsos

Department of Computer Science, University of California, Los Angeles, USA

ABSTRACT

The majority of steering algorithms output only a force or velocity vector to an animation system, without modeling the

constraints and capabilities of human-like movement. This simplistic approach lacks control over how a character should

navigate. This paper proposes a steering method that uses footsteps to navigate characters in dynamic crowds. Instead of an

oriented particle with a single collision radius, we model a character’s center of mass and footsteps using a 2D

approximation of an inverted spherical pendulum model of bipedal locomotion. We use this model to generate a timed

sequence of footsteps that existing animation techniques can follow exactly. Our approach not only constrains characters to

navigate with realistic steps but also enables characters to intelligently control subtle navigation behaviors that are possible
with exact footsteps, such as side-stepping. Our approach can navigate crowds of hundreds of individual characters with

collision-free, natural steering decisions in real-time. Copyright # 2011 John Wiley & Sons, Ltd.

KEYWORDS

crowds; footprints; footsteps; navigation; steering

*Correspondence

Shawn Singh, Department of Computer Science, University of California, Los Angeles, Boelter Hall 4531F, Los Angeles, CA 90095,

USA.

E-mail: shawnsin@cs.ucla.edu

1. INTRODUCTION

The majority of previous steering algorithms represent a

character as an oriented particle that moves by choosing a

force or velocity vector. Often, orientation is heuristically

chosen to be the particle’s velocity. This approach has the

two key disadvantages:

� Limited locomotion constraints: Most steering algor-

ithms do not account for constraints of real human

movement. Trajectories may have discontinuous vel-

ocities, oscillations, awkward orientations, or may try

to move a character unnaturally, and these side-effects

make it harder to animate the character intelligently.

� Limited navigation control: It is common to assume that

an animation systemwill know how to interpret a vector-

based steering decision. In practice, a vector does not

have enough information to indicate appropriate man-

euvers, such as side-stepping versus reorienting the

torso, stepping backwards versus turning around, plant-

ing a foot to change momentum quickly, or carefully

placing steps in exact locations.

We propose to generate sequences of footsteps as the

output of navigation. Since there are already several ani-

mation techniques that can animate a character to follow

timed footsteps exactly [1–6], the main challenge and focus

of our work is how to generate footsteps as the output of

navigation. Footsteps are an intuitive abstraction for most

locomotion tasks, and they provide precise, unambiguous

spatial and timing information to animation.

In our system, each step is defined by a 2D parabolic

trajectory that approximates the motion of a 3D inverted

pendulum. The location, orientation, and timing of

footsteps are derived from the these trajectories. We use

a best-first search to plan a sequence of space–time

parabolic trajectories and the associated footsteps that

avoids time-varying collisions, satisfies footstep con-

straints for natural locomotion, and minimizes the effort

to reach a local goal. Characters successfully avoid

collisions with each other and choose steps that correspond

to natural and fluid motion, including precise timing.

Because the most significant biomechanics constraints are

already taken into account in our model, integrating our

results with an existing animation algorithm that follows

footsteps is straightforward and results in navigation that is

often richer and less awkward than vector-based naviga-

tion.

Contributions. This paper presents a new approach to

steering in dynamic crowds that uses a simple biomecha-

nically-based footstep model combined with space–time

COMPUTER ANIMATION AND VIRTUAL WORLDS

Comp. Anim. Virtual Worlds 2011; 22:151–158

Published online 12 April 2011 in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/cav.403

Copyright � 2011 John Wiley & Sons, Ltd. 151

planning. Our work demonstrates that a steering algorithm

can have better navigation features than a vector interface,

while still retaining fast performance. These features

include: short-term space–time planning, dynamic col-

lision bounds, appropriate movement constraints, and more

precise navigation control. Because substantial work

already exists to animate characters to follow exact

footsteps including timing information, we focus on the

navigation: how to generate biomechanically plausible

footsteps for dynamic crowds.

2. RELATED WORK

Two widely accepted strategies are (1) the social forces

model [7], which associates a small force field around

agents and obstacles, and (2) the steering behaviors model

[8], where forces are procedurally computed to perform

desired functions such as seek, flee, pursuit, evasion, and

collision avoidance. Many works are extensions or

elaborations of these two ideas [9–17]. A more complete

survey of collision avoidance, navigation, and crowd

simulation work can be found in Reference [18]. The

common theme in these works is the use of force or

velocity vectors as navigation decisions, which has the

limitations described above.

Only a few steering techniques take into account

locomotion constraints that an animation system will have.

Paris and Donikian [19] demonstrate a framework where

the animation module can potentially tell steering that an

action is not plausible. Musse and Thalmann [20] and Shao

and Terzopoulos [21] both address higher-level aspects of

pedestrians, and their navigation modules output a choice

from a set of navigation behaviors that correspond directly

to animations the character can produce. Van Basten

and Egges [22] discuss problems of interfacing navigation

with animation, proposing abstractions that reduce such

discrepancies.

Another approach to navigation is to plan sequences of

motion clips [23], demonstrated this is possible in real-time

for crowds, by precomputing a tree of all possible

sequences of motion clips. However, a large number of

motion clips would be needed to emulate the versatility of

far fewer stepping options. The technique of precomputing

a search tree can also be applied to our footstep planner, but

our approach is scalable even without this extension.

Footsteps. Several animation techniques, academic and

commercial, can follow a given sequence of footsteps [1–

6], and more. Animation methods in these works include

forward and inverse kinematics, physically based control,

and motion capture.

The challenge of generating footsteps has so far only

been explored for single characters in static environments.

Research in robotics [24–28] explores autonomous foot-

placement to avoid obstacles while navigating towards a

goal. Their focus is practical robot control, and so they do

not consider issues of real human locomotion. Torkos and

Van de Panne [1] generate footsteps to randomly wander,

changing direction if nearby objects are too close, used to

demonstrate their animation system. Chung and Hahn [2]

input a trajectory, and generate footsteps by aligning each

step to the orientation of the trajectory, with smaller

footsteps around curves. Choi et al. [29] use roadmaps to

plan sequences of steps, choosing from steps that are

possible with the given motion clips and requiring costly

roadmap construction and footstep verification. Zhang

et al. [30] propose a hierarchical planning approach that

computes full-body motion including footsteps for tasks in

highly constrained environments. Recently several papers

have considered footsteps as a way of guiding controllers

for physically-based character animations [3,31].

3. FOOTSTEP MODEL

The primary data structure in our model is a footstep, which
includes: (1) the position, velocity, and timing of the

character’s center of mass trajectory, (2) the location and

orientation of the foot, and (3) the cost of taking the step. In

this section, we describe these aspects of a footstep, as well

as the constraints for choosing footsteps.

Center of Mass Trajectory. The analogy between human

locomotion and the inverted pendulum is well known [32];

the pendulum pivot represents a point on or near a footstep,

while the pendulum mass represents a character’s center of

mass. We define a 2D analytical approximation to the

dynamics of an inverted spherical pendulum using

parabolas. Piecewise parabolic curves are enough to

capture the variety of trajectories that a human’s center

of mass will have: varying curvature, speed, and step sizes.

Each step is a parabola defined with the following

parameters in local space:

xðtÞ; yðtÞ; _xðtÞ; _yðtÞð Þ ¼ vx0 t;at
2; vx0 ; 2at

� �
(1)

such that both vx0 and a are positive.

Equation 1 allows us to analytically evaluate the

position and velocity of a character’s center of mass at any

time t. This makes it practical to search through many

possible trajectories for many characters in real-time.

3.1. Footstep Actions

The state of the character s2S is defined as follows

(Figure 1a):

s ¼ fðx; yÞ; ð _x; _yÞ; ðfx; fyÞ; ff; I2fL;Rgg

where (x, y) and (_x, _y) are the position and velocity of the

center of mass of the character at the end of the step, (fx, fy)
and ff are the location and orientation of the foot, and I is an
indicator of which foot (left or right) is taking the step.

The state space S is the set of valid states that satisfy the

constraints described below.

152 Comp. Anim. Virtual Worlds 2011; 22:151–158 � 2011 John Wiley & Sons, Ltd.
DOI: 10.1002/cav

Footstep navigation for dynamic crowds S. Singh et al.

A footstep action determines the next parabolic

trajectory, defined as a2A:

a ¼ ff; vdesired; Tg
where f is the desired orientation of the parabola, vdesired is
the desired initial speed of the center of mass, and T is the

desired time duration of the step. The action spaceA is the

set of valid footstep actions, where the input and output

states are both valid. Note that when the character’s

previous step is fixed, varying f directly affects the width

of the parabolic trajectory, thus allowing a large variety of

step choices.

A key aspect of the model is the transition function,

s0 ¼ createFootstepðs; aÞ. This function receives a desired
footstep action a and a state s and returns a new state s0 if
the action is valid. It is implemented as follows. First, f,

which indicates the orientation of the parabola, is used to

compute a transform from world space to local parabola

space. Then, the direction of velocity (_x, _y) from the end of

the previous step is transformed into local space, normal-

ized, and re-scaled by the desired speed vdesired. With this

local desired velocity, there is enough information to solve

for a, and then Equation 1 is used to compute (x, y) and (_x,
_y) at the end of the next step. In local space, the foot

location is always located at ðfx; fyÞ ¼ ð0;�dÞ, where d is

describes the distance between a character’s foot and center

at rest. Finally, all state information is transformed back

into world space, which serves as the input to create the

next footstep.

3.2. Locomotion Constraints

3.2.1. Biomechanical Properties.
Several properties of human locomotion are automatically

enforced by the definition of our model. The piecewise

parabola will be G-1 continuous, and the center of mass

will remain between the two feet by enforcing the local-

space parabola remains positive. Our footstep model offers

a number of intuitive parameters with meaningful defaults

and well-defined physical meaning. These parameters

include the height of the character’s center of mass,

the min, max, and preferred step timing and stride length,

the preferred and max velocities of the character’s walk,

the interval of valid foot orientations, etc. If these

constraints are violated, the footstep is considered invalid.

A user can modify these parameters to create new

locomotion styles. For example, restricting the valid range

of step timing and output velocity for one foot results in

asymmetric limping, like an injured character.

3.2.2. Footstep Orientation.
Intuitively, it may seem that footstep orientations must be

an additional control parameter when creating a footstep.

However, the choice of footstep orientation has no direct

effect on the dynamics of the center of mass trajectory; the

foot orientation only constrains the options for current

trajectory and future footsteps. This is a key aspect to our

model’s efficiency—instead of increasing the dimension-

ality of our search space to include foot orientation, we use

orientation to constrain the search space of a lower

dimensional system.

To implement this constraint, we compute an interval

[ffinner, ffouter] of valid foot orientations. This interval is

constrained by the same interval from the previous step,

and further constrained by the parabola orientation f used

to create the next footstep (Figure 2):

½ffnext inner; ffnext outer�
¼ ffprev outer; ffprev inner þ p

2

h i
\½f; atan2ð _y; _xÞ�

If this intersection becomes an empty set, that implies

that no foot orientation can satisfy the step constraints, so

the step is invalid. Note the ordering of bounds in these

intervals; the next foot’s outer bound is constrained by the

previous foot’s inner bound. In words, the interval

½f; atan2ð _y; _xÞ� describes two constraints: (1) the character

would not choose a foot orientation that puts his center of

mass on the outer side of the foot, (2) a human would rarely

orient the next step more outwards than the direction of

momentum; violating this constraint would put the

Figure 1. Our footstepmodel. (a) Depiction of state and action parameters. (b) A sagittal view of the pendulummodel used to estimate

energy costs. (c) The collisionmodel uses five circles that track the torso and feet over time, allowing tighter configurations than a single

coarse radius.

Comp. Anim. Virtual Worlds 2011; 22:151–158 � 2011 John Wiley & Sons, Ltd.
DOI: 10.1002/cav

153

S. Singh et al. Footstep navigation for dynamic crowds

character’s center of mass on the wrong side of the foot.

The exact orientation is chosen as a fast postprocess,

described below.

3.2.3. Space–Time Collision Model.
For any given footstep, our model computes the time-
varying collision bounds of the character at any exact time.

To determine if a footstep causes a collision, we iterate

over several time-steps within the footstep and query the

collision bounds of nearby characters for that time. The

collision bounds are five circles, depicted in Figure 1c.

Each circle associated with a foot exists while the foot is

planted on the ground. The three circles associated with the

torso are placed on the center of mass, which moves along

the parabola over several time-steps. If any of these circles

collide with an obstacle or another character’s circles, the

footstep is considered invalid.

3.3. Cost Function

We define the cost of a given step as the energy spent to

execute the footstep action. We model three forms of

energy expenditure for a step: (1) DE1, a fixed rate of

energy the character spends per unit time, (2) DE2, the

work spent due to ground reaction forces to achieve the

desired speed, and (3) DE3, the work spent due to ground

reaction forces accelerating the center of mass along the

trajectory. The total cost of a footstep action transitioning a

character from s to s0 is given by:

cðs; s0Þ ¼ DE1 þ DE2 þ DE3 (2)

3.3.1. Fixed Energy Rate.
The user defines a fixed rate of energy spent per second,

denoted as R. For each step, this energy rate is multiplied

by the time duration of the step T to compute the cost:

DE1 ¼ R � T (3)

This cost is proportional to the amount of time it takes to

reach the goal, and thus minimizing this cost corresponds

to the character trying to minimize the time it spends

walking to his goal. We found that good values for R are

roughly proportional to the character’s mass.

3.3.2. Ground Reaction Forces.
As a character pushes against the ground, the ground exerts

equal and opposite forces on the character. We model three

aspects of ground reaction forces that are exerted on the

character’s center of mass, from the study of biomechanics.

The geometry and notation of the cost model is shown in

Figure 1b. First, at the beginning of a new step (heel-

strike), some of the character’s momentum dissipates into

the ground. We estimate this as an instantaneous loss of

momentum along the pendulum shaft, reducing the

character’s speed from v0 to v0cosð2uÞ. In order to resume

a desired speed, the character actively exerts additional

work on his center of mass, computed as:

DE2 ¼ m

2
ðv desiredÞ2�ðv0 cosð2uÞÞ2
�� �� (4)

This cost measures the effort required to choose a

certain speed. At every step, some energy is dissipated into

the ground, and if a character wants to maintain a certain

speed, it must actively add the same amount of energy back

into the system. On the other hand, not all energy dissipates

from the system after a step, so if the character wants to

come to an immediate stop, the character also requires

work to remove energy from the system. Minimizing this

cost corresponds to finding footsteps that require less

effort, and thus tend to look more natural. Furthermore,

when walking with excessively large steps, cos(2u)

becomes smaller, implying that more energy is lost per

step.

It should be noted that there is much more complexity to

real bipedal locomotion than this cost model. For example,

the appropriate bending of knees and ankles and the

elasticity of human joints can significantly reduce the

energy lost per step, reducing the required work for a real

human.While the model is not an accurate measurement of

energy spent, it is sufficient for comparing the effort of

different steps.

DE2 captures only the cost of changing a character’s

momentum at the beginning of each step. The character’s

momentum may also change during the trajectory. For

relatively straight trajectories, this change in momentum is

mostly due to the passive inverted pendulum dynamics that

requires no active work. However, for trajectories of high

curvature, a character spends additional energy to change

his momentum. We model this cost as the work required to

Figure 2. An interval of valid foot orientations (the blue and green feet) is maintained for each step, constrained by the previous step

(red foot) and the chosen trajectory (red line).

154 Comp. Anim. Virtual Worlds 2011; 22:151–158 � 2011 John Wiley & Sons, Ltd.
DOI: 10.1002/cav

Footstep navigation for dynamic crowds S. Singh et al.

change momentum (denoted as P) over the length of the

step, weighted by constant w:

DE3 ¼ w � dP
dt

� length ¼ w � ma � length (5)

Note that a is the same coefficient in Equation 1, the

acceleration of the trajectory. a increases if the curvature of

the parabola is larger, and also if the speed of the character

along the trajectory is larger. Minimizing this cost

corresponds to preferring straight steps when possible,

and preferring to go slower (and consequently, taking

smaller steps) when changing the direction of momentum

significantly. The weight w can be adjusted to change

whether it costs more energy to walk around an obstacle or

to stop and wait for the obstacle to pass. We found good

values of w to be between 0.2 and 0.5, meaning that 20 to

50 per cent of the curvature is due to the character’s active

effort, and the rest due to the passive inverted pendulum

dynamics.

4. Generating Sequences of Steps

4.1. Discretizing Action Space

The choices for a character’s next step are generated by

discretizing the action spaceA described above, in all three

dimensions and using the createFootstepðs; aÞ function to
compute the new state and cost of each action. We have

found that vdesired and T can be discretized extremely

coarsely, as long as there are at least a few different speeds

and timings. Further optimizations are made by observing

that speed vdesired and step timing T have a slight inverse

correlation, and so not all combinations of vdesired and T
need to be generated. Most of the complexity of the action

space lies in the choices for the parabola orientation, f. The

choices for f are defined relative to the orientation of the

velocity vector (_x, _y) from the end of the previous footstep,

and the discretization of f ranges from almost straight to

almost U-turns. We note that the first choice that real

humans would consider when navigating is to step directly

toward the local goal. To address this, we create a special

option for f that would orient the character directly toward

its goal. With this specialized goal-dependent option, we

found it was possible to give fewer fixed options for f,

focusing on larger turns. Without this option, even with a

large variety of choices for f, the character appears to steer

toward an offset of the actual goal and then takes an

unnatural corrective step.

4.2. Short-Horizon Best-First Search

We use a best-first search planner for a sequence of

footsteps that minimizes energy cost. The implementation

of our planner is the same as an A$ search, except for the

horizon, described below.

The cost of taking a step is computed using Equations 2–

5. The heuristic function used by the best-first search, h(s),
estimates the energy cost from the current state to a local

goal:

hðsÞ ¼ c expected � n (6)

where cexpected is the energy spent in taking one normal

footstep action based on the character’s user-defined

parameters, and n is the number of steps it would take to

travel directly to the goal.

The horizon of our planner is the maximum number of

nodes to be expanded for a single search. In most cases, a

path is found before this threshold. We limit the horizon so

that difficult or unsolvable situations will not cause a

significant delay. If the planner searches too many nodes

without reaching the goal, we instead construct a path to a

node from the closed list that had the best heuristic value

(the same closed list used in A$). Intuitively, this means

that if no path is found to the goal within the search

horizon, the planner returns a path to the reachable state

that had the most promise of reaching the goal. The short-

horizon approach guarantees that we will have at least

some path for the character to use, even in difficult or

unsolvable planning problems. In worst case, if no good

solution is found, the path will simply be a sequence of

‘stop’ actions. For example, this can occur when a

character is stuck dense environment. Eventually when the

density clears, the character will continue.

4.3. Local Goals and Collision Avoidance

To navigate through large environments, we first plan a

path using A$ (a traditional spatial path, not footsteps).

Whenever a character needs to plan more footsteps, a local

footstep goal is chosen, placed approximately 10m ahead

on the spatial path. This 10m requirement is not strict; we

experimented with other methods of choosing a local

footstep goal, and they all worked decently well.

Characters that are visible to each other can read each

other’s plans in order to predict their dynamic collision

bounds at any given time. Visibility is determined by (1)

having line-of-sight between the two characters, and (2)

being within the character’s visual field, modeled as a

hemisphere centered around the character’s forward-facing

direction. This knowledge is analogous to the unspoken

communication that occurs between real human ped-

estrians that makes human steering very robust. When a

character re-plans, it does not try to avoid characters that it

does not see, and therefore other characters, who are still

executing old plans, may collide. The number of collisions

can be drastically reduced by re-planning n steps in

advance, before the previous plan is fully completed. This

way there is always a ‘buffer’ of 2 or 3 steps that are

guaranteed to be correct when a character predicts how to

steer around another character. While deadlocks and

collisions are still possible with this scheme, collisions are

Comp. Anim. Virtual Worlds 2011; 22:151–158 � 2011 John Wiley & Sons, Ltd.
DOI: 10.1002/cav

155

S. Singh et al. Footstep navigation for dynamic crowds

very rare, and we have not yet encountered a deadlock in

our experiments.

4.4. Choosing Exact Footstep Orientation

As described above, the planner maintains an interval of

valid foot orientations for every step, constrained by the

previous step’s interval, as well as the trajectory of the

current step. Once a sequence of footsteps has been

planned, it is possible to choose exact footstep orientations.

We constrain the interval of valid orientations once more

using the next step’s trajectory, now that this information is

available. This computation relies on the same interval

arithmetic described in Section 3. It is easy to see by

contradiction that this process will not cause an invalid

interval of orientations: if the interval becomes invalid

during this postprocess, that would imply that no

orientation of the current step could have produced a

valid interval of the next step—but if this is true, that

option would have already been pruned during planning

and would not be encountered here. The exact orientation

can be any value within this final interval; we found a good

heuristic is to orient the foot as closely as possible to the

orientation of the step’s trajectory, with a special case for

large turns.

5. RESULTS

For most results, characters are modeled with a center of

mass 1m above the ground, with a step length between

0.1m and 1.0m, step timing between 0.2 seconds and

0.8 seconds, and torso width of 60 cm.

Our short-horizon planner can solve challenging

situations such as potential deadlocks in narrow spaces.

Figure 3 depicts a challenging doorway situation. In many

previous algorithms, characters would ‘fight’ at the

doorway and may reach deadlock. In our method, the

characters exhibit predictive cooperation, where one

character steps aside. The doorway, 70 cm wide, is barely

wide enough to fit a single pedestrian. In this tight situation,

vector-based techniques would rely on collision prevention

at the walls until the character eventually finds the door.

Our collision model allows tighter spacing in crowded

conditions. An example is shown in Figure 3, where a

group of characters squeeze through a glass door. With

a single coarse collision radius, there would be many

false-positive collisions. Instead, like real humans, these

characters are comfortable placing their feet and shoulders

close to others in the dense crowd.

Our planner works online, in real-time. Performance is

shown in Table 1, measured on a Core 2 processor, using a

single thread. Planning is fast is because of the scope of

footsteps: a short horizon plan of 5–10 footsteps takes

seconds to execute but only a few milliseconds to compute.

The amortized cost of updating a character at 20Hz is also

shown in Table 1.

6. DISCUSSION AND FUTURE
WORK

Footsteps are an appropriate form of control since they are

the major contact point between a bipedal system and

the external environment. By generating space–time

sequences of footsteps, and by considering tighter dynamic

collision bounds, our approach is able to control characters

more precisely than existing crowd navigation techniques.

A ‘stop’ step is a specialized action in our planner. Being

based on general planning, our technique can extend to use

other specialized actions, such as running, jumping, even

motion capture clips, as long as the action has well defined

transitions, costs, and constraints. Existing steering

techniques can also be emulated, for example, social

forces models can be mapped to cost functions used by our

planner.

There are some prominent aspects of bipedal loco-

motion which should be addressed in future work. Knee

joints, ankle joints, muscles, angular momentum, and the

center of pressure (pendulum pivot) shifting from heel-to-

toe during a step—all of these affect the energy cost of real

footsteps. We would also like to explore social and

cognitive costs, where a character’s objective may not

necessarily be to minimize effort.

Figure 3. (Left) A character side-steps and yields to the other pedestrian, then precisely navigates through the narrow doorway. (Right)

An egress simulation. Characters do not get stuck around the corners of the glass door.

Table 1. Performance of our footstep planner for a character.

The typical worst case plan generated up to 5000 nodes and

expanded about 3000 nodes.

Egress 2-way hall 700 boxes

50 agents 200 agents 500 agents

Avg. # nodes generated 137 234 261

Avg. # nodes expanded 82 190 192

Planner performance 1.6ms 4.4ms 3ms

Amortized cost 20Hz 0.037ms 0.1ms 0.11ms

156 Comp. Anim. Virtual Worlds 2011; 22:151–158 � 2011 John Wiley & Sons, Ltd.
DOI: 10.1002/cav

Footstep navigation for dynamic crowds S. Singh et al.

ACKNOWLEDGEMENTS

Authors thank Intel Corp. for their generous support

through equipment and grants.

REFERENCES

1. van de Panne M. From footprints to animation.

Computer Graphics Forum 1997; 16(4): 211–223.
2. Chung S-K, Hahn JK. Animation of human walking in

virtual environments. In Computer Animation, 1999;
4–15.

3. Coros S, Beaudoin P, Yin KK, van de Panne M.

Synthesis of constrained walking skills. ACM Trans-
actions on Graphics 2008; 27(5): 1–9.

4. Wu C-C, Medina J, Zordan VB. Simple steps for

simply stepping. In ISVC (1), 2008; 97–106.
5. van Basten BJH, Peters PWAM, Egges A. The

Stepspace: Example-Based Footprint-Driven Motion
Synthesis. In Computer Animation and Virtual Worlds,
CASA 2010 Special Issue, Vol 21, Issue 3-4, Chiche-
ster, UK: John Wiley and Sons Ltd., 2010.

6. Autodesk. 3ds Max, 2010.
7. Helbing D, Molnár P. Social force model for ped-

estrian dynamics. Physical Review E 1995; 51(5):
4282–4286.

8. Reynolds CW. Steering Behaviors for Autonomous

Characters, in the proceedings of Game Developers

Conference 1999 held in San Jose, California. Miller

Freeman Game Group, San Francisco, California.

1999. 763–782.

9. Kapadia M, Singh S, Hewlett W, Faloutsos P. In

Proceedings of the ACM SIGGRAPH Symposium

on Interactive 3D Graphics and Games, 2009. 215–

223.

10. Singh S, Kapadia M, Hewlett W, Reinman G,

Faloutsos P. In Proceedings of the ACM SIGGRAPH

Symposium on Interactive 3D Graphics and Games,

2011.

11. Pelechano N, Allbeck JM, Badler NI. Controlling

individual agents in high-density crowd simulation.

In SCA, Eurographics Association, 2007; 99–108.
12. Gayle R, Sud A, Andersen E, Guy SJ, Lin MC,

Manocha D. Interactive navigation of heterogeneous

agents using adaptive roadmaps. IEEE Transactions
on Visualization and Computer Graphics 2009; 15(1):
34–48.

13. Boulic R. Relaxed steering towards oriented region

goals. In MIG’08, 2008; 176–187.
14. van den Berg JP, Lin MC, Manocha D. Reciprocal

velocity obstacles for real-time multi-agent naviga-

tion. In ICRA, 2008; 1928–1935.
15. Lamarche F, Donikian S. Crowd of virtual humans: a

new approach for real time navigation in complex and

structured environments. Computer Graphics Forum
2004, 23(3): 509–518.

16. Paris S, Pettré J, Donikian S. Pedestrian reactive

navigation for crowd simulation: a predictive

approach. In Eurographics 2007, Vol. 26, 2007;

665–674. http://www.morganclaypool.com/doi/abs/

10.2200/S00123ED1V01Y200808CGR008

17. Feurtey F. Simulating the collision avoidance behavior

of pedestrians. Master’s Thesis, The University of

Tokyo, School of Engineering, 2000.

18. Badler N. Virtual Crowds: Methods, Simulation, and
Control. Morgan and Claypool Publishers, 2008.

DOI: 10.2200/S00123ED1V01Y200808CGR008

http://www.morganclaypool.com/doi/abs/10.2200/

S00123ED1V01Y200808CGR008

19. Paris S, Donikian S. Activity-driven populace: a cog-

nitive approach to crowd simulation. IEEE Computer
Graphics and Applications 2009; 29(4): 34–43.

20. Musse SR, Thalmann D. A model of human crowd

behavior. In Proceedings of the CAS’97, Springer

Verlag, Wien, 1997; 39–51.

21. Shao W, Terzopoulos D. Autonomous pedestrians. In

SCA, 2005; 19–28.
22. van Basten BJH, Egges A. Path abstraction for com-

bined navigation and animation. MIG’09, 5884/2009,
2009; 182–193.

23. Lau M, Kuffner JJ. Precomputed search trees: plan-

ning for interactive goal-driven animation. In SCA,
September 2006; 299–308.

24. Kuffner,J.J., Jr., Nishiwaki K, Kagami S, Inaba M,

Inoue H. Footstep planning among obstacles for biped

robots. In IEEE Intelligent Robots and Systems (IEEE/
RSJ), Vol. 1, 2001; 500–505.

25. Nishiwaki Kh, Sugihara T, Kagami S, InabaMy, Inoue

S. Online mixture and connection of basic motions for

humanoid walking control by footprint specification.

In ICRA, Vol. 4, 2001; 4110–4115.
26. Kuffner J, Nishiwaki K, Kagami S, Kuniyoshi Y,

Inaba M, Inoue H. Online footstep planning for huma-

noid robots. In Proceedings of the IEEE International
Conference on Robotics and Automation, September

2003.

27. Li T-Y, Chen P-F, Huang P-Z. Motion planning for

humanoid walking in a layered environment. In ICRA,
Vol. 3, 2003; 3421–3427.

28. Chestnutt J, Lau M, Cheung KM, Kuffner J, Hodgins

JK, Kanade T. Footstep planning for the honda asimo

humanoid. In ICRA, April 2005.
29. Choi MG, Lee J, Shin SY. Planning biped locomotion

using motion capture data and probabilistic roadmaps.

ACM Transactions on Graphics 2003; 22(2): 182–

203.

30. Zhang L, Pan J, Manocha D. Motion planning and

synthesis of human-like characters in constrained

environments. MIG’09, 5884/2009, 2009; 138–145.
31. Wu J-C, Popović Z. Terrain-adaptive bipedal loco-

motion control. ACM Transactions on Graphics 2010;
29(4): 72:1–72:10.

32. Kuo AD. The six determinants of gait and the

inverted pendulum analogy: a dynamic walking

perspective. Human Movement Science 2007; 26(4):
617–656.

Comp. Anim. Virtual Worlds 2011; 22:151–158 � 2011 John Wiley & Sons, Ltd.
DOI: 10.1002/cav

157

S. Singh et al. Footstep navigation for dynamic crowds

AUTHORS’ BIOGRAPHIES

Shawn Singh is currently working
on his Ph.D. at the University of
California, Los Angeles. He received
his M.S. in computer science from
the University of Southern Califor-
nia. His research includes real-time
photon mapping, novel forms of
computation, and robust virtual
pedestrian steering behaviors.

Mubbasir Kapadia received his B.E.
in Computer Engineering in 2007
from University of Mumbai, India.
He is currently working on his M.S.
at the University of California, Los
Angeles. His current research is
applying egocentric approaches to
pedestrian simulation and the eva-
luation of agent steering behaviors.

Glenn Reinman is an assistant pro-
fessor in the department of compu-
ter science at UCLA. He received his
B.S. from MIT in 1996 and his PhD
andM.S. in Computer Science from
UCSD in 2001. His main area of
research is microprocessor architec-
ture, and he directs the MARS lab at
UCLA.

Petros Faloutsos is an assistant pro-
fessor at the Department of Com-
puter Science at the University of
California at Los Angeles. He
received his PhD degree (2002)
and his MSc degree in Computer
Science from the University of Tor-
onto, Canada and his BEng degree
in Electrical Engineering from the

National Technical University of Athens, Greece. Pro-
fessor Faloutsos is the founder and the director of the
graphics lab at the Department of Computer Science at
UCLA. The lab, called MAGIX (Modeling Animation
and GrafIX), performs state of the art research in all
aspects of graphics, focusing on virtual actors, virtual
reality, physics-based animation and motor control.
Professor Faloutsos is also interested in computer net-
works and he has co-authored a highly cited paper on
the topology of the Internet. Professor Faloutsos is a
member of the Editorial Board of the Journal Of The
Visual Computer and has served as a Progam Co-Chair
for the 2005 ACM SIGGRAPH/Eurographics Synmpo-
sium on Computer Animation. He is a member of the
ACM and the Technical Chamber of Greece.

158 Comp. Anim. Virtual Worlds 2011; 22:151–158 � 2011 John Wiley & Sons, Ltd.
DOI: 10.1002/cav

Footstep navigation for dynamic crowds S. Singh et al.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for commercial advantage and that copies bear this notice and the full citation on the
first page. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on
servers, or to redistribute to lists, requires prior specific permission and/or a fee.
Request permissions from permissions@acm.org.
SCA 2013, July 19 – 21, 2013, Anaheim, California.
Copyright © ACM 978-1-4503-2132-7/13/07 $15.00

Multi-Domain Real-time Planning in Dynamic Environments

Mubbasir Kapadia∗1, Alejandro Beacco†2, Francisco Garcia‡3, Vivek Reddy§1, Nuria Pelechano¶2, and Norman I. Badler‖1

1University of Pennsylvania
2Universitat Politècnica de Catalunya

3University of Massachusetts Amherst

Figure 1: Two agents navigating with space-time precision through a complex dynamic environment.

Abstract

This paper presents a real-time planning framework for multi-
character navigation that enables the use of multiple heterogeneous
problem domains of differing complexities for navigation in large,
complex, dynamic virtual environments. The original navigation
problem is decomposed into a set of smaller problems that are dis-
tributed across planning tasks working in these different domains.
An anytime dynamic planner is used to efficiently compute and re-
pair plans for each of these tasks, while using plans in one domain
to focus and accelerate searches in more complex domains. We
demonstrate the benefits of our framework by solving many chal-
lenging multi-agent scenarios in complex dynamic environments
requiring space-time precision and explicit coordination between
interacting agents, by accounting for dynamic information at all
stages of the decision-making process.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation;

Keywords: real-time navigation, space-time planning, multiple
problem domains, crowd simulation

1 Introduction

The next generation of interactive applications requires high fidelity
navigation of interacting autonomous agents in non-deterministic,
dynamic virtual worlds. The environment and agents are constantly

∗mubbasir@seas.upenn.edu
†abeacco@lsi.upc.edu
‡fmaxgarcia@gmail.com
§vivreddy@seas.upenn.edu
¶npelechano@lsi.upc.edu
‖badler@seas.upenn.edu

affected by unpredictable forces (e.g., human input), making it im-
possible to accurately extrapolate the future world state to make
optimal decisions. These complex domains require robust naviga-
tion algorithms that can handle partial and imperfect knowledge,
while still making decisions which satisfy space-time constraints.

Different situations require different granularity of control. An
open environment with no agents and static obstacles requires only
coarse-grained control while cluttered dynamic environments re-
quire fine-grained character control with careful planned decisions
that have spatial and temporal precision. Some situations (e.g., po-
tential deadlocks) may require explicit coordination between mul-
tiple agents.

The problem domain of interacting autonomous agents in dynamic
environments is extremely high-dimensional and continuous, with
infinite ways to interact with objects and other agents. Having a
rich action set, and a system that makes intelligent action choices,
facilitates robust, intelligent virtual characters, at the expense of in-
teractivity and scalability. Greatly simplifying the problem domain
yields interactive virtual worlds with hundreds and thousands of
agents that exhibit simple behavior. The ultimate, far-reaching goal
is still a considerable challenge: a real-time system for autonomous
character control that can handle many characters, without compro-
mising control fidelity.

Previous work simulates crowds by decoupling global naviga-
tion [Sung et al. 2005; Kallmann 2010] and local collision avoid-
ance [Pelechano et al. 2008], or demonstrates space-time planning
for global navigation for a single character [Levine et al. 2011],
while meeting real-time constraints. These approaches provide a
tradeoff between number of agents, control fidelity, and environ-
ment complexity. To our knowledge, no proposed technique effi-
ciently accounts for the dynamic nature of the environment at all
levels of the decision-making process.

This paper proposes a real-time planning framework for multi-
character navigation that uses multiple heterogeneous problem do-
mains of differing complexities for navigation in large, complex,
dynamic virtual environments. We define a set of problem domains
(spaces of decision-making) which differ in the complexity of their
state representations and the fidelity of agent control. These range
from a static navigation mesh domain which only accounts for static
objects in the environment, to a space-time domain that factors in

115

dynamic obstacles and other agents at much finer resolution. These
domains provide different trade-offs in performance and fidelity of
control, requiring a framework that efficiently works in multiple do-
mains by using plans in one domain to focus and accelerate searches
in more complex domains.

A global planning problem (start and goal configuration) is dynam-
ically decomposed into a set of smaller problem instances across
different domains, where an anytime dynamic planner is used to ef-
ficiently compute and repair plans for each of these problems. Plan-
ning tasks are connected by either using the computed path from
one domain to define a tunnel to focus searches, or using succes-
sive waypoints along the path as start and goal for a planning task
in another domain to reduce the search depth, thereby accelerat-
ing searches in more complex domains. Using our framework, we
demonstrate real-time character navigation for multiple agents in
large-scale, complex, dynamic environments, with precise control,
and little computational overhead.

2 Related Work

There is extensive research in multi-agent simulations with many
proposed techniques that differ in domain complexity and control
fidelity. Global navigation approaches [Sung et al. 2005; Sud et al.
2007; van den Berg et al. 2008b; Kallmann 2010] precompute a
roadmap of the global environment which is used for making effi-
cient navigation queries, but generally regard the environment to be
static. Crowd approaches [Pelechano et al. 2008; Thalmann 2008]
compromise on control fidelity in an effort to efficiently simulate
a large number of agents in real-time. Continuum-based meth-
ods [Treuille et al. 2006] model macroscopic crowd flow, while
agent-based approaches [Reynolds 1987; Lamarche and Donikian
2004; Loscos et al. 2003] model collision avoidance for goal-
directed agents using rules. Predictive approaches [van den Berg
et al. 2008a; Paris et al. 2007; Kapadia et al. 2009] approximate
the trajectories of neighboring agents in choosing collision-free ve-
locities, and the work in [Singh et al. 2011a] proposes a hybrid
technique that combines reactive rules, predictions, and planning.

Planning based control of autonomous agents has demonstrated
control of single agents with large action spaces [Choi et al. 2003;
Fraichard 1999; Shapiro et al. 2007]. In an effort to scale to a large
number of agents, meet real-time constraints, and handle dynamic
environments, a large variety of methods [Pettré et al. 2008] have
been proposed. The complexity of the domain is made simpler [Lau
and Kuffner 2005; Lo and Zwicker 2008] to reduce the branching
factor of the search, or the horizon of the search is limited to a
fixed depth [Singh et al. 2011b; Choi et al. 2011]. Anytime plan-
ners [Likhachev et al. 2003; van den Berg et al. 2006] tradeoff opti-
mality to satisfy strict time constraints, and have been successfully
demonstrated for motion planning for a single character [Safonova
and Hodgins 2007]. Randomized planners [Hsu et al. 2002; Shapiro
et al. 2007] expand nodes in the search graph using sampling meth-
ods, greatly reducing search efforts to make it a feasible solution
in high-dimensional, continuous domains. The work in [Hoff et al.
2000] exploits the use of graphics hardware to enable interactive
motion planning in dynamic environments.

Hierarchical Planning. Hierarchical planners [Botea et al. 2004;
Bulitko et al. 2007; Holte et al. 1996] reduce the problem complex-
ity by precomputing abstractions in the state space, which can be
used to speed up plan efforts. Given a discrete environment rep-
resentation, neighboring states are first clustered together to pre-
compute abstractions for high-level graphs. Different algorithms
are proposed [Kring et al. 2010] which plan paths hierarchically
by planning at the top level first, then recursively planning more
detailed paths in the lower levels, using different methods [Lacaze

2002; Sturtevant and Geisberger 2010] to communicate informa-
tion across hierarchies. These include using the plans in high-
level graphs to compute heuristics for accelerating searches in low-
level graphs [Holte et al. 2005], using the waypoints as intermedi-
ate goals, or using the high-level path to define a tunnel [Gochev
et al. 2011] to focus the search in the low-level graph. The work
in [Arikan and Forsyth 2002] demonstrates the use of randomized
search in a hierarchy of motion graphs for interactive motion syn-
thesis.

Comparison to Prior Work. Our work builds on top of excel-
lent recent contributions [Levine et al. 2011; Lopez et al. 2012]
showcasing the use of space-time planning for global navigation
in dynamic environments, for a single agent. Levine et al. [2011]
uses parameterized locomotion controllers to efficiently reduce the
branching factor of the search and assumes that object motion
have known trajectories, thus mitigating the need for replanning.
Lopez et al. [2012] introduces a dynamic environment represen-
tation which is computed by deducing the evolution of the en-
vironment topology over time, thus enabling space-time collision
avoidance with no prior knowledge of how the world changes. In
contrast, we use multiple heterogeneous domains of control, and
present a planning-based control scheme that reuses plan efforts
across domains to demonstrate real-time, multi-character naviga-
tion, in constantly changing dynamic environments. Instead of au-
tomatically computing abstractions from a given representation, we
develop a set of heterogeneous domains with different state and ac-
tion representations that provide trade-offs in control fidelity and
computational performance, and investigate different methods of
communicating between domains to meet our application needs.

3 Overview

The problem domain of a planner determines its effectiveness in
solving a particular problem instance. A complex domain that ac-
counts for all environment factors such as dynamic environments
and other agents, and has a large branching factor in its action space
can solve more difficult problems, but at a larger cost overhead. A
simpler domain definition provides the benefit of computational ef-
ficiency while compromising on control fidelity. Our framework
enables the use of multiple heterogeneous domains of control, pro-
viding a balance between control fidelity and computational effi-
ciency, without compromising either.

A global problem instance P0 is dynamically decomposed into a
set of smaller problem instances {P

′
} across different planning

domains {Σi}. Section 4 describes the different domains, and Sec-
tion 5 describes the problem decomposition across domains. Each
problem instance P

′
is assigned a planning task T (P

′
), and an

anytime dynamic planner (Section 5.1) is used to efficiently com-
pute and repair plans for each of these tasks, while using plans in
one domain to focus and accelerate searches in more complex do-
mains. Plan efforts across domains are reused in two ways. The
computed path from one domain can be used to define a tunnel
which focuses the search, reducing its effective branching factor.
Each pair of successive waypoints along a path can also be used
as start,goal pairs for a planning task in another domain, thus re-
ducing the search depth. Both these methods are used to focus and
accelerate searches in more complex domains, providing real-time
efficiency without compromising on control fidelity. Section 6 de-
scribes the relationships between domains.

4 Planning Domains

A problem domain is defined as Σ = 〈S,A,c(s, s′),h(s, sgoal)〉 ,
where the state space S = {Sself × Senv × Sagents} includes the

116

internal state of the agent Sself , the representation of the environ-
ment Senv , and other agents Sagents. Sself may be modeled as a
simple particle with a collision radius. Senv can be an environment
triangulation with only static information or a uniform grid repre-
sentation with dynamic obstacles. Sagents is defined by the vicinity
within which neighboring agents are considered. Imminent threats
may be considered individually or just represented as a density dis-
tribution at far-away distances. The action space A defines the set
of all possible successors succ(s) and predecessors pred(s) at
each state s, as shown in Equation 1. Here, δ(s, i) describes the ith

transition, and Φ(s, s′) is used to check if the transition from s to s′

is possible. The cost function c(s, s′) defines the cost of transition
from s to s′. The heuristic function h(s, sgoal) defines the estimate
cost of reaching a goal state.

succ(s) = {s+ δ(s, i)|Φ(s, s′) = TRUE ∀i} (1)

A problem definition P = 〈Σ, sstart, sgoal〉 describes the initial
configuration of the agent, the environment and other agents, along
with the desired goal configuration in a particular domain. Given
a problem definition P for domain Σ, a planner searches for a
sequence of transitions to generate a plan Π(Σ, sstart, sgoal) =
{si|si ∈ S(Σ)} that takes an agent from sstart to sgoal.

4.1 Multiple Domains of Control

We define 4 domains which provide a nice balance between global
static navigation and fine-grained space-time control of agents in
dynamic environments. Figure 2 illustrates the different domain
representations for a given environment.

Static Navigation Mesh Domain Σ1. This domain uses a triangu-
lated representation of free space and only considers static immov-
able geometry. Dynamic obstacles and agents are not considered in
this domain. The agent is modeled as a point mass, and valid tran-
sitions are between connected free spaces, represented as polygons.
The cost function is the straight line distance between the center
points of two free spaces. Additional connections are also precom-
puted (or manually annotated) to represent transitions such as jump-
ing with a higher cost definition. The heuristic function is the Eu-
clidean distance between a state and the goal. Searching for an op-
timal solution in this domain is very efficient and quickly provides
a global path for the agent to navigate. We use Recast [Mononen
2009] to precompute the navigation mesh for the static geometry in
the environment.

Dynamic Navigation Mesh Domain Σ2. This also uses triangu-
lations to represent free spaces and coarsely accounts for dynamic
properties of the environment to make a more informed decision at
the global planning layer. The work in [van Toll et al. 2012] em-
beds population density information in environment triangulations
to account for the movement of agents at the global planning layer.
We adopt a similar method by defining a time-varying density field
φ(t) which stores the density of moveable objects (agents and ob-
stacles) for each polygon in the triangulation at some point of time
t. φ(t0) represents the density of agents and obstacles currently
present in the polygon. The presence of objects and agents in poly-
gons at future timesteps can be estimated by querying their plans (if
available). The space-time positions of deterministic objects can be
accurately queried while the future positions of agents can be ap-
proximated based on their current computed paths, assuming that
they travel with constant speed along the path without deviation.
φ(t) contributes to the cost of selecting a waypoint in Σ2 during
planning. The resolution of the triangulation may be kept finer than
Σ1 to increase the resolution of the dynamic information in this do-
main. Hence, a set of global waypoints are chosen in this domain

which avoids crowded areas or other high cost regions.

Grid Domain Σ3. The grid domain discretizes the environment
into grid cells where a valid transition is considered between adja-
cent cells that are free (diagonal movement is allowed). An agent
is modeled as a point with a radius (orientation and agent speed is
not considered in this domain). This domain only accounts for the
current position of dynamic obstacles and agents, and cannot pre-
dict collisions in space-time. The cost and heuristic are distance
functions that measure the Eucledian distance between grid cells.

Space-Time Domain Σ4.
This domain models the
current state of an agent as
a space-time position with a
current velocity (x, v, t). The
figure alongside illustrates the
schematic illustration of the
state and action space in Σ4,
showing a valid transition,
and an invalid transition due
to a space-time collision with
a neighboring agent. The transition function δ(s, i) for Σ4 is
defined below:

δ(s, i) = {∆vi ·∆t|∆vi = (∆vi · sin ∆θi,∆vi · cos ∆θi)∀i}

where ∆v = {0,±a} is the possible speed changes and ∆θ =
{0,±π

8
,±π

4
,±π

2
} is the possible orientation changes the agent can

make from its current state. For example, ∆v = a,∆θ = π
8

pro-
duces a transition where the agent accelerates by a for the duration
of the timestep and rotates by π

8
. The bounds of ∆θ are limited be-

tween {−π
2
, π
2
} to limit the maximum rate of turning. Transitions

are also bound so that the speed and acceleration of an agent cannot
exceed a given threshold. Jumps are additionally modeled as a high
cost transition between two space-time points such that the region
between them may be occupied or untraversable for that time inter-
val. Inspite of the coarse discretization of ∆θ, the branching factor
of this domain is much higher, providing greater degree of control
fidelity with added computational overhead.

Σ4 accounts for all obstacles (static and dynamic) and other agents.
The traversability of a grid cell is queried in space-time by checking
to see if moveable obstacles and agents occupy that cell at that par-
ticular point of time, by using their published paths. For space-time
collision checks, only agents and obstacles that are within a certain
region from the agent, defined using a foveal angle intersection, are
considered. The cost and heuristic definitions have a great impact
on the performance in Σ4. We use an energy based cost formula-
tion that penalizes change in velocity with a non-zero cost for zero
velocity. Jump transitions incur a higher cost. The heuristic func-
tion penalizes states that are far away from sgoal in both space and
time. This is achieved using a weighted combination of a distance
metric and a penalty for a deviation of the current speed from the
speed estimate required to reach sgoal.

The domains described here are not a comprehensive set and only
serve to showcase the ability of our framework to use multiple het-
erogeneous domains of control in order to solve difficult problem
instances at a fraction of the computation cost. Our framework can
be easily extended to use other domain definitions (e.g., a footstep
domain), as described in Section 7.4.

117

(a) (b) (c) (d) (e)

Figure 2: (a) Problem definition with initial configuration of agent and environment. (b) Global plan in static navigation mesh domain Σ1

accounting for only static geometry. (c) Global plan in dynamic navigation mesh domain Σ2 accounting for cumulative effect of dynamic
objects. (d) Grid plan in Σ3. (e) Space-time plan in Σ4 that avoids dynamic threats and other agents.

STARTS

GOALS

S
T
A
R
T

C
H
A
N
G
E

G
O
A
L

C
H
A
N
G
E

T0

T(∑)
1

T(∑)
2

T(∑)
3

T(∑)
3

T(∑)
3

T(∑)
4

T(∑)
4

T(∑)
4

G
O
A
L

C
H
A
N
G
E

S
T
A
R
T

C
H
A
N
G
E

TUNNEL

CHANGE

W
O
R
L
D

C
H
A
N
G
E

TUNNEL

CHANGE

TUNNEL

CHANGE

TUNNEL

CHANGE
W
O
R
L
D

C
H
A
N
G
EM
O
V
E

A
G
E
N
T

Figure 3: Expanded illustration of domain relationship shown in Figure 4(b). A global problem instance (start and goal state) is decomposed
into a set of smaller problem instances across multiple planning domains. Planning tasks T (Σ) are assigned to each of these problems and
scheduled using a dynamic priority scheme based on events from the environment and other tasks.

5 Problem Decomposition and Multi-Domain
Planning

Figure 4(a) illustrates the use of tunnels to connect each of the 4 do-
mains, ensuring that a complete path from the agents initial position
to its global target is computed at all levels. Figure 4(b) shows how
Σ2 and Σ3 are connected by using successive waypoints in Π(Σ2)
as start and goal for independent planning tasks in Σ3. This relation
between Σ2 and Σ3 allows finer-resolution plans being computed
between waypoints in an independent fashion. Limiting Σ3 (and
Σ4) to plan between waypoints instead of the global problem in-
stance ensures that the search horizon in these domains is never
too large, and that fine-grained space-time trajectories to the initial
waypoints are computed quickly. However, completeness and op-
timality guarantees are relaxed as Σ3, Σ4 never compute a single
path to the global target.

Figure 3 illustrates the different events that are sent between plan-
ning tasks to trigger plan refinement and updates for the domain
relationship in Figure 4(b). Σ1 is first used to compute a path
from sstart to sgoal, ignoring dynamic obstacles and other agents.
Π(Σ1) is used to accelerate computations in Σ2, which refines the
global path to factor in the distribution of dynamic objects in the
environment. Depending on the relationship between Σ2 and Σ3,
a single planning task or multiple independent planning tasks are

(a)

(b)

Figure 4: Relationship between domains. (a) Use of tunnels to
connect each of the 4 domains. (b) Use of successive waypoints in
Π(Σ2) as start, goal pairs to instantiate multiple planning tasks in
Σ3 and Σ4.

used in Σ3. Finally, the plan(s) of T (Σ3) are used to accelerate
searches in Σ4.

Changes in sstart and sgoal trigger plan updates in T (Σ1), which
are propagated through the task dependency chain. T (Σ2) monitors

118

plan changes in T (Σ1) as well as the cumulative effect of changes
in the environment to refine its path. Each T (Σ3) instance monitors
changes in the waypoints along Π(Σ2) to repair its solution, as well
as nearby changes in obstacle and agent position. Finally, T (Σ4)
monitors plan changes in T (Σ3) (which it depends on) and repairs
its solution to compute a space-time trajectory that avoids collisions
with static and dynamic obstacles, as well as other agents.

Events are triggered (outgoing edges) and monitored (incoming
edges) by tasks, creating a cyclic dependency between tasks, with
T0 (agent execution) monitoring changes in the plan produced by
the particular T (Σ4), which monitors the agents most imminent
global waypoint. Tasks that directly affect the agent’s next decision,
and tasks with currently invalid or sub-optimal solutions are given
higher priority. Given the maximum amount of time to deliberate
tmax, the agent pops one or more tasks that have highest priority
and divides the deliberation time across tasks (most imminent tasks
are allocated more time). Task priorities constantly change based
on events triggered by the environment and other tasks.

5.1 Planning Tasks

A task T (P) is a planner which is responsible for generating and
maintaining a valid (and ideally optimal) solution for a particular
problem definition P = 〈Σ, sstart, sgoal〉 where sstart, sgoal, and
the search graph may be constantly changing. There are 4 types of
tasks, each of which solves a particular problem in the domains de-
scribed in Section 4. An additional task T0 is responsible for mov-
ing the agent along the path, while enforcing steering and collision
constraints.

Planning tasks constantly receive events from the environment and
other tasks, which render the current plan invalid, forcing it to con-
stantly update, refine, and repair its existing plan. For this purpose,
we use the Anytime Dynamic A* planner [Likhachev et al. 2005]
which combines the properties of incremental planners such as D*
Lite [Koenig and Likhachev 2002] and anytime algorithms such as
ARA* [Likhachev et al. 2003] to provide an algorithm which ef-
ficiently repairs its solutions to accommodate world changes and
agent movement, while providing solution guarantees under strict
time constraints. It performs repeated backward searches (from
goal to start), reusing previous search efforts to iteratively produce
solutions with improved bounds on optimality, like ARA*. This is
done using an inflation factor ε which effectively weighs the contri-
bution of the heuristic value in estimation of node costs, thus focus-
ing the search towards the goal, expanding fewer nodes to produce
ε sub-optimal solutions [Pearl 1984]. We provide an overview of
the algorithmic details of the planning task in the supplementary
document and refer the readers to a comprehensive review of the
AD* algorithm here [Likhachev et al. 2005].

Plan Repair vs. Planning from Scratch. Note that there are often
instances during the simulation when the start and goal changes of
planning tasks change or when plans are invalidated due to obstacle
movement. Plans are always recomputed for goal changes. AD*
performs a backward search which allows it to efficiently update
the search graph to accommodate agent movement along the path.
For significant start changes or when the plan is invalidated due
to obstacle movement, the choice between replanning or repairing
a plan is a heuristic decision with tradeoffs in performance. Plan
repair may expand lesser nodes in the current iteration but bloat the
number of nodes visited, thus impacting performance in subsequent
plan iterations. It is not uncommon to plan from scratch during the
simulation. By resetting the inflation factor to a high value, we
can quickly compute a valid sub-optimal plan while meeting time
constraints and refine it in successive plan iterations.

5.2 Events and Task Priorities

Events are triggered and monitored by planning tasks in different
domains, as illustrated in Figure 3. Changes in start and goal, or en-
vironment changes may potentially invalidate current plans, requir-
ing plan refinement. Tasks that use tunnels to accelerate searches
in more complex domains, monitor plan changes in other tasks. Fi-
nally, tasks observe the optimality status of their own plans to de-
termine their task priority. The supplementary document describes
the different events in more detail.

The priority of a task p(Ta) determines the tasks that are picked
to be executed at every time step, with tasks having smallest p(Ta)
chosen for execution (p(Ta) is short for p(T (Σa))). Task T0, which
handles agent movement always has a priority of 1. Priority of other
tasks is calculated as follows:

p(Ta) =

{
1 if Ta = T0

µ(Ta,T0) · Ω(Ta) else
(2)

where µ(Ta,T0) is the number of edge traversals required to reach
T0 from Ta in the task dependency chain (Figure 3). Ω(Ta) denotes
the current state of the plan of Ta and is defined as follows:

Ω(Ta) =

 1 if SOLUTION INVALID
ε if plan inflation factor, ε > 1
∞ if plan inflation factor, ε = 1

(3)

where ε is the inflation factor used to determine the optimality
bounds of the current plan for that task. The agent pops one or
more tasks that have highest priority and divides the deliberation
time available across tasks, with execution-critical tasks receiving
more time. Tasks that have the same priority are ordered based on
task dependency. Hence, T0 is always executed at the end of every
update after all planning tasks have completed.

The overall framework enforces strict time constraints. Given an
allocated time to deliberate for each agent (computed based on de-
sired frame rate and number of agents), the time resource is dis-
tributed based on task priority. In the remote event that there is
no action to execute, the agent remains stationary (no impact on
frame-rate) for a few frames (fractions of a second) until a valid
plan is computed.

6 Relationship between Domains

The complexity of the planning problem increases exponentially
with increase in dimensionality of the search space – making the use
of high-dimensional domains nearly prohibitive for real-time appli-
cations. In order to make this problem tractable, planning tasks
must efficiently use plans in one domain to focus and accelerate
searches in more complex domains. Section 6.1 describes a method
for mapping a state from a low-dimensional domain to one or more
states in a higher dimensional domain. Sections 6.2 and 6.3 de-
scribe two ways in which plans in one domain can be used to focus
and accelerate searches in another domain.

6.1 Domain Mapping

We define a 1 : n function λ(s,Σ,Σ
′
) that allows us to maps states

in S(Σ) to one or more equivalent states in S(Σ
′
).

λ(s,Σ,Σ
′
) : s→ {s′|s′ ∈ S(Σ

′
) ∧ s ≡ s′} (4)

119

The mapping functions are defined specifically for each domain
pair. For example, λ(s,Σ1,Σ2) maps a polygon s ∈ S(Σ1) to
one or more polygons {s′|s′ ∈ S(Σ2)} such that s′ is spatially
contained in s. If the same triangulation is used for both Σ1 and
Σ2, then there exists a one-to-one mapping between states. Sim-
ilarly, λ(s,Σ2,Σ3) maps a polygon s ∈ S(Σ2) to multiple grid
cells {s′|s′ ∈ S(Σ3)} such that s′ is spatially contained in s.
λ(s,Σ3,Σ4) is defined as follows:

λ(s,Σ3,Σ4) : (x)→ {(x +W (∆x), t+W (∆t))} (5)

where W (∆) is a window function in the range [−∆,+∆]. The
choice of t is important in mapping Σ3 to Σ4. Since we use λ
to effectively map a plan Π(Σ3, sstart, sgoal) in Σ3 to a tunnel in
Σ4, we can exploit the path and the temporal constraints of sstart
and sgoal to define t for all states along the path. We do this by
calculating the total path length and the time to reach sgoal. This
allows us to compute the approximate time of reaching a state along
the path, assuming the agent is traveling at a constant speed along
the path.

6.2 Mapping Successive Waypoints to Independent
Planning Tasks.

Successive waypoints along the plan from one domain can be used
as start and goal for a planning task in another domain. This effec-
tively decomposes a planning problem into multiple independent
planning tasks, each with a significantly smaller search depth.

Consider a path Π(Σ2) = {si|si ∈ S(Σ2), ∀i ∈ (0, n)} of
length n. For each successive waypoint pair (si, si+1), we define
a planning problem Pi = 〈Σ3, sstart, sgoal〉 such that sstart =
λ(si,Σ2,Σ3) and sgoal = λ(si+1,Σ2,Σ3). Even though λ may
return multiple equivalent states, we choose only one candidate
state. For each problem definition Pi, we instantiate an indepen-
dent planning task T (Pi)which computes and maintains path from
si to si+1 in Σ3. Figure 4 illustrates this connection between Σ2

and Σ3.

6.3 Tunnels

The work in [Gochev et al. 2011] observes that a plan in a low
dimensional problem domain can often be exploited to greatly ac-
celerate high-dimensional complex planning problems by focusing
searches in the neighborhood of the low dimensional plan. They in-
troduce the concept of a tunnel τ(Σhd,Π(Σld), tw) as a sub graph
in the high dimensional space Σhd such that the distance of all states
in the tunnel from the low dimensional plan Π(Σld) is less than the
tunnel width tw. Based on their work, we use plans from one do-
main in order to accelerate searches in more complex domains with
much larger action spaces. A planner is input a low dimensional
plan Π(Σld) which is used to focus state transitions in the sub graph
defined by the tunnel τ(Σhd,Π(Σld), tw).

To check if a state s lies within a tunnel τ(Σhd,Π(Σld), tw)
without precomputing the tunnel itself, the low dimensional
plan Π(Σld) is first converted to a high dimensional plan
Π

′
(Σhd, sstart, sgoal) by mapping all states of Π to their corre-

sponding states in Π
′
, using the mapping function λ(s,Σld,Σhd)

as defined in Equation 4. Note that the resulting plan Π
′

may
have multiple possible trajectories from sstart to sgoal due to
the 1 : n mapping of λ. Next, we define a distance measure
d(s,Π(Σ)) which computes the distance of s from the path Π(Σ).
During a planning iteration, a state is generated if and only if
d(s,Π(Σhd)) ≤ tw. This is achieved by redefining the succ(s)

and pred(s) to only consider states that lie in the tunnel. Further-
more, node expansion can be prioritized to states that are closer to
the path by modifying the heuristic function as shown in below.

ht(s, sstart) = h(s, sstart) + |d(s,Π(Σ))| (6)

Note that the heuristic ht(s, sstart) is an estimate of the distance
from s to sstart since we use a backward search from sgoal to sstart
to accomodate start movement. For spatial domains Σ1, Σ2, and
Σ3, d(s,Π(Σ)) is the perpendicular distance between s and the line
segment connecting the two nearest states in Π(Σ). d(s,Π(Σ4))
will return a two-tuple value for spatial distance as well as temporal
distance.

TunnelChangeUpdate. When the tunnel changes, previously vis-
ited nodes that are no longer within the new tunnel are assigned
an infinite cost and the changes are propagated to their successors.
Also, their heuristic values are updated to reflect the new tunnel
distance using Equation 6, which re-prioritizes node expansion to
nodes that are closer to the new path. The tunnel width twis in-
versely proportional to the inflation factor ε. Thus, a high ε focuses
the search within a narrow tunnel, which is iteratively expanded
when ε is reduced to increase the breadth of the search. Due to the
extremely dynamic nature of the planning tasks, we find that a rea-
sonably narrow tunnel allows solutions to be returned very quickly
which can be improved, if time permits. If the tunnel is too narrow,
however, no plan maybe returned, requiring a replan in a wider tun-
nel. The supplementary document provides the algorithmic details
to handle tunnel changes that are sent between planning tasks in
different domains.

Completeness and Optimality Guarantees. The use of tunnels
enables AD* to leverage plans across domains in order to expedite
searches in high-dimensional domains. However; by modifying the
definition of succ(s) and pred(s) to prune nodes that lie outside
the tunnel, we sacrifice the strict bounds on optimality provided by
AD*, as nodes that lie outside the tunnel may lead to a more opti-
mal solution. By iteratively expanding the tunnel width tw, when
the search is unsuccessful, we ensure that a solution will be found,
if one exists. For practical purposes, we find that a constantly dy-
namic world mitigates the need for strict optimality bounds as solu-
tions are constantly invalidated, before their use. In our experiments
(Section 7.1), we find that the computational benefit of using tun-
nels far outweighs its drawbacks, providing an exponential reduc-
tion in the nodes expanded, while still producing reasonable quality
solutions.

7 Results

7.1 Comparative Evaluation of Domain Relationships

We randomly generate 1000 scenarios of size 100m× 100m, with
random configurations of obstacles (both static and dynamic), start
state, and goal state and record the effective branching factor, num-
ber of nodes expanded, time to compute a plan, success rate, and
quality of the plans obtained. The effective branching factor is the
average number of successors that were generated over the course
of one search. Success rate is the ratio of the number of scenarios
for which a collision-free solution was obtained. Plan quality is the
ratio of the length of the static optimal path and the path obtained.
A plan quality of 1 indicates that the solution obtained was able to
minimize distance without any deviations. Similar metrics for an-
alyzing multi-agent simulations have been used in [Kapadia et al.
2011]. The aggregate metrics for the different domains and domain
relationships are shown in Table 1. Rows 3 and 6 in Table 1 in-
clude the added time to compute plans in earlier domains for tunnel

120

search, to provide an absolute basis of comparison. All experiments
were performed on a single-threaded 2.80 GHz Intel(R) Core(TM)
i7 CPU.

Σ1 and Σ2 can quickly generate solutions but is unable to solve
most of the scenarios as they don’t resolve fine-grained collisions.
The use of plans from Σ1 accelerates searches in Σ2 (Table 1, Row
3). However, the real benefit of using both Σ1 and Σ2 is evident
when performing repeated searches across domains in large envi-
ronments when an initial plan Π(Σ1) accelerates repeated refine-
ments in Σ2 (and other subsequent domains). Using Σ3 in a large
environment takes significantly longer to produce similar paths. Σ4

is unable to find a complete solution for large-scale problem in-
stances (we limit maximum number of nodes expanded to 104),
and the partial solutions often suffer from local minima, resulting
in a low success rate. The benefit of using tunnels is evident in
the dramatic reduction of the effective branching factor and nodes
expanded for Σ4.

When using the complete global path from Σ3 as a tunnel for Σ4

(Figure 4(a) and Row 6 in Table 1), the effective branching factor
reduces from 21.5 to 5.6, producing an exponential drop in node
expansion and computation time, and enabling complete solutions
to be generated in the space-time domain. This planning task is
able to successfully solve nearly 92% of the scenarios that were
generated. However, since sstart and sgoal are far apart, the large
depth of the search prevents this from being used at interactive rates
for many agents.

By using successive waypoints in Π(Σ2) as sstart and sgoal to cre-
ate a series of planning tasks in Σ3 and Σ4 (Figure 4(b) and Row 7
in Table 1), we reduce the breadth and depth of the search, allow-
ing solutions to be returned at a fraction of the time (6 ms), without
significantly affecting the success rate. The tradeoff is that indepen-
dent plans are generated between waypoints along the global path,
creating a two-level hierarchy between the domains.

Domain BF N T S Q
T (Σ1) 3.7 43 3 0.17 0.76
T (Σ2) 4.6 85 8 0.23 0.57
T (Σ2,Π(Σ1)) 2.1 17 5 0.32 0.65
T (Σ3) 7.4 187 18 0.68 0.73
T (Σ4) 21.5 104 2487 0.34 0.26
T (Σ4,Π(Σ3,Σ2,Σ1)) 5.6 765 136 0.92 0.64∑

Ti(Σ4,Π(Σ3,Σ2,Σ1)) 5.4 75 8 0.86 0.58

Table 1: Comparative evaluation of the domains, and the use of
multiple domains. BF = Effective branching factor. N = Average
number of nodes expanded. T = Average time to compute plan (ms).
S = Success rate of planner to produce collision-free trajectory. Q
= Plan quality. Row 6,7 corresponds to the domain relationships
illustrated in Figures 4(a) and (b) respectively.

Conclusion. The comparative evaluations of domains shows that
no single domain can efficiently solve the challenging problem in-
stances that were sampled. The use of tunnels significantly reduce
the effective branching factor of the search in Σ3 and Σ4, while
mapping successive waypoints in Π(Σ2) to multiple independent
planning tasks reduce the depth of the search in Σ3 and Σ4, without
significantly impacting success rate and quality. For the remaining
results in the paper, we adopt this domain relationship as it works
well for our application of simulating multiple goal-directed agents
in dynamic environments at interactive rates. Users may choose a
different relationship based on their specific needs.

7.2 Performance

We measure the performance of the framework by monitoring the
execution time of each task type, with multiple instances of plan-

ning tasks for Σ3 and Σ4. We limit the maximum deliberation time
tmax = 10 ms, which means that the total time executing any of the
tasks at each frame cannot exceed 10ms. For this experiment, we
limit the total number of tasks that can be executed in a single frame
to 2 (including T0) to visualize the execution time of each task over
different frames. Figure 6 illustrates the task execution times of a
single agent over a 30 second simulation for the scenario shown in
Figure 2(a). The execution task T0 which is responsible for charac-
ter animation and simple steering takes approximately 0.4−0.5 ms
of execution time every frame. Spikes in the execution time corre-
late to events in the world. For example, a local non-deterministic
change in the environment (Frames 31,157) triggers a plan update
in T (Σ3), which in turn triggers an update in T (Σ4). A global
change such as a crowd blocking a passage or a change in goal
(Frames 39, 237,281) triggers an update in T (Σ2) or T (Σ1) which
in turn propagates events down the task dependency chain.

Note that there are often instances during the simulation when the
start and goal changes significantly or when plans are invalidated,
requiring planning from scratch. However, we ensure that our
framework meets real-time constraints due to the following design
decisions: (a) limiting the maximum amount of time to deliber-
ate for the planning tasks, (b) intelligently distributing the available
computational resources between tasks with highest priority, and
(c) increasing the inflation factor to quickly produce a sub-optimal
solution when a plan is invalidated, and refining the plan in succes-
sive frames.

Figure 6: Task execution times of the different tasks in our frame-
work over the course of a 60 second simulation.

Memory. T (Σ1) and T (Σ2) precomputes navigation meshes for
the environment whose size depend on environment complexity,
but are shared by all agents in the simulation. The runtime memory
requirement of these tasks is negligible since it expands very few
nodes. The memory footprint of T (Σ3) and T (Σ4) is defined by
the number of nodes visited by the planning task during the course
of a simulation. Since each planning task in Σ3 and Σ4 searches
between successive waypoints in the global plan, the search hori-
zon of the planners is never too large. On average, the number
of visited nodes is 75 and 350 for T (Σ3) and T (Σ4) respectively
with each node occupying 16 − 24 bytes in memory. For 5 run-
ning instances of T (Σ3) and T (Σ4), this amounts to approximately
45KB of memory per agent. Additional memory for storing other
plan containers such as OPEN and CLOSED are not considered in
this calculation as they store only node references and are cleared
after every plan iteration.

Scalability. Our approach scales linearly with increase in number
of agents. The maximum deliberation time for all agents can be

121

(a) (b) (c) (d)

Figure 5: Different scenarios. (a) Agents crossing a highway with fast moving vehicles in both directions. (b) 4 agents solving a deadlock
situation at a 4-way intersection. (c) 20 agents distributing themselves evenly in a narrow passage, to form lanes both in directions. (d) A
complex environment requiring careful foot placement to obtain a solution.

chosen based on the desired frame rate which is then distributed
among agents and their respective planning tasks at each frame.
The cost of planning is amortized over several frames and all agents
need not plan simultaneously. Once an agent computes an initial
plan, it can execute the plan with efficient update operations until
it is allocated more deliberation time. If its most imminent plan is
invalidated, it is prioritized over other agents and remains station-
ary till computational resources are available. This ensures that the
simulation meets the desired framerate.

7.3 Scenarios

We demonstrate the benefits of our framework by solving many
challenging scenarios (Figure 5) requiring space-time precision, ex-
plicit coordination between interacting agents, and the factoring of
dynamic information (obstacles, moving platforms, user-triggered
changes, and other agents) at all stages of the decision process. All
results shown here were generated at 30 fps or higher, which in-
cludes rendering and character animation. We use an extended ver-
sion of the ADAPT character animation system [Johansen 2009] for
the results shown in the video.

Deadlocks. Multiple oncoming and crossing agents in narrow pas-
sageways cooperate with each other with space-time precision to
prevent potential deadlocks. Agents observe the presence of dy-
namic entities at waypoints along their global path and refine their
plan if they notice potentially blocked passageways or other high
cost situations. Crowd simulators deadlock for these scenarios,
while a space-time planner does not scale well for many agents.

Choke Points. This scenario shows our approach handling agents
arriving at a common meeting point at the same time, producing
collision-free straight trajectories. Figure 7 compares the trajec-
tories produced using our method with an off the shelf navigation
and predictive collision avoidance algorithm in the Unity game en-
gine. Our framework produces considerably smoother trajectories
and minimizes deviation by using subtle speed variations to avoid
collisions in space-time.

Unpredictable Environment Change. Our method efficiently re-
pairs solutions in the presence of unpredictable world events, such
as the user-placement of obstacles or other agents, which may in-
validate current paths.

Road Crossing. The road crossing scenario demonstrates 40 agents
using space-time planning to avoid fast moving vehicles and other
crossing agents.

Lane Selection for Bi-directional Traffic. This scenario requires
agents to make a navigation decision in choosing one of 4 lanes
created by the dividers. Agents distribute themselves among the
lanes, while bi-directional traffic chooses different lanes to avoid

Our framework Unity navigation and steering

Figure 7: Trajectory comparison of our method with an off the
shelf predictive steering algorithm in the Unity game engine. Our
framework minimizes deviation and uses speed variations to avoid
collisions in space-time.

deadlocks. This scenario requires non-deterministic dynamic in-
formation (other agents) to be accounted for while making global
navigation decisions. This is different from emergent lane forma-
tion in crowd approaches, which bottlenecks at the lanes and cause
deadlocks without a more robust navigation technique.

Four-way Crossing We simulate 100 oncoming and crossing
agents in a four-way crossing. The initial global plans in Σ1 take the
minimum distance path through the center of the crossing. How-
ever, Σ2 predicts a space-time collision between groups at the cen-
ter and performs plan refinement so that agents deviate from their
optimal trajectories to minimize group interactions. A predictive
steering algorithm only accounts for imminent neighboring threats
and is unable to avoid mingling with the other groups (second row
of Figure 7).

Space-Time Goals. We demonstrate a complex scenario where 4
agents in focus (additional agents are also simulated) have a tem-
poral goal constraint, defined as an interval (40 + / − 1second).
Agents exhibit space-time precision while jumping across moving
planes to reach their target and the temporal goal significantly im-
pacts the decision making at all levels, where the space-time do-
main maybe unable to meet the temporal constraint and require
plans to be modified in earlier domains. No other approach can
solve this with real-time constraints.

Many of these scenarios cannot be solved by the current state of the

122

art in multi-agent motion planning, which is able to either handle a
single agent with great precision, or simulate many simple agents
that exhibit reactive collision avoidance.

7.4 Framework Extensibility

The potential of our framework lies in the ability to use multiple
domains of control, and is not limited to the domains described in
Section 4.1, which only serve as a sufficient set to showcase the
benefits of our method. For example, the scenario shown in Fig-
ure 5(d) requires careful control over how the character chooses
its footsteps and cannot be solved by Σ4, which does not model
bipedal locomotion.

We add a footstep domain Σ5, which models the motion of the
character’s center of mass and feet placement using an inverted
spherical pendulum model for bipedal locomotion. The agent state
s = (x, v, fx, fφ, I ∈ {L,R}) includes the center of mass position
and velocity, the position and orientation of the current support foot,
and an indicator function for the swing foot. An action is chosen by
selecting the time period of the footstep, the orientation and speed
of the center of mass at the end of the step, and the orientation of
the foot plant. The space of possible values of these parameters,
while satisfying the constraints enforced by the inverted pendulum
model, defines the action space of Σ5. We discretize this space to
keep the set of possible footstep transitions at each state to approx-
imately 35. For implementation details of this domain, please refer
to [Singh et al. 2011b].

λ(s,Σ4,Σ5) maps states in Σ4 to one or more states in Σ5 in order
to define a tunnel τ(Σ5,Π(Σ4), tw) around Π(Σ4). We start from
a default double support configuration of the character at the start
and assume that the character takes a left foot stride first. The COM
position is used to define a set of valid positions of the support foot
at each space-time waypoint, and fx is constrained based on the
future COM position (where the character turns to next).

8 Discussion

Choice of Domains. The domains described in this paper repre-
sent popular solutions that are used in both academia and industry.
Navigation meshes (Σ1) are a standard solution [Mononen 2009]
for representing free spaces in arbitrarily large, complex, static en-
vironments with recent proposed extensions [van Toll et al. 2012]
that account for dynamic information (Σ2). A grid-based represen-
tation (Σ3) provides a uniform discretization of the environment,
and is widely used in robot motion planning [Koenig and Likhachev
2002; Likhachev et al. 2005]. The introduction of time as a third
dimension (Σ4) enables collision checks in the future, facilitating
more robust collision resolution.

These domains provide a nice balance between global navigation
and space-time planning, enabling us to showcase the strength of
our framework: the ability to use multiple domains of control, and
leverage solutions across domains to accelerate computations while
still providing a high degree of control fidelity. Additional do-
mains can be easily integrated (e.g., a footstep domain) to meet
application-specific needs, or solve more challenging motion plan-
ning problems.

Relationship Between Domains. Domains can be connected by
using the plan from one domain as a tunnel for the other, or by us-
ing successive waypoints along the plan as start and goal pair for
multiple planning tasks in a more complex domain. We evaluated
both domain relationships based on computational efficiency and
coverage, as shown in Table 1. Using waypoints from the navi-
gation mesh domain as start, goal pairs for planning tasks in the

grid and space-time domain keeps the search depth for Σ3 and Σ4

within reasonable bounds. The tradeoff is that a space-time plan is
never generated at a global level from an agent’s start position to its
target, thus sacrificing completeness guarantees. This design choice
worked well for our experiments where the reduction in success rate
of our framework when using this scheme was within reasonable
bounds, while providing a considerable performance boost, making
it suitable for practical game-like applications. Users may wish to
opt for different domain relationships depending on the application.

Acknowledgements

This research was sponsored by the Army Research Laboratory and
was accomplished under Cooperative Agreement # W911NF-10-2-
0016. The views and conclusions contained in this document are
those of the authors and should not be interpreted as representing
the official policies, either expressed or implied, of the Army Re-
search Laboratory or the U.S. Government. The U.S. Government
is authorized to reproduce and distribute reprints for Government
purposes notwithstanding any copyright notation herein. This work
has been partially funded by the Spanish Ministry of Science and
Innovation under Grant TIN2010-20590-C01-01. A. Beacco is also
supported by the grant FPUAP2009-2195 (Spanish Ministry of Ed-
ucation).

References

ARIKAN, O., AND FORSYTH, D. A. 2002. Interactive motion
generation from examples. In SIGGRAPH, ACM, 483–490.

BOTEA, A., MLLER, M., AND SCHAEFFER, J. 2004. Near optimal
hierarchical path-finding. Journal of Game Development 1, 7–
28.

BULITKO, V., STURTEVANT, N., LU, J., AND YAU, T. 2007.
Graph abstraction in real-time heuristic search. J. Artif. Int. Res.
30, 1 (Sept.), 51–100.

CHOI, M. G., LEE, J., AND SHIN, S. Y. 2003. Planning biped lo-
comotion using motion capture data and probabilistic roadmaps.
ACM Trans. Graph. 22, 2 (Apr.), 182–203.

CHOI, M. G., KIM, M., HYUN, K., AND LEE, J. 2011. De-
formable motion: Squeezing into cluttered environments. Com-
put. Graph. Forum 30, 2, 445–453.

FRAICHARD, T. 1999. Trajectory planning in a dynamic
workspace: a’state-time space’approach. Advanced Robotics 13
6, 8, 7594.

GOCHEV, K., COHEN, B. J., BUTZKE, J., SAFONOVA, A., AND
LIKHACHEV, M. 2011. Path planning with adaptive dimension-
ality. In SOCS.

HOFF, K., I., CULVER, T., KEYSER, J., LIN, M., AND
MANOCHA, D. 2000. Interactive motion planning using
hardware-accelerated computation of generalized voronoi dia-
grams. In ICRA, vol. 3, 2931–2937 vol.3.

HOLTE, R. C., PEREZ, M. B., ZIMMER, R. M., AND MACDON-
ALD, A. J. 1996. Hierarchical A *: searching abstraction hi-
erarchies efficiently. In National conference on Artificial intelli-
gence, AAAI Press, AAAI, 530–535.

HOLTE, R., GRAJKOWSKI, J., AND TANNER, B. 2005. Hierarchi-
cal heuristic search revisited. In Abstraction, Reformulation and
Approximation, vol. 3607 of LNCS. Springer Berlin Heidelberg,
121–133.

123

HSU, D., KINDEL, R., LATOMBE, J.-C., AND ROCK, S. 2002.
Randomized kinodynamic motion planning with moving obsta-
cles. The International Journal of Robotics Research 21, 3, 233–
255.

JOHANSEN, R. S. 2009. Automated Semi-Procedural Animation
for Character Locomotion. Master’s thesis, Aarhus University.

KALLMANN, M. 2010. Shortest paths with arbitrary clearance
from navigation meshes. In ACM SIGGRAPH/Eurographics
SCA, 159–168.

KAPADIA, M., SINGH, S., HEWLETT, W., AND FALOUTSOS, P.
2009. Egocentric affordance fields in pedestrian steering. In
Symposium on Interactive 3D graphics and games, ACM, I3D,
215–223.

KAPADIA, M., WANG, M., SINGH, S., REINMAN, G., AND
FALOUTSOS, P. 2011. Scenario space: characterizing cov-
erage, quality, and failure of steering algorithms. In ACM
SIGGRAPH/Eurographics Symposium on Computer Animation,
SCA, 53–62.

KOENIG, S., AND LIKHACHEV, M. 2002. D* Lite. In National
Conf. on AI, AAAI, 476–483.

KRING, A. W., CHAMPANDARD, A. J., AND SAMARIN, N. 2010.
DHPA* and SHPA*: Efficient Hierarchical Pathfinding in Dy-
namic and Static Game Worlds. In AIIDE, The AAAI Press.

LACAZE, A. 2002. Hierarchical planning algorithms. In SPIE
Int. Symposium on Aerospace/Defense Sensing, Simulation, and
Controls.

LAMARCHE, F., AND DONIKIAN, S. 2004. Crowd of virtual hu-
mans: a new approach for real time navigation in complex and
structured environments. In Computer Graphics Forum 23.

LAU, M., AND KUFFNER, J. J. 2005. Behavior planning for char-
acter animation. In ACM SIGGRAPH/Eurographics SCA, 271–
280.

LEVINE, S., LEE, Y., KOLTUN, V., AND POPOVIĆ, Z. 2011.
Space-time planning with parameterized locomotion controllers.
ACM Trans. Graph. 30 (May), 23:1–23:11.

LIKHACHEV, M., GORDON, G. J., AND THRUN, S. 2003. ARA*:
Anytime A* with Provable Bounds on Sub-Optimality. In NIPS.

LIKHACHEV, M., FERGUSON, D. I., GORDON, G. J., STENTZ,
A., AND THRUN, S. 2005. Anytime Dynamic A*: An Anytime,
Replanning Algorithm. In ICAPS, 262–271.

LO, W.-Y., AND ZWICKER, M. 2008. Real-time planning for pa-
rameterized human motion. In ACM SIGGRAPH/Eurographics
SCA, 29–38.

LOPEZ, T., LAMARCHE, F., AND LI, T.-Y. 2012. Space-time
planning in changing environments : using dynamic objects for
accessibility. CAVW 23, 2, 87–99.

LOSCOS, C., MARCHAL, D., AND MEYER, A. 2003. Intuitive
crowd behaviour in dense urban environments using local laws.
In TPCG, IEEE, 122.

MONONEN, M., 2009. Recast: Navigation-mesh construction
toolset for games. http://code.google.com/p/recastnavigation/.

PARIS, S., PETTRÉ, J., AND DONIKIAN, S. 2007. Pedestrian
reactive navigation for crowd simulation: a predictive approach.
In EUROGRAPHICS 2007, vol. 26, 665–674.

PEARL, J. 1984. Heuristics: intelligent search strategies for com-
puter problem solving. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA.

PELECHANO, N., ALLBECK, J. M., AND BADLER, N. I. 2008.
Virtual Crowds: Methods, Simulation, and Control. Synthesis
Lectures on Computer Graphics and Animation.

PETTRÉ, J., KALLMANN, M., AND LIN, M. C. 2008. Motion
planning and autonomy for virtual humans. In ACM SIGGRAPH
classes, 1–31.

REYNOLDS, C. W. 1987. Flocks, herds and schools: A distributed
behavioral model. In ACM SIGGRAPH, 25–34.

SAFONOVA, A., AND HODGINS, J. K. 2007. Construction and op-
timal search of interpolated motion graphs. In ACM SIGGRAPH.

SHAPIRO, A., KALLMANN, M., AND FALOUTSOS, P. 2007. In-
teractive motion correction and object manipulation. In ACM
SIGGRAPH I3D.

SINGH, S., KAPADIA, M., HEWLETT, B., REINMAN, G., AND
FALOUTSOS, P. 2011. A modular framework for adaptive agent-
based steering. In ACM SIGGRAPH Symposium on Interactive
3D Graphics and Games, I3D, 141–150 PAGE@9.

SINGH, S., KAPADIA, M., REINMAN, G., AND FALOUTSOS, P.
2011. Footstep navigation for dynamic crowds. Computer Ani-
mation and Virtual Worlds 22, 2-3, 151–158.

STURTEVANT, N., AND GEISBERGER, R. 2010. A comparison of
high-level approaches for speeding up pathfinding. 76–82.

SUD, A., GAYLE, R., ANDERSEN, E., GUY, S., LIN, M., AND
MANOCHA, D. 2007. Real-time navigation of independent
agents using adaptive roadmaps. In VRST, ACM, 99–106.

SUNG, M., KOVAR, L., AND GLEICHER, M. 2005. Fast and ac-
curate goal-directed motion synthesis for crowds. In ACM SIG-
GRAPH/Eurographics SCA, 291–300.

THALMANN, D. 2008. Crowd simulation. In Wiley Encyclopedia
of Computer Science and Engineering.

TREUILLE, A., COOPER, S., AND POPOVIĆ, Z. 2006. Continuum
crowds. In ACM SIGGRAPH, 1160–1168.

VAN DEN BERG, J., FERGUSON, D., AND KUFFNER, J. 2006.
Anytime path planning and replanning in dynamic environments.
In ICRA, 2366 –2371.

VAN DEN BERG, J., LIN, M. C., AND MANOCHA, D. 2008. Re-
ciprocal velocity obstacles for real-time multi-agent navigation.
In Proceedings of ICRA, IEEE, 1928–1935.

VAN DEN BERG, J., PATIL, S., SEWALL, J., MANOCHA, D., AND
LIN, M. 2008. Interactive navigation of multiple agents in
crowded environments. In ACM SIGGRAPH I3D, 139–147.

VAN TOLL, W. G., COOK, A. F., AND GERAERTS, R. 2012. Real-
time density-based crowd simulation. CAVW 23, 1, 59–69.

124

22	 May/June 2011	 Published by the IEEE Computer Society� 0272-1716/11/$26.00 © 2011 IEEE

Feature Article

How the Ocean Personality Model
Affects the Perception of Crowds
Funda Durupınar ■ Bilkent University

Nuria Pelechano ■ Universitat Politècnica de Catalunya

Jan M. Allbeck ■ George Mason University

Uğur Güdükbay ■ Bilkent University

Norman I. Badler ■ University of Pennsylvania

Simulating the behavior of animated vir-
tual crowds is a challenge for the computer
graphics community. To achieve realistic be-

havior in virtual crowds requires extensive study
of the semantics underlying real crowds’ motion.

Psychologists study human na-
ture to identify salient behavior
characteristics. There has been
extensive research on incorpo-
rating psychological models into
the simulation of autonomous
agents. Here, however, we’re not
interested in a person’s person-
ality, per se, but in incorporating
a personality model into large
groups of people. By changing
the parameters, we examine how
subgroups of people with differ-
ent personality traits interact and,
accordingly, how global crowd
behavior is influenced. The user
decides the percentage and distri-
bution of the personality traits.

Personality is a pattern of a
person’s behavioral, temperamental, emotional,
and mental traits. Considerable controversy exists
in personality research about how many personal-
ity traits there are. However, one popular model
is the Five Factor, or Ocean (openness, conscien-
tiousness, extroversion, agreeableness, and neu-

roticism) model.1 These five factors are orthogonal
dimensions of the personality space. Openness de-
scribes the imaginative and creative aspect of hu-
man character. Conscientiousness determines to
what level a person is organized and careful. Ex-
troversion relates to how outgoing and sociable a
person is. Agreeableness is friendliness, generosity,
and the tendency to get along with other people.
Finally, neuroticism refers to emotional instability
and the tendency to experience negative emotions.
Each factor is bipolar and has several traits, which
essentially are adjectives used to describe people.2

We’ve mapped these trait terms to the set of be-
haviors in the HiDAC (High-Density Autonomous
Crowds) crowd simulation system.3 HiDAC models
individual differences by assigning each person dif-
ferent psychological and physiological traits. Users
normally set these parameters to model a crowd’s
nonuniformity and diversity. Our approach frees
users of the tedious task of low-level parameter
tuning and combines all these behaviors in dis-
tinct personality factors. To verify our mapping’s
plausibility, we evaluated users’ perception of the
personality traits in generated animations.

The System
By combining a standard personality model with a
high-density crowd simulation, our approach cre-
ates plausible variations in the crowd and enables
novice users to dictate these variations.4

This approach extends
the HiDAC (High-Density
Autonomous Crowds)
system by providing each
agent with a personality
model based on the Ocean
(openness, conscientiousness,
extroversion, agreeableness,
and neuroticism) personality
model. Each personality trait
has an associated nominal
behavior. Specifying an
agent’s personality leads to
an automation of low-level
parameter tuning.

	 IEEE Computer Graphics and Applications� 23

HiDAC
HiDAC addresses the simulation of local behaviors
and the global wayfinding of crowds in a dynami-
cally changing environment. It directs autonomous
agents’ behavior by combining geometric and psy-
chological rules. Psychological attributes include
impatience, panic, and leadership behaviors, which
are determined by traits such as locomotion, en-
ergy levels, and maximum speed. Agents have skills
such as navigation in complex environments, com-
munication, learning, and certain kinds of decision
making. Agents also have perception so that they
can react to obstacles, other agents, and dynamic
changes in the environment.

To achieve realistic behavior, HiDAC handles
collisions through avoidance and response forces.
Over long distances, the system applies collision
avoidance so that agents can steer around ob-
stacles. Over shorter distances, it applies collision
response to prevent agents from overlapping with
each other and the environment.

Besides the usual crowd behavior, agents might
display pushing behavior or show that they can wait
for other agents to pass first, depending on their po-
liteness and patience. Pushing behavior arises from
varying each agent’s personal-space threshold. Im-
patient agents don’t respect others’ personal space
and appear to push their way through the crowd.
Relaxed agents temporarily stop when another
agent moves into their path; impatient agents don’t
respond to this feedback and tend to push.

Integrating the Ocean Model into HiDAC
A crowd consists of subgroups with different per-
sonalities. Variations in the subgroups’ character-
istics influence emergent crowd behavior. The user
can add any number of groups with shared per-

sonality traits and can edit these characteristics
throughout an animation.

To model an agent’s personality p, we use a five-
dimensional vector, in which a personality factor
Ψi represents each dimension. To model the fac-
tors’ distribution in a group of people, we use a
Gaussian distribution function N with mean μi
and standard deviation σi:

p = <ΨO, ΨC, ΨE, ΨA, ΨN>,

Ψi i iN= ()µ σ, 2 , for i ∈ {O, C, E, A, N},

where μ ∈ [0, 1], σ ∈ [–0.1, 0.1].

A person’s overall behavior b is a combination
of different behaviors. Each behavior is a function
of personality:

β = (β1, β2, …, βn)

βj = f(p), for j = 1, …, n.

Because each factor is bipolar, Ψ can have posi-
tive and negative values. For instance, a value of
1 for extroversion means that the person is highly
extroverted, whereas –1 means that the person is
highly introverted.

Personality-to-Behavior Mapping
We map agents’ personality factors (adjectives)
onto low-level parameters and onto the built-
in behaviors in the HiDAC model (see Table 1).
A positive factor takes values in the range [0.5,
1]; a negative factor takes values in the range [0,
0.5). A factor with no sign indicates that both
poles apply to that behavior. For instance, E+ for

Table 1. Low-level parameters versus trait-descriptive adjectives.

Agent behavior Personality factor Ocean factor*

Leadership Assertive, social, unsocial, calm, fearful E, N

Trained or untrained Informed, ignorant O

Communication Social, unsocial E

Panic Oversensitive, fearful, calm, orderly, predictable N, C+

Impatience Rude, assertive, patient, stubborn, tolerant, orderly E+, C, A

Pushing Rude, kind, harsh, assertive, shy A, E

Right preference Cooperative, predictable, negative, contrary, changeable A, C

Avoidance or personal space Social, distant E

Waiting radius Tolerant, patient, negative A

Waiting timer Kind, patient, negative A

Exploring environment Curious, narrow O

Walking speed Energetic, lethargic, vigorless E

Gesturing Social, unsocial, shy, energetic, lethargic E

*The letters in this column stand for openness, conscientiousness, extroversion, agreeableness, and neuroticism.

24	 May/June 2011

Feature Article

a behavior means that only extroversion is related
to that behavior; introversion isn’t applicable. As
Table 1 shows, more than one personality dimen-
sion can define a behavior. The more adjectives of
a certain factor that are defined for a behavior, the
stronger that factor’s impact on that behavior. We
assign a weight to the factor’s impact on a specific
behavior. For instance, ωEL is the weight of extro-
version on leadership; it takes a value in the range
[0, 1]. The sum of the weights for a specific type
of behavior is 1.

Now, we show how our approach maps a per-
sonality dimension to a specific type of behavior.
We define the behavior parameters for an agent i
as follows.

Leadership. Leaders tend to have more confidence
in themselves. They remain calm during emergen-
cies. Each agent has a leadership percentage deter-
mined by extroversion and stability. We compute
leadership behavior as

β ω ωi i i
Leadership

EL
E

NL
N= + −()Ψ Ψ1 ,

where

bi
Leadership E∝ , bi

Leadership N∝−1 , and bi
Leadership ∈[]0 1, .

Trained. Trained agents have complete knowledge
about the environment. Because being trained re-
quires curiosity and because trained people are in-
formed, we associate this parameter with openness.

Being trained is a Boolean parameter, so we use
a probability function to represent it. As openness
increases, the probability that the agent is trained
increases:

P

P

i i

i
i

Trained

if Trained

O

Trained

() =

=
()≥

Ψ

b
1 0 5

0

.

 otherwise






,

where

Pi (Trained) ∝ O and bi
Trained ∈ {0, 1}.

Communication. This parameter determines whether
agents communicate. Similar to being trained, com-
munication depends on the probability of agent
behavior. As extroversion increases, the probability
that the agent communicates increases:

P

P

i i

i
i

Communication

if Com

E

Communication

() =

=

Ψ

b
1 mmunication

otherwise

() ≥





0 5

0

.
,

where

Pi(Communication)∝ E and bi
Communication ∈ { }0 1, .

Panic. In emergency situations, agents display
panic behavior depending on their stability and
conscientiousness. When they panic, their walk-
ing speed increases and they don’t wait. We com-
pute panic as

β ω ωi i i

i
i i

f

f

Panic
NP

N
CP

C

C
C Cif

= + ()

() =
− + ≥

Ψ Ψ

Ψ
Ψ Ψ2 2 0

00 otherwise






,

where

bi
Panic N∝ , bi

Panic C+∝−1 , and bi
Panic ∈[]0 1, .

Impatience. We implement this parameter by modi-
fying the route selection dynamically on the basis
of environmental changes. This parameter de-
pends on an agent’s politeness and assertiveness.
We compute impatience as

β ω ω ωi i i i

i

f

f

Impatience
EI

E
AI

A
CI

C= ()+ −()+ −()Ψ Ψ Ψ

Ψ

1 1

EE
E Eif

otherwise
() =

− ≥





2 1 0

0

Ψ Ψi i

,

where

bi
Impatience E+∝ , bi

Impatience A,C∝−1 , and bi
Impatience ∈[]0 1,

bi
Impatience ∈[]0 1, .

Pushing. HiDAC can realistically simulate a per-
son’s respect for others. Agents can try to force
their way through a crowd by pushing others,
exhibit more respectful behavior when desired,
make decisions about letting others walk first, and
queue when necessary. Disagreeable agents tend to
push others more because they’re harsh and im-
polite. Similarly, extroverted agents display push-
ing behavior because they tend to be assertive. We
compute pushing as

P

P

i i i

i
i

Pushing

if P

EP
E

AP
A

Pushing

() = + −()

=

ω ω

β

Ψ Ψ1

1 uushing

otherwise

()≥





0 5

0

.
,

where

Pi(Pushing) ∝ E, Pi(Pushing) ∝—1 A, and
bi
Pushing ∈ { }0 1, .

	 IEEE Computer Graphics and Applications� 25

Right preference. People prefer to move toward the
right side of the obstacle that they’re about to en-
counter. This behavior shows the person’s level
of conformity to the rules. The right-preference
behavior is a probability function. If an agent is
disagreeable or nonconscientious, that agent can
make a right or left preference with equal proba-
bility. On the other hand, an agent that prefers the
right side increases the probability proportionally
to the agent’s agreeableness and conscientiousness
values, if these values are positive. We compute
right preference as

P i i

i i

Right
if or

othe

A C

AR
A

CR
C

() =
< <

+

0 5 0 0. Ψ Ψ

Ψ Ψω ω rrwise

if Right

otherw
Right








=
()≥

βi
iP1 0 5

0

.

iise






,

where

Pi(Right) ∝ A, C, and bi
Right ∈ { }0 1, .

Personal space. Personal space determines the ter-
ritory in which a person feels comfortable. Agents
try to preserve their personal space when they
approach other agents and when other agents
approach from behind. However, the values for
these two situations aren’t the same. According
to research, the average personal space in West-
ern cultures is 0.7 meters in front and 0.4 meters
behind.5 The personal space of an agent i with re-
spect to an agent j is

bi j

if i j

,

. ,

PersonalSpace

Eif

=

∗ () ∈








0 8 0

1
3

 Ψ 

∗ () ∈












∗ ()

0 7
1
3
2
3

0 5

. ,

. ,

f i j

f i j

i

if

i

EΨ

ff E Ψi

f i j

∈




















()

2
3
1

, ==





1
0 4 0 7

if is behindi j
. / . otherwise

,,

where

bi j,
PersonalSpace E∝−1 and bi j, . , . , .PersonalSpace ∈ { }0 5 0 7 0 8 .

Waiting radius. In an organized situation, people
tend to wait for available space before moving. We
call this space the waiting radius; it depends on a
person’s kindness and consideration—that is, the
agreeableness dimension. We compute the waiting
radius as

	 ,bi

i

WaitingRadius

Aif

=

∈








0 25 0

1
3

0 45

.

.

Ψ

iif

if

A

A

Ψ

Ψ

i

i

∈












∈












1
3
2
3

0 65
2
3
1.









where

bi
WaitingRadius A∝ and bi

WaitingRadius ∈ { }0 25 0 45 0 65. , . , . .

Waiting timer. If two people are heading in the same
direction, each waits for the other to move first. The
time they wait—that is, the duration during which
they display patience toward each other—depends on
their agreeableness. We compute the waiting time as

	

	

,bi

i

i
WaitingTimer

A

A

if

if=

∈










∈

1 0
1
3

5

Ψ

Ψ
11
3
2
3

50
2
3
1













∈
















if AΨi







where

 bi
WaitingTimer A∝ and bi

WaitingTimer ∈ { }1 5 50, , .

Exploring the environment. HiDAC assigns people
specific behaviors. The number of actions they
complete depends on their curiosity. Open people
will more likely explore different experiences and
perform more actions. The openness factor deter-
mines the time during which a person explores the
environment. The number of actions that a person
completes increases by the degree of openness. We
compute the exploring parameter as

bi i
Exploring O10= Ψ ,

where

bi
Exploring O∝ and bi

Exploring ∈[]0 10, .

Walking speed. A person’s energy level determines
that person’s maximum walking speed. Because
extroverts tend to be more energetic and introverts
more lethargic, the extroversion trait controls this
parameter. We compute the walking speed as

bi i
WalkingSpeed E= +Ψ 1 ,

where

bi
WalkingSpeed E∝ and bi

WalkingSpeed ∈[]1 2, .

26	 May/June 2011

Feature Article

Gesturing. The amount of gesturing during a con-
versation indicates a person’s sociability. Outgoing
people use more gestures than shy people, which
indicates extroversion. We compute the gesturing
parameter as

bi i
Gesturing E10= Ψ ,

where

bi
Gesturing E∝ and bi

Gesturing ∈[]0 10, .

Evaluation
To evaluate whether users will correctly perceive
our suggested mappings, we conducted user studies.
We created several animations to study how mod-
ifying subgroups’ personality parameters affects
global crowd behavior.

The Experiment’s Design
We created 15 videos presenting the emergent be-
haviors of people in scenarios in which the set-

tings assigned in the Ocean model drive crowds’
behavior. The scenarios ranged from evacuation
drills to cocktail parties or museum galleries.

We performed the mapping from HiDAC param-
eters to Ocean factors by using trait-descriptive
adjectives. To validate our system, we determined
the correspondence between our mapping and the
users’ perception of these trait terms in the vid-
eos. Our studies involved 70 participants (21 fe-
males and 49 males, ages 18 to 30). We showed the
videos to them on a projected display and asked
them to complete a questionnaire containing 123
questions—about eight questions per video. After
each video, participants had time to answer the
related questions. The participants had no previ-
ous knowledge of the experiment.

Questions assessed how much a person agreed
with statements such as, “I think the people in
this video are kind” or “I think the people with
green suits are calm.” We asked questions that in-
cluded the adjectives describing each Ocean fac-
tor instead of asking directly about the factors.
We used descriptive questions because the general
public, being unfamiliar with the Ocean model,
might have difficulty answering questions such
as, “Do the people exhibit openness?” Although
the participants were proficient in English, to pre-
vent any misconceptions, we attached dictionary
definitions of the adjectives to the questionnaires.
Participants chose answers on a scale from 0 to
10, where 0 = totally disagree, 5 = neither agree
nor disagree, and 10 = totally agree. We omitted
the antonyms from the list of adjectives, for con-
ciseness. The remaining adjectives were assertive,
calm, changeable, contrary, cooperative, curious, dis-
tant, energetic, harsh, ignorant, kind, orderly, patient,
predictable, rude, shy, social, stubborn, and tolerant.

Sample Scenarios
In the scenarios, novel, emergent formations and
different behavior timings occurred.

The museum scenario tested the impact of
openness. A key factor determining openness is
the belief in the importance of art. Figure 1 shows
a screenshot from the sample animation. This sce-
nario tested the adjectives curiosity and ignorance.
There were three groups of people, with openness
values of 0, 0.5, and 1. We mapped the number of
tasks that each agent must perform to openness,
with each task requiring looking at a painting. The
least open agents (with blue hair) left the museum
first, followed by the agents with openness values
of 0.5 (with black hair). The most open agents
(with red hair) stayed the longest. We asked the
participants how they perceived each group.

Figure 1. Openness tested in a museum. The most open people (red hair)
stayed the longest. The least open people (blue hair) left the earliest.

Figure 2. A ring formation example. Extroverts (blue suits) are inside
and introverts are outside.

	 IEEE Computer Graphics and Applications� 27

Another video assessed how the participants
perceived extroverts and introverts according
to their distribution around a point of attrac-
tion. Figure 2 shows a screenshot in which the
agents in blue suits are extroverted (μ = 0.9 and
σ = 0.1) and those in grey suits are introverted
(μ = 0.1 and σ = 0.1). The ratio of introverts
to extroverts in a society is 25 percent;6 we as-
signed the initial number of agents according
to this ratio. At the animation’s end, introverts
were outside the ring structure around the object
of attraction. Because extroverts are faster, they
approached the attraction point in less time. In
addition, when other agents blocked their way,
they tended to push them to reach their goal.
The figure also shows the difference between the
personal spaces of introverts and extroverts. This
animation tested the adjectives social, distant, as-
sertive, energetic, and shy.

To test whether the participants could distinguish
the personalities of people who create congestion,
we showed them two videos of the same duration
and asked them to compare the characteristics of
the agents in each video. Each video consisted of
two groups of people moving through each other.
The first video showed people with high agreeable-
ness and conscientiousness values (μ = 0.9 and
σ = 0.1 for both traits). The second video showed
people with low agreeableness and conscientious-
ness values (μ = 0.1 and σ = 0.1 for both traits).
In the first video, groups managed to cross each
other, whereas in the second, congestion occurred
after a fixed time period. Such behaviors emerged
because people who are agreeable and conscien-
tious are more patient; they don’t push each other
and are always predictable, because they prefer to
move on the right side. Figure 3 shows how con-
gestion occurred because of low conscientiousness
and agreeableness. People were stuck at the center
and refused to let other people move. They also
were stubborn, negative, and uncooperative.

Figure 4 shows a screenshot from the anima-
tion demonstrating how neuroticism, nonconsci-
entiousness, and disagreeableness affect panic. We
simulated 13 agents. Five of them had neuroticism
values of μ = 0.9 and σ = 0.1, conscientiousness val-
ues of μ = 0.1 and σ = 0.1, and agreeableness values
of μ = 0.1 and σ = 0.1. The other agents, which
were psychologically stable, had neuroticism val-
ues of μ = 0.1 and σ = 0.1, conscientiousness values
of μ = 0.9 and σ = 0.1, and agreeableness values of
μ = 0.9 and σ = 0.1. The agents in green suits are
neurotic, less conscientious, and disagreeable. As
the figure shows, they tend to panic more, push
other agents, force their way through the crowd,

and rush to the door. They aren’t predictable, co-
operative, patient, or calm; they’re rude, change-
able, negative, and stubborn.

Analysis
After collecting the participants’ answers for all
the videos, we organized the data for the adjec-
tives. We classified each adjective by its question
number, the simulation parameter, and the par-
ticipants’ answers to the corresponding question.
We calculated the Pearson correlation (r) between
the simulation parameters and the average of the
subjects’ answers for each question. For instance,

Congestion

Figure 3. People with low conscientiousness and agreeableness cause
congestion.

Figure 4. Neurotic, nonconscientious, and disagreeable agents (in green
suits) display panic behavior.

28	 May/June 2011

Feature Article

eight questions included the adjective assertive,
indicating a sample size of 8. We calculated the
correlation coefficient between the parameters
and the means of the participants’ answers be-
tween these 16 values, eight for each group.

We grouped the relevant adjectives for each
Ocean factor to assess the perception of person-
ality traits. This evaluation was similar to the
evaluation of adjectives, this time considering the
questions for all the adjectives that corresponded
to an Ocean factor. For instance, because open-
ness is related to curiosity and ignorance, we took
into account the answers for curious and ignorant.
Again, we averaged the subjects’ answers for each
question. Then, we computed the correlation with
the parameters and the mean throughout all the
questions involving curious and ignorant.

To estimate the probability of having obtained
the correlation coefficients by chance, we computed
the correlation coefficients’ significance. The signif-
icance is 1 – p, where p is the two-tailed probability,
taking into account the sample size and the cor-
relation value. Higher correlation and significance
values suggest more accurate user perception.

Results and Discussion
Figure 5 shows the correlation coefficients and
significance values for the adjectives; Table 2
shows the exact results. As the table shows, the
significance is low (<0.95) for changeable, orderly,
ignorant, predictable, social, and cooperative. For
changeable and orderly, this is because of low cor-
relation values. For predictable, ignorant, social, and
cooperative, the correlation coefficients are high,
but their significance is low because of the small
sample size.

From the participants’ comments, we deter-
mined that changeable is especially confusing. To
understand why, consider the setting in which
two groups of agents crossed each other. The par-
ticipants identified the nonconscientious agents
as rude but perceived them as persistent in their
rudeness. This perception caused the partici-
pants to mark lower values for the question about
changeability. The same problem held for predict-
able agents. One participant’s comments suggested
that if a person is in a rush, that person can be
predicted to push others. However, a predictable
agent has a higher correlation despite these com-
ments, even though predictable implies the oppo-
site of changeable. This meaning might be because
of the relatively low significance for predictable.
Participants perceived nonconscientious agents
that cause congestion as less predictable, which
indicates that changing right-preference and rude
behavior decreases the perceived predictability.

Orderly is another weakly correlated adjective.
Analyzing the results for each video, we found
that agents in the evacuation drill scenario were
orderly although they displayed panic behavior.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1
Ch
an
ge
ab
le

Or
de
rly

Ig
no
ra
nt

Pr
ed
ict
ab
le

So
cia
l

En
er
ge
tic

Ru
de

To
ler
an
t

Ki
nd Sh
y

Pa
tie
nt

St
ub
bo
rn

Ha
rsh

Co
op
er
at
ive

Cu
rio
us

As
se
rti
ve

Ca
lm

Di
sta
nt

Co
nt
ra
ry

Correlation
Signi�cance

Figure 5. The correlation coefficients between the parameters and
the subjects’ answers for the descriptive adjectives (blue), and the
significance values for the corresponding correlation coefficients
(violet). Significance is low (<0.95) for changeable, orderly, ignorant,
predictable, social, and cooperative.

Table 2. Correlation coefficients and significance
values for the 12 adjectives.

Adjective Correlation Significance

Changeable 0.199 0.288

Orderly 0.674 0.903

Ignorant 0.853 0.936

Predictable 0.870 0.938

Social 0.872 0.869

Energetic 0.882 0.992

Rude 0.897 0.997

Tolerant 0.912 0.998

Kind 0.943 1.000

Shy 0.945 1.000

Patient 0.948 1.000

Stubborn 0.950 1.000

Harsh 0.956 0.997

Cooperative 0.967 0.834

Curious 0.971 0.994

Assertive 0.971 1.000

Calm 0.988 0.999

Distant 0.998 1.000

Contrary 0.999 0.969

	 IEEE Computer Graphics and Applications� 29

In these videos, even if the agents pushed each
other and moved fast, some kind of order could
be observed. This order was because of the crowd’s
smooth flow during evacuation. The crowd dis-
played collective synchrony, in which individual-
ity was lost. Although people were impatient and
rude, the overall crowd behavior appeared orderly.

We assigned the same goal to the entire crowd
in the evacuation simulations because we aimed to
observe disorganization locally. For instance, dis-
orderly agents looked rushed; they pushed other
agents and they didn’t have solid preferences for
selecting a direction when crossing another agent.
However, they moved toward the same goal, which
was to exit the building. The crowd would have ap-
peared more disorderly if everyone ran in different
directions and changed direction for no apparent
reason.

Participants’ answers suggest that they didn’t
recognize orderliness when the goal was the same
for the whole crowd. On the other hand, in a sce-
nario showing queuing behavior in front of a water
dispenser, the participants could easily distinguish
orderly versus disorderly people. Orderly agents
waited at the end of the queue; disorderly agents
rushed to the front. In this scenario, although the
main goal was the same for all the agents (drink
water), there were two distinguishable groups that
acted differently.

Figure 6 and Table 3 show the correlation coeffi-
cients and their significance for the Ocean param-
eters. We computed these values by taking into
account all the relevant adjectives for each Ocean
factor. As the figure and table show, all the coef-
ficients have high significance, with a probability
of less than 0.5 percent of occurring by chance
(p < 0.005). The significance is high because we
took into account all the adjectives describing a
personality factor, thereby achieving a sufficiently
large sample.

The correlation coefficient for conscientiousness
is comparatively low, showing that the participants
correctly perceived only approximately 44 percent
of the traits (r2 ≈ 0.44). To understand why, con-
sider the relevant adjectives: orderly, predictable,
rude, and changeable. Low correlation values for or-
derly and changeable reduce the overall correlation.
If we consider only rude and predictable, the cor-
relation increases by 18.6 percent. The results sug-
gest that people can observe the politeness aspect
in short-term crowd behavior settings more easily
than the organizational aspects. This observation
also explains why the perception of agreeableness
correlates highly with the actual parameters.

Figure 6 and Table 3 also show that the partici-

pants perceived neuroticism the best. In this study,
we’ve considered only neuroticism’s calmness as-
pect, which is tested in emergency settings and
building evacuation scenarios.

Our results are promising; they indicate a
high correlation between our parameters

and the participants’ perception of them. The low
correlation for some adjectives is due to the terms’
ambiguity.

Unlike the low-level parameter tuning process
in previous research (see the sidebar), we let our
users select from higher-level concepts related
to human psychology. Our approach frees users
from understanding the underlying methodologies
used in HiDAC. Our mapping also decreases the
number of parameters to set, from 13 to 5. Us-
ing a personality model let us move the user’s fo-
cus to the agents’ character instead of behavioral
parameters, while providing us with a somewhat
widely accepted structure for describing character.
Certainly, you could create an interface that lets

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

Co
ns
cie
nt
iou
sn
es
s

Op
en
ne
ss

Ex
tro
ve
rsi
on

Ag
re
ea
ble
ne
ss

Ne
ur
ot
ici
sm

Correlation
Signi�cance

Figure 6. The correlation coefficients between actual parameters and
subjects’ answers for the Ocean factors (blue), and the two-tailed
probability values for the corresponding correlation coefficients (violet).
All the coefficients have high significance.

Table 3. The correlation coefficients and the
significance values for the Ocean factors.

Factor Correlation Significance

Conscientiousness 0.665 1.000

Openness 0.859 0.999

Extroversion 0.860 1.000

Agreeableness 0.922 1.000

Neuroticism 0.990 0.999

30	 May/June 2011

Feature Article

users create subgroups based on a set of adjectives
instead of personality traits, but it would increase
the number of parameters to set. Also, psychology
and research on autonomous agents has linked
personality models to other psychological, socio-
logical, and cognitive models. Integrating a per-
sonality model into a crowd simulator will let us
expand our simulator and explore how these other
models affect crowd simulations.

We certainly could have used other psycho-
logical models. Autonomous-agent research has
investigated emotion models. Future research
might include adding emotion to the agents, but
whereas personality is a behavior pattern (ex-
tended through time), emotions change accord-
ing to the agent state and the situation. Emotions
must evolve through the simulation and not be
set by the animator. Certainly, personality af-

fects emotional tendency and provides a founda-
tion. Because personality is a behavior pattern, it
might help a character’s observers develop a sense
of knowing that character. Thus, characters might
become individuals instead of just another collec-
tion of anonymous computer characters.�

Acknowledgments
The research described in this article was initiated
while Funda Durupınar was visiting the University
of Pennsylvania’s Center for Human Modeling and
Simulation. The Scientific and Technological Research
Council of Turkey supported this research under Inter-
national PhD Research Fellowship Programme 2214
and projects EEE-AG 104E029 and 105E065. The
Spanish Government partially funded this research
under grant TIN2010-20590-C01-01.

Crowd simulation research has evolved from creating
reactive techniques to implementing crowds consist-

ing of more complex agents. Reactive methods are limited;
they don’t present any knowledge representation, learning
ability, reasoning, or individual differences in the agents. For
instance, flocking systems are rule-based and specify an ani-
mation as a distributed global motion with a local tendency.1

On the other hand, systems with cognitive control
involve reasoning and planning to accomplish long-term
tasks, and they concentrate on achieving full autonomy. A
notable step toward creating more intelligent agents was
Xiaoyuan Tu and Demetri Terzopoulos’s artificial-life simu-
lation, which equipped artificial fishes with synthetic vision
and perception of the environment, as well as behavior
and learning centers.2 Soraia Musse and Daniel Thalmann
proposed a crowd behavior model that implemented group
interrelationships and introduced a multiresolution col-
lision method specific to crowd modeling.3 Wei Shao and
Terzopoulos introduced a complex pedestrian animation
system that combined rule-based and cognitive models; it
incorporated perceptual, behavioral, and cognitive control
components.4

Several studies have integrated emotion and personal-
ity models and roles into the simulation of autonomous
agents, representing the individual differences through
psychological states. Arjan Egges and his colleagues studied
the simulation of the personality, emotions, and moods for
conversational virtual humans.5 Taihua Li and colleagues
proposed a framework that, like ours, uses the Ocean (open-
ness, conscientiousness, extroversion, agreeableness, and
neuroticism) model of personality to define and formulate
a pedagogical agent in a social learning environment.6
However, these studies focused on individual agents, not
crowds.

Only recently have researchers studied the perception
of crowd variety. Christopher Peters and his colleagues
evaluated pedestrians’ perception.7 They determined how
the orientation and context rules for characters in static
scenes affect perceived plausibility. Rachel McDonnell and
her colleagues analyzed the perceptual impact of the clon-
ing of virtual characters for simulating large crowds.8

References
	 1.	 C. Reynolds, “Flocks, Herds, and Schools: A Distributed

Behavior Model,” Proc. Siggraph, ACM Press, 1987, pp.

25–34.

	 2.	 X. Tu and D. Terzopoulos, “Artificial Fishes: Physics, Locomo

tion, Perception, Behavior,” Proc. Siggraph, ACM Press, 1994,

pp. 43–50.

	 3.	 S.R. Musse and D. Thalmann, “A Model of Human Crowd

Behavior,” Proc. Eurographics Workshop Computer Animation

and Simulation, Springer, 1997, pp. 39–51.

	 4.	 W. Shao and D. Terzopoulos, “Autonomous Pedestrians,”

Graphical Models, vol. 69, nos. 5–6, 2007, pp. 246–274.

	 5.	 A. Egges, S. Kshirsagar, and N. Magnenat-Thalmann, “A

Model for Personality and Emotion Simulation,” Proc.

Knowledge-Based Intelligence Information and Eng. Systems,

LNCS 2773, Springer, 2003, pp. 453–461.

	 6.	 T. Li et al., “Modelling Personality, Emotion, and Mood for a

Pedagogical Agent,” Proc. 25th IASTED Int’l Multiconference:

Artificial Intelligence and Applications (AIAP 07), ACTA Press,

2007, pp. 272–277.

	 7.	 C. Peters et al., “Crowds in Context: Evaluating the Percep

tual Plausibility of Pedestrian Orientations,” Proc. Eurographics,

Short Papers, Eurographics Assoc., 2008, pp. 33–36.

	 8.	 R. McDonnell et al., “Clone Attack! Perception of Crowd

Variety,” ACM Trans. Graphics, vol. 27, no, 3, 2008, article 26.

Related Work in Crowd Simulations

IEEE Computer Graphics and Applications 31

References
 1. J.S. Wiggins, The Five-Factor Model of Personality:

Theoretical Perspectives, Guilford Press, 1996.
 2. L.R. Goldberg, “An Alternative ‘Description of

Personality’: The Big-Five Factor Structure,” J.
Personality and Social Psychology, vol. 59, no. 6, 1992,
pp. 1216–1229.

 3. N. Pelechano, J.M. Allbeck, and N.I. Badler,
“Controlling Individual Agents in High-Density
Crowd Simulation,” Proc. ACM Siggraph/Eurographics
Symp. Computer Animation (SCA 07), ACM Press,
2007, pp. 99–108.

 4. F. Durupınar et al., “Creating Crowd Variation
with the Ocean Personality Model,” Proc. 7th
Int’l Joint Conf. Autonomous Agents and Multiagent
Systems (AAMAS 08), Int’l Foundation for Autono-
mous Agents and Multiagent Systems, 2008, pp.
1217–1220.

 5. E.T. Hall, The Hidden Dimension, Anchor Books,
1966.

 6. K.C. McLean and M. Pasupathi, “Collaborative
Narration of the Past and Extroversion,” J. Research
in Personality, vol. 40, no. 6, 2006, pp. 1219–1231.

Funda Durupınar received her PhD from the Department
of Computer Engineering at Bilkent University. Her research
interests include crowd simulation with heterogeneous be-
haviors that incorporate psychological aspects of agents.
Durupınar has an MS in computer engineering from Bilkent
University. Contact her at fundad@cs.bilkent.edu.tr.

Nuria Pelechano is an associate professor of Llenguatges i
Sistemes Informàtics at the Universitat Politècnica de Cata-

lunya, where she’s a member of the Moving and Event-Lab
groups. Her research interests include simulation of crowds
with heterogeneous behaviors, real-time 3D graphics, and
human-avatar interaction in virtual environments. Pele-
chano has a PhD in computer and information science from
the University of Pennsylvania. Contact her at npelechano@
lsi.upc.edu.

Jan M. Allbeck is an assistant professor of computer sci-
ence at George Mason University. Her research interests are
at the crossroads of animation, artifi cial intelligence, and
psychology in the pursuit of simulating humans, including
functional, heterogeneous crowds. Allbeck has a PhD in
computer and information science from the University of
Pennsylvania. Contact her at jallbeck@gmu.edu.

Uğur Güdükbay is an associate professor in Bilkent Uni-
versity’s Department of Computer Engineering. His research
interests include human modeling and animation, crowd
simulation and visualization, and physically based mod-
eling. Güdükbay has a PhD in computer engineering and
information science from Bilkent University. He’s a senior
member of IEEE and the ACM. Contact him at gudukbay@
cs.bilkent.edu.tr.

Norman I. Badler is a professor of computer and informa-
tion science at the University of Pennsylvania. He also di-
rects the university’s SIG Center for Computer Graphics and
Center for Human Modeling and Simulation. His research
interests center on computational connections between lan-
guage and action. Badler has a PhD in computer science
from the University of Toronto. Contact him at badler@seas.
upenn.edu.

Silver
Bullet
Security
Podcast

Sponsored by

www.computer.org/security/podcasts
*Also available at iTunes

In-depth interviews
with security gurus.

Hosted by Gary McGraw.

Populations with Purpose

Weizi Li and Jan M. Allbeck

Laboratory for Games and Intelligent Animation
George Mason University

4400 University Drive, MSN 4A5
Fairfax, VA 22030

http://cs.gmu.edu/~gaia/

Abstract. There are currently a number of animation researchers that
focus on simulating virtual crowds, but few are attempting to simulate
virtual populations. Virtual crowd simulations tend to depict a large
number of agents walking from one location to another as realistically as
possible. The virtual humans in these crowds lack higher purpose. They
have a virtual existence, but not a virtual life and as such do not reason-
ably depict a human population. In this paper, we present an agent-based
simulation framework for creating virtual populations endowed with so-
cial roles. These roles help establish reasons for the existence of each
of the virtual humans. They can be used to create a virtual population
embodied with purpose.

Keywords: Crowd Simulation, Social Roles

1 Introduction

Military training and other applications desire simulations that establish nor-
mal human behavior for an area. Once normalcy is established, observers can be
trained to recognize abnormal and possibly dangerous behaviors. This requires
the simulation of longer periods of time including different times of day. The
problem is how to select reasonable, purposeful behaviors for a population for
such periods of time. Roles are, in part, expected patterns of behavior and there-
fore seem like an intuitive feature for authoring these scenarios. Furthermore,
role switching would enable plausible variations in behaviors throughout a day,
but requires mechanisms to initiate the switching. While admittedly not com-
prehensive, role switching based on schedules, reactions, and needs, seems like a
good starting point.

This paper describes an agent-based simulation framework for creating vir-
tual populations endowed with various social-psychological factors including so-
cial roles. These roles help establish reasons for the existence of the virtual
humans and can be used to create a virtual population embodied with purpose.
Human decisions and the behaviors that result, stem from a complex interplay of
many factors. The aim of this work is not to try to replicate all of these factors.
We have focused on social roles because they are so heavily linked to meaning-
ful behaviors. From this starting point we have included other factors that are

2 Populations with Purpose

linked to role and that can add reasonable variability to behaviors while still
maintaining a framework where scenarios can be feasibly authored, modified,
and controlled.

In addition, our framework focuses on higher level control mechanisms as
opposed to lower level animation implementations. It also links roles and role
switching to different action types such as reactions, scheduled actions, and
need-based actions. As such the authoring of roles is largely just associating
a set of these actions with a role. The techniques and methodologies used are
adopted from a number of research disciplines including multi-agent systems,
social psychology, ontologies, and knowledge representations, as well as computer
animation.

2 Related Work

Crowd simulation research has been approached from several different perspec-
tives. Some research groups are addressing how to simulate large crowds mainly
through focusing on global path planning and local collision avoidance [18, 17,
19]. The behaviors in these simulations are for the most part limited to locomo-
tion maneuvers.

Work has also been done on adding contextual behavioral variations through
spatial patches [26, 11, 23]. The common theme in these works is defining re-
gions in the virtual world and associating these regions with certain behaviors
and interactions. The computer game, The Sims, might also be considered to
incorporate spatially dependent behavior [25]. For example, if an agent is hun-
gry and near a refrigerator, even if not being explicitly directed by the player,
he would eat. While these certainly add richness to the virtual world, they still
fall short of embodying consistent reasonable behaviors with purpose.

Most of the works described so far included few or no social psychology fac-
tors. There have, however, been some that do. The work of Pelechano et al.
included the concept of role and other psychological factors, but the roles were
limited to leaders and followers which along with the other factors influence
only the navigation behavior of agents [20]. In [16], Musse and Thalmann de-
scribe a crowd simulation framework that includes sociological factors such as
relationships, groups, and emotion, but again the behaviors are centered around
locomotion actions.

In [21] Shao and Terzopoulos describe a virtual train station. Here they clas-
sified their autonomous pedestrians into a few categories, including commuters,
tourists, performers, and officers. Each type of character is then linked to hand
coded action selection mechanisms. Similarly in [27] the authors introduce a de-
cision network which addresses agent social interaction based on probabilities
and graph theory, however action selection is still manually coded.

Some research groups have worked directly on incorporating roles into virtual
humans. Hayes-Roth and her collaborators were one of the first research groups
to develop virtual roles [8]. Their interactive intelligent agent was instilled with
the role of bartender and a set of actions were defined such that the user’s

Populations with Purpose 3

expectations would be met. There was, however, no switching of roles for this
character and the behaviors were only related to communication acts.

Most recently work by Stocker et al. introduced the concept of priming for a
virtual agent [22]. Here agents are primed for certain actions based on the other
agents and events around them. While they do not address roles specifically, this
concept of priming is somewhat similar to the role switching behaviors we will
describe in this paper.

3 Approach Overview

In this section, we provide an overview of our approach and describe the so-
cial psychological models on which it is founded, including a definition of roles,
factors affecting role switching, and action types.

3.1 Definition of Role

A role is the rights, obligations, and expected behavior patterns associated with
a particular social status [1]. Ellenson’s work [6] notes that each person plays a
number of roles. Taking into consideration these descriptions as well as discus-
sions from other social psychologists [13, 4], we conclude that roles are patterns
of behaviors for given situations or circumstances. Roles can demand certain
physical, intellectual, or knowledge prerequisites, and many roles are associated
with social relationships.

3.2 Role Switching

People’s priorities are set by a number of interplaying factors, including emotions,
mood, personality, culture, roles, status, needs, perceptions, goals, relationships,
gender, intelligence, and history, just to name a few. In this work, we have chosen
a few factors that are related to roles and role switching that we believe will help
endow virtual humans with meaningful, purposeful behaviors.

Switching from one role to another can be linked to time, location, relation-
ships, mental status, and needs (See Figure 1). For example, one can imagine
someone switching to a businessman role as the start of the work day approaches
or as he enters his office or when he encounters his boss. Also, someone may need
to shop for groceries to provide for his family. The shopping behavior would stem
from a need and cause a switch in role to shopper. Elements of mental status,
such as personality traits, can impact the selection and performance of these
roles. For example, a non-conscientious person might not shop for groceries even
if the need exists.

Action and role selection is further affected by a filtration of proposed actions
according to an agent’s Conventional Practice and World Knowledge [10, 4, 3].
Conventional Practice is a set of regulations and norms that each individual
in the society should obey. World Knowledge indicates that certain physical,
intellectual, and knowledge elements are required for specific roles.

4 Populations with Purpose

Fig. 1. System Diagram

Another perspective from which to consider selection is to examine what
triggers various behaviors. Some actions are planned for such as going to work or
attending a meeting. These actions, called Scheduled actions, tend to establish
a person’s daily routine and are often heavily coupled with their roles. Other
actions are not so predetermined. Some actions arise to fulfill needs. Among these
needs might be those depicted in Maslow’s Hierarchy of Needs, including, food,
water, excretion, friendship, family, employment, and creativity [12]. These type
of actions, called Need-based actions, can also be linked to roles. For example, in
order to maintain employment safety, a businessman might need to contact his
clients are on regular basis. Still other actions, Reactive actions, are responses
to agents, objects, or events in the world. Who and what we react to is at least
partially determined by our roles. If we see a friend or co-worker as we are
walking to work, we are likely to stop and greet them.

While we cannot claim that these three types of actions make a complete
categorization of all behaviors, we believe that they can encompass a wide range
of behaviors and provide strong ties to roles and purposeful behaviors. Another
key factor is the ability to easily author or initiate these behaviors. Each requires
a finite, straightforward amount of data:

Scheduled actions: Sch = 〈P,A,L, T 〉, where P is the performer (an indi-
vidual or group), A is the action to be performed (simple or complex), L is the
location where the action is to be performed (based on an object or a location),
and T is an indication of the time (i.e. start time and duration).

Reactive actions: Rea = 〈P, S,A〉, where P is the performer (an individual
or group), S is the stimulus (an object, type of object, person, location, event,
etc) and A is the action to be performed (simple or complex)

Need-based actions: Nee = 〈P,N,D,C〉, where P is the performer (an indi-
vidual or group), N is the name of the need, D is the decay rate, and C is a set
of tuples 〈A,O, F 〉, where A is the action to be performed (simple or complex),
O is a set of object types, and F is the fulfillment rate.

Populations with Purpose 5

4 Implementation

The work presented here extends work previously reported [2]. Previous work
included an implementation of different action types and very rudimentary roles,
but was limited to a single role per character which is not realistic for day scale
simulations.

To continue to ensure scenario authoring is feasible, we have extended our
data-driven approach where all of the vital scenario data is stored in a database.
This includes information about each agent such as conventional practices, men-
tal status, world knowledge, and role sets. We also store a mapping of the rela-
tionships between agents. Information about the world, objects in the world, and
actions are also stored in the database. This includes the specification of sched-
ules, needs, and reactions. As such, scenarios can be authored entirely through
the database and without any coding. In addition, our framework is built on an
existing crowd simulator that provides navigation and collision avoidance for the
agents [19].

We have extend the previous implementation including now a much richer
definition of role. The most important component of a role is a set of actions [13].
This action set corresponds to the conventional practices associated with the role.
These actions may be scheduled, need-based, or reactive actions as mentioned in
the previous section. Furthermore, these actions may also be linked to parameters
such as location, object participants, start-times, and durations. Interpersonal
roles are also associated with relationships, which are a simple named linking of
agents. Among agent parameters is a set of capabilities corresponding to actions
that they can perform. These capabilities form the foundation of an agent’s world
knowledge.

As described in the previous section, factors influencing role selection include,
time, location, relationships, mental status, and needs. In this section, we will
describe the implementation of each of these factors and how they have been
incorporated into the three action types. We will also discuss how actions and
roles are further filtered by conventional practice and an agent’s world knowledge
(See Figure 1).

4.1 Action Types

A large part of the definition of a role includes a pattern of behaviors. Our
framework associates each role with a set of actions. These actions can be of
any of the three types of actions described earlier, namely Scheduled, Reactive,
or Need-based.

Scheduled Actions Scheduled actions include time and location parameters [2]
and can be used to establish an agenda for a day. Some roles are directly as-
sociated with scheduled actions. For example, a businessman may be scheduled
to work in his office from 9am to 5pm. As 9am approaches, the framework will
initiate processing of the scheduled work in office action and send the character
to his office and the businessman role.

6 Populations with Purpose

However, if an agent does not have a scheduled action to perform, they will
perform a default action that is associated with their current role. Generally
default actions are the actions most often performed by that role. For example,
a businessman or administrator might work in an office. A shopkeeper might
attend to the cash register. Just as in real life, scheduled actions can be suspended
by higher priority need-based and reactive actions.

Need-based Actions Need-based actions are merely database entries associ-
ating a decay rate, actions, objects, and a fulfillment quotient. The examples
described in this paper are based on Maslow’s Hierarchy of Needs [12]. Concep-
tually, there is a reservoir that corresponds to each need for each agent. Currently
the initial level of each reservoir is set randomly at the beginning of the simu-
lation. At regular intervals, the reservoirs are decreased by the specified decay
rates. When the level of a reservoir hits a predetermined threshold, the fulfilling
action is added to the agent’s queue of actions. Its priority will increase as the
reservoir continue decreases eventually its priority will greater than all actions
on the queue. Then the agent will perform the action, raising the level of the
reservoir.

We have chosen to use Mental Status as an influence on needs (and reactions),
because social scientists have linked it to roles and we feel it adds plausible vari-
ability. It includes several factors, but we focus on personality as it addresses an
individual’s long-term behavior. There are several psychological models of per-
sonality. One of the most popular is the Five-Factor or OCEAN model [24]. The
five factors are: Openness (i.e. curious, alert, informed, perceptive), Conscien-
tiousness (i.e. persistent, orderly, predictable, dependable, prompt), Extroversion
(i.e. social adventurous, active, assertive, dominant, energetic), Agreeableness
(i.e. cooperative, tolerant, patient, kind), and Neuroticism (i.e. oversensitive,
fearful, unadventurous, dependent, submissive, unconfident).

We have based our implementation of personality on the work of Durupinar
et al. [5]. An agent’s personality π is a five-dimension vector, where each is rep-
resented by a personalty factor Ψi. The distribution of the personality factors
in a populations of individuals is modeled by a Gaussian distribution function
with mean µi and standard deviation σi:

π = 〈ΨO, ΨC , ΨE , ΨA, ΨN 〉
Ψ i = N(µi, σ

2
i), for i ∈ O,C,E,A,N

where µ ∈ [−10, 10], σ ∈ [−2, 2]

Since each factor is bipolar, Ψ can take both positive and negative values.
For instance, a positive for Extroversion, E+, means that the individual has
extroverted character; whereas a negative value means that the individual is
introverted. In Section 4.1, we will describe how personality dimensions affect
the decay rates of need reservoirs, creating reasonable variations in behaviors
from person to person.

Populations with Purpose 7

Needs and priorities differ from person to person. We represent this variation
by linking the personality traits just described with needs. This is, of course,
a massive oversimplification, but one that leads to plausible variations. Table
1 shows our mapping from Maslow needs to OCEAN personality dimensions.
It should be noted that just the personality dimension is represented, not the
valence of the dimension. For example, neuroticism is negatively correlated with
needs for security of employment and family. This mapping was formulated by
examining the adjectives associated with the personality dimensions and the
descriptions of the Maslow needs.

Reservoir Descriptions Personality Traits
problem solving, creativity,
lack of prejudice

O, A

achievement, respect for others O, A

friendship, family E
security of employment,
security of family

C, N

water, food, excretion
Table 1. Mapping between Maslow need reservoirs and personality dimensions.

In this work, we represent the decay rate as β. For example, βfriendship indi-
cates the decay rate of the friendship reservoir. For Maslow based needs, we also
apply a correlation coefficient r which ranges from (0,1] to represent the rela-
tionship between decay rate and personality traits. More precisely, rE,friendship

represents how strongly the Extroversion trait and friendship’s decay rate cor-
related. The closer r gets to 1 the faster reservoir empties (i.e. the decay rate is
high indicating the agents strong need for friendship). Since a need can be af-
fected by more than one personality trait, for those needs marked with multiple
personality traits we assign weights to each one: ωE,friendship meaning the im-
pact of Extroversion on friendship. If a need has more than one trait’s influence,
its summation of ω should be equal to one and for simplicity in this work we
assume each personality trait contributes the same weight.

Consequently, for ith agent the decay rates and their relationship with per-
sonality traits are shown below (here we list two examples):

security of employment (se):

βse
i = (ωC,se|rC,se × ΨC

i |+ ωN,se|rN,se × ΨN
i |)× 0.1

where ωC,se + ωN,se = 1, βse
i ∝ C, N and βse

i ∈ [0, 10]

friendship (fr):

βfr
i = (ωE,fr|rE,fr × ΨE

i |)× 0.1

where ωE,fr = 1, βfr
i ∝ E and βfr

i ∈ [0, 10]

8 Populations with Purpose

Reactive Actions As a simulation progresses, agents make their way through
the virtual world, attempting to adhere to their schedules and meet their needs.
In doing so, agents encounter many stimuli to which a reaction might be war-
ranted. Reactions play an important part in our implementation of roles. In [7],
Merton states that a person might switch roles as a response to those around
him. Relationships are a major impetus for reactive role switching. For exam-
ple, if two agents encounter each other and are linked by a relationship such as
friendship, they will switch to the friend role.

Since reactive actions must be performed soon after the stimulus is encoun-
tered, they are given a higher priority and generally result in the suspension of
whatever other action might be being performed, though this is not always the
case. For example, if an agent is fulfilling a high priority need, then they might
not react to the people and things around him.

The duration of responses can vary according to the activity and character-
istics of the agents. For example, an agent that is hurrying off to work or who
is introverted, may not linger as long on the street to greet a friend, as someone
strolling home from work or an extrovert would.

4.2 Action Filter

Once a set of actions and roles have been purposed, some may be eliminated
due to conventional practice constraints or an agent’s lack of necessary world
knowledge.

Conventional Practice Social science researchers believe that when an agent
plays a role in a given organizational (or social) setting, he must obey Con-
ventional Practices, meaning behavioral constraints and social conventions (e.g.
the businessman must obey the regulations that his company stipulates) [15,
14]. To be more specific, behavioral constraints are associated with the following
factors: responsibilities, rights, duties, prohibitions and possibilities [15]. Role
hierarchies include conventional roles (e.g. citizen, businessman, mailman) and
interpersonal roles (e.g. friends, lovers, enemies). Figure 2 shows part of the con-
ventional role hierarchy that we designed according to the taxonomy presented
in [9]. We have linked each conventional practice norm with an impact factor
(range [0, 1]) which reflects how strongly these norms are imposed on certain
roles. Having 1 as an impact factor would indicate that it is the most powerful
norm. For convenience, we have set all impact factors in our current simulations
to be high enough to indicate that every agent would obey not only the conven-
tional practice of current professions but also those inherited from upper levels of
the hierarchy. However, users could choose whatever impact factors they would
like according to the behaviors that they desire.

World Knowledge Some roles have physical or intellectual requirements and
these requirements may be difficult to obtain. Also some people are just naturally
more physically or intellectually gifted or have more talent in an area than

Populations with Purpose 9

Fig. 2. Role Hierarchy with Conventional Practice and Impact Factor

others. These factors can put limitations on what roles a person can take on [4].
We represent world knowledge as capabilities. Agent capabilities are the set of
actions that the agent can perform. Actions are categorized and placed in a
hierarchy to lessen the work of assigning capabilities to agents and also checking
to ensure that agents meet the capability conditions before performing an action.

5 Examples

To explore the effects of roles and more precisely role switching on virtual hu-
man behaviors, we have authored a typical day in a neighborhood. As with real
humans, each virtual human is assigned a set of roles. Figure 3 demonstrates
one agent taking on the role of businessman as he enters his office building (i.e.
location-based role switching). Two other agents react to seeing each other by
switching to friend roles (i.e. relationship-based role switching). Another agent
reacts to trash in the street by starting her cleaner role (i.e. behavior selection-
based role switching). These first examples of agents going to work demonstrate
how time, location, and behavior selection impact role switching. They focus
on role transitions caused by scheduled and reactive actions. The following of-
fice examples concentrate more on need-based actions. The top image of Figure

Fig. 3. Locations, relationships and behavior selection affect role switching.

10 Populations with Purpose

(a) (b)

Fig. 4. (a) The businessman’s creativity need prompts him to speak to a co-worker,
causing both to switch to collaborator roles and replenish their creativity reservoirs.
(b) The businessman’s role remains while eating to refill his hunger reservoir..

4a shows that the businessman’s creativity reservoir is approaching the critical
threshold (i.e. 2). When it reaches the threshold, he suspends his current action
and starts a conversation with his co-worker. This exchange of ideas causes the
creativity reservoirs of both men to refill.

Figure 4b shows that not all need-based actions cause role switching. The
hunger need is associated with the role of being human, because businessman
is a descendant of this role in the role hierarchy there is no need to switch.
The final scene depicts a late afternoon in our neighborhood. Figure 5a shows
a businesswoman becoming a parent when playing with her children. In Figure
5b, a man was headed home from work, but before he could reach his door, the
security of family need prompted him to switch his role and instead he go to the
grocery store.

(a) (b)

Fig. 5. (a) A businesswoman switches her role to parent when she spends time with her
children. (b) A businessman is heading home after work, when his security of family
need preempts this action and switches his role to shopper.

Populations with Purpose 11

6 Discussion

In this paper, we have presented a framework for instilling virtual humans with
roles and role switching to produce more typical virtual worlds where people’s
behaviors are purposeful. The methods presented are based on social psychology
models and focus on approaches that facilitate authoring and modifications. As
people’s complicated lives rarely allow them to embody just a single role during
the course of a day, role switching is important to creating reasonable virtual
human behaviors. The framework presented can also be used to include abnormal
behaviors. For example, one could author a subversive role for a character that
includes reacting to pedestrians by robbing them or includes a strong need for
drugs and alcohol.

There are numerous possible extensions to this work. First, we could illus-
trate the dynamics that stem from status hierarchies by experimenting with the
concepts of power scale and social distance. We might also address situations
where multiple roles could be adopted. For example, a man being approached
by both his boss and his child. Here, social power scales and social distance might
result in different social threats which would cause one role to be favored over
the other. Finally, we could focus on agents that learn role definitions by observ-
ing the behaviors of others, enabling each agent to have customized definitions
based on their own experiences.

Acknowledgments

Partial support for this effort is gratefully acknowledged from the U.S. Army
SUBTLE MURI W911NF-07-1-0216. We also appreciate donations from Au-
todesk.

References

1. Webster’s College Dictionary. Random House (1991)

2. Allbeck, J.M.: CAROSA: A tool for authoring NPCs. Motion in Games pp. 182–193
(2010)

3. Barker, R.G.: Ecological Psychology: Concepts and methods for studying the en-
vironment of human behavior. Stanford University Press (1968)

4. Biddle, B.J.: Role Theory: Concepts and Research. Krieger Pub Co (1979)

5. Durupinar, F., Pelechano, N., Allbeck, J.M., Gudukbay, U., Badler, N.I.: How
the OCEAN personality model affects the perception of crowds. IEEE Computer
Graphics and Applications 31(3), 22–31 (2011)

6. Ellenson, A.: Human Relations. Prentice Hall College Div; 2 edition (1982)

7. Fan, J., Barker, K., Porter, B., Clark, P.: Representing roles and purpose. In:
International Conference on Knowledge Capture (K-CAP). pp. 38–43. ACM (2001)

8. Hayes-Roth, B., Brownston, L., van Gent, R.: Readings in Agents, chap. Multi-
agent Collaboration in Directed Improvisation, pp. 141–147. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA (1998)

12 Populations with Purpose

9. Hewitt, J.P.: Self and society: A symbolic interactionist social psychology. Oxford,
England (1976)

10. Ickes, W., Knowles, E.: Personality, Roles, and Social Behavior. Springer; 1 edition
(1982)

11. Lee, K.H., Choi, M.G., Lee, J.: Motion patches: Building blocks for virtual environ-
ments annotated with motion data. In: Proceedings of the 2006 ACM SIGGRAPH
Conference. pp. 898–906. ACM, New York, NY, USA (2006)

12. Maslow, A.: A theory of human motivation. Psychological Review 50, 370–396
(1943)

13. McGinnies, E.: Perspectives on Social Behavior. Gardner Press, Inc. (1994)
14. Merton, R.K.: Social Theory and Social Structure. Free Press (1998)
15. Moulin, B.: The social dimension of interactions in multiagent systems. Agents

and Multi-agent Systems, Formalisms, Methodologies, and Applications 1441/1998
(1998)

16. Musse, S.R., Thalmann, D.: A model of human crowd behavior: Group inter-
relationship and collision detection analysis. In: Workshop Computer Animation
and Simulation of Eurographics. pp. 39–52 (1997)

17. Narain, R., Golas, A., Curtis, S., Lin, M.C.: Aggregate dynamics for dense crowd
simulation. In: Proceedings of the 2009 ACM SIGGRAPH Asia Conference. pp.
122:1–122:8. ACM, New York, NY, USA (2009)

18. Ondřej, J., Pettré, J., Olivier, A.H., Donikian, S.: A synthetic-vision based steering
approach for crowd simulation. In: Proceedings of the 2010 ACM SIGGRAPH 2010
Conference. pp. 123:1–123:9. ACM, New York, NY, USA (2010)

19. Pelechano, N., Allbeck, J.M., Badler, N.I.: Controlling individual agents
in high-density crowd simulation. In: Proceedings of the 2007 ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation. pp. 99–108. Euro-
graphics Association (2007)

20. Pelechano, N., O’Brien, K., Silverman, B., Badler, N.I.: Crowd simulation incorpo-
rating agent psychological models, roles and communication. In: First International
Workshop on Crowd Simulation. pp. 21–30 (2005)

21. Shao, W., Terzopoulos, D.: Autonomous pedestrians. In: Proceedings of the 2005
ACM SIGGRAPH/Eurographics Symposium on Computer Animation. pp. 19–28.
ACM, New York, NY, USA (2005)

22. Stocker, C., Sun, L., Huang, P., Qin, W., Allbeck, J., Badler, N.: Smart events and
primed agents. Intelligent Virtual Agents 6356, 15–27 (2010)

23. Sung, M., Gleicher, M., Chenney, S.: Scalable behaviors for crowd simulation. Com-
puter Graphics Forum 23(3), 519–528 (2004)

24. Wiggins, J.: The Five-Factor Model of Personality: Theoretical Perspectives. The
Guilford Press, New York (1996)

25. Wright, W.: The Sims (2000)
26. Yersin, B., Mäım, J., Pettré, J., Thalmann, D.: Crowd patches: Populating large-

scale virtual environments for real-time applications. In: Proceedings of the 2009
Symposium on Interactive 3D Graphics and Games. pp. 207–214. ACM, New York,
NY, USA (2009)

27. Yu, Q., Terzopoulos, D.: A decision network framework for the behav-
ioral animation of virtual humans. In: Proceedings of the 2007 ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation. pp. 119–128. Euro-
graphics Association (2007)

Copyright © 2013 by the Association for Computing Machinery, Inc.
Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for commercial advantage and that copies bear this notice and the full citation on the
first page. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on
servers, or to redistribute to lists, requires prior specific permission and/or a fee.
Request permissions from Permissions Dept, ACM Inc., fax +1 (212) 869-0481 or e-mail
permissions@acm.org.
I3D 2013, Orlando, FL, March 21 – 23, 2013.
© 2013 ACM 978-1-4503-1956-0/13/0003 $15.00

ADAPT: The Agent Development and Prototyping Testbed

Alexander Shoulson∗ Nathan Marshak† Mubbasir Kapadia‡ Norman I. Badler§

University of Pennsylvania, Philadelphia, PA, USA

Figure 1: Demonstrating the capabilities of ADAPT. Visualizing multiple choreographers that blend to produce a pose for the display model;
an agent reacting to the impact force of a ball; a crowd of 100 agents resolving a bottleneck; three characters engaged in a conversation.

Abstract

We present ADAPT, a flexible platform for designing and author-
ing functional, purposeful human characters in a rich virtual envi-
ronment. Our framework incorporates character animation, nav-
igation, and behavior with modular interchangeable components
to produce narrative scenes. Our animation system provides lo-
comotion, reaching, gaze tracking, gesturing, sitting, and reactions
to external physical forces, and can easily be extended with more
functionality due to a decoupled, modular structure. Additionally,
our navigation component allows characters to maneuver through
a complex environment with predictive steering for dynamic obsta-
cle avoidance. Finally, our behavior framework allows a user to
fully leverage a character’s animation and navigation capabilities
when authoring both individual decision-making and complex in-
teractions between actors using a centralized, event-driven model.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation

Keywords: Virtual Humans, Character Animation, Behavior Au-
thoring, Crowd Simulation

1 Introduction

Animating interacting virtual humans in real-time is a complex un-
dertaking, requiring the solution to numerous tightly coupled prob-

∗e-mail:ashoulson@gmail.com
†e-mail:nmarshak@seas.upenn.edu
‡e-mail:mubbasir.kapadia@gmail.com
§e-mail:badler@seas.upenn.edu

lems such as steering, path-finding, full-body character animation
(e.g. locomotion, gaze tracking, and reaching), and behavior au-
thoring. This complexity is greatly amplified as we increase the
number and degree of sophistication of characters in the environ-
ment. Numerous solutions for character animation, navigation, and
behavior design exist, but these solutions are often tailored to spe-
cific applications, making integration between systems arduous. In-
tegrating multiple character control architectures requires a deep
understanding of each controller’s design so that they may commu-
nicate with one another; otherwise character controllers will con-
flict at overlapping parts of the body and produce visual artifacts by
naı̈vely overwriting one another. Directly modifying arbitrary char-
acter controllers to cooperate with one another and respond to exter-
nal behavior commands can be costly and time-consuming. Mono-
lithic, feature-rich character animation systems do not commonly
support modular access to only a subset of their capabilities, while
simpler systems lack control fidelity. Realistically, no sub-task of
character control has a “perfect” solution. An ideal character ani-
mation system would allow a designer to choose between preferable
techniques for producing a particular action or animation, lever-
aging the wealth of established systems already produced by the
character animation research community and interfacing with ro-
bust frameworks for behavior and navigation.

We present a modular system that allows for the seamless integra-
tion of multiple character animation controllers on the same model,
without requiring any controller to drastically change or accom-
modate any other. Rather than requiring a tightly-coupled set of
character controllers, ADAPT uses a system for blending arbitrary
poses in a user-authorable dataflow pipeline. Our system couples
these animation controllers with an interface for path-finding and
steering, as well as a comprehensive behavior authoring structure
for authoring both individual decision-making and complex inter-
actions between groups of characters. Our platform generalizes to
allow the addition of new character controllers and behavior rou-
tines with minimal integration effort. Since controllers do not need
to be fundamentally redesigned to work with one another, we avoid
the combinatorial effect of having to modify each pre-existing con-
troller to adjust for the change. Our system for character control
contributes to our core goal of providing a platform for experi-
mentation in character animation, navigation, and behavior author-
ing. We allow researchers to rapidly iterate on character controller
designs with visual feedback, compare their results with other es-

9

tablished systems on the same model, and use features from other
packages to provide the functionality they lack without the need to
deeply integrate or reinvent known techniques.

2 Related Work

There exists a wealth of research [Pelechano et al. 2008] in virtual
human simulation that separately addresses the problems of char-
acter animation, steering and path-finding, and behavior authoring.

Character Animation. Data-driven approaches [Kovar et al. 2002]
use motion-capture data to animate a virtual character. Motion
data can be manipulated by warping [Witkin and Popovic 1995]
or blending [Menardais et al. 2004] to enforce parametric con-
straints on a recorded action. Interactive control of virtual char-
acters can be achieved by searching through motion clip samples
for desired motion as an unsupervised process [Lee et al. 2002], or
by extracting descriptive parameters from motion data [Johansen
2009]. Procedural methods are used to solve specific tasks such as
reaching, and can leverage empirical data [Liu and Badler 2003],
example motions [Feng et al. 2012b], or hierarchical inverse kine-
matics [Baerlocher and Boulic 2004] for more natural movement.
Physically-based approaches [Faloutsos 2002; Yin et al. 2007] de-
rive controllers to simulate character movement in a dynamic en-
vironment. We refer to Pettré et. al. [2008] for a more extensive
summary of work in these areas.

Steering and Path-finding. For navigation, the environment itself
is often described and annotated as a reduction of the displayed
geometry to be used in path planning. Probabilistic roadmaps su-
perimpose a stochastic connectivity structure between nodes placed
in the maneuverable space [Kavraki et al. 1996]. Navigation
meshes [Kallmann 2010] provide a triangulated surface upon which
agents can freely maneuver. Steering techniques use reactive be-
haviors [Reynolds 1999] or social force models [Helbing and Mol-
nar 1995] to perform goal-directed collision avoidance in dynamic
environments. Predictive approaches [Paris et al. 2007; van den
Berg et al. 2008; Kapadia et al. 2009; Singh et al. 2011a] enable
an agent to avoid others by anticipating their movements. Re-
cast [Mononen 2009] provides an open-source solution to gener-
ating navigation meshes from arbitrary world geometry by voxeliz-
ing the space, and the associated Detour library provides path plan-
ning and predictive steering on the produced mesh. Pelechano et.
al. [2008] provide a detailed review of additional work in this field.

Behavior Authoring. Animating behaviors in virtual agents has
been addressed using multiple diverse approaches, particularly with
respect to how behaviors are designed and animated. Early work
focuses on imbuing characters with distinct, recognizable person-
alities using goals and priorities [Loyall 1997] along with scripted
actions [Perlin and Goldberg 1996]. Our system makes use of pa-
rameterized behavior trees [Shoulson et al. 2011] to coordinate in-
teractions between multiple characters. The problem of managing a
character’s behavior can be represented with decision networks [Yu
and Terzopoulos 2007], cognitive models [Fleischman and Roy
2007], and goal-oriented action planning [Young and Laird 2005;
Kapadia et al. 2011]. Very simple agents can also be simulated on
a massive scale using GPU processing [Erra et al. 2010].

Multi-Solution Platforms. End-to-end commercial solu-
tions [Massive Software Inc. 2010; Autodesk, Inc. 2012] combine
multiple diverse character control modules to accomplish simul-
taneous tasks on the same character, incorporting navigation, be-
havior, and/or robust character animation. SteerSuite [Singh et al.
2009] is an open-source platform for developing and evaluating
steering algorithms. SmartBody [Shapiro 2011] is an open-source
system that combines steering, locomotion, gaze tracking, and

reaching. These tasks are accomplished with 15 controllers work-
ing in unison to share control of parts of the body. SmartBody’s
controllers are hierarchically managed [Kallmann and Marsella
2005] where multiple animations, such as gestures, are displayed on
a virtual character using a scheduler that divides actions into phases
and blends those phases by interpolation. The controllers must ei-
ther directly communicate and coordinate, or fix cases where their
controlled regions of the body overlap and overwrite one another,
making the addition of a new controller a process that affects sev-
eral other software components. SmartBody also provides a naviga-
tion system with dynamic obstacle avoidance. Our platform shares
some qualities with SmartBody, but also differs in several funda-
mental ways. While we do provide a number of character con-
trollers for animating a virtual human, our work focuses more on
enabling high-level behavioral control of multiple interacting char-
acters, the modularity of these character controllers, and the ease
with which a user can introduce a new animation repertoire to the
system without disturbing the other controllers already in place.

3 Framework

������� ��	
����
���

��������

���������
���
	�����

�

���������	
��

��
�� �������
��

��
�����
���	

�������

�
���

��������

�������	
�
��
���������

���
���
����
�

Figure 2: Overview of ADAPT, illustrating the structure for con-
trolling an individual character and all of the characters in an envi-
ronment. Every character has a core interface for behavior, naviga-
tion, and animation, each of which connects to more specific mod-
ular components. Top-level narrative control communicates with
each character through the behavior interface.

ADAPT operates at multiple layers with interchangeable,
lightweight components, and we focus on minimizing the amount
of communication and interdependency between modules (Fig-
ure 2). The animation system performs control tasks such as loco-
motion, gaze tracking, and reaching as independent modules, called
choreographers, that can share parts of the same character’s body
without explicitly communicating or negotiating with one another.
These modules are managed by a coordinator, which acts as a cen-

10

tral point of contact for manipulating the virtual character’s pose in
real-time. The navigation system performs path-finding with pre-
dictive steering and we provide a common interface to allow users
to interchange the underlying navigation library without affecting
the functionality of the rest of the framework. The behavior level
is split into two tiers. Individual behaviors are attached to each
character and manipulate that character using the behavior inter-
face, while a centralized control structure orchestrates the behavior
of multiple interacting characters in real-time. The ultimate product
of our system is a pose for each character at an appropriate position
in the environment, produced by the animation coordinator and ap-
plied to a rendered virtual character in the scene each frame.

3.1 Full-Body Character Control

Controlling a fully-articulated character is traditionally accom-
plished using a series of interwoven subcomponents responsible
for various parts of the body. Without prior knowledge of other
systems, a designer creating a character controller will generally
do so with the assumption that no other systems are acting on the
rigged model at the same time. If a controller sets the orientation
or position of a character’s joint, it does so expecting no other con-
troller to overwrite that orientation or position in the current frame.
If two controllers conflict and overwrite one another, the constant
changes cause visual artifacts such as jitter as the character rapidly
shifts between the two settings for its joints. Controllers can be
made to share control of a single body either by negotiating with
one another, or by dividing the body into sections and controlling
those sections alone. However, this requires that the controllers be
specifically designed to coordinate, which requires additional effort
on either the designer or the user of the control system. The addi-
tion of new functionality also becomes more difficult as all of the
previous body controllers must be modified to communicate with
any new components and share control of the body’s joints.

To address this issue, we divide the problem of character anima-
tion into a series of isolated, modular components called choreog-
raphers attached to each character. Each choreographer operates
on a shadow, which is an invisible clone of the character skele-
ton, and has unmitigated control to manipulate the skeletal joints of
its shadow. Each frame, a choreographer produces an output pose
consisting of a snapshot of the position and orientation of each of
the joints in its private shadow. A coordinator receives the shadow
poses from each choreographer and performs a weighted blend to
produce a final pose that is applied to the display model for that
frame. Since each choreographer has its own model to manipulate
without interruption, choreographers do not need to communicate
with one another in order to share control of the body or prevent
overwriting one another. This allows a single structure, the coordi-
nator, to manage the indirect interactions between choreographers
using a simple, straightforward, and highly authorable process cen-
tered around blending the shadows produced by each choreogra-
pher. This system is discussed in more detail in Section 4.

3.2 Steering and Path-finding

We use a navigation mesh approach for steering and path-finding
with dynamic obstacle avoidance. Each display model is controlled
by a point-mass system, which sets the root positions (usually the
hips) of the display model and each shadow every frame. We use a
common interface for navigation with basic commands such as set-
ting a goal position in the world. Character choreographers do not
directly communicate with the navigation layer. Instead, choreogra-
phers are made aware of the position and velocity of the character’s
root, and will react to that movement on a frame-by-frame basis.
A character’s orientation can follow several different rules, such as

facing forward while walking, or facing in an arbitrary direction,
and we handle this functionality outside of the navigation system
itself. ADAPT supports both the Unity3D built-in navigation sys-
tem and the Recast/Detour library [Mononen 2009] for path-finding
and predictive goal-directed collision avoidance, and users can eas-
ily experiment with alternate solutions, such as navigation graphs.

3.3 Behavior

ADAPT is designed to accommodate varying degrees of behavior
control for its virtual characters by providing a diverse set of chore-
ographers and navigation capabilities. Each character has a capa-
bility interface with commands like ReachFor(), GoTo(), and
GazeAt() that take straightforward parameters like positions in
space and send messages to that character’s navigation and anima-
tion components. To invoke these capabilities, we use Parameter-
ized Behavior Trees (PBTs) [Shoulson et al. 2011], which present a
method for authoring character behaviors that emphasizes simplic-
ity without sacrificing expressiveness. Having a single, flat inter-
face for a character’s action repertoire simplifies the task of behav-
ior authoring, with well-described and defined tasks that a charac-
ter can perform. One advantage of the PBT formalism is that they
accommodate authoring behavior for multiple actors in one central-
ized structure. For example, a conversation between two characters
can be designed in a single data structure that dispatches commands
to both characters to take turns playing sounds or gestural anima-
tions. For very specific coordination of characters, this approach
can be preferable over traditional behavior models where characters
are authored in isolation and interactions between characters are de-
signed in terms of stimuli and responses to triggers. ADAPT also
generalizes across traditional or experimental new ways of model-
ing behavior to cover cases where PBTs are not the most appro-
priate. The behavior system is discussed in more detail in section
5.

4 Shadows in Full-Body Character Animation

Model rendering systems describe a virtual human as a skinned
mesh with a hierarchical skeletal structure underneath. The move-
ment of the body is determined by altering the position and ori-
entation of each joint in the skeleton “rig”, which in turn affects
the position and orientation of that joint’s children in the hierarchy.
General character controllers are systems designed to manipulate
the character by setting the positions and orientations of that char-
acter’s joints, either via animations or procedurally with physical
models or inverse kinematics. We address the problem of coordi-
nation between these controllers by allocating each character con-
troller its own private character model, a replica of the skeleton or a
subset of the skeleton of the character being controlled. Our modu-
lar controllers, called choreographers, act exactly the same way as
traditional character controllers, but do so on private copies of the
actual rendered character model. These skeleton clones (shadows),
match the skeletal hierarchy, bone lengths, and initial orientations
of the final rendered character (display model), but have no visual
component in the scene. This is illustrated and described in fig-
ure 3. The general process of our character animation system has
two interleaving steps. First, each choreographer manipulates its
personal shadow and outputs a snapshot (called a shadow pose) de-
scribing the position and orientation of that shadow’s joints at that
time step. Then, we use a centralized controller to blend the shadow
pose snapshots into a final pose for the rendered character. For clar-
ity, note that “shadow” refers to the invisible articulated skeleton
allocated to each choreographer to manipulate, while a “shadow
pose” is a serialized snapshot containing the joint positions and ori-
entations for a shadow at a particular point in time.

11

������� ���	
��
��	�������

���������	
��
����������

����������
��

�����������
���
��

Figure 3: Blending multiple character shadows to produce a fi-
nal output skeleton pose. As an example, we combine the pose of
the locomotion choreographer (green, full-body) during a walk cy-
cle with the reaching choreographer (red, upper-body) extending
the left arm towards a point above the character’s head, and the
gesture choreographer (blue, upper-body) playing a waving anima-
tion. The generated poses are projected, either wholly or partially,
on different sections of the displayed body during any particular
frame. The partial blend is represented with a mix of colors in the
RGB space.

4.1 Choreographers

The shadow pose of a character at time t is given by Pt ∈ R
4×|J|.

where P
j
t where is the configuration of the jth joint at time t. A

choreographer is a function C(Pt) −→ Pt+1 which produces the
next pose by changing the configuration of the shadow joints for
that time step. Using these definitions, we define two classes of
choreographers:

Generators. Generating choreographers produce their own
shadow pose each frame, requiring no external pose data to do so.
Each frame, the input shadow pose Pt for a generator C is the pose
Pt−1 generated by that same choreographer in the previous frame.
For example, a sitting choreographer requires no external input or
data from other choreographers in order to play the animations for
a character sitting and standing, and so its shadow’s pose is left
untouched between frames. This is the default configuration for a
choreographer.

Transformers. Transforming choreographers expect an input
shadow pose, to which they apply an offset each frame. Each
frame, the input shadow pose Pt to a transformer C is an external
shadow pose P′

t+1 from another choreographer C′, computed for
that frame. The coordinator sets its shadow’s pose to P′

t+1 and ap-
plies an offset to the given pose during its execution, to produces a
new pose Pt+1. For example, before executing, the reach choreog-
rapher’s shadow is set to the pose of a previously-updated choreog-
rapher’s shadow (say, the locomotion choreographer with swinging
arms and torso movement). The reach choreographer then solves
the reach position from the base of the arm based on the torso posi-
tion it was given, and overwrites its shadow’s arm and wrist joints to
produce a new pose. Without an input shadow, the reach choreogra-
pher would not be aware of other choreographers moving the torso,
and would not be able to accommodate different torso positions
when solving a reaching problem. Note that this is accomplished

without the choreographers directly communicating or even being
fully aware of one another. A transforming choreographer can re-
ceive an input pose, or blend of input poses, from any choreogra-
pher that has already been updated in the current frame.

4.2 The Coordinator

During runtime, our system produces a pose for the display model
each frame, given the character choreographers available. This is
a task overseen by the coordinator. The coordinator is responsi-
ble for maintaining each choreographer, organizing the sequence
in which each choreographer performs its computation each frame,
and reconciling the shadow poses that each choreographer produces
by sending them between choreographers and/or blending them to-
gether. The coordinator’s final product each frame is a sequence of
weighted blends of each active choreographer’s shadow pose. We
compute this product using the pose dataflow graph, which dictates
the order of updates and the flow of shadow poses between chore-
ographers. Generators pass data to transformers, which can then
pass their data to other transformers, until a final shadow pose is
produced, blended with others, and applied to the display model.

Blending is accomplished at certain points in the pose dataflow
graph denoted by blend nodes, which take two or more input shad-
ows and produce a weighted blend of their transforms. If the
weights sum to a value greater than 1, they are automatically nor-
malized.

B({(Pi, wi) : i = 1..n)}) −→ P
′

(1)

Designing a dataflow graph is a straightforward process of dictating
which nodes pass their output to which other nodes in the pipeline,
and the graph can be modified with minimal effort. The dataflow
graph for a character is specified by the user during the design and
authoring process, connecting choreographers with blend nodes and
one another. The weights involved in blending are bound to edges
in the graph and then controlled at runtime by commands from the
behavior system. The order of the pose dataflow graph roughly dic-
tates the priority of choreographers over one another. Choreogra-
phers closer to the final output node in the graph have the authority
to overwrite poses produced earlier in the graph, unless bypassed by
the blending system. Changing the order of nodes in the dataflow
graph will affect these priorites, and so we generally design the
graph so that choreographers controlling more parts of the body
precede those controlling fewer.

Blended poses are calculated on a per-joint basis using each joint’s
position vector and orientation quaternion. The weighted average
we produce accommodates cases where parts of a shadow’s skele-
ton have been pruned or filtered from the blend (such as an upper-
body shadow missing the character’s legs). The blend function pro-
duces a new shadow pose that can be passed to other transform-
ers, or be applied to the display model’s skeleton. Taking a linear
weighted average of vectors is a solved problem, but such is not the
case with the problem of quickly averaging n > 2 weighted quater-
nions. We discuss the techniques with which we experimented, and
the final calculation method we decided to use in Appendix A. In
addition, Feng et. al. [2012a] provide a detailed review of more so-
phisticated motion blending techniques than our linear approach.

Figure 4 illustrates a sample dataflow graph, incorporating generat-
ing and transmuting choreographers, as well as four blend nodes.
Three generating choreographers (blue) begin the pipeline. The
gesture choreographer affects only the upper body, with no skeleton
information for the lower body. Increasing the value of the gesture
weight wg places this choreographer in control of the torso, head,
and arms. The sitting and locomotion choreographers can affect
the entire body, and the user controls them by raising and lowering

12

��������	
���

������

�
�
�
��
�

�������

������������� ��������

��

����� 1���

��

1���

��

�1�������

�������

1���

��

Figure 4: A sample dataflow graph we designed for evaluating ADAPT. Generating choreographers appear in blue, transmuting choreogra-
phers appear in green, and blend nodes appear as red crosses. The final display model node is highlighted in orange. The sitting weight ws,
gesture weight wg , gaze weight wz , reach weight wr , and physical reaction weight wp are all values between some very small positive ǫ and
1 − ǫ.

the sitting weight ws. If wg is set to 1 − ǫ, the upper body will
be overridden by the gesture choreographer, but since the gesture
choreographer’s shadow has no legs, the lower body will still be
controlled by either the sitting or locomotion choreographer as de-
termined by the value of ws. The first red blend node combines
the three produced poses and sends the weighted average pose to
the gaze tracker. The gaze tracking choreographer receives an input
shadow pose, and applies an offset to the upper body to achieve a
desired gaze target and produce a new shadow pose. The second
blend node can bypass the gaze tracker if the gaze weight wz is set
to a low value (ǫ). The reach and physical reaction choreographers
receive input and can be bypassed in a similar way. The final re-
sult is sent and applied to joints of the display model, and rendered
on screen. The dataflow graph accommodates the addition of new
choreographers in a generalizable fashion, allowing a user to insert
new nodes and blend between the poses they create. Rather than
designing animation modules to explicitly negotiate, the coordina-
tor seamlessly fades control of parts of the body between arbitrary
choreographers in an authorable pipeline.

4.3 Using Choreographers and the Coordinator

The dataflow graph, once designed, does not need to be changed
during runtime or to accommodate additional characters. Instead,
the coordinator provides a simple interface comprising messages
and exposed blend weights for character animation. Messages are
commands (e.g., SitDown()) relayed by the coordinator to its
choreographers, making the coordinator a single point of contact
for character control, as illustrated in Figure 2. In addition to mes-
sages, the weights used for blending the choreographers at each
blend node in the dataflow graph are exposed, allowing external
systems to dictate which choreographer is active and in control of
the body (or a segment of the body) at a given point of time. For ex-
ample, in Figure 4, lowering ws will transfer control of the body to
the locomotion choreographer, while raising its value will give in-
fluence to the sitting choreographer. Both choreographers are still
manipulating their shadows each update, but only one choreogra-
pher’s shadow pose is displayed on the body at a given time, with
smooth fading transitions between the two where necessary.

For gesturing, we raise wg , which takes control of the arms and
torso away from both the locomotion and sitting choreographers
and stops the walking animation’s arm swing. Given sole control,
the gesture choreographer plays an animation on the upper body,
and then is faded back out to allow the walking arm-swing to re-
sume. Since the gesture choreographer’s shadow skeleton has no
leg bones, it never overrides the sitting or locomotion choreogra-
pher, so the lower body will still be sitting or walking while the
upper body gesture plays. All weight changes are smoothed over
several frames to prevent jitter and transition artifacts. Note that

the controllers are never in direct communication to negotiate this
exchange of body control. The division of roles between the co-
ordinator and choreographers centralizes character control to a sin-
gle externally-facing character interface, while leaving the details
of character animation distributed across modular components are
isolated from one another and can be easily updated or replaced.

Shadow Pose Post-Processing. Since shadow poses are serializa-
tions of a character’s joints, additional nodes can be added to the
pose dataflow graph to manipulate shadows as they are transferred
between choreographer nodes or blend nodes. For instance, special
filter nodes can be added to constrain the body position of a shadow
pose, preventing joints from reaching beyond a comfortable range
by clamping angles, or preventing self-collisions by using bound-
ing volumes. Nodes can be designed to broadcast messages based
on a shadow’s pose, such as notifying the behavior system when a
shadow is in an unbalanced position, or has extended its reach to
a certain distance. The interface for adding new kinds of nodes to
a pose dataflow graph is highly extensible. This affords the user
another opportunity to quickly add functionality to a coordinator
without directly modifying any choreographers.

4.4 Example Choreographers

ADAPT provides a diverse array of character choreographers for
animating a fully articulated, expressive virtual character. Some
of these choreographers were developed specifically for ADAPT,
while others were off-the-shelf solutions used to highlight the ease
of integration with the shadow framework. ADAPT is designed to
“trick” a well-behaved character control system into operating on a
dedicated shadow model rather than the display model of the char-
acter, and so the process of modifying an off-the-shelf character
control library to a character choreographer often requires modify-
ing only a few lines of code. Since shadows replicate the structure
and functionality of a regular character model, no additional con-
siderations are required once the choreographer has been retargeted
to the shadow. Note that the choreographers presented here are
largely baseline examples. The focus of ADAPT is to allow a user
to add additional choreographers, experiment with new techniques,
and easily exchange generic choreographers with more specialized
alternatives.

Locomotion. ADAPT uses a semi-procedural motion-blending lo-
comotion system for walking and running released as a C# library
with the Unity3D engine [Johansen 2009]. The system takes in an-
imation data, analyzes those animations, and procedurally blends
them according to the velocity and orientation of the virtual char-
acter. We produced satisfactory results on our test model using five
motion capture animation clips. Additionally, the user can anno-
tate the character model to indicate the character’s legs and feet,

13

which allows the locomotion library to use inverse kinematics for
foot placement on uneven surfaces. We extended this library to
work with the ADAPT shadow system, with some minor improve-
ments.

Gaze Tracking. We use a simple IK-based system for attention
control. The user defines a subset of the upper body joint hierarchy
which is controlled by the gaze tracker, and can additionally spec-
ify joint rotation constraints and delayed reaction speeds for more
realistic results. These parameters can be defined as functions of
the characters velocity or pose, to produce more varied results. For
instance, a running character may not be permitted to rotate its torso
as far as a character standing still. Integrating the gaze tracker into
ADAPT required minimal changes to the existing library.

Upper Body Gesture Animations. We dedicate a shadow with
just the upper body skeleton to playing animations such as hand
gestures. We can play motion clips on various parts of the body to
blend animations with other procedural components.

Sitting and Standing. The sitting choreographer maintains a sim-
ple state machine for whether the character is sitting and standing,
and plays the appropriate transition animations when it receives a
command to change state. This choreographer acts as an alterna-
tive to the locomotion choreographer when operating on the lower
body, but can be smoothly overridden by choreographers acting on
the upper body, such as the gaze tracker.

Reaching. We implemented a simple reaching control system
based on Cyclic Coordinate Descent (CCD). We extended the algo-
rithm to dampen the maximum angular velocity per frame, include
rotational constraints on the joints, and apply relaxation forces in
the iteration step. During each iteration of CCD (100 per frame),
we clamp the rotation angles to lie within the maximum extension
range, and gently push the joints back towards a desired “comfort-
able” angle for the character’s physiology. These limitations and
relaxation forces are based on an empirical model for reach con-
trol based on human muscle strength [Slonneger et al. 2011]. This
produces more realistic reach poses than naı̈ve CCD, and requires
no input data animations. The character can reach for an arbitrary
point in space, or will try to do so if the point is out of range.

Physical Reaction. By allocating an upper-body choreographer
with a simple ragdoll, we can display physical reactions to external
forces. Once an impact is detected, we apply the character’s last
pose to the shadow skeleton, and then release the ragdoll and allow
it to buckle in response to the applied force. By quickly fading in
and out of the reeling ragdoll, we can display a physically plausible
response and create the illusion of recovery without requiring any
springs or actuators on the ragdoll’s joints.

SmartBody Integration. To access its locomotion and procedural
reaching capabilities, we integrated the ICT SmartBody framework
into our platform, using SmartBody’s Unity interface and some
modifications. Since our model’s skeleton hierarchy differed from
that of the default SmartBody characters, sample animations had
to be retargeted to use on our model. Additionally, our animation
interface needed to interact with SmartBody using BML. Since our
coordinator is already designed to relay messages from the behavior
system, changing those messages to a BML format was a straight-
forward conversion. Overall, the SmartBody choreographer blends
naturally with other choreographers we have in the ADAPT frame-
work, though SmartBody has other features that we do not currently
exploit. This process demonstrates the efficacy of integrating other
available libraries and/or commercial solutions.

5 Behavior

The navigation and shadow-based character animation system pro-
vides a number of capability functions, including:

Commands Description

ReachFor(target) Activates the reaching choreogra-
pher, and reaches towards a posi-
tion.

GazeAt(target) Activates the gaze choreographer,
and gazes at a position.

GoTo(target) Begins navigating the character to a
position.

Gesture(name) Activates the gesture choreographer
for the duration of an animation.

SitDown() Activates the sitting choreographer
and sits the character down.

StandUp() Stands the character up and then
disables the sitting choreographer.

Passing an empty target position will end that task, stopping the
gaze, reach, or navigation. The locomotion choreographer will au-
tomatically react to the character’s velocity, and move the legs and
arms to compensate if the character should be turning, walking,
side-stepping, backpedaling, or running. Note that only sitting and
navigating are mutually exclusive. All other commands can be per-
formed simultaneously without visual artifacts.

5.1 Adding a New Behavior Capability

Adding a new behavior capability with a motion component, such
as climbing or throwing an object, requires a choreographer capa-
ble of producing that motion. Choreographers can be designed to
perform animation tasks based on animation data, procedural tech-
niques, or physically-driven models. Since choreographers operate
on their own private copies of the character’s skeleton, they can
be designed in isolation and integrated into the system separately.
Once the choreographer is developed, the process of adding a new
behavior capability to take advantage of the choreographer requires
two steps. First, the choreographer must be authored into the pose
dataflow graph, either as a generating or transforming node, with
appropriate connections to blend nodes and other choreographers.
Next, the behavior interface can be extended with new functions
that either modify the blend weights relevant to the new choreog-
rapher, or pass messages to that choreographer by relaying them
through the coordinator. The sophistication of character choreogra-
phers varies, but the process of integrating a functioning choreog-
rapher into the behavior and animation pipeline for a character is
authorable and generalizable.

5.2 Multi-Character Interactions

Using this behavior repertoire, we can produce more sophisticated
actions as characters interact with one another and the environment.
Authoring complex behaviors requires an expressive and flexible
behavior authoring structure granting the behavior designer reason-
able control over the characters in the environment. To accomplish
this task, we use parameterized behavior trees (PBTs). PBTs are an
extension of the behavior tree formalism that allow behavior trees to
manage and transmit data within their hierarchical structure with-
out the use of a blackboard. A useful advantage of PBTs is the
fact that they can simultaneously control multiple characters in a
single reusable structure called an event. Events are pre-authored
behavior trees that sit uninitialized in a library until invoked at run-
time. When instantiated, an event takes one or more actors as pa-
rameters, and is temporarily granted exclusive control over those

14

characters’ actions. While in control, an event treats these charac-
ters as limbs of the same entity, dispatching commands for agents
to navigate towards and interact with one another. Once the event
ends, control is yielded to the characters’ own individual decision
processes, which can also be designed using PBTs or with some
other technique. Events are a convenient formalism to use for in-
teractions with a high degree of interchange and turn-taking, such
as conversations. A conversation event can be authored as a sim-
ple sequential and/or stochastic sequence of commands directing
agents to face one another and take turns playing gesture animations
or exchanging physical objects. ADAPT provides a fully-featured
scheduler for managing and updating both the personal behavior
trees belonging to each character and higher-level event behavior
trees encompassing multiple characters.

GoTo(MeetingPoint)

GoTo(MeetingPoint)

a2

a1

������

Gesture(“G1”)

a1

Gesture(“G2”)

a1

������

Gesture(“G1”)

a2

Gesture(“G2”)

a2

����

������	�
��
��

GazeAt(a1)

GazeAt(a2)

a1

����	���
����

Conversation(a1 : Actor, a2 : Actor, MeetingPoint : Position)

a2

Figure 5: A simple conversation PBT event controlling two charac-
ters, a1 and a1, with one additional MeetingPoint parameter.

Figure 5 illustrates a sample behavior tree event conducting two
characters through a conversation using our action repertoire. The
characters, a1 and a2, are passed as parameters to the tree, along
with the meeting position. Using our action interface, the tree di-
rects the two characters to approach one another at the specified
point, face each other, and alternatively play randomly selected ges-
ture animations. The gesturing phase lasts for an arbitrary duration
determined by the configuration of the loop node in the tree. After
the loop node terminates, the event ends, reporting success, and the
two characters return to their autonomous behaviors. Note that this
tree can be reused at any time for any two characters and any two
locations in the environment in which to stand. This framework
can be exploited to create highly sophisticated interactions involv-
ing crowds of agents, and its graphical, hierarchical nature makes
subtrees easier to describe and encapsulate.

6 Results

We demonstrate the features of ADAPT in isolation, as well as a
final scene showcasing animation, navigation, and behavior work-
ing together to produce a narrative sequence (Figure 1). Using
our system, we can create a character that can simultaneously
reach, gaze, walk, and play gesture animations, as well as activate
other functionality like sitting and physically reacting to external
forces. ADAPT characters can intelligently maneuver an environ-
ment avoiding both static obstacles and one another. These features
are used for authoring sequences like exchanging an object between
actors, wandering while talking on a phone, and multiple characters
holding a conversation.

Multi-Actor Simulation. The concluding narrative sequence
shown in the video is simulated using several reusable authored
events, which are activated using spatial and temporal triggers.
Events once active, can be successfully executed or interrupted by
other triggers due to dynamic events, or user input. This produces a
rich interactive simulation where virtual characters can be directed
with a high degree of fidelity, without sacrificing autonomy or bur-
dening the user with authoring complexity.

In the beginning, an event ensues where a character is given a phone
and converses while wandering through the scene, gazing at objects
of interest. The phone conversation event successfully completes
and the character hands back the phone. Spotting nearby friends
invokes a conversation, which is an extension of the event illustrated
in Figure 5. The conversation is interrupted when a ball is thrown at
one of the characters. The culprit flees from the scene of the crime,
triggering a chasing event where the group runs after the child. The
chase fails as the child is able to escape through a crossing crowd of
characters, which are participating in a group event to navigate to
the theater and find a free chair to sit. We illustrate some of the trees
used for this sequence in greater detail in a supplemental document.

Figure 6: Controlling a character in ADAPT and physically inter-
acting with the environment using the Kinect.

Adding a Kinect Choreographer. As an example of our system’s
extensibility, we created an additional choreographer to interface
with the Microsoft Kinect and control a character with gesture in-
put. To do so, we allocated a full-body choreographer to the in-
put of the Kinect, applying the captured skeleton from the Kinect’s
framework directly to the joints of the dedicated shadow. This is
demonstrated in Figure 6. Blending this choreographer with others
allowed us to expand the character’s agency in the world. When
the character stands idle, we give full upper and lower body control
to the Kinect input. When the user wishes to make the character
move, we blend the legs of the locomotion choreographer on top of
the Kinect input, displaying appropriate walking or running anima-
tions and foot placement while still giving the Kinect control of the
upper body. This is a feasible compromise for allowing a user to
retain correct leg animation when exploring a virtual environment
larger than the Kinect’s capture area. The process of interfacing
the Kinect skeleton input with a new choreographer and a blending
coordinator was very fast and straightforward.

Performance. ADAPT supports approximately 150 agents with
full fidelity at interactive frame rates. Figure 7 displays the update
frequency for the animation and navigation system (for our scenes,
the computational cost of behavior was negligible). This varies with
the complexity of the choreographers active on each character. The
ADAPT animation interface and the pose dataflow graph has little
impact on performance, and the blend operation is linear in num-

15

�

��

��

��

���

���

���

����

����

��	�

��	�

� � �� �� �� ��� ��� ���

�
�
�
�
��
��
	�

�
�
�

�
��
�
��

��������	�
���
�

����������

	��
�����

��
�
�����

Figure 7: Update frequency for the character animation and navi-
gation components in ADAPT.

ber of choreographers. Each joint in a shadow is serialized with 7
4-byte float values, making each shadow 28 bytes per joint. For
26 bones, the shadow of a full-body character choreographer has a
memory footprint of 728 bytes. For 200 characters, the maximum
memory overhead due to shadows is less than 1 MB. In practice,
however, most choreographers use reduced skeletons with only a
limb or just the upper body, making the actual footprint much lower
for an average character.

Separating character animation into discrete modules and blending
their produced poses as a post-processing effect also affords the
system unique advantages with respect to dynamic level-of-detail
(LOD) control. Since no choreographer is architecturally depen-
dent on any other, controllers can be activated and deactivated arbi-
trarily. Deactivated controllers can be smoothly faded out of control
at any time, and their nodes in the dataflow graph can be bypassed
using the already-available blend weights. This drastically reduces
the number of computed poses, and conserves processing resources
needed for background characters that do not require a full reper-
toire of actions. The system retains the ability to re-activate those
choreographers at any time if a specific complex action is suddenly
required. Since choreographers are not tightly coupled, no chore-
ographer needs to be made aware of the fact that any other chore-
ographer has been disabled for LOD purposes.

7 Conclusions

ADAPT is a modular, flexible platform which provides a compre-
hensive feature set for animation, navigation, and behavior tools
needed for end-to-end simulation development. By allowing a user
to independently incorporate a new animation choreographer or
steering system, and make those components immediately accessi-
ble to the behavior level without modifying other existing systems,
characters can very easily be expanded with new capabilities and
functionality. We are releasing ADAPT as an open-source project
not only to provide animation, steering, and behavior package to
community, but to provide a platform that is designed to allow users
to tailor the system to fit their own personal needs, to rapidly iterate
on experimental designs, and to compare their results against other
established techniques. The library, assets, and documentation are
available at http://cg.cis.upenn.edu/ADAPT

7.1 Limitations and Complications

The ADAPT platform has some surmountable issues that arise from
blending poses as a post-process. Solutions to these complications
either already exist in the system or could be introduced with future
work.

Cross-Choreographer State Awareness. At times, choreogra-
phers may need to be aware of major state changes in the character’s
pose caused by another choreographer. For example, we may wish
to restrict the degree to which the character can rotate its torso for
gaze tracking while the character is running. We accomplish this
using the message broadcast system integrated into the coordinator.
When a character reaches a certain speed, the locomotion choreog-
rapher can broadcast to all other choreographers that the character
is in an IsRunning state. The gaze tracking choreographer can
receive this message and restrict its maximum torso rotation ac-
cordingly. This allows choreographers to cooperate without being
explicitly aware of one another, and is a more extensible paradigm
than deep integration of controllers.

Foot-Placement Artifacts. Interpolation between arbitrary poses
generally produces smooth results in our system, with the excep-
tion of blends that linearly translate the position of a character’s
feet. This situation arises with our sitting choreographer, where
the placement of a character’s feet while standing may not coincide
with the foot placement in the transition animation between stand-
ing and sitting. A linear blend here results in an unrealistic slid-
ing of the foot despite ground contact. This issue could be easily
solved with a slightly more robust locomotion system that allowed
arbitrary foot placement, so that we could use a special case to ad-
just the feet to step to the proper position before blending from the
locomotion to the sitting choreographer. Since each choreographer
is aware of which parts of the body it uses, and how it wants to pose
each joint, this solution could be generalized for transitioning be-
tween any choreographers that use the lower body of the character.

7.2 Future Work

Moving forward, we will continue to expand the animation and au-
thoring capabilities supported by ADAPT. For example, the design
of the pose dataflow graph is one possible avenue for improve-
ment. Currently, a designer manually organizes the choreographer
and blend nodes in the structure of the coordinator. While this is a
conceptually simple task because the dataflow graph is so easy to
visualize, we have yet to develop a scripting or graphical interface
to make the process more accessible to a completely untrained user.
More importantly, however, we believe the process of authoring a
dataflow graph can be completely automated based on which parts
of the body each choreographer uses.

Another main development effort is the production of more capa-
ble choreographers for use in the ADAPT framework. We would
like to develop or incorporate a better locomotion system with the
ability to control an autonomous character with footstep-level pre-
cision [Singh et al. 2011b]. One major advantage in this effort is
the ability to directly integrate other developed systems into the
ADAPT framework and seamlessly blend them with the rest of our
choreographers, as we have done with the SmartBody package. In
addition to choreographers described here, we want our platform
to provide an array of options for different kinds of motor skills,
including jumping, climbing, and carrying objects with weight.

Finally, we are also interested in improving the virtual environment
and developing extensible ways for characters to interact with the
environment on a behavioral level. To ease the authoring burden,
we are currently creating an interface similar to smart objects for
annotating the environment and describing the ways that characters

16

can interact with it. We are particularly interested in extending the
ADAPT platform to develop solutions for the automated schedul-
ing of events to follow global narrative arcs. All of these improve-
ments will allow us to apply our platform to other areas research,
as ADAPT is uniquely suited for producing the next generation of
narrative-driven simulations.

Acknowledgments

We acknowledge Dr. Ari Shapiro and Dr. Ben Sunshine-Hill for
their discussions and contributions to the ADAPT project. The re-
search reported in this document was performed in connection with
Contract Numbers W911NF-07-1-0216 and W911NF-10-2-0016
with the U.S. Army Research Laboratory. The views and conclu-
sions contained in this document are those of the authors and should
not be interpreted as presenting the official policies or position, ei-
ther expressed or implied, of the U.S. Army Research Laboratory,
or the U.S. Government unless so designated by other authorized
documents. Citation of manufacturers or trade names does not con-
stitute an official endorsement or approval of the use thereof. The
U.S. Government is authorized to reproduce and distribute reprints
for Government purposes notwithstanding any copyright notation
heron.

Appendix A: On Quaternion Blending

While vectors can be easily averaged using addition and scalar
multiplication in R

3, interpolating between quaternions is not as
simple due to the spherical surface of the unit-quaternion space.
For our coordinator to be able to blend shadow poses between
choreographers, we require a fast method for blending the quater-
nions describing the rotations of the character’s joints in the unit-
quaternion manifold. Our ultimate goal is to develop a function
Blend((q1, w1), (q2, w2), . . . , (qn, wn)) = q taking n weighted
unit quaternions and producing an average quaternion q. To create
this function, we experimented with a number of different tech-
niques, and felt it valuable to document our efforts here.

Slerp. Spherical linear interpolation (Slerp) [Shoemake 1985] is a
constant-time operation for interpolating between two unit quater-
nions q1 and q2, using an interpolation weight w. Slerp is defined
equivalently as follows:

Slerp(q1, q2; w) = q1(q
−1

1 q2)
w

(2)

= q2(q
−1

2 q1)
1−w

(3)

= (q1q
−1

2)1−w
q2 (4)

= (q2q
−1

1)w
q1 (5)

Slerp has the ideal properties of being a closed form solution, and
generally taking the shortest path between two quaternions. Be-
cause of this, we considered using a chain of Slerp operations.
For instance, with three quaternions q1, q2, and q3 and two blend
weights w0, w2, we could perform:

BlendSLERP (q1, q2, q3; , w1, w2)

= Slerp(Slerp(q1, q2; w1), q3; w2)
(6)

Ultimately, we abandoned the idea primarily because operation
would not be commutative in all cases, which could create unex-
pected and confusing results in the authoring process, especially as
the number of input quaternions grew.

Angular Velocities. Another alternative is to treat each of the char-
acter’s joint as a ball-and-socket joint with three rotational degrees

of freedom. This allows to compute the angular velocities applies
to each joint between frames, and to average those velocities when
blending between each choreographer’s produced motions. This
had two problems. First, the process did not properly handle blend-
ing into static poses from dynamic ones. Second, this essentially
converted each joint quaternion into a set of Euler angles, which
suffer from the problem of gimbal lock.

Iterative Solutions. Multiple iterative solutions exist for con-
strained interpolation. Pennec [1998], Johnson [2003], and Buss et.
al. [2001] all describe iterative techniques for finding the weighted
average of quaternions on the spherical surface. While these pro-
vide accurate results and generally blend over the shortest distance,
we looked for a solution with a closed form.

Because our blending is spread out over numerous frames, our
quaternion blending function is usually only interpolating between
very short distances. As a result, we experienced success with a
naı̈ve algorithm.

Data: Unit quaternions q1, . . . , qn

Data: Normalized weights w1, . . . , wn

Result: An average quaternion q
q = [0, 0, 0, 0];
for i = 1 → n do

if i > 1 and q1 · qi < 0 then
// negate every element of the quaternion;

qi = [−q0
i ,−q1

i ,−q2
i ,−q3

i];
end
for j = 0 → 3 do

qj+ = q
j
i ∗ wi

end

end
return Normalize(q)
Algorithm 1: The computation of Blend((q1, w1), . . . , (qn, wn))

So long as the blend distances are short, we can naively treat the
quaternion space as R

4, and take a weighted average of each ele-
ment of the quaternion. This will work provided the quaternion is
normalized after the calculation. To ensure that we generally take
the shortest distance between angles, we pick an arbitrary quater-
nion qp and calculate the dot product of that quaternion with each
other quaternion qi6=p. If the dot product is negative, we negate each
term in qi. Note that we negate each term rather than inverting the
quaternion. This, again, is a quick approximation for blending over
short distances. In practice, this quick method produces good vi-
sual results, and is computationally cheaper than multiple slerps or
an iterative solution. For blends across more significant distances,
we could opt for a more complicated solution, but so far have seen
no need to do so.

References

AUTODESK, INC., 2012. Autodesk gameware - artificial intelli-
gence middleware for games.

BAERLOCHER, P., AND BOULIC, R. 2004. An inverse kinemat-
ics architecture enforcing an arbitrary number of strict priority
levels. Vis. Comput. 20, 6 (Aug.), 402–417.

BUSS, S. R., AND FILLMORE, J. P. 2001. Spherical averages and
applications to spherical splines and interpolation. ACM Trans.
Graph. 20, 2 (Apr.), 95–126.

ERRA, U., FROLA, B., AND SCARANO, V. 2010. Behavert: a gpu-
based library for autonomous characters. In Motion in Games,
MIG’10, 194–205.

17

FALOUTSOS, P. 2002. Composable Controllers for Physics-Based
Character Animation. PhD thesis, University of Toronto.

FENG, A. W., HUANG, Y., KALLMANN, M., AND SHAPIRO, A.
2012. An analysis of motion blending techniques. In The Fifth
International Conference on Motion in Games.

FENG, A. W., XU, Y., AND SHAPIRO, A. 2012. An example-
based motion synthesis technique for locomotion and object ma-
nipulation. I3D, 95–102.

FLEISCHMAN, M., AND ROY, D. 2007. Representing intentions
in a cognitive model of language acquisition: Effects of phrase
structure on situated verb learning. In AAAI ’07, AAAI, 7–12.

HELBING, D., AND MOLNAR, P. 1995. Social force model for
pedestrian dynamics. PHYSICAL REVIEW E 51, 42–82.

JOHANSEN, R. S. 2009. Automated Semi-Procedural Animation
for Character Locomotion. Master’s thesis, Aarhus University.

JOHNSON, M. P. 2003. Exploiting Quaternions to Support Expres-
sive Interactive Character Motion. PhD thesis, Massachusetts
Institute of Technology.

KALLMANN, M., AND MARSELLA, S. 2005. Lncs ’05. ch. Hi-
erarchical motion controllers for real-time autonomous virtual
humans, 253–265.

KALLMANN, M. 2010. Shortest paths with arbitrary clearance
from navigation meshes. In Proceedings of the Eurographics /
SIGGRAPH Symposium on Computer Animation (SCA).

KAPADIA, M., SINGH, S., HEWLETT, W., AND FALOUTSOS, P.
2009. Egocentric affordance fields in pedestrian steering. In
Proceedings of the 2009 symposium on Interactive 3D graphics
and games, ACM, New York, NY, USA, I3D ’09, 215–223.

KAPADIA, M., SINGH, S., REINMAN, G., AND FALOUTSOS, P.
2011. A behavior-authoring framework for multiactor simula-
tions. Computer Graphics and Applications, IEEE 31, 6 (nov.-
dec.), 45 –55.

KAVRAKI, L., SVESTKA, P., LATOMBE, J.-C., AND OVERMARS,
M. 1996. Probabilistic roadmaps for path planning in high-
dimensional configuration spaces. Robotics and Automation,
IEEE 12, 4 (aug), 566 –580.

KOVAR, L., GLEICHER, M., AND PIGHIN, F. 2002. Motion
graphs. SIGGRAPH, 473–482.

LEE, J., CHAI, J., REITSMA, P. S. A., HODGINS, J. K., AND

POLLARD, N. S. 2002. Interactive control of avatars animated
with human motion data. ACM TOG 21, 3, 491–500.

LIU, Y., AND BADLER, N. I. 2003. Real-time reach planning for
animated characters using hardware acceleration. CASA, 86–93.

LOYALL, A. B. 1997. Believable Agents: Building Interactive
Personalities. PhD thesis, Carnegie Mellon University.

MASSIVE SOFTWARE INC., 2010. Massive: Simulating life.
www.massivesofware.com.

MENARDAIS, S., MULTON, F., KULPA, R., AND ARNALDI, B.
2004. Motion blending for real-time animation while accounting
for the environment. CGI, 156–159.

MONONEN, M., 2009. Recast/Detour navigation library.

PARIS, S., PETTR, J., AND DONIKIAN, S. 2007. Pedestrian re-
active navigation for crowd simulation: a predictive approach.
Computer Graphics Forum 26, 3, 665–674.

PELECHANO, N., ALLBECK, J. M., AND BADLER, N. I. 2008.
Virtual Crowds: Methods, Simulation, and Control. Synthesis
Lectures on Computer Graphics and Animation.

PENNEC, X. 1998. Computing the Mean of Geometric Features
Application to the Mean Rotation. Tech. Rep. RR-3371, INRIA,
Mar.

PERLIN, K., AND GOLDBERG, A. 1996. Improv: a system for
scripting interactive actors in virtual worlds. SIGGRAPH, 205–
216.

PETTRÉ, J., KALLMANN, M., AND LIN, M. C. 2008. Mo-
tion planning and autonomy for virtual humans. In ACM SIG-
GRAPH 2008 classes, ACM, New York, NY, USA, SIGGRAPH
’08, 42:1–42:31.

REYNOLDS, C., 1999. Steering behaviors for autonomous charac-
ters.

SHAPIRO, A. 2011. Building a character animation system. MIG,
98–109.

SHOEMAKE, K. 1985. Animating rotation with quaternion curves.
SIGGRAPH Comput. Graph. 19, 3 (July), 245–254.

SHOULSON, A., GARCIA, F., JONES, M., MEAD, R., AND

BADLER, N. I. 2011. Parameterizing Behavior Trees. In
Proceedings of the 4th International Conference on Motion in
Games (MIG ’11), Springer, 144–155.

SINGH, S., KAPADIA, M., FALOUTSOS, P., AND REINMAN, G.
2009. An open framework for developing, evaluating, and shar-
ing steering algorithms. In Proceedings of the 2nd International
Workshop on Motion in Games, Springer-Verlag, Berlin, Heidel-
berg, MIG ’09, 158–169.

SINGH, S., KAPADIA, M., HEWLETT, B., REINMAN, G., AND

FALOUTSOS, P. 2011. A modular framework for adaptive
agent-based steering. In Symposium on Interactive 3D Graph-
ics and Games, ACM, New York, NY, USA, I3D ’11, 141–150
PAGE@9.

SINGH, S., KAPADIA, M., REINMAN, G., AND FALOUTSOS, P.
2011. Footstep navigation for dynamic crowds. Computer Ani-
mation and Virtual Worlds 22, 2-3, 151–158.

SLONNEGER, D., CROOP, M., CYTRYN, J., JR., J. T. K., RAB-
BITZ, R., HALPERN, E., AND BADLER, N. I. 2011. Human
model reaching, grasping, looking and sitting using smart ob-
jects international symposium on digital human modeling. Proc.
International Ergonomic Association Digital Human Modeling.

VAN DEN BERG, J., LIN, M. C., AND MANOCHA, D. 2008. Re-
ciprocal velocity obstacles for real-time multi-agent navigation.
In ICRA, IEEE, 1928–1935.

WITKIN, A., AND POPOVIC, Z. 1995. Motion warping. SIG-
GRAPH, 105–108.

YIN, K., LOKEN, K., AND VAN DE PANNE, M. 2007. Simbicon:
simple biped locomotion control. ACM TOG 26, 3.

YOUNG, R. M., AND LAIRD, J. E., Eds. 2005. Proceedings of the
First Artificial Intelligence and Interactive Digital Entertainment
Conference, June 1-5, 2005, Marina del Rey, California, USA,
AAAI Press.

YU, Q., AND TERZOPOULOS, D. 2007. A decision network frame-
work for the behavioral animation of virtual humans. SCA, 119–
128.

18

DOI: 10.1111/j.1467-8659.2011.02065.x COMPUTER GRAPHICS forum
Volume 0 (2011), number 0 pp. 1–13

A Flexible Approach for Output-Sensitive Rendering of
Animated Characters

A. Beacco1, B. Spanlang2, C. Andujar1 and N. Pelechano1

1MOVING Research Group, Universitat Politècnica de Catalunya, Spain
{abeacco, andujar, npelechano}@lsi.upc.edu

2Dept. de Personalitat, Avaluació i Tractament Psicològic, Universitat de Barcelona, Spain
bspanlang@ub.edu

Abstract
Rendering detailed animated characters is a major limiting factor in crowd simulation. In this paper we present
a new representation for 3D animated characters which supports output-sensitive rendering. Our approach is
flexible in the sense that it does not require us to pre-define the animation sequences beforehand, nor to pre-
compute a dense set of pre-rendered views for each animation frame. Each character is encoded through a small
collection of textured boxes storing colour and depth values. At runtime, each box is animated according to the
rigid transformation of its associated bone and a fragment shader is used to recover the original geometry using a
dual-depth version of relief mapping. Unlike competing output-sensitive approaches, our compact representation
is able to recover high-frequency surface details and reproduces view-motion parallax effectively. Our approach
drastically reduces both the number of primitives being drawn and the number of bones influencing each primitive,
at the expense of a very slight per-fragment overhead. We show that, beyond a certain distance threshold, our
compact representation is much faster to render than traditional level-of-detail triangle meshes. Our user study
demonstrates that replacing polygonal geometry by our impostors produces negligible visual artefacts.

Keywords: crowd rendering, relief mapping, level-of-detail, animated characters

ACM CCS: I.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism—Colour, shading, shadowing,
and texture.

1. Introduction

Real-time crowd rendering is a key ingredient in many appli-
cations, from urban planning and emergency simulation, to
video games and entertainment. Crowd simulations typically
require hundreds or thousands of agents, each one with its
own individual behaviour. Real-time rendering of detailed
animated characters in such simulations is still a challenging
problem in computer graphics.

Detailed characters are often represented as textured
polygonal meshes which provide a high-quality represen-
tation at the expense of a high rendering cost. The animation
of polygonal meshes is usually achieved through skeletal ani-
mation techniques: a set of geometric transformations are ap-
plied to the character’s skeleton, and a weighted association
between the mesh vertices and the skeleton bones (skinning)

defines how these transformations modify the mesh geome-
try. Polygonal meshes are suitable for simulations involving
a relatively small number of agents, but not for large-scale
crowd simulations, as the rendering cost of each animated
character is roughly proportional to the complexity of its
polygonal representation.

A number of techniques have been proposed to acceler-
ate rendering of animated characters. Besides view-frustum
and occlusion culling techniques, related work has focused
mainly on providing level-of-detail (LOD) representations so
that agents located far away from the viewpoint are rendered
in a more efficient way with little or no impact on the visual
quality of the resulting images. A typical approach is to store,
for each animated character, a small subset of independent
polygonal meshes, each one representing the character at a

c© 2011 The Authors
Computer Graphics Forum c© 2011 The Eurographics
Association and Blackwell Publishing Ltd. Published by
Blackwell Publishing, 9600 Garsington Road, Oxford OX4
2DQ, UK and 350 Main Street, Malden, MA 02148, USA. 1

2 A. Beacco et al. / Output-Sensitive Rendering of Animated Characters

different level of detail. Unfortunately, most surface simpli-
fication methods are devoted to simplifying static geometry
and do not work well with dynamic articulated meshes. As
a consequence, the simplified versions of each character are
often created manually. Moreover, these simplified represen-
tations either retain a large number of vertices, or suffer from
a substantial loss of detail, which is particularly noticeable
along character silhouettes.

Image-based pre-computed impostors [DHOO05, TC00,
TLC02] provide a substantial speed improvements by ren-
dering distant characters as a textured polygon, but suffer
from two major limitations: all animations cycles have to be
known in advance (and thus animation blending is not sup-
ported), and resulting textures are huge (as each character
must be rendered for each discrete animation frame and view
angle); otherwise characters appear pixelized.

Using separate impostors for different body parts pro-
vides a much more memory-efficient approach. Polypostors
[KDC∗08] subdivide each animated character into a collec-
tion of pieces, each one represented using two-dimensional
(2D) polygonal impostors. Unfortunately, the representation
is view-dependent, the animation sequence still has to be
known at construction time, and character decomposition is
done manually.

Relief mapping has been proven to be a powerful tool
to encode detailed geometry and appearance information.
Most importantly, since relief maps support efficient random-
access, impostors based on relief mapping are output sensi-
tive, i.e. their rendering cost is roughly proportional to the
area of their screen projection. This feature makes relief im-
postors especially suitable for accelerating the rendering of
scenes involving a huge number of objects.

In this paper we present a new representation for ani-
mated characters (Figure 1) which uses relief impostors to
represent the different body parts of the character delim-
ited by the bones of the skeleton. Each character is encoded
through a collection of OBBs, where each box represents
the geometry influenced by a particular bone. Textures are
projected orthogonally onto the six faces of each box. For
each face we store two textures encoding colour, normal
and depth values. During animation the bounding boxes
are transformed rigidly by a vertex shader according to the
transformation of the associated bone in the animated skele-
ton. A fragment shader efficiently recovers the details of the
avatar’s skin and clothing using an adapted version of relief
mapping.

Unlike competing output-sensitive approaches, our com-
pact representation has no pre-processing requirements (con-
struction can be performed at load time) and does not require
us to pre-define the animation sequences or to select a sub-
set of discrete views. Our performance experiments show a
significant improvement with respect to geometry rendering.
We have also conducted user perception tests validating our

technique for rendering agents at middle and far distances
from the observer.

2. Related Work

2.1. Crowd rendering acceleration

Rendering a large number of highly realistic animated char-
acters can become a major bottleneck if we render the full
geometry of all characters with animation and skinning. To
achieve highly realistic populated scenes in real time several
techniques have been developed. A well-known solution to
this problem involves applying LOD for the characters de-
pending on their distance to the camera [PPB∗97]. Ciechom-
ski et al. [CSMT05] avoid computing the deformation of a
character’s mesh by storing pre-computed deformed meshes
for each key-frame of animation, and then carefully sorting
these meshes to take cache coherency into account.

Impostors have been suggested to avoid rendering the 3D
geometry during simulation time. Aubel et al. [ABT98] de-
scribed dynamic impostors, where a multi-resolution virtual
human was constructed to be rendered off-screen, from a
view-angle and with its animated position, into a buffered
texture. The texture was then mapped into a 3D polygon
oriented towards the camera. This texture is only refreshed
when necessary. Pre-generated impostors were first used by
Tecchia et al. [TC00] by rendering each character from sev-
eral viewpoints and for every animation frame of a simple
animation cycle. The images were stored in a single texture
atlas, and each crowd agent was rendered as a single poly-
gon with suitable texture coordinates according to the view
angle and frame. Pre-generated impostors with improved
shading have also been used [TLC02]. Impostors can render
crowds consisting of tens of thousands of agents, but require
a large amount of memory, and at close distances they appear
pixelated.

Dobbyn et al. [DHOO05] introduced the first hybrid sys-
tem that presented impostors on top of a full, geometry-
based human animation system, and switch between the two
representations with minimal popping artefacts. Coic et al.
[CLM07] described a similar hybrid system but with three
LODs, by introducing a volumetric layered based impostor
between flat impostor and geometry to help achieve continu-
ity during transitions.

In order to reduce the memory requirements of impostors,
while keeping a high level rendering efficiency, 2D polygonal
impostors have been used [KDC∗08], where an impostor is
used per body part and viewing direction. When the character
is animated, dynamic programming shifts the vertices of the
2D polygon to approximate the actual rendered image as
closely as possible.

Pettre et al. [PCM∗06] described a three-LOD approach,
combining the animation quality of dynamic meshes with the

c© 2011 The Authors
Computer Graphics Forum c© 2011 The Eurographics Association and Blackwell Publishing Ltd.

A. Beacco et al. / Output-Sensitive Rendering of Animated Characters 3

Figure 1: Overview of our approach: A bounding box is created for each articulated part of an animated character (a), colour
(b), normal (c) and depth information is projected onto the box faces, which are rendered through relief mapping (d). Image (e)
shows a crowd with about 5000 agents, all of them rendered with our relief impostors.

high performance offered by static meshes and impostors. A
GPU acceleration crowd rendering is presented in [MR06],
alternating the use of a single impostor per agent with pseudo-
instancing of polygonal meshes.

2.2. Relief mapping

Among image-based techniques, relief mapping [POC05]
has proven to be useful for recovering high-frequency ge-
ometric and appearance details. Relief maps store surface
details in the form of a heightfield. Typically the RGB chan-
nels encode a normal or a colour map, while the alpha channel
stores quantized depth values. The programmability of mod-
ern GPUs allows us to recover the original geometry by a
simple ray-heightfield intersection algorithm executed in the
fragment shader [POC05]. Acceleration techniques for com-
puting the ray-heightfield intersection include, among others,
linear search plus binary search refinement [POC05], varying
sampling rates [Tat06], pre-computed distance maps [BD06],
cone maps [PO07] and quadtree relief-mapping [SG06].

Other recent techniques adopt a relief mapping approach to
encode details in arbitrary 3D models with minimal support-
ing geometry [BD06, ABB∗07]. Unfortunately, these output-
sensitive approaches are limited to static geometry.

Only a few works attempt to animate geometry encoded
as relief impostors. In [PON08] the animator is requested
to create an animation by manually defining and moving a
few control points in texture space. Radial basis functions
are used to warp the original image by texture coordinate
modification. The above method suffers from two major lim-
itations: control points defining the animation are just moved
in 2D, providing only image-warp animation, and it does not
support standard skeletal animation.

3. Our Approach

3.1. Overview

We aim at increasing the number of simulated agents in
real-time crowd simulations by reducing the rendering cost

of individual agents. This involves using a simple represen-
tation for animated characters supporting output-sensitive
rendering, so that rendering times are roughly proportional
to the number of rendered fragments, instead of depending
on the complexity of the underlying surface. Therefore only
characters that are very close to the observer are rendered
as polygonal meshes, while the rest of the agents are ren-
dered using our new relief impostor method. We assume the
input character conforms to the de facto standard in char-
acter animation and thus consists of a textured polygonal
mesh (skin), a hierarchical set of bones (skeleton) and vertex
weights. We assume that both the skin and the skeleton have
been designed in a reference pose. The nodes of the skele-
ton represent joints and the edges represent the bones. Since
each bone can be easily identified by its origin, we can use
the term joint interchangeably. The transformations affecting
joints in the hierarchy are assumed to be rigid. The vertex
weights describe the amount of influence of each joint on
each vertex.

Since we want to keep pre-processing and memory costs
at a minimum while still supporting real-time mixing of ani-
mation sequences, we use a separate relief impostor for each
animated part of the articulated character. Our representation
for distant characters consists of a collection of OBBs, one
for each bone in the skeleton, along with a collection of tex-
tures projected into the OBB faces, encoding colour, normal
and depth values (Figure 1). The OBB will be transformed
in the same way as the bones of the skeleton, giving the
impression that our impostor character is animated.

Our approach differs from previous work in several as-
pects. First, we do not attempt to animate a single relief
impostor representing a whole character [PON08], but to
provide relief impostors representing an already animated
character. Second, we require much less memory than com-
peting image-based approaches which require pre-rendering
the character for every possible animation frame for a large
set of view angles. Third, compared to previous image-
based techniques, the cost of adding new characters is dras-
tically lower as new animations can be added at no cost at
all. Furthermore, our technique allows blending animations
and also running animations at arbitrary speeds (including

c© 2011 The Authors
Computer Graphics Forum c© 2011 The Eurographics Association and Blackwell Publishing Ltd.

4 A. Beacco et al. / Output-Sensitive Rendering of Animated Characters

slow-motion) since we are not limited to a discrete set
of animation frames Finally, our method provides a de-
tailed rendering for any character, viewpoint and animation
sequence.

Our implementation relies on the Halca animation library
[Spa09, GS10] to draw the animated characters from which
we create our impostors. Halca is a hardware-accelerated
library for character animation which is based on the Cal3D
XML file format [cal] to describe skeleton weighted meshes,
animations and materials. Our current implementation works
with any animated avatar and any animation that can be
exported to the Cal3D format.

3.2. Construction

The construction of our relief impostors from a given 3D
character proceeds through the following steps, described in
detail below:

1. Associate mesh triangles with impostors.

2. Select a suitable pose for capturing the impostors.

3. Compute the bounding boxes with the chosen pose.

4. Capture the textures of each bounding box.

Step 1. We start by assigning mesh triangles with im-
postors, where each impostor corresponds to a joint of the
articulated character. We assume that each input vertex vi is
attached to joints J1, . . . Jn with weights w = (w1, . . . wn).
Now the problem is, given a triangle with vertices v1, v2,
v3, to decide which impostors the triangle will be attached
to. This determines which triangles will be captured by the
impostor. Since we want to keep pre-processing tasks at a
minimum, we only tested simple, automatic solutions.

One extreme option is to allocate mesh triangles to joints,
attaching each triangle to a single joint. More specifically,
each triangle is attached to the joint having the largest influ-
ence over the triangle (the influence of a joint over a triangle
is computed as the sum of the joint weights over the triangle’s
vertices). It turns out that this partition tends to produce visi-
ble gaps in the joint boundaries during animation; the higher
the deviation with respect to the reference pose, the larger
the resulting gaps.

The opposite approach would consist of attaching each
triangle to a bone if at least one of its vertices is influenced by
the bone, regardless of the corresponding weight. Therefore
some triangles (those around joints) would be attached to a
variable number of impostors, resulting in overlapping parts
among joints. These overlapping parts produce protruding
geometry when the character is rendered in a pose other than
the capture pose.

Therefore we propose an optimized strategy where tri-
angles are assigned to joints based on a given user-defined

threshold ε. In this approach a triangle is attached to a joint
if any of its vertices has a weight above ε. This approach
assigns triangles to one or more joints, except for triangles
where none of the weights are above the threshold. In this
particular case we fall back to the first approach, i.e. the trian-
gle is assigned to the joint with the highest influence. On the
one hand high values for ε result in less protruding artefacts,
but on the other hand low values for ε result in less cracks.
Experimentally, we found that a threshold ε = 0.5 worked
well on all our test characters, minimizing both cracks and
protruding artefacts (Figure 5).

Notice that all the strategies above only use vertex weights
and thus are pose-independent.

Step 2. The second step is to choose a suitable pose for
capturing the impostors. Triangles are captured according to
the chosen pose, i.e. after mesh vertices have been blended
according to the pose (using linear blend skinning). This
choice of pose affects the captured geometry. Ideally, we
should select a pose representing a somewhat average pose
of the animation sequence.

For example, if the animation sequence shows a character
walking with the arms in a rest position, it is better to capture
the triangles around the shoulder with the arms in such a po-
sition rather than when stretching arms out sideways. Since
impostors will undergo only a rigid transformation, choosing
a pose corresponding to a walking animation keyframe tends
to minimize artefacts around joints. Our current implemen-
tation uses a pose from a walking animation sequence, rather
than the reference pose. Notice that the above choice only
affects triangles influenced by multiple joints; triangles in-
fluenced by a single joint will be reconstructed in their exact
position regardless of the selected pose.

Step 3. Once a suitable pose has been chosen, we deform
the mesh accordingly by applying linear blend skinning to the
mesh vertices, i.e. the transformed vertex v′ is computed as
v′ = ∑

wiMJiv, where MJi is the rigid transformation matrix
from the reference-pose of joint Ji to its actual position in
the chosen posture. The bounding box of each impostor is
then computed as the oriented bounding box (OBB) of the
(transformed) triangles attached to the impostor.

Step 4. The last step is to render the deformed mesh
to capture the relief maps corresponding to each one of the
six faces of its bounding box. For each bounding box face,
we set up an orthographic camera with its viewing direction
aligned with the face’s normal vector, and then render the
triangles attached to the corresponding impostor. We capture
the following RGBA textures (Figure 2):

• Colour map: the RGB channels encode the colour, and the
alpha channel encodes the minimum (front) depth value
zf .

c© 2011 The Authors
Computer Graphics Forum c© 2011 The Eurographics Association and Blackwell Publishing Ltd.

A. Beacco et al. / Output-Sensitive Rendering of Animated Characters 5

Figure 2: Colour (a), normal (b), front depth (c) and back
depth (d) values are encoded as two RGBA textures.

• Normal map: the RGB channels encode the normal vector,
and the alpha channel encodes the maximum (back) depth
value zb.

Front depth values are captured by rendering the attached
triangles with the default GL_LESS depth comparison func-
tion. Likewise, back depth values are captured by clearing
the depth buffer with a zero value (instead of the default unit
value) and switching depth comparison to GL_GREATER.
Although storing both depth values is redundant (front depth
values of a face equal one minus back depth values of the
opposing face), we have chosen this option to improve the
locality of texture fetches during rendering.

In order to speed up rendering we reorganized the textures
to have both depth values in the same texture. We still keep
only two textures, but now the four channels of the first
texture encode (R, G, zf , zb) and the second texture encodes
(B, nx, ny, nz). This reduces to one half the number of texture
fetches during the ray-heightfield intersection step of relief
mapping.

The vertices of all bounding boxes of a character are stored
in a single Vertex Buffer Object (VBO), which is shared by
all the instances of the same character.

Colour and normal maps of each character are stored in
texture arrays to avoid texture switching while rendering the
instances of the same articulated character.

Since a typical animated character for crowd simulation
consists of about 21 bones, this accounts for storing 21 ×
6 × 2 = 252 RGBA textures per character. This is quite
reasonable, considering that competing output-sensitive ap-
proaches need to capture the character for each view angle
(typically 136 discrete view directions are sampled) and for
each animation frame (typically sampled at 10 Hz). So for
1 s of animation, 64 × 64 textures (which provides a res-
olution of about 1 cm per texel for geometry, colours and
normals) and 4 bytes per pixel, it would require about 136 ×
64 × 64 × 10 × 4 = 22 MB approximately. With our tech-
nique each character requires only about 4 MB of storage.

3.3. LOD for relief impostors

As the characters move away from the camera, we can further
speed up rendering by having a hierarchical representation of

our relief impostors. We construct a new representation with
fewer boxes by merging boxes, i.e. a father node absorbs
its child nodes. The OBB associated with the father node
is recomputed to include the geometry of the child nodes.
New textures are captured for the new OBBs and for this
representation all the geometry included in an OBB will
undergo the rigid transformation applied to the father. For
instance, if we enclose the hand, fore-arm and upper-arm
inside a single OBB, then the hand will not move other
than following the upper-arm transformations. Notice that
once the user selects the target number of boxes for each
LOD and the bones associated with each of them, the task
of creating OBBs and capturing textures is fully automatic.
For the experiments we used relief impostors with 21, 7 and
1 boxes (see Figure 4). The 1-bone LOD has obviously no
deformations, which is appropriate only for characters very
far away from the camera.

3.4. Real-time rendering

Our current prototype uses multiple LOD representations for
each character type; a textured polygonal mesh which is used
for agents close to the viewpoint, and the multi-resolution
impostor set described earlier for the rest of agents. We first
render nearby polygonal agents (grouped by character type
to minimize rendering state changes) and then the rest of the
agents as impostors (again grouped by character type and
LOD).

Each character is rendered through an adapted version of
relief mapping over the fragments produced by the rasteri-
zation of the transformed bounding boxes. The CPU-based
part of the rendering algorithm proceeds through the follow-
ing steps:

1. Bind the corresponding texture arrays (colour and nor-
mal maps) into different texture units, and bind also
the VBO with the geometry of the bounding boxes in
the pose used to capture the impostors. These steps are
performed only once per character type.

2. Draw the bounding box associated with each bone, to
ensure that a fragment will be created for any viewing
ray intersecting the underlying geometry.

The vertex shader multiplies the incoming vertices of the
bounding boxes by the corresponding rigid transformation
matrix so that they follow the original skeleton animation.
The vertex shader also transforms the variables encoding the
location and orientation of each relief map, as these will be
used in the fragment shader.

The most relevant part of the rendering relies on the frag-
ment shader, which uses the depth values stored in the colour
and normal maps to find the intersection P of the fragment’s
viewing ray with the underlying geometry. For this partic-
ular task any ray-heightfield intersection algorithm can be

c© 2011 The Authors
Computer Graphics Forum c© 2011 The Eurographics Association and Blackwell Publishing Ltd.

6 A. Beacco et al. / Output-Sensitive Rendering of Animated Characters

Figure 3: Test data set. Each mesh contains between 4 K
and 6 K polygons.

adopted. Pyramidal displacement mapping [OKL06] is par-
ticularly suitable as it guarantees finding the correct intersec-
tion on any heightfield and viewing condition. Our current
prototype though is based on the simpler relief mapping al-
gorithm described in [POC05].

The fragment shader receives as input the following infor-
mation:

• World space viewpoint coordinates E.

• World space fragment coordinates C.

• The origin o of the face, i.e. the vertex whose texture
coordinates are (0, 0).

• An orthonormal basis of the bounding box face, consisting
of a normal vector n and two vectors (u, v) aligned along
the horizontal and vertical sides of the transformed face.

The fragment shader computes the intersection of the frag-
ment’s viewing ray r = (C − E) with the heightfield encoded
by the displacement values stored in the relief map. If no in-
tersection is found, the fragment is discarded. As in [POC05],
we use first a linear search by sampling the ray r at regular
intervals to find a ray sample inside the object, and then a
binary search to find the intersection point. This allows us to
retrieve the diffuse colour of the fragment being processed,
along with a normal vector to compute per-fragment lighting.
Unlike classic relief mapping, we use two depth values zf and
zb per texel. During the search process, a sample along the
ray with depth z is classified as interior to the object iff zf ≤
z ≤ zb.

4. Results

We have implemented the construction and rendering algo-
rithms described in C++ and OpenGL 3.2.

The algorithms have been tested on a collection of detailed
human characters from the aXYZ Design’s Metropoly 2 data
set (Figure 3). When converted to Cal3D format, the triangle
meshes had 4–6 K triangles, and used 2048 × 2048 texture
atlases for diffuse colour and normal data. All models were
initially rigged to 67-bone skeletons. Reported results have
been measured on an Intel Core2 Quad Q6600 PC equipped
with a GeForce 8800 GT.

Figure 4: Relief impostors consisting of 21, 7 and 1 boxes.

4.1. Impostor creation

The conversion of the input character meshes into a multi-
resolution collection of relief impostors took on average
859 ms on the test hardware, including all steps detailed in
Section 3.2. We created three LOD representations with 21,
7 and 1 boxes, respectively (Figure 4).

All relief textures (diffuse, normal and depth maps) were
captured at 64 × 64 pixels and stored in a single texture
array shared by all the instances of the same character. This
resulted in 21 × 6 × 642 × 8 = 3.95 MB for the finest
LOD, 1.31 MB for the intermediate LOD and 192 KB for
the coarsest LOD, i.e. about 5.25 MB per character type.

Although our image-based representation is a bit redun-
dant, both within a LOD level (a single surface point is often
captured by 1–3 box faces) and across levels (each LOD has
its own collection of relief maps), it is still several orders of
magnitude more efficient, in terms of memory space, than
competing image-based approaches requiring a separate im-
age for each view direction and animation frame.

4.2. Image quality

Our relief impostor representation aims at accelerating the
rendering of animated characters at the expense of some
image quality loss. Image artefacts in the resulting images
may fall into the following categories (the surface associ-
ated to a particular bone will be referred to as a surface
patch):

Surface undersampling due to non-height field patches.
We represent each surface patch with six orthogonal
relief maps, where each relief map stores a single
depth value per texel. Therefore we assume that sur-
face patches look like a heightfield when seen from any
of these six directions. More formally, we assume that
for any axis-aligned ray there is at most one frontface
and at most one backface intersection with the surface

c© 2011 The Authors
Computer Graphics Forum c© 2011 The Eurographics Association and Blackwell Publishing Ltd.

A. Beacco et al. / Output-Sensitive Rendering of Animated Characters 7

patch. If this assumption fails for some axis-aligned
direction, the extra intersections between the nearest
one at zn and furthest one at zf will be ignored, causing
the relief mapping algorithm to reconstruct the surface
as if the whole segment from zn and zf were interior to
the object. This could be dealt with by storing multiple
depth values per texel, as in [PO06]. Fortunately, our
surface patches for the 21-bone skeleton correspond to
simple body parts such as upper and lower leg, upper
and lower arm, chest and head, for which the heightfield
condition earlier typically holds. Therefore the assump-
tion above produces no artifacts without requiring the
storage of additional depth values.

Texel-to-pixel ratio. Since our impostors are image-based,
the accuracy of the geometric and appearance de-
tails is obviously limited by the texel-to-pixel ratio
[DHOO05]. Therefore we must ensure that textures are
large enough to keep the texel-to-pixel ratio above 1:1
for all the viewing distances associated to the textures.
Since our 64 × 64 textures guarantee the above ratio,
no image undersampling artefacts appear in the final
images.

Depth quantization. The relief mapping algorithm relies
on depth values to find the intersection of per-fragment
viewing rays with the underlying heightfield. We quan-
tize such depth values (which are relative to the box
dimensions) using 8-bit integers. Since our boxes have
moderate sizes (with the longest edge typically below
50 cm), 8-bit quantization results in (at least) 0.2 mm ac-
curacy, which is sufficient to prevent any visible quan-
tization artefact.

Missing ray–surface intersections. Some relief mapping
implementations do guarantee that correct ray–surface
intersections are always found [OKL06, SG06] whereas
others do not [POC05]. This issue has been extensively
discussed in the literature and can be dealt with in mul-
tiple ways (see e.g. [SG06]).

Lack of geometric skinning. This issue is by far the ma-
jor limiting factor when considering the valid distance
range for our relief impostors. Recall that we animate
each relief impostor using the rigid animation of the as-
sociated bone. This contrasts with geometric skinning
techniques (such as linear blending and dual-quaternion
blending) typically applied when animating geometry-
based characters, where some vertices are influenced by
more than one bone. In our case, each surface patch is
fully influenced by its corresponding bone. This obvi-
ously results in some artefacts around joints (triangles
influenced by a single bone are reconstructed correctly
though). These artefacts might include cracks (e.g. if
mesh triangles are assigned to a single bone) or over-
lapping parts (e.g. if each mesh triangle is assigned to
all the bones influencing the triangle, regardless of the
weights). Fortunately, our optimized construction re-
sults in much less artefacts around joints (Figure 5).

Figure 5: Artefacts due to lack of geometric skinning: (a)
original mesh, (b) impostors created by assigning each tri-
angle to a single joint, (c) impostors created by assigning
to each joint all the triangles influenced by the joint and (d)
impostors created by our threshold-based strategy.

Figure 6 shows multiple views of one character rendered
with our 21-bone impostors. Note that these artefacts are
hardly noticeable for moderate viewing distances (see also
the accompanying video). Figure 7 shows several animation
frames of the characters in the test data set rendered with our
21-bone impostors. Although the images show that artefacts
may appear around the joints, these are very hard to perceive
in the context of a crowd simulation. Figure 8 compares
renders using 21-bone and 7-bone representations, respec-
tively. The 1-bone LOD obviously supports no deformations
and thus it is reserved for characters very far away from the
camera.

One of the features of our approach is the joint handling
of geometric and appearance details, encoded through dis-
placement, diffuse and normal maps. The effects of reducing
the size of the texture maps is illustrated in Figure 9. A side
benefit of this approach is that we can use a mipmap pyra-
mid for better minification filtering with no colour bleeding
artefacts. This is a feature often lacking in polygonal char-
acters, which typically use texture atlases with multiple dis-
connected patches, thus hindering mipmapping rendering.

4.3. Mesh versus impostor rendering

Comparing the performance of our impostors with that of the
full-resolution mesh is clearly unfair, as in a real-world appli-
cation, each character instance would be rendered using an
appropriate LOD chosen according to, among other factors,
its distance to the viewpoint. We thus compare our approach
with a discrete collection of LOD meshes. We use the fol-
lowing notation. LOD representations using relief impostors
will be denoted as Rj, j being the number of bones/boxes. As
stated earlier, we constructed three representations R21, R7

and R1 with 21, 7 and 1 bones, respectively. LOD represen-
tations using textured polygonal meshes will be denoted as
Mi, i being the percentage of original polygons, M100 denot-
ing the full-resolution mesh. We simplified the input mesh to

c© 2011 The Authors
Computer Graphics Forum c© 2011 The Eurographics Association and Blackwell Publishing Ltd.

8 A. Beacco et al. / Output-Sensitive Rendering of Animated Characters

Figure 6: An animated character rendered using our 21-box relief impostor representation.

generate LODs M90, M85, . . . M5 and M2.5 (Figure 10). Mesh
simplification was accomplished using the Optimize filter of
Autodesk 3DS MAX 2010.

We are now interested in a criterion to measure the quality
of each representation, which will be used both to compare
mesh- and impostor-based representations, and to select the
appropriate LOD according to the distance to the viewer.
Note that a measure of the geometric approximation error
only makes sense for static polygonal meshes, and that it
would ignore visual errors due to distortions of the diffuse
and normal maps. We thus adopt an image-space error metric,
computed using multiple animation frames and view direc-
tions.

Let L be a particular LOD representation of an animated
character, using either mesh geometry or relief impostors
(i.e. L ∈ {M100 . . . M2.5, R21, R7, R1}). Let φ(L, d) be the
average image difference resulting from rendering a character

at distance d using the representation L instead of the full-
resolution mesh M100.

For the sake of clarity, we can consider distance d rather
than screen-projected area or subtended solid angle, pro-
vided that we fix some viewing conditions. For all the dis-
cussion later, we used a 21′ LCD monitor with a 1024 ×
1024 viewport. The field of view of the camera was set to
60◦, and the viewing distance from the LCD monitor was
set to 60 cm. Note that these typical viewing conditions for a
desktop user can be used to determine both the viewing angle
subtended by an animated character at some particular dis-
tance from the camera, as well as its screen-projected area.
Thus from now on we will refer only to character-to-camera
distances.

Since the image difference obviously depends on both the
animation frame and the viewing angle, we can compute φ(L,
d) by selecting a representative set of animation frames and a

c© 2011 The Authors
Computer Graphics Forum c© 2011 The Eurographics Association and Blackwell Publishing Ltd.

A. Beacco et al. / Output-Sensitive Rendering of Animated Characters 9

Figure 7: Relief impostors corresponding to the test data
set.

sufficiently dense discretization of the view directions in the
Gauss sphere, and averaging the resulting image differences.
We chose the root mean square (RMS) error as an objective
measure to compare the image differences. We could have
adopted perceptual-based image metrics [YN04], which in-
tegrate factors of the human visual system that reduce the
sensitivity to errors, but these metrics are more appropriate
for comparing two final, complete images rather than renders
of individual agents. This is because high-level HVS models
go beyond simple models of brightness and contrast and con-
sider for example masking effects, i.e. decreased visibility of
a signal due to background contrast. These effects can be
measured only on complete images, where each pixel has a
well-defined context. In our case we aim at comparing the
rendering of individual characters (thus only a part of the final
image) without prior knowledge on the context/background.
This is why we discarded HVS-based metrics for comparing
the renderings of single, isolated characters, and we chose
the broadly adopted RMS error for this purpose. We thus
computed φ(L, d) by averaging (in the L2 norm sense) the
RMS image differences along four equally spaced frames
and 10 view directions uniformly distributed on the upper
half-sphere surrounding the character. This amounts to 40

Figure 8: Rendering relief impostors with 21 bones (top)
and 7 bones (bottom). Note that in the 7-bone representation
the head bone has been collapsed with the trunk and thus
both undergo the same transformation.

Figure 9: Relief impostors with decreasing texture sizes.

samples for computing φ(L, d), which gives quite reliable
results.

Given a certain distance d, we are interested in the simplest
mesh level Mi and the simplest relief level Rj the rendering
of which produces an image error below some threshold ε.
In other words, we want to compute min i{φ(Mi, d) < ε}
and min j{φ(Rj, d) < ε}. We call the resulting pair Mi, Rj the
optimal representation for distance d.

We conducted an informal user study to decide a proper
error threshold, considering the viewing conditions detailed
earlier. Nine users (aged 23–35) participated in the ex-
periment. Users were presented a video showing an ani-
mated character side-by-side, one side rendered using de-
tailed polygonal meshes, and the other side using impostors.
Every 10 s we doubled the distance from the character to
the camera, thus decreasing its screen-projected area. Users
were requested to stop the movie as soon as they perceived
no difference between both sides of the image. We recorded
the resulting RMS error. We observed that the average RMS
error was 0.004, and that none of the users were able to find
any difference for an RMS error below 0.003. Therefore we
set ε = 0.003 to prevent users from perceiving any visual

c© 2011 The Authors
Computer Graphics Forum c© 2011 The Eurographics Association and Blackwell Publishing Ltd.

10 A. Beacco et al. / Output-Sensitive Rendering of Animated Characters

Figure 10: From left to right we show the original mesh
M100 and some examples of the simplified meshes M75, M55,
M35, M20 and M2.5.

Figure 11: Minimum number of primitives (triangles/quads)
to be drawn (per character instance) to keep the RMS error
below 0.003 for one of the test characters. Triangle mesh
rendering requires one order of magnitude more primitives
(notice the log-scale).

difference between the original and the simplified represen-
tation.

The resulting number of primitives for this error threshold
are shown in Figure 11. Note that triangle mesh rendering re-
quires drawing about one order of magnitude more primitives
than impostor rendering, under matching quality conditions.
For example, for a character at 15 m, a 4 k triangle mesh
(8 k vertices) is needed to keep the RMS error below ε =
0.003, whereas the matching impostor has 126 quads (168
vertices). In terms of per-vertex processing, the polygonal
mesh requires about 33 k matrix operations for skinning,
whereas our impostors requires just 168 operations. For a
character at 40 m, the mesh requires 916 matrix operations
whereas the impostors only 48. For close-up characters (d <

15 m), the relief-based representation leads to an error above
the threshold and thus we fall back to polygonal rendering.

Figure 12: Render times for the polygonal-based and relief-
based LODs that keep the RMS error below 0.003.

4.4. Choosing the fastest representation

Beyond a given distance (15 m for the chosen threshold), we
can choose to render the characters using either the optimal
mesh-based or the optimal relief-based representation. Since
both provide images with similar quality, it makes sense to
choose the appropriate representation according to its perfor-
mance.

For each distance value d, we measured render times for
the optimal mesh-based and the optimal relief-based repre-
sentations computed earlier. Render times were measured us-
ing OpenGL’s timer queries, which provide accurate timings.
Each query block enclosed the OpenGL drawing commands
that need to be executed for each character instance.

For mesh rendering, we used the hardware-accelerated
Halca animation library [Spa09, GS10]. Render times are
shown in Figure 12. As with image differences, times were
averaged for multiple animation frames and view directions,
taking 40 samples per distance value.

When rendering polygonal meshes, the bottleneck is likely
to be in the vertex processing stage due to the large amount of
matrix operations needed to implement skinning. This makes
rendering times quite insensitive to the number of fragments
produced. However, since for increasing distances we use a
more simplified mesh (see Figure 11), the rendering times
decrease accordingly.

Relief impostors achieve a drastic reduction in the number
of primitives to be drawn, and each vertex is influenced by
a single bone. This results in a very small number of per-
vertex computations when compared to the equivalent level
using mesh geometry. On the downside, fragment process-
ing is more involved due to relief mapping computations. As
a consequence, rendering times for impostors also decrease
with increasing distances, but this time the shape of the re-
sulting curve can be attributed more to the smaller number of
fragments rather than to the reduced number of primitives.

c© 2011 The Authors
Computer Graphics Forum c© 2011 The Eurographics Association and Blackwell Publishing Ltd.

A. Beacco et al. / Output-Sensitive Rendering of Animated Characters 11

Table 1: Frame rates for different crowds and camera settings.

Polygonal Our Speed
Setting Agents mesh approach up

Camera 1 2000 21 fps 50 fps 2.4×
Camera 2 2000 23 fps 47 fps 2.0×
Camera 3 2000 25 fps 49 fps 2.0×
Camera 1 4000 10 fps 38 fps 3.8×
Camera 2 4000 10 fps 36 fps 3.6×
Camera 3 4000 12 fps 34 fps 2.8×
Camera 1 10 000 4 fps 16 fps 4.0×
Camera 2 10 000 4 fps 15 fps 3.7×
Camera 3 10 000 4 fps 14 fps 3.5×

Note that for characters beyond 15 m, using the relief-based
representation results in a performance gain.

4.5. Crowd rendering performance

The results provide optimal switch distances for individ-
ual agents, but do not show actual frame rates when ren-
dering a complete crowd. Therefore we also measured the
frame rate using two different strategies for selecting the
appropriate LOD: (1) using only mesh-based levels M100,
M95, . . . M2.5 , chosen according to Figure 11, and (2) us-
ing the full-resolution mesh M100 or the optimal relief-based
level, whichever is fastest. According to the results discussed,
we used the following criteria in option (2) to choose the ap-
propriate representation for each agent: full-resolution mesh
for d < 15, R21 for 15 ≤ d < 34, R7 for 34 ≤ d < 56 and R1

for d > 56.

Besides the hardware and the number of simulated agents,
the actual frame rate depends on many factors, including
population density (the higher the density, the higher the
number of instances requiring fine LOD levels and thus the
lower the frame rate), camera field of view (the higher the fov,
the higher the perspective distortion, thus allowing coarser
LOD levels), screen resolution and number of agents actually
visible.

For the following comparison we used a crowd with a
varying number of agents rendered into a 1024 × 600 view-
port (see accompanying movies). Table 1 shows the resulting
frame rates for the different crowd scenarios shown in Fig-
ure 13 . Note that our approach provides a speed up between
2× and 4×.

4.6. User study

We conducted a user study to validate our impostor-based
approach in terms of image quality. The main goal of the ex-
periment was to evaluate whether users perceive any image
quality loss when using our impostors instead of polygonal

Figure 13: Camera settings for the performance test.

meshes. For this purpose, we rendered an animated crowd
with two different strategies: (1) using the full-resolution
mesh for all characters, and (2) using for each character the
optimal representation (mesh or relief impostors), chosen ac-
cording to the criteria discussed in Section 4.5. We produced
a 25 s movie for different crowd settings (Figure 13). We used
exactly the viewing conditions detailed in Section 4.3. In or-
der to assess image quality with respect to the reference im-
age, we grouped these movies in pairs, stacking horizontally
the movie using impostors with the one using full-resolution
meshes (see accompanying videos). The movie using impos-
tors was stacked on the left/right randomly.

Nine subjects (aged 23–35) participated in the experiment.
Users were requested to watch five pairs of videos (which
were presented in a random order) and to decide which of the
two sides (left/right) had better image quality than the other,
if any. This yields a total of N = 45 trials. Let fi be the (rel-
ative) frequency of users choosing the side with impostors
as the best movie. Likewise, let fg be the frequency of users
choosing the side with geometry, and fu the frequency of
users unable to decide which side is better. The absolute fre-
quencies we observed from the 45 samples of our user study
where ni = 15, ng = 14 and nu = 16. We consider the null hy-
pothesis to be ‘giving the answers by chance’ which implies
that all conditions should be chosen with equal probability,
i.e. H0: fi = fg = fu = 1/3. The corresponding significance
levels for a two-sided test against the null hypothesis that
each proportion is 1/3 are 0.5, 0.7 and 0.8, therefore the null

c© 2011 The Authors
Computer Graphics Forum c© 2011 The Eurographics Association and Blackwell Publishing Ltd.

12 A. Beacco et al. / Output-Sensitive Rendering of Animated Characters

Figure 14: Image rendered with full-resolution polygonal
meshes (left) and our approach (right).

hypothesis cannot be rejected. This means that the choices
of the subjects were equivalent to random choices, and thus
our impostor-based technique can be used for rendering ac-
celeration with negligible visual artifacts (see Figure 14).

5. Conclusions and Future Work

We have presented a new method to accelerate the rendering
of crowds by using static relief impostors on rigidly animated
bounding volumes. Our method allows for real time render-
ing of thousands of agents. Compared to previous work where
impostors were used, our method provides the advantage of
being independent from both the viewing direction and the
animation clips available. These two advantages offer not
only important savings in terms of the memory required to
store the impostors, but also that the library of animations can
be increased on-the-fly without the need for capturing new
impostors. Unlike previous image-based approaches, our ap-
proach does support blending between animation clips and
even real-time motion capture data.

Our technique could be used in combination with other
GPU-based acceleration techniques such as geometry in-
stancing and matrix palette skinning. Geometry instancing
[Dud07a] provides performance gains on the CPU side by
minimizing drawing calls, and thus both polygonal-based and
impostor-based rendering can benefit from this technique.
On the downside, geometry instancing poorly supports LOD
rendering and frustum culling. Unfortunately, since all vis-
ible characters belonging to a given LOD are drawn with
a single API call, these tasks have to be completed for all
characters before actual rendering starts, effectively sequen-
tializing rather than parallelizing CPU-GPU work. As future
work we will explore the potential of these GPU acceleration
techniques to further speed up our rendering.

Both mesh- and impostor-based rendering can benefit also
from matrix palette skinning [Dud07b] to avoid sending to
the GPU the transformation matrices for each bone and char-

acter instance. In matrix palette skinning, bone matrices for
each frame and for each animation are stored in graphics
memory. This allows each agent to have its own distinct pose
and animation [Dud07a]. Note however that palette skinning
only saves memory bandwidth; it does not affect the number
of matrix operations in the vertex shader. Thus the benefits of
our approach over mesh rendering in terms of skinning (less
vertices to be transformed, and a single bone influencing
each vertex) still hold. Other avenues for future work include
conducting psychophysical studies supporting the LOD se-
lection instead of the current metric based on RMS. This
will evaluate not only the quality of static images but also
the impact of visualizing animated characters through relief
impostors.

Acknowledgments

This research has been partially funded by the Spanish Gov-
ernment Grant TIN2010-20590-C01-01 and the TRAVERSE
ERC Advanced Grant 227985.

References

[ABB∗07] ANDUJAR C., BOO J., BRUNET P., FAIREN M., NAVAZO

I., VAZQUEZ P., VINACUA A.: Omni-directional relief impos-
tors. Computer Graphics Forum 26, 3 (September 2007),
553–560.

[ABT98] AUBEL A., BOULIC R., THALMANN D.: Animated im-
postors for real-time display of numerous virtual humans.
In VW ’98: Proceedings of the First International Con-
ference on Virtual Worlds (London, UK, 1998), Springer-
Verlag, pp. 14–28.

[BD06] BABOUD L., DÉCORET X.: Rendering geometry with
relief textures. In GI ’06: Proceedings of Graphics Inter-
face 2006 (Toronto, Ont., Canada, Canada, 2006), Cana-
dian Information Processing Society, pp. 195–201.

[cal] Cal3d. 3d character animation library. http://home.
gna.org/cal3d/. Accessed 21 September 2011.

[CLM07] COIC J., LOSCOS C., MEYER A.: Three LOD for
the Realistic and Real-Time Rendering of Crowds with
Dynamic Lighting. Research Report RN/06/20, Université
Claude Bernard, LIRIS, France, April 2007.

[CSMT05] CIECHOMSKI P. D. H., SCHERTENLEIB S., MAÏM J.,
THALMANN D.: Reviving the roman odeon of aphrodisias:
Dynamic animation and variety control of crowds in vir-
tual heritage. In Proc. 11th International Conference on
Virtual Systems and Multimedia (VSMM 05) (Ghent, Bel-
gium, 2005), pp. 601–610.

[DHOO05] DOBBYN S., HAMILL J., O’CONOR K., O’SULLIVAN

C.: Geopostors: A real-time geometry/impostor crowd
rendering system. In I3D ’05: Proceedings of the 2005

c© 2011 The Authors
Computer Graphics Forum c© 2011 The Eurographics Association and Blackwell Publishing Ltd.

A. Beacco et al. / Output-Sensitive Rendering of Animated Characters 13

symposium on Interactive 3D graphics and games (New
York, NY, USA, 2005), ACM, pp. 95–102.

[Dud07a] DUDASH B.: Animated Crowd Rendering. In GPU
Gems 3. H. Nguyen (Ed.). Addison-Wesley Professional
(2007), pp. 39–52.

[Dud07b] DUDASH B.: Skinned Instancing. In NVIDIA
SDK 10 (2007), http://developer.download.nvidia.com/
SDK/10/direct3d/screenshots/samples/SkinnedInstancing
.html. Accessed 21 September 2011.

[GS10] GILLIES M., SPANLANG B.: Real-time character en-
gines comparing and evaluating real-time character en-
gines for virtual environments. Special Issue on Presence
19 (2010).

[KDC∗08] KAVAN L., DOBBYN S., COLLINS S., ŽÁRA J.,
O’SULLIVAN C.: Polypostors: 2d polygonal impostors for
3d crowds. In I3D ’08: Proceedings of the 2008 Sympo-
sium on Interactive 3D Graphics and Games (New York,
NY, USA, 2008), ACM, pp. 149–155.

[MR06] MILLAN E., RUDOMIN I.: Impostors and pseudo in-
stancing for gpu crowd rendering. In GRAPHITE ’06:
Proceedings of the 4th International Conference on Com-
puter Graphics and Interactive Techniques in Australasia
and Southeast Asia (New York, NY, USA, 2006), ACM,
pp. 49–55.

[OKL06] OH K., KI H., LEE C.-H.: Pyramidal displacement
mapping: A GPU based artifacts-free ray tracing through
an image pyramid. In Proceedings of the ACM Symposium
on Virtual Reality Software and Technology (2006), VRST
’06, pp. 75–82.

[PCM∗06] PETTRÉ J., CIECHOMSKI P., MAÏM J., YERSIN B.,
LAUMOND J., THALMANN D.: Real-time navigating crowds:
scalable simulation and rendering: Research articles.
Computer Animation and Virtual Worlds 17, 3–4 (2006),
445–455.

[PO06] POLICARPO F., OLIVEIRA M. M.: Relief mapping of
non-height-field surface details. In Proceedings of the
2006 Symposium on Interactive 3D Graphics and Games
(2006), I3D ’06, pp. 55–62.

[PO07] POLICARPO F., OLIVEIRA M.: Relaxed cone step-
ping for relief mapping. In GPU Gems 3: Programming

Techniques for High-Performance Graphics and General-
Purpose Computation (2007), Addison-Wesley Profes-
sional, pp. 409–428.

[POC05] POLICARPO F., OLIVEIRA M., COMBA J.: Real-time
relief mapping on arbitrary polygonal surfaces. In I3D
’05: Proceedings of the 2005 Symposium on Interactive
3D Graphics and Games (New York, NY, USA, 2005),
ACM, pp. 155–162.

[PON08] PAMPLONA V., OLIVEIRA M., NEDEL L.: Animat-
ing Relief Impostors Using Radial Basis Functions Tex-
tures. In Game Programming Gems VII. Scott Jacobs
(Ed.). Charles River Media, Inc., Hingham, Massachusetts
(2008), pp. 401–412.

[PPB∗97] PRATT D., PRATT S., BARHAM P., BARKER R.,
WALDROP M., EHLERT J., CHRISLIP C.: Humans in large-
scale, networked virtual environments. Presence 6, 5
(1997), 547–564.

[SG06] SCHRODERS M., GULIK R.: Quadtree relief map-
ping. In Proceedings of the 21st ACM SIG-
GRAPH/EUROGRAPHICS Symposium on Graphics
Hardware (2006), ACM, pp. 61–66.

[Spa09] SPANLANG B.: HALCA Hardware Accelerated Li-
brary for Character Animation. Tech. Rep., Universitat
de Barcelona, 2009.

[Tat06] TATARCHUK N.: Dynamic parallax occlusion map-
ping with approximate soft shadows. In I3D ’06: Proceed-
ings of the 2006 Symposium on Interactive 3D Graphics
and Games (New York, NY, USA, 2006), ACM, pp. 63–
69.

[TC00] TECCHIA F., CHRYSANTHOU Y.: Real-time rendering
of densely populated urban environments. In Proceedings
of the Eurographics Workshop on Rendering Techniques
2000 (London, UK, 2000), Springer-Verlag, pp. 83–88.

[TLC02] TECCHIA F., LOSCOS C., CHRYSANTHOU Y.: Image-
based crowd rendering. IEEE Computer Graphics and
Applications 22, 2 (2002), 36–43.

[YN04] YEE Y. H., NEWMAN A.: A perceptual metric for
production testing. In SIGGRAPH’04: ACM SIGGRAPH
2004 Sketches (New York, NY, USA, 2004), ACM,
p. 121.

c© 2011 The Authors
Computer Graphics Forum c© 2011 The Eurographics Association and Blackwell Publishing Ltd.

Eurographics/ ACM SIGGRAPH Symposium on Computer Animation (2011)
A. Bargteil and M. van de Panne (Editors)

Simulating Heterogeneous Crowd Behaviors

Using Personality Trait Theory

Stephen J. Guy†, Sujeong Kim, Ming C. Lin, Dinesh Manocha

Department of Computer Science, UNC - Chapel Hill

Abstract

We present a new technique to generate heterogeneous crowd behaviors using personality trait theory. Our for-
mulation is based on adopting results of a user study to derive a mapping from crowd simulation parameters
to the perceived behaviors of agents in computer-generated crowd simulations. We also derive a linear mapping
between simulation parameters and personality descriptors corresponding to the well-established Eysenck Three-
factor personality model. Furthermore, we propose a novel two-dimensional factorization of perceived personality
in crowds based on a statistical analysis of the user study results. Finally, we demonstrate that our mappings and
factorizations can be used to generate heterogeneous crowd behaviors in different settings.

Categories and Subject Descriptors (according to ACM CCS): I.2.11 [Computer Graphics]: Distributed Artificial
Intelligence—Multiagent systems

1. Introduction

Modeling the behavior of large, heterogeneous crowds is im-
portant in various domains including psychology, robotics,
transport engineering and virtual environments. Heteroge-
neous crowds consist of dissimilar types of groups, each with
potentially independent behavior characteristics and goals
[LB97]. According to Convergence Theory, crowd behav-
ior is not a product of the crowd itself, rather it is carried
into the crowd by the individuals [TK87]. As a result, it is
important to accurately model the behavior and interactions
among the individuals to generate realistic, heterogeneous
crowd behaviors.

In terms of modeling the behavior of individuals within
a crowd, even simple tasks, such as walking toward a given
destination, involve several complex decisions such as what
route to take and the various ways to avoid collisions with
obstacles and other individuals. As a result, different peo-
ple will achieve the same goal in different manners. While
there are many factors that govern people’s overall behav-
iors, such as biological and developmental variations, we fo-
cus on capturing the portion of these variations that are due
to differences in underlying personality.

In general, categorizing the variety of personalities that
humans exhibit is a difficult and multifaceted task. While

† contact: sjguy@cs.unc.edu
http://gamma.cs.unc.edu/personality/

many psychologists have proposed different models to or-
ganize this variation in personality, there are limitations in
their ability to capturing all types of human personality us-
ing a single classifying model [HMS95, RWC00]. In fact,
personality can be defined as the interplay between main-
taining goal-directness while responding to the demands of
the current situation [Per03]. Rather than trying to directly
encode this complex interplay by hand, we attempt to char-
acterize these personalities based on data from our user study
which asked participants to describe the perceived behaviors
of individual agents in computer-generated crowds.

In this paper, we focus on the problem of generating het-
erogeneous crowd behaviors by adjusting the simulation pa-
rameters to emulate personality traits of individuals within
a crowd and evaluate the effects of individual personalities
on the overall crowd simulation. Our approach is based on
Personality Trait Theory, which proposes that complex vari-
ations in behavior are primarily the result of a small number
of underlying traits. We draw on established models from
Trait Theory to specify these variations for each individual.
We use the well-known Eysenck 3-Factor personality model
[EE85] to establish the range of personality variation. This
is a biologically-based model of three independent factors of
personality: Psychoticism, Extraversion, and Neuroticism.
This so-called PEN model has inspired other similar person-
ality models, most famously the Big-5 or OCEAN personal-
ity model [CM92], which proposes five independent axes of
personality based on a factor analysis of user responses. The

c� The Eurographics Association 2011.

http://gamma.cs.unc.edu/personality/

S. J. Guy et al. / Trait Theory Crowds

OCEAN model has been previously used as framework for
exploring variations in crowd simulations [DAPB08].

Our main result is an efficient approach to create and con-
trol the perceived personalities of agents in a crowd simula-
tion. We present a mapping between the low-level simulation
parameters and high level behavior descriptors. This map-
ping is used to control the extent that agents exhibit various
degrees of aggressive, shy, tense, assertive, active, and im-
pulsive behaviors. We also place these parameters in the con-
text of the PEN personality model. Additionally, we propose
a novel two-dimensional factorization of personality traits
derived from our empirical study results on perceived per-
sonalities in computer-generated crowds. These mappings
are used to generate heterogeneous crowd simulations with
different, predictable perceived agent personalities.

The rest of the paper is organized as follows. In Section 2
we highlight related work in crowd simulation and behavior
modeling. Section 3 gives a brief overview of established
personality models and Trait Theory. We describe our user
study on perceived personalities in Sec. 4, and Sec. 5 uses the
results to compute the mappings. Section 6 demonstrates the
resulting behavior of agents simulated using our approach.

2. Previous Work

2.1. Crowd Simulation

Several techniques have been proposed for local collision
avoidance and interaction among various agents in crowd
simulations. Boids, the seminal work of Reynolds [Rey87],
provided a simple method based on forces that push individ-
uals away from each other when they get too close, along
with additional forces to provide cohesion in the crowd. The
general Boids approach can be extended to simulate more
complex crowd behaviors by adding more forces [Rey99].

Other techniques for local navigation also use force-based
models, including the Social Force Model [HFV00] and Hi-
DAC [PAB07]. These approaches use complex forces be-
tween agents to accurately model local interactions among
the agents. Geometric formulations based on (Reciprocal)
Velocity Obstacles (RVO) [vdBGLM09] have also been used
to model local collision avoidance behavior and generate
emergent crowd phenomena [GCC∗10].

2.2. Human Behavior Modeling

Many researchers have proposed approaches to simulate
crowds that can closely model human behavior. Funge et
al. [FTT99] proposed using Cognitive Modeling to allow
agents to plan and perform high level tasks. Shao and Ter-
zopoulos [ST05] proposed an artificial life model with sev-
eral components, that enabled agents to make decisions at
both the reactive/behavioral and proactive/cognition levels
of abstraction. Yu and Terzopoulos [YT07] introduced a de-
cision network framework for behaviorally animated agents
that was capable of simulating interactions between multiple
agents and modeling the effect of different personalities.

Other approaches have directly incorporated personality
models into crowd simulations. Durupinar et al. [DAPB08]
suggested a method to vary the parameters of the HiDAC
simulation model based on the OCEAN personality model
by choosing a plausible mapping between OCEAN person-
ality factors. Salvit and Sklar [SS11] created a testbed world
based on termites collecting food where they demonstrated a
variety of food-gathering patterns based on varying parame-
ters of the MBTI personality model.

Perceptual or user studies have been used to improve
crowd behaviors and rendering. McDonnell et al. [MLH∗09]
utilized perceptual saliency to identify important features
that need to be varied to add visual variety to the appearance
of avatars. McHugh et al. [MMON10] investigated the ef-
fect of an agent’s body posture on their perceived emotional
state. Durupinar et al. [DPA∗11] evaluated their method to
model the OCEAN personality with a user study.

2.3. Modeling Crowd Styles

Previous approaches have used data-driven methods to pro-
duce simulated crowds which behaved with a certain trait
or “style". These methods commonly train models for crowd
based on input video data. For example, Lee et al. [LCHL07]
used data-driven methods to match recorded motion from
videos by training a group behavior model. Ju et al. [JCP∗10]
also proposed a data-driven method which attempts to match
the style of simulated crowds to those in a reference video.

3. Personality Models and Trait Theory

Psychologists have proposed various ways of characterizing
the spectrum of personalities exhibited by humans. Several
theories focus on aspects of personality that show cross-
situational consistency, i.e. behavior aspects that are rela-
tively consistent over time and across various situations.
While there are many sources of variety in behavior, psy-
chologists have proposed methods to categorize and orga-
nize these variations. Our work builds on Trait Theories
of personality, a broad class of theories which categorizes
people’s behavior based on a small number of personality
traits [Per03].

3.1. Trait Theory

A personality trait is an habitual pattern of behavior, thought
or emotion. While humans display a vast number of different
traits, a small number of these traits are believed to be central
to an individual’s basic personality. Trait theories identify
these primary traits, which can be used to describe variations
in personality; an individual’s personality is described based
on a score of how strongly or weakly they exhibit each of
these primary traits.

One of the most well established trait theories is the
Eysenck 3-factor model [EE85]. This model identifies three
major factors which categorize personality: Psychoticism,
Extraversion, and Neuroticism (commonly referred to as

c� The Eurographics Association 2011.

S. J. Guy et al. / Trait Theory Crowds

PEN). An individual’s personality is identified according to
what extent they exhibit each of these three traits. The Psy-
choticism factor is a measure of a person’s aggression and
egocentricity. The Extraversion factor is a measure of so-
cial interest and higher levels of extroversion are associated
with more active, assertive and daring behaviors. Finally,
the Neuroticism factor is a measure of emotional instability
which can correspond to shyness and anxiety [EE77]. Each
of Eysenck’s three PEN traits have been linked to biolog-
ical basis, such as the levels of testosterone, serotonin and
dopamine present in one’s body.

3.2. Factor Analysis

The Eysenck 3-factor model is one of several different trait
theories. Other theories have used different methods for clas-
sifying the fundamental dimensions of human personality.
A particularly successful method of identifying basic per-
sonality traits comes from applying factor analysis to vari-
ous user studies where participants use common personality
adjectives to describe the behaviors of themselves or others
in various situations [CE72]. Factor analysis is the process
for determining which small number of unobserved latent
variables can describe the behavior of a large number of ob-
served variables. In the context of personality trait theory,
the observed variables are the many different adjectives that
people use to describe personalities, while the latent vari-
ables are a smaller number of axes which explain the corre-
lation in the way people use these personality describing ad-
jectives. An example latent variable might be extraversion,
which is associated with the uses of the adjectives outgoing,
active, and assertive.

Costa & McCrae [CM92] applied factor analysis to data
collected from various personality studies and suggested five
primary factors of personality which they dubbed: "Open-
ness to experience", "Conscientiousness", "Extraversion",
"Agreeableness", and "Neuroticism" (commonly referred to
as OCEAN). While the OCEAN model is very popular,
other researches have applied factor analysis to similar user
studies and found different factors or different numbers of
factor (e.g. the 16 Personality Factor model [CE72]). Ad-
ditionally, many studies have shown that the five OCEAN
factors are not fully orthogonal (i.e. not independent from
each other) [DK95]. Furthermore, OCEAN, along with other
models such as PEN, deals with personality in the context
of general human behaviors. In this work, we seek to study
personality specifically within the context of crowd simula-
tions. To that end, we apply a similar factor analysis tech-
nique to user responses about personalities perceived in our
computer-generated crowds.

4. Behavior Perception User Study

Our goal is to understand how varying parameters in a crowd
simulation affects the perceived behavior of agents in the
crowd. To this end, we investigated several low-level param-
eters commonly used in crowd simulations: preferred speed,

effective radius (how far away an agent stays from other
agents), maximum number of neighbors affecting the local
behavior of an agent, maximum distance of neighbors af-
fecting the agent, and planning horizon (how far ahead the
agent plans). Many agent-based crowd simulation methods
use these or similar parameters to compute the mutual inter-
action between agents.

We adopt a data-driven approach and derive a mapping
between simulation parameters and perceived agent behav-
iors based on the results of this perceptual study. Our ap-
proach has at least two advantages over trying to hand-tune
a plausible mapping. First, it ensures that the perceived per-
sonality results are based on the input of a wide range of
study participants. Second, it allows for richer, more com-
plex mappings than would otherwise be possible with hand-
tuning plausible parameters.

In designing the study, we developed an approach which
would satisfy multiple goals. First, the ability to produce
mappings to several common adjectives used to describe in-
dividuals in crowds, such as "shy", "assertive" and "aggres-
sive". Second, the ability to produce a mapping from sim-
ulation parameters to an established psychological theory,
such as the Eysenck’s PEN model. Finally, the gathered data
should be sufficiently rich enough to support a factor analy-
sis that enables us to extract underlying latent variables de-
scribing the space of personality seen in crowd simulations.

4.1. Method

To achieve the above stated goals, we designed a user study,
which allowed participants to describe behavior in crowd
simulations using several adjectives. Our study involved 40
participants (40% female) between 24 and 64 years old, with
an average age of 33 years (std. dev. of 12 years). In this
study, participants were asked to view three different sce-
narios of computer generated crowds. In each video, several
agents were highlighted to be the focus of user questions.
Animations of these scenarios can be seen in the supple-
mentary video. All simulations were created using the pub-
licly available RVO2 Library for multi-agent simulation [vd-
BGLM09].

Fig. 1 shows a still from each of the scenarios used in
the study. The first scenario was the Pass-Through scenario,
where four highlighted agents move through a cross-flow of
400 agents. Second was the Hallway scenario where four
highlighted agents move through a hallway past 66 other
agents, who are in several small groups. Lastly, was the Nar-
rowing Passage scenario where 40 highlighted agents walk
alongside 160 other agents towards a narrowing exit. In all
cases, the non-highlighted agents were given the default pa-
rameters from the simulation library, which mostly results
in homogeneous behaviors of the agents in the simulation.
The highlighted agents all share the same simulation param-
eters, that are randomly chosen for each question given to
the participants.

c� The Eurographics Association 2011.

S. J. Guy et al. / Trait Theory Crowds

(a) Pass-Through Scenario (b) Hallway Scenario (c) Narrowing Passage Scenario

Figure 1: Three crowd simulation scenarios. (a) Four highlighted agents move through crowd. (b) Four highlighted individuals
move through groups of still agents. (c) 20 highlighted individuals compete with others to exit through a narrowing passage.

In all scenarios, the highlighted agents are displayed wear-
ing a red shirt with a yellow disc beneath them to allow
them stand out in the crowd. Each participant was shown
several videos for each scenario with randomly chosen simu-
lation parameters for the highlighted agents. Each video was
shown side-by-side with a reference video in which all the
agents were simulated using the default set of parameters
of the library. This "reference video" was the same for each
question involving the same scenario to provide a consistent
baseline for comparison.

The participants were asked to rate how the highlighted
agents behaved in comparison to those in the reference
video. Participants were asked to describe the differences in
behavior as being more or less "Aggressive", "Shy", "As-
sertive", "Tense", "Impulsive" and "Active". These particu-
lar six adjectives were chosen both because they are useful in
describing behaviors of individuals in crowds, and can span
the space covered by the PEN model, with at least two ad-
jectives for each PEN trait [Per03]. Participants then rated
each crowd video in terms of all six personality adjectives
on a scale from 1-9, with 9 meaning, for example, "much
more assertive" than the references video, 5 meaning "about
as assertive" and 1 meaning "much less assertive". The par-
ticipants were allowed to re-watch the videos as many times
as they felt necessary, and could go back and forth between
questions within a section and revise their answers if desired.

To generate the highlighted agents in the question video
the following simulation parameters were randomly chosen:
maximum distance to avoid neighbors, maximum number
of neighbors to avoid, planning horizon, agent radius, and
preferred speed. The random parameter values were shared
by all the highlighted agents in each video. The range of the
sampled values is shown in Table 1.

For this study, approximately 100 videos were pre-
generated for the 3 different scenarios with random val-
ues for each of the 5 simulation parameters. Each subject
was asked to rate behaviors in several videos randomly cho-
sen from this pool. To keep subjects engaged, the number

Parameter Min Max Unit
Max. neighbors dist. 3 30 m
Max. num. neighbors 1 100 (n/a)
Planning horizon 1 30 s
Agent radius 0.3 2.0 m
Preferred speed 1.2 2.2 m/s

Table 1: Range of simulation parameters.

of videos shown to each participant was limited to 6 ran-
domly chosen clips from each of the 3 different scenarios
(18 videos total); users were given the option to skip videos
and watched an average of 15 video each. Each video was
accompanied with 6 questions, which resulted in a total of
approximately 3,600 data points mapping each set of input
parameters to perceived levels of various personality traits.

5. Data Analysis

Given the large number of data points from the study, we are
able to derive a mapping of the relationship between crowd
simulation parameters and the perceived personality of the
agents. We derive a linear model for the mapping, though
other forms of regression are possible.

5.1. Mapping Perceived Behaviors

Using a QR decomposition with column pivoting, we found
a linear regression between simulation parameters and per-
ceived behaviors. As input to the regression, we use the dif-
ference between the given agents’ parameters and those of
the agents in the reference video. This removes the need to
compute an offset as part of the regression. We also normal-
ized the input by dividing each parameter by half of its min-
to-max range to increase the numerical stability of the linear
regression.

c� The Eurographics Association 2011.

S. J. Guy et al. / Trait Theory Crowds

Our mapping then takes the following form:




Aggressive
Assertive

Shy
Active
Tense

Impulsive




= Aad j





1
13.5 (Neighbor Dist−15)
1

49.5 (Max. Neighbors−10)
1

14.5 (Planning Horiz.−30)
1

0.85 (Radius−0.8)
1

0.5 (Pre f . Speed−1.4)





Using a linear least-squares approach on the user study data
we found the following 6-by-5 matrix Aad j:

Aad j =





−0.02 0.32 0.13 −0.41 1.02
0.03 0.22 0.11 −0.28 1.05
−0.04 −0.08 0.02 0.58 −0.88
−0.06 0.04 0.04 −0.16 1.07
0.10 0.07 −0.08 0.19 0.15
0.03 −0.15 0.03 −0.23 0.23





Though Aad j is a not a square matrix, we can compute a
mapping from high-level behaviors specified by the adjec-
tives to simulation parameters by taking its pseudoinverse
A+

ad j. In this way, we can predict the perceived change in be-
havior of an agent as we adjust the simulation parameters to
achieve the desired behavior for each agent.

5.2. Mapping Parameters for the PEN Model

Rather than building a mapping for each of the six personal-
ity adjectives individually, we can use a similar procedure to
build a mapping for the 3-factor PEN model. The adjectives
from the user study can be mapped to the three PEN fac-
tors. We use the correspondence of adjective to PEN factors
found in Pervin [Per03], summarized in Table 2.

Trait Adjectives
Psychoticism Aggressive, Impulsive
Extraversion Assertive, Active
Neuroticism Shy, Tense

Table 2: Excerpt from the mapping between adjectives and
PEN factors given in [Per03] and used create Apen.

Like the personality adjectives, we can determine a linear
mapping for the PEN model, where:




Psychoticism
Extraversion
Neuroticism



 = Apen





1
13.5 (Neighbor Dist−15)
1

49.5 (Max. Neighbors−10)
1

14.5 (Planning Horiz.−30)
1

0.85 (Radius−0.8)
1

0.5 (Pre f . Speed−1.4)





Based on a linear regression of the study data, Apen was
found to be

Apen =




0.00 0.08 0.08 −0.32 0.63
−0.02 0.13 0.08 −0.22 1.06
0.03 −0.01 −0.03 0.39 −0.37





Again, this mapping lets us predict expected PEN values
from any given simulation parameters.

5.3. Factor Analysis

Analyzing the various features of the Apen matrix, we can
observe the strong correlations between the different PEN
factors. Psychoticism and Extraversion show a strong posi-
tive correlation with each other and both are negatively cor-
related with Neuroticism. Likewise in the Aad j matrix we
see a correlation between several factors such as Aggressive
and Assertive, which have a Pearson r-squared value of 0.45
in the data collected from our user study. These correlations
suggest that a few underlying latent factors might be able to
explain the perceived behaviors in the simulations.

Similar to the original OCEAN studies [CM92], we can
find these few primary factors using factor analysis methods.
By performing a Principal Component Analysis (PCA) on
Aad j, we found two factors that can explain over 95% of the
linear relationship between the simulation parameters and
behaviors. This result suggests that low-dimension models
such as the PEN model offers sufficiently rich dimensions to
characterize personality traits in crowd navigation. The two
Principal Component found through factor analysis on our
user study data are:

�
PC1
PC2

�
=

�
0 −0.04 0.04 0.75 0.66

0.14 0.5 0.8 0.15 −0.19

�

We observe that PC1 primarily has the effect of increas-
ing an agent’s radius and speed. PC2 primarily makes agents
plan further ahead and consider more agents for local avoid-
ance. For these reasons, we suggestively refer to PC1 as
"Extraversion" and PC2 as "Carefulness". Figure 2 shows
which personality adjective is most affected, as PC1 and PC2
are jointly varied. The chart indicates that as "Extraverted"
agents become more "Careful", they move from appearing
Aggressive to Assertive to Active. Likewise, agents who are

Figure 2: This chart shows which behavior adjective has the
largest change as the two principal components are varied.

c� The Eurographics Association 2011.

S. J. Guy et al. / Trait Theory Crowds

(a) Aggressive (b) Impulsive (c) Shy (d) Tense

Figure 3: Pass-through Scenario. Paths of agents trying to push through a crowd in various simulations. The agent’s parameters
correspond to various personalities. All paths are displayed for an equal length of time. (a) Aggressive agents make the most
progress with the straightest paths. (b) Impulsive agents move quickly but take less direct routes. (c) Shy agents are diverted
more easily in attempts to avoid others (d) Tense agents take less jittery paths, but are easily deflected by the motion of others.

not "Extraverted" appear Shy, as long as they are "Careful"
enough to avoid looking impulsive. Furthermore, agents who
are too "Careful" appear to be Tense. We believe these two
principal components cover the personality space in an in-
teresting and intuitive fashion.

6. Simulation Results and Validation Study

Using the above mappings of Apen and Aad j , we are able to
perform crowd simulations in which certain agents appear
to exhibit high levels of the different PEN traits, or appear to
display high levels of one or more of the studied personality
adjectives. In this section, we show the resulting trajectory
of agents displaying various personalities in several different
scenarios. We also present the results of a second user study,
designed to validate the ability of our approach to generate
agents with a given personality using the derived mappings
from the user study (see Sec. 5).

For the purpose of this validation study, we clamped the
agents’ preferred velocities to the range [1.35,1.55] m/s. We
chose this range for two reasons. First, this is the range of
normal walking velocities observed in crowds [Sti00], which
focuses our study on normal behaviors rather than extreme
ones. Second, inspecting the columns of Aad j and Apen sug-
gests that perceived personalities are most dependent on pre-
ferred velocities, by limiting this range we can better high-
light the effect of other simulation parameters. Given these
constraints on preferred velocity, we then used our mappings
to find simulation parameters for various adjectives and traits
covered in the user study. Again, to limit unnatural or ex-
treme behaviors, we chose parameters that change behavior
by only one "unit" (on the 1-9 scale described in Sec 4.1).
The parameters used are summarized in Table 3.

6.1. Simulation Results

We now show the results of agents with various personal-
ities in different scenarios. Figure 3 shows paths taken by
the highlighted agents in the Pass-Through scenario. The

Trait Neigh. Num. Plan. Radius SpeedDist Neigh. Horiz.
Psych. 15 40 38 0.4 1.55
Extrav. 15 23 32 0.4 1.55
Neuro. 15 9 29 1.6 1.25
Aggres. 15 20 31 0.6 1.55
Assert. 15 23 32 0.5 1.55
Shy 15 7 30 1.1 1.25
Active 13 17 40 0.4 1.55
Tense 29 63 12 1.6 1.55
Impul. 30 2 90 0.4 1.55

Table 3: Simulation parameters for various personality traits.

Aggressive agents can be seen to be taking fairly direct
paths. The Impulsive agents still move quickly, but tend to
take less direct routes. Shy agents avoid others more often,
so progress more slowly. Tense agents take the least jittery
paths, but are deflected by the crowds more than aggressive
agents.

We can also choose agent behaviors based on the Eysnek
3-factor personality model by using Apen. Figure 4 shows the
Hallway scenario with agents that have a high level of "Psy-
choticism" (P-factor), agents with a high level of "Extraver-
sion" (E-factor), and agents with a high level of "Neuroti-
cism" (N-factor). The agents with a high level of Eysnek’s P-
factor take fast and direct paths coming close to other agents.
The agents with a high level of Eynsek’s E-factor also move
quickly, but take more daring paths, sometimes attempting
to weave through the other agents in the crowd. The agents
with a high level of Eysnek’s N-factor take slower less direct
paths and move farther away to avoid the static gray agents.

In the Narrowing Passage scenario, agents also show a va-
riety of behaviors for different personalities. Figure 5 shows
the same time-step from two different simulations. In the left
simulation, the light red agents are assigned a personality of

c� The Eurographics Association 2011.

S. J. Guy et al. / Trait Theory Crowds

(a) High Psychoticism (P) (b) High Extraversion (E) (c) High Neuroticism (N)

Figure 4: Hallway Scenario. A comparison between (a) agents with high levels of "Psychoticism", (b) "Extraversion" and (c)
"Neuroticism". Each of the four agents’ paths is colored uniquely. The high P-factor agents repeatedly cut close to others taking
the most direct paths. The high E-factor agents take faster and occasionally "daring" paths, the high N-factor agents take more
indirect paths and keep their distance from others.

(a) Aggressive (b) Shy

Figure 5: Narrowing Passage Scenario. A comparison be-
tween dark-blue default agents and light-red Aggressive
agents (a) and light-red Shy agents (b). The Aggressive
agents exited more quickly, while several Shy agents stay
back from the exit causing less congestion.

Aggressive. In the right simulation, the light red agents are
Shy. At this point, a few seconds into the simulation, many
more Aggressive agents have moved through the exit than
the Shy agents. Furthermore, several of the Shy agents can
be seen to be holding back away from the exit causing less
congestion.

A comparison of the rate at which the agents of various
personalities passed through the exit is shown in Fig. 6. Shy
and Tense agents were the slowest to pass through the exit,
as they moved less quickly and packed in less tightly than
the Aggressive and Assertive agents who made it out fastest.

The evacuation results change when too many of the
agents are acting aggressively. Figure 7 shows how the
average speed of the Aggressive agents in the scenario
varies as the percent of Aggressive agents increases. As the

graph shows, our Aggressive agents exhibit the well known
"faster-is-slower" behavior associated with panic in crowds
[HFV00]. Once a critical threshold of too many aggressive
agents is reached, the aggressive agents actually exit the
room slower than a non-aggressive agents would.

0.2

0.25

0.3

0.35

0.4

0.45

Fl
ow

 R
at

e
(1

/s
)

Figure 6: Exit Rate. Rate at which agents of various person-
alities exit in the Narrowing Passage scenario.

6.2. Heterogeneous Crowds

Using the mappings derived from experimental study, we
can easily generate different simulations that map to dif-
ferent high-level personality specifications. We can use this
capability to create interesting variations in complex, het-
erogeneous crowd simulations. Here, we chose an evacu-
ation scene, where 215 agents simultaneously compete for
space as they leave a room through the same exit. Using the
personality-to-parameters mapping, our work can easily cre-
ate a wide variety of specific behaviors during the evacua-
tion, as shown in Fig. 8. We color code agents’ shirts by their
personalities, for example agents with red shirts are aggres-
sive and those with brown shirts are shy. The agents behave
as expected with aggressive ones exiting first, active agents

c� The Eurographics Association 2011.

S. J. Guy et al. / Trait Theory Crowds

0.4

0.5

0.6

0.7

0.8

0 20 40 60 80 100

Av
g.

 S
pe

ed
 o

f A
gg

re
si

ve
 A

ge
nt

s
(m

/s
)

% Aggressive Agents

Figure 7: Faster-is-slower behavior. This graph shows the
speed of Aggressive agents exiting in the Narrowing Passage
scenario (solid blue line). As a larger percentage of agents
become aggressive, their ability to exit quickly is reduced to
the point where they exit more slowly than less Aggressive
agents with the same preferred speed (dashed red line). This
result is consistent with the well-known "faster-is-slower be-
havior" [HFV00].

darting around slow agents in front of them and shy agents
hanging back. A rendering of this scenario can be seen in the
supplementary video.

6.3. Timing Results

Because the behavior mapping can be computed as a pre-
processing step, our method adds no overhead to the over-
all simulation runtime. Table 4 shows the execution time for
simulating agents in several different scenarios, the timings
were computed on a 3.2 GHz Intel i7 processor. In all cases,
the simulation ran at interactive rates.

Time
Scenario Agents Obstacles (msec)
Hallway 70 2 0.4
Narrowing Passage 200 2 1.9
Pass Through 404 0 1.4
Evacuation 215 125 4.5

Table 4: Performance timings per frame.

6.4. Validation Study

To validate our personality mappings, we performed a
follow-up user study where we asked questions targeted at
evaluating how well our model performed at producing sim-
ulations with the expected behavior. The study was taken by
19 participants (39% female, average age 37±16), 72% of
whom had participated in the original study. This follow-
up study consisted of three sections. This validation study
used entirely new videos to reduce participant bias. In the
first two sections, a personality trait was selected at random,

(a) Initial Conditions

(b) Mid Simulation

Figure 8: Evacuation Scenario. 200 agents evacuating a
building. Shy agents (brown shirts) hold back while Aggres-
sive agents (red shirts) dart forward. The other personalities
also display a variety of behaviors such as quick maneuvers,
overtaking and pushing through.

and a pair of videos were generated: one showing a simu-
lation of that trait using the values in Table 3, and one cho-
sen to contrast the selected trait. Participants were asked to
choose which of the two videos better showed the personal-
ity trait in question. The first section of the study evaluated
the six personality adjectives (aggressive, assertive, shy, ac-
tive, impulse, and tense). The second section evaluated the
PEN traits after a brief explanation of each of their meanings
to the participants. These sections were intended to measure
how well a given personality attribute could be reproduced
by our method.

In a third section, participants were shown a video where
agents were chosen to display a high level of one adjec-
tive while maintaing no increase in another one (e.g. Active,
but not Aggressive). Participants were then asked to choose

c� The Eurographics Association 2011.

S. J. Guy et al. / Trait Theory Crowds

which of the two adjectives better described the video. This
task was intentionally chosen to be challenging, as it ex-
plores to what degree our mapping can model each adjec-
tive independent of the others. Some combinations (such as
"Impulsive, but not Active") were not used in the study as
the mapping suggested the adjectives were too strongly cor-
related to be independently varied within the domain of al-
lowed velocities.

The results of the three sections are summarized in Ta-
ble 5. For all three sections the model predicted the per-
ceived personalities correctly at a statistically significant rate
(p<.05). For all results, the statistical p-values were calcu-
lated using a a one-tailed test with an exact binomial calcu-
lation of probability. The low p-values provide strong evi-
dence these results are due capturing a mapping of traits to
parameters and not just statistical noise.

Sec. Description Accuracy p-value
1 Chose video from adjective 87% 1e-7
2 Chose video from PEN trait 96% 1e-11
3 Chose adjective from video 72% 1e-7

Table 5: Performance on validation study

We can further break down the results of the study by an-
alyzing the results for each adjective separately. In the first
section, users perform with a 100% success rate at identi-
fying which videos corresponded to Assertive, Shy, and Ac-
tive. Aggressive and Impulsive were also identified at a high,
statistically significant, rate of 80% and 85% respectively.

When combined with the more difficult task of separating
two simultaneous personalities constraints (such as Shy, but
not Impulsive) the overall success rate drops. However, par-
ticipants were still able to correctly identify most adjectives
at a statistically significant rate. Figure 9 shows a graph of
the breakdown of the overall success rate for all questions
involving each of the six adjectives. An asterisk next to the
adjective indicates a statistically significant result (p<.05).

This data suggests the traits of "Aggressive" and "Impul-
sive" were hard to vary independently without affecting the
perceived levels of other traits, such as Assertiveness and
Shyness. This result is consistent with the high correlations
seen between these adjectives in the initial user study.

Our method also performed well at generating the specific
PEN personality traits. Figure 10 shows the success rate for
questions involving the PEN values. The high success rate
indicates participants were easily able to apply the high level
concepts behind the PEN model to evaluating various behav-
iors in the simulations.

7. Limitations and Conclusions

7.1. Limitations

Our approach has some limitations. Our current implementa-
tion only explores variation allowed by the RVO2 library, we

0

0.2

0.4

0.6

0.8

1

A
cc
ur
ac
y
Ra
te

Figure 9: Adjective Success Rate. Rate at which user re-
sponses matched the indented adjective for all questions in-
volving the six personality adjectives studied. ∗indicates sta-
tistically significant (p<.05).

0

0.2

0.4

0.6

0.8

1

Psychoticism* Extraversion* Neuroticism*

Figure 10: PEN Success Rate. Rate at which user responses
matched the intended personality trait for questions involv-
ing the PEN traits. ∗indicates statistical significant (p<.05).

would like to use this approach with other collision avoid-
ance and simulation methods to see if more drastic variation
in behavior is possible. Moreover, we focused mainly on lo-
cal behaviors and interactions between agents. However, the
longer-term decision-making process includes global navi-
gation and path-planning which are not modeled adequately
by the simulation parameters used in this work. Given the
large difference in approach between local and global plan-
ning, it is possible other personality models such as the
Myers-Briggs Type Indicator [MMQH99] might be more ap-
propriate to capture such behaviors.

Additionally, we compute a generic mapping between
simulation parameters and personality traits which is in-
tended to hold across a wide variety of scenarios. By focus-
ing on more specific scenarios, we may be able to find more
precise mappings for those particular scenarios. Finally, it
may be useful to take into account other aspects of cognitive

c� The Eurographics Association 2011.

S. J. Guy et al. / Trait Theory Crowds

modeling to derive mappings such as mapping the effect of
internal weightings in decision networks.

7.2. Conclusion

We have presented a perceptually driven formulation to
model the personality of different agents in a crowd simula-
tions. Our approach can successfully generate crowd simula-
tions in which agents appear to depict specific, user-specified
personalities, such as assertive, shy, and impulsive. Further-
more, we have shown that our approach can successfully
generate simulations where agents appear to have various
levels of the established PEN personality traits. Finally, we
proposed two novel factors (PC1 and PC2) which are highly
orthogonal, and are able to capture more than 95% of the
linear correlation captured in our experimental data. To the
best of our knowledge, this is the first factor-model specifi-
cally targeted at analyzing various perceived personalities in
crowd simulations.

In the future, we would like to evaluate our approach
with other crowd simulation and collision avoidance tech-
niques, including cellular automata and social-force mod-
els. We would further like to adopt the same data-driven
techniques to build mappings from simulation parameters to
other personality trait theories, such as the OCEAN model.
We would also like to investigate the extent that our pro-
posed two-factor model is appropriate for human behaviors
in real-world crowds (perhaps based on video footage). Ad-
ditionally, we have focused only on computing the trajectory
of the agents. Other aspects of virtual agents such as posture,
facial expression, and walking style can provide clues to an
agent’s personality and we would like to take them into ac-
count in our future evaluations.
Acknowledgments This work was supported in part by
ARO Contract W911NF-10-1-0506, NSF awards 0917040,
0904990 and 1000579, and Intel.

References

[CE72] CATTELL R., EBER H.: The 16 personality factor ques-
tionnaire. Institute for Personality and Ability Testing (1972).

[CM92] COSTA P., MCCRAE R.: Revised NEO Personality In-
ventory (NEO PI-R) and Neo Five-Factor Inventory (NEO-FFI).
Psychological Assessment Resources, 1992.

[DAPB08] DURUPINAR F., ALLBECK J., PELECHANO N.,
BADLER N.: Creating crowd variation with the OCEAN per-
sonality model. In Autonomous agents and multiagent systems
(2008).

[DK95] DRAYCOTT S. G., KLINE P.: The big three or the big
five-the epq-r vs the neo-pi: a research note, replication and elab-
oration. Personality and Individual Differences (1995).

[DPA∗11] DURUPINAR F., PELECHANO N., ALLBECK J.,
GUDUKBAY U., BADLER N.: How the ocean personality model
affects the perception of crowds. IEEE Computer Graphics and
Applications 31, 3 (2011), 22–31.

[EE77] EYSENCK S., EYSENCK H.: The place of impulsiveness
in a dimensional system of personality description. The British
journal of social and clinical psychology 16, 1 (1977), 57.

[EE85] EYSENCK H., EYSENCK M.: Personality and individ-
ual differences: A natural science approach. Plenum Press New
York, 1985.

[FTT99] FUNGE J., TU X., TERZOPOULOS D.: Cognitive mod-
eling: knowledge, reasoning and planning for intelligent charac-
ters. In SIGGRAPH (1999), ACM Press, pp. 29–38.

[GCC∗10] GUY S. J., CHHUGANI J., CURTIS S., LIN M. C.,
DUBEY P., MANOCHA D.: Pledestrians: A least-effort approach
to crowd simulation. In Symposium on Computer Animation
(2010), ACM.

[HFV00] HELBING D., FARKAS I., VICSEK T.: Simulating dy-
namical features of escape panic. Nature 407 (2000).

[HMS95] HARVEY R. J., MURRY W. D., STAMOULIS D. T.:
Unresolved issues in the dimensionality of the myers-briggs type
indicator. Educational and Psych. Measurement (1995).

[JCP∗10] JU E., CHOI M. G., PARK M., LEE J., LEE K. H.,
TAKAHASHI S.: Morphable crowds. ACM Trans. Graph. 29, 6
(2010), 140.

[LB97] LE BON G.: The crowd: A study of the popular mind.
Macmillian, 1897.

[LCHL07] LEE K. H., CHOI M. G., HONG Q., LEE J.: Group
behavior from video: a data-driven approach to crowd simulation.
In Symposium on Computer Animation (2007), pp. 109–118.

[MLH∗09] MCDONNELL R., LARKIN M., HERNÁNDEZ B.,
RUDOMIN I., O’SULLIVAN C.: Eye-catching crowds: saliency
based selective variation. ACM Transactions on Graphics (TOG)
(2009).

[MMON10] MCHUGH J., MCDONNELL R., O’SULLIVAN C.,
NEWELL F.: Perceiving emotion in crowds: the role of dynamic
body postures on the perception of emotion in crowded scenes.
Experimental brain research (2010).

[MMQH99] MYERS I., MCCAULLEY M., QUENK N., HAM-
MER A.: MBTI manual. Consulting Psychologists Press, 1999.

[PAB07] PELECHANO N., ALLBECK J., BADLER N.: Control-
ling individual agents in high-density crowd simulation. In Sym-
posium on Computer Animation (2007).

[Per03] PERVIN L.: The Science of Personality. Oxford Univer-
sity Press, Oxford, 2003.

[Rey87] REYNOLDS C.: Flocks, herds and schools: A distributed
behavioral model. In SIGGRAPH (1987).

[Rey99] REYNOLDS C. W.: Steering behaviors for autonomous
characters. Game Developers Conference (1999).

[RWC00] REISE S. P., WALLER N. G., COMREY A. L.: Factor
analysis and scale revision. Pshycological Assesment (2000).

[SS11] SALVIT J., SKLAR E.: Toward a Myers-Briggs Type In-
dicator Model of Agent Behavior in Multiagent Teams. Multi-
Agent-Based Simulation XI (2011), 28–43.

[ST05] SHAO W., TERZOPOULOS D.: Autonomous pedestrians.
In Symposium on Computer animation (2005), ACM, pp. 19–28.

[Sti00] STILL G.: Crowd dynamics, phd thesis. Coventry, UK:
Warwick University (2000).

[TK87] TURNER R. H., KILLIAN L. M.: Collective Behavior.
Prentice Hall, 1987.

[vdBGLM09] VAN DEN BERG J., GUY S. J., LIN M.,
MANOCHA D.: Reciprocal n-body collision avoidance. In In-
ter. Symp. on Robotics Research (2009).

[YT07] YU Q., TERZOPOULOS D.: A decision network frame-
work for the behavioral animation of virtual humans. In Sympo-
sium on Computer animation (2007), pp. 119–128.

c� The Eurographics Association 2011.

A Statistical Similarity Measure for Aggregate Crowd Dynamics

Stephen J. Guy⇤

University of Minnesota
Jur van den Berg

University of Utah
Wenxi Liu, Rynson Lau

City University of Hong Kong
Ming C. Lin, Dinesh Manocha

UNC-Chapel Hill

Figure 1: A comparison between a rendering of real-world crowd data (a), and stills from three different simulation algorithms applied to
the same scenario (b-d). Our entropy metric is used to measure the similarity of simulation algorithm to real-world data. A small value of
the metric, as in (d), indicates a better match to the data. Differences between the simulations are highlighted with circles.

Abstract

We present an information-theoretic method to measure the similar-
ity between a given set of observed, real-world data and visual sim-
ulation technique for aggregate crowd motions of a complex system
consisting of many individual agents. This metric uses a two-step
process to quantify a simulator’s ability to reproduce the collective
behaviors of the whole system, as observed in the recorded real-
world data. First, Bayesian inference is used to estimate the sim-
ulation states which best correspond to the observed data, then a
maximum likelihood estimator is used to approximate the predic-
tion errors. This process is iterated using the EM-algorithm to pro-
duce a robust, statistical estimate of the magnitude of the prediction
error as measured by its entropy (smaller is better). This metric
serves as a simulator-to-data similarity measurement. We evalu-
ated the metric in terms of robustness to sensor noise, consistency
across different datasets and simulation methods, and correlation to
perceptual metrics.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation; I.6.4 [Simulation and Mod-
eling]: Model Validation and Analysis; I.2.10 [Artificial Intelli-
gence]: Vision and Scene Understanding—Perceptual Reasoning.

Keywords: crowd simulation, validation, data-driven simulations

Links: DL PDF WEB VIDEO

⇤Email: {sjguy,lin,dm}@cs.unc.edu. The first author is currently an As-
sistant Professor at the University of Minnesota. This work was done while
the second and the third authors were at the University of North Carolina
(UNC-Chapel Hill).

1 Introduction

Visual simulation of aggregates systems, including human crowds,
animal herds, and insect swarms is a growing area of interest in
computer graphics, with applications in diverse areas such as social
sciences, swarm intelligence, and city planning. For applications
in entertainment, providing artists and animators with high-level
control while maintaining visual plausibility of motion is often suf-
ficient. However, for many other training and planning applica-
tions, such as virtual reality based training, fire-safety planning,
and crowd control and management, it is often critical to model
accurate motion, in addition to producing a compelling visual ren-
dering. In this context, we define a measure of a simulator’s accu-
racy based on the similarity of the motion from the simulator to the
motion captured in real-world observations. While some previous
work has studied the visual plausibility of simulation techniques,
we present a new metric for quantifying the similarity between a
set of real-world observations and any algorithm designed to simu-
late the aggregate crowd dynamics captured in the data.

Evaluating the correctness or predictability of the results from a
crowd simulation method presents several interesting challenges,
many of which arise from the inherent nature of a crowd as a com-
plex system. Complex systems are systems composed of several
components or elements that interact to exhibit emergent patterns
that cannot be easily predicted from the properties of the individual
components alone [Schadschneider et al. 2011; Gallagher and Ap-
penzeller 1999]. Because of issues inherent in these systems, such
as uncertainty and non-determinism, the study of complex systems
generally must draw on techniques from the fields of statistics, in-
formation theory, and non-linear dynamics. We likewise draw on
inspiration from these fields, in proposing a new method to compare
aggregate simulation methods with real-world data that accounts for
these challenges.

Real-world data of crowds is becoming increasingly common,
driven in part by recent improvement in sensor technology, such
as LiDAR and GPS; the proliferation of high-resolution cameras;
and advances in computer vision and motion tracking. However,
several aspects of a crowd and its aggregate motions make it dif-
ficult to directly compare such data against any simulation results.
For example, given two very similar initial states, a small crowd can
reach two very different configurations after just a few seconds, be-
cause the effects of small changes in states can quickly compound

http://doi.acm.org/10.1145/2366145.2366201
http://portal.acm.org/ft_gateway.cfm?id=2366201&type=pdf
http://gamma.cs.unc.edu/Entropy
http://gamma.cs.unc.edu/Entropy/entropy.mp4

into large differences in the resulting crowd behaviors and motion
patterns. This problem is exacerbated by the fact that any data on
the motion of aggregate phenomena always comes with noise and
uncertainty, making it impossible to know the true state of a crowd
with complete accuracy. Additionally, even when presented with
the same situation, different individuals can make different deci-
sions. An individual’s decisions can also vary under different emo-
tional states (e.g., happy vs. sad) and other subtle factors. Because
of the combined effect of all these uncertainties, it is necessary to
treat any real-world data on crowd movements as a noisy sample of
possible motions rather than an absolute ground truth, and perform
a statistical analysis on the motions and behaviors represented by
the observed, example motion of the crowd.

Main result: We introduce the Entropy Metric to evaluate the
predictability of crowd simulation techniques in terms of similarity
to real-world crowd data. Our metric is defined broadly and can
be applied to any time-series simulation of aggregate motions in
continuous space. In this paper, we focus our discussion on and
illustrate results for data of human crowds.

The Entropy Metric is an ensemble measurement of the prediction
errors of a given simulation technique relative to a given example
set of crowd motions. At a high level, it works based on a two-stage
process. First, we estimate a distribution of simulation states which
best represents the observed data. Second, the simulator being eval-
uated is used to predict each subsequent state from the proceeding
one. The smaller this prediction error, the better the simulator’s
ability to reproduce the motion of real-world crowd system repre-
sented by the example data. Because these two steps can depend on
each other, we use the Expectation Maximization algorithm (EM-
algorithm) to interleave these two steps and iterate until conver-
gence.

By only computing prediction error across small simulation
timesteps and by maintaining a distribution of likely simulation
states, our formulation fundamentally accounts for noise in the
measured data, as well as non-determinism in motion, and unmod-
eled effects of the given crowd simulation method. Moreover, we
show that the Entropy Metric is rankable, predictable, discrimi-
native, and robust with respect to sensor noise. Furthermore, we
demonstrate a correlation between the values of the Entropy Met-
ric and perceived motion similarity (as measured by a perceptual
study). The Entropy Metric can be used to automatically select
a set of appropriate simulation parameters for data-driven crowd
simulation to achieve the desired motion and behavior patterns.

The rest of this paper is organized as follows: Section 2 gives a
broad characterization of crowd simulation algorithms and intro-
duces our notation. Section 3 describes the theoretical basis of the
Entropy Metric and presents an efficient algorithm to compute it.
Section 4 demonstrates the application of the metric to several ex-
ample crowd simulation algorithms by evaluating them on different
sets of real-world data. Section 5 analyzes properties of the metric
such as its robustness to noise and correlation to user perceptions.

2 Background and Notation

In this section, we give a brief review of algorithms for crowds
simulation and data-capture. We also introduce the notation used in
the rest of the paper.

Notation We use the following notational conventions throughout
this paper: Variables a printed in italics denote scalars or func-
tions, variables a printed in boldface denote vectors, and variables
A printed in blackboard bold denote vector spaces. Variables A
printed in capitals denote (covariance) matrices, and variables A
printed in calligraphic typeface denote probability distributions.

2.1 Simulation State

In the context of this paper, we use the term “crowd” to refer to
an aggregate of entities (e.g. people or agents) whose behaviors
and dynamics evolve over time. We define a crowd simulation state
as follows: for a given simulator, and a given point in time k, the
state xk of a crowd contains all information about a crowd that is
needed to compute its evolution over time. We denote the space
of all crowd states by X. For instance, for a crowd consisting of
n agents, being simulated by a technique that is based on the po-
sition, velocity, and orientation of each agent on a 2D plane, the
crowd state space is xk 2 X = R5n. Other time-varying aspects,
such as the mental state of the agents or dynamic behavior parame-
ters may also be part of the state. We make no specific assumptions
about the representation of a crowd state. In addition to the crowd
state, simulators may also use constant information, such as con-
stant parameters shared across all agents, and obstacles that define
the environment.

2.2 Crowd Simulation and Aggregate Dynamics

At a broad level, the field of crowd simulation can cover many
facets of generating human motions and behaviors (such as full-
body biomechanics, facial expressions and gestures, and motion
dynamics based on the laws of physics). This makes modeling
and analyzing all aspects of a crowd highly challenging and can
quickly lead to a combinatorial explosion of potential variations.
To increase the tractability of the problem, we focus primarily on
the aspect of crowd simulation that corresponds to motion data re-
lated to the aggregate dynamics of the crowd.

Aggregate Dynamics: Crowds typically are in constant motion,
with individual paths changing over time. Formally, we say that if
the state of the crowd at time k is xk 2 X, the crowd has evolved
into a state xk+1 2 X one unit of time later. The rules defin-
ing crowd dynamics (that is, the actual rules governing the human
motion and behavior) are unknown and likely cannot be defined
by simple mathematical models nor derived from first principles.
However, we can characterize these unknown dynamics, using an
abstract function f : X ! X, such that:

xk+1 = f(xk). (1)

It should be noted that f is abstract and unknown, and we only
use such a formulation to describe crowd evolution. We view a
simulator as an approximation to this function f ; the more accurate
and predictive the simulator the better the approximation.

There has been extensive work on computing the pedestrian dynam-
ics or aggregate movement of human-like agents as part of a crowd
for more than three decades. These include force-based methods
[Helbing and Molnar 1995; Pelechano et al. 2007; Karamouzas
et al. 2009], boids and steering models [Reynolds 1987; Reynolds
1999], techniques based on velocity-based reasoning and geometric
optimization [van den Berg et al. 2009; Pettre et al. 2009; Ondrej
et al. 2010; Guy et al. 2010], field-based and flow-based models
[Sung et al. 2004; Treuille et al. 2006; Narain et al. 2009; Patil
et al. 2011], cognitive models and decision networks [Funge et al.
1999; Yu and Terzopoulos 2007], and example-driven crowd sim-
ulation [Lee et al. 2007; Lerner et al. 2007; Pettre et al. 2009].
These methods model different aspects of crowds, including col-
lision avoidance between agents, emergent phenomena, path nav-
igation, high-level cognition and behaviors. All of these methods
share a common formulation though, of computing continuous tra-
jectories for each agent to determine the collective dynamics of the
motion in the crowd. This commonality leads to the following ab-
straction of a crowd simulator:

We formulate a simulator as a function ˆf : X ! X that attempts to
approximate the function f :

ˆf(xk) ⇡ f(xk). (2)

That is, simulator ˆf takes in a state xk of the crowd at time k and
produces an estimate of the state xk+1 of the crowd at one unit
of time later (henceforth referred to as a timestep). We assume
that the underlying crowd simulator works in a continuous space
over time and our approach may not be applicable to approaches in
discretized space (e.g., techniques based on cellular automata). In
Section 4.1, we describe the detailed representation of function ˆf
for some of the commonly used methods.

2.3 Real-World Crowd Data

Empirical datasets of human crowd motion from videos, LiDAR,
and GPS sensors are becoming increasingly available, aided by re-
search in computer vision, robotics and pedestrian dynamics on ex-
tracting crowd trajectories from sensors and cameras [Seyfried et al.
2010; Lee et al. 2007; Rodriguez et al. 2009; Kratz and Nishino
2011; Pettre et al. 2009]. A recent trend in research has been
the combination of crowd tracking algorithms with crowd dynam-
ics models to extract more accurate trajectories or detect abnormal
crowd behaviors [Pellegrini et al. 2009; Mehran et al. 2009].

Most of these tracking algorithms represent the position data or
the trajectory as time-stamped vectors zk, zk+1, . . . that provide
a partial (and potentially noisy) projection of the true crowd state
xk,xk+1, . . . at the corresponding moment in time. We assume that
the relation between the crowd state xk and the data zk available of
the crowd at time k is given by a known function h:

zk = h(xk) + qk, qk ⇠ Q, (3)

where qk represents the noise or uncertainty in the real world data,
drawn from a constant distribution Q. We assume in this paper that
Q (the sensor uncertainty) is known.

Because our metric measures a simulator’s predictability with re-
spect to the set of observed examples, it is important to choose rep-
resentative data. As our method does not compare a simulator’s out-
put to a given set of trajectory data, but rather to the decisions and
behaviors captured by the data, it is important to use observed ex-
amples which are representative of the behaviors of the real-world
crowd. In Sections 4 and 5, we highlight the similarity results on a
variety of crowd datasets.

2.4 Validating Crowd Simulators

Crowd simulators have previously been evaluated in terms of per-
ceptual fidelity and other metrics. For example, the work of
[Pelechano et al. 2008] evaluates crowd simulations based on quan-
tifying presence in virtual environments. Similarly, [Ennis et al.
2011; Jarabo et al. 2012] measure the perceptual effects of factors
such as illumination, camera position and orientation on the per-
ceived fidelity of movement in crowds. In a similar spirit, we also
perform a pilot study to measure the correlation between our numer-
ical similarity metric and the perceptual similarity of crowd motion
to the validation data.

Other approaches, such as [Singh et al. 2009; Kapadia et al. 2011],
present a set of evaluation metrics directly based on the paths gen-
erated by a simulator, including path smoothness, number of colli-
sions, or total path length. These metrics are designed to compare
the results of different simulations in synthetic environments, but
they are not applicable to the evaluation of the similarity between a

given simulator and real-world crowd data. Because they provide a
different type of motion analysis, these methods should be viewed
as complementary to our similarity metric.

2.4.1 Data-driven Crowd Evaluation

Many researchers have proposed methods to measure how closely
a simulator matches experimental data. For example, [Pettre et al.
2009] creates a simulation with the same initial conditions as the
data and measures the error as a function of the deviation from
the recorded trajectories. This approach works well in practice for
small numbers of agents, but may not scale to medium or large
scenes because of the accumulated, chaotic effect of errors over
time.

Other approaches, such as the density measure of [Lerner et al.
2009] and fundamental diagram based comparisons such as in
[Seyfried et al. 2010], suggest comparing measures based on crowd
densities in the output of a simulator with the observed densities in
the experimental data. While density-based metrics are applicable
to many simulations, densities are not well defined for sparse sce-
narios, and metrics based on density will be sensitive to noise for
these sparse scenarios and those with a small numbers of agents.

In contrast to previous approaches, our metric is applicable to data
with both small and large numbers of agents, and to sparse and
dense scenarios. Additionally, because our method is based on a
robust, statistical interpretation of the validation data as samples of
crowd behavior, the entropy metric can account for sensor noise,
handle differences in states between simulators, and account for
uncertainty in human motion.

3 Entropy Metric

In this section, we present our Entropy Metric and an efficient al-
gorithm to compute the metric. Fundamentally, we seek to measure
the size of the prediction error for a given simulator. That is, given
the state of a real crowd xk, how close does any given simulator ˆf
comes to predicting the subsequent crowd state xk+1 one timestep
later. We denote the error in prediction of the state as the vector
mk (see Figure 2a). We refer to the distribution of all these error
vectors across the entire validation dataset as M (see Figure 2b).
To summarize:

xk+1 = f(xk) =
ˆf(xk) +mk, mk ⇠ M. (4)

The intuition behind our metric lies in the fact that the distribution
M depends on the underlying simulator ˆf and encompasses all er-
ror and unmodeled effects in the simulator ˆf , along with potential
non-determinism in the function f . A larger value of this distribu-
tion M implies a larger deviation of the simulator from the states
represented in the real world data. This implies a higher dissimilar-
ity between the simulator and real world data. Our proposed simi-
larity metric is therefore the size of M, with a smaller M implying
a more accurate simulation with respect to the data.

In order to quantify the size of the error distribution M, we use
the notion of entropy from information theory as a measure of the
unpredictability of a vector m from the distribution. The entropy
of the distribution M measures the amount of information that is
missing from the simulator ˆf that would be needed to completely
model the function f and capture true crowd motion. As a result,
given two simulators, ˆf1 and ˆf2, the algorithm for which the en-
tropy of M is lower for some given data is regarded as a better
match for that dataset. This leads to the following definition.

x0

x1
x2

x3
x4

f̂(x0)

f̂(x1)

f̂(x2)
f̂(x3)

m0

m1

m2
m3

(a) Computing the prediction error each timestep

(b) Distribution of all errors over all timesteps

Figure 2: (a) For each timestep, there is some error m (green ar-
row) between the predicted crowd state from the simulator ˆf(xk)

(red dots) and the actual crowd state xk+1 (black dots). (b) The col-
lection off all errors (green arrows) over all timesteps is denoted as
M (green ellipse). The size of this error distribution, as measured
by its entropy, forms our metric (smaller is better).

Entropy Metric: The entropy of the distribution M of errors be-
tween the evolution of a crowd predicted by a simulator ˆf and by
the function f (lower is better).

A lower value of this entropy implies a smaller error distribution
and better similarity with respect to that dataset.

Given this definition of the entropy metric, the underlying challenge
is to determine the series of true crowd states (x1 . . .xt). Because
the true states are unknown, we need to estimate them from noisy,
real-world crowd data (z0, . . . , zt). We note that for any given data
there are multiple possible crowd simulation states. Instead of in-
ferring one true state xk, we infer a distribution of likely states Xk.
This procedure naturally accounts for data noise and simulator un-
certainty. The remainder of this section describes our procedure for
estimating the simulations states X and the error distribution M.

3.1 Computing the Entropy Metric

We compute the Entropy Metric using a two phase process. Firstly,
we estimate the crowd states X from the given validation data.
Secondly, for each transition between inferred crowd states, from
Xk to Xk+1, we then compute the distribution of prediction errors
mk = Xk+1 � ˆf(Xk) using a maximum likelihood estimator.

To reiterate, the true crowd states and transitions are unknown and
must be inferred from the real-world validation data z0, . . . , zt. We
estimate the simulator states using Bayesian Inference [McLachian
and Krishnan 1996]. This is a process which takes observed data
(z), a model of how states evolve over time (ˆf), and an estimate
of this model’s accuracy (M) to produce an estimate of the likely
distribution of true simulation states (X), as in Figure 3.

Unfortunately, this process creates a circular dependency: to esti-
mate the prediction error M we must know the true crowd states
X , and to estimate the true crowd states X from the data we must
know the prediction error M. We solve this problem by taking an
iterative approach, first using our best (most recent) guess of M to
infer X , then using this guess of X to infer M, and continuing to
alternate between these two steps until convergence (Figure 3).

This iterative approach to estimation is known as the EM-algorithm,

and is guaranteed to converge in a coordinate-ascent manner to a
locally optimal estimate of the distributions Xk and M (in terms of
their likelihood) given the observed data z0, . . . , zt. This process
is summarized in Figure 3 and discussed in detail bellow. This will
directly estimate the error distribution M whose entropy serves as
the evaluation metric for the crowd simulator ˆf . Further discussion
of the theoretical foundations of EM and convergence conditions
can be found in [McLachian and Krishnan 1996].

Bayesian Inference

(Alg. 1)

Max. Likelihood

Estimation (Alg. 2)

X

M

Simulator:

ˆfData: z

Figure 3: We estimate the error distribution M for a crowd simu-
latior via an iterative process based on the EM-algorithm. We use
Bayesian Inference to estimate the true crowd states X given data z,
simulator ˆf , and error distribution M. We then compute the max-
imum likelihood estimate of M given the simulator and estimated
state distributions X . This process is repeated until convergence.

3.2 Simplifying Assumptions

There are many difficulties in computing the Entropy Metric ex-
actly, arising from both theoretical and practical issues related to
the underlying complexity and non-linear aspects of crowd dynam-
ics, combined with the general non-parametric nature of the distri-
bution M. This makes it necessary to find appropriate approxima-
tions and simplifying assumptions which allow us to compute an
approximated value of the Entropy metric.

Our most important assumption is that all relevant distributions for
computing the metric can be modeled as Gaussians. We must rep-
resent the distributions M and Xk in some parametric form, and
it is natural to choose the first two moments (mean and variance)
of the distribution as the relevant parameters. Given only the mean
and variance this distribution, the maximum entropy principle sug-
gests a Gaussian distribution as it imposes the least additional con-
straints on the distribution. Additionally, the Central Limit The-
orem suggests that if these error distributions are the results of the
combination of many independent sources of error, they can be well
modeled as a Gaussian.

We therefore represent the distribution Xk of the state at time k and
the error distribution M as Gaussian. Furthermore, we assume that
a crowd state xk is composed of the states of each of the n individ-
ual agents within the crowd. Hence, if the state of a single agent
has dimension d, then the dimension of the composite crowd state
is nd. We make three further assumptions regarding M: (1) The
crowd simulator has no systemic bias in the error of its predictions;
(2) The crowd simulator is not systemically more accurate for some
agents within a crowd than for others; (3) There is no systemic co-
variance between the prediction errors of different agents within the
crowd. Hence, we can assume that the distribution M has a zero
mean, and that its covariance matrix is block-diagonal;

M = N (0,

2

66664

M 0 · · · 0

0 M
. . .

...
...

. . .
. . .

0

0 · · · 0 M

3

77775
), (5)

where M is a d⇥d covariance matrix which appears n times along
the diagonal. In this case, M models the per-agent error variance of
the crowd simulator, and the distribution M is fully defined by the
covariance matrix M . This representation also allows for the use of
datasets of crowds of different sizes to evaluate a crowd simulator.

3.3 Computing Crowd State Distributions

Computing the Entropy metric involves estimating the prediction
error distribution M. As discussed in Section 3.1, given real-world
data z0, . . . , zt, and a simulator ˆf , we simultaneously estimate the
crowd’s simulation state X and error distribution M using the EM-
algorithm. We first describe the mathematical details of estimating
the true simulation states from the data.

To estimate the true crowd states X from the data Z , we use a
Bayesian estimation technique based on a variant of the well-known
Kalman filter. A Kalman filter provides an optimal estimate of the
true state of a model given noisy data, assuming that the model is
linear and the noise is Gaussian. While we make a Gaussian noise
assumption, we know that crowd models are highly non-linear. Ad-
ditionally, a Kalman filter estimates the true state at any timestep
based only on past data. However, we typically have data both be-
fore and after each timestep and can use both to improve the esti-
mate of the true state at any timestep.

Given the above considerations, we use a method know as Ensem-
ble Kalman Smoothing (EnKS) [Evensen 2003]. The EnKS infer-
ence algorithm represents the simulation state using a collection of
several samples of possible simulator states (called an ensemble).
Each sample is updated based on the non-linear motion model of
the crowd simulator, and iteratively modified to correspond to the
past and future observed data in a manner consistent with the model
error M and data uncertainty Q. The result is a robust estimate of
the true simulation state of each agent for each timestep, based on
the global data over all agents over all past and future timesteps.

The EnKS algorithm is known to work particularly well for high-
dimensional state spaces and non-linear dynamics [Evensen 2003].
In our case, each distribution Xk is represented by an ensemble
of m samples: Xk = {ˆx(1)

k , . . . , ˆx
(m)
k }, and we assume an initial

ensemble X0 is given. The method then proceeds as shown in Al-
gorithm 1. This computes a representation for X0, . . . ,Xt, given a
current estimate of M and the trajectory data z0, . . . , zt.

3.4 Computing the Variance M

The second step of the EM-algorithm consists of computing the
maximum-likelihood estimate of the distribution M, given the cur-
rent estimates of the distributions X0, . . . ,Xt of the crowd states as
estimated in the first step.

Recall that we do not estimate a single crowd state, but rather a
distribution of likely states. Therefore, rather than compute M
directly, we must instead find the most likely value for M given
the inferred distributions of Xk. Since M is fully defined by the
variance M , this is equivalent to maximizing the expected likeli-
hood of M (see Eqn. 5). Further, it is mathematically convenient
to maximize the expected log-likelihood ``(M) (as the logarithm
cancels against the exponent in the probability density function of
a Gaussian distribution), which is equivalent since the logarithm is
a monotonic function.

We denote the part of the nd-dimensional crowd state xk that con-
tains the state of agent j 2 1 . . . n as xk[j]. The expected log-

Algorithm 1: EnKS for estimating crowd states

Input: Measured crowd data z1...zk, Crowd Simulator ˆf ,
Estimated error variance M

Output: Estimated crowd state distributions X1...Xk

foreach k 2 1 . . . t do
// Predict

foreach i 2 1 . . .m do
Draw m

(i)
k�1 from M

ˆ

x

(i)
k =

ˆf(ˆx
(i)
k�1) +m

(i)
k�1

Draw q

(i)
k from Q

ˆ

z

(i)
k = h(ˆx

(i)
k) + q

(i)
k

¯

zk =

1
m

Pm
i=1 ˆz

(i)
k

Zk =

1
m

Pm
i=1(ˆz

(i)
k � ¯

zk)(ˆz
(i)
k � ¯

zk)
T

// Correct

foreach j 2 1 . . . k do
¯

xj =

1
m

Pm
i=1 ˆx

(i)
j ;

⌃j =

1
m

Pm
i=1(ˆx

(i)
j � ¯

xj)(ˆz
(i)
k � ¯

zk)
T

foreach i 2 1 . . .m do
ˆ

x

(i)
j =

ˆ

x

(i)
j + ⌃jZ

�1
k (zk � ˆ

z

(i)
k)

likelihood of variance matrix M is given by:

E(``(M)) = �
t�1X

k=0

nX

j=1

E
�
(xk+1[j]� ˆf(xk)[j])

TM�1·

(xk+1[j]� ˆf(xk)[j])
�
, xk ⇠ Xk. (6)

Combining Eqn. 6 with the ensemble representations of the distri-
butions Xk, we can compute the maximum likelihood variance M
using Algorithm 2.

Algorithm 2: Maximum Likelihood Estimation
Input: Estimated crowd state distributions X1...Xk, Crowd

simulator ˆf
Output: Estimated error variance M
M = 0 ;
foreach k 2 0 . . . t� 1 do

foreach i 2 1 . . .m do
foreach j 2 1 . . . n do

M+= (

ˆ

x

(i)
k+1[j]� ˆf(ˆx

(i)
k)[j])(ˆx

(i)
k+1[j]� ˆf(ˆx

(i)
k)[j])T

M/= tmn

The EM-algorithm is initialized with an initial guess for M and X0,
and both steps are repeatedly performed until convergence. The
resulting M is a (local-)maximum-likelihood estimate of the error
variance of crowd simulator ˆf .

3.5 Computing the Entropy of M

Given the per-agent variance M as computed above, it remains to
compute the entropy of the Gaussian distribution M of Eqn. (5).
This entropy is given by:

e(M) =

1

2

n log((2⇡e)d det(M)), (7)

where n is the number of agents in the crowd, and d is the dimen-
sion of the state of a single agent. In order to make our metric
independent of the number of agents in the crowd, we normalize
the above equation by dividing by n. This gives the entropy of the
normal distribution N (0,M) that models the per-agent error of the
crowd simulator ˆf . We note that this value is proportional to the
log of the determinant of the per-agent variance M , meaning the
Entropy Metric follows a log-scale.

4 Implementation and Evaluation

In this section, we demonstrate the application of the Entropy Met-
ric to several crowd simulation algorithms. For each simulation
method we evaluate the Entropy Metric on several different sets of
simulation parameters, across several different scenarios, each with
data gathered from different participants in the scenario. The simu-
lation methods, validation scenarios, and data gathering techniques
are described below. The entropy scores for all combinations of pa-
rameters, scenarios, and simulators are summarized in Table 1. Be-
cause the entropy metric is logarithmic, linear difference in scores
corresponds to an exponential difference in performance.

4.1 Simulation Models

We chose three popular simulation methods to test the metric with:
a rules-based steering approach, a social-forces model, and a pre-
dictive planning approach. Many variants and extensions of all
these models have been proposed and widely used in different ap-
plications.

Steering Simulator: Steering based simulation approaches use a
discrete set of rules to choose agent velocities. We chose a simula-
tion technique based on the classical steering method proposed by
Reynolds [1999]. Each agent follows three simple behavior-based
rules: steer towards the goal, steer away from the nearest obstacle,
and steer away from the nearest person. When obstacles are very
close by or when collision are imminent, the avoidance rules are
given precedence over the goal-following behavior.

Social Forces Simulator: Social force simulation models use po-
tential fields defined by neighboring agents to impart an acceler-
ation to each agent. We chose a simulation technique based on
Helbing’s Social Force Model (SFM) [Helbing et al. 2000]. SFM
computes the trajectory of each agent by applying a series of forces
to each agent that depend on the relative positions and velocities
of nearby agents. An agent A receives a repulsive force pushing
it away from each neighbor B, denoted as fAB . Moreover, each
agent experiences a force pushing it perpendicularly away from the
walls or obstacles, denoted as fW . The magnitude of these forces
decreases exponentially with the distance. Each agent also has a
goal velocity v

pref
A , which is used to compute the desired speed

and direction. The simulation function ˆf can be summarized as:

f

new
A =

v

pref
A � vA

↵
+

X

A 6=B

fAB +

X

W

fW (8)

where ↵ controls the rate of acceleration.

Predictive Planning Simulator: Predictive, planning based simu-
lators attempt to anticipate collisions based on neighboring agents’
positions and velocities and determine new paths which avoid these
collisions. We chose a velocity-based formulation called Recipro-
cal Velocity Obstacle as implemented in the RVO2 library [van den
Berg et al. 2009]. Each agent navigates by constraining its veloc-
ity to those which will avoid collisions with nearby neighbors and

obstacles for at least ⌧ seconds. The set of velocity constraints im-
posed by all the neighbors of an agent A is denoted as RV O⌧

A. An
agent is also assumed to have a desired velocity v

pref
A . The result-

ing simulation function ˆf can be expressed as:

v

new
A = argmin

v2RV O⌧
A

kv � v

pref
A k. (9)

The avoidance computation is performed using linear program-
ming, and all agents are assumed to reciprocate (share the respon-
sibility) in avoiding collisions.

For each simulation method, three different sets of parameters were
chosen which varying collision radii, preferred speeds, and other
internal simulation constants. The resulting simulations that use
these parameters are referred to as Steer-1, Steer-2, and Steer-3 for
the steering-based approach, SFM-1, SFM-2, and SFM-3 for the
social-forces based approach, and RVO-1, RVO-2, and RVO-3 for
the predictive planning based approach, respectively.

Further information regarding the implementation of each algo-
rithm are given in Appendix B in the supplementary materials,
which details the specific parameters used in each simulation. Ad-
ditional, this appendix B further describes other implementation de-
tails including the specific form of the state vectors, validation data
and observation function used to obtain the results in this section.

4.2 Real-World Crowd Data

In order to evaluate the Entropy Metric, we use several sources of
data. They correspond to different real-world scenarios (both in-
door or outdoor) and have varying number of agents. Each dataset
was captured using different sensing hardware (see Table 2).

Lab Setting: This data comes from a study performed in a con-
trolled setting in a motion capture lab. In this scene, two people
were placed about 6m apart and were asked to swap their positions
[Moussaı̈d et al. 2011] (see Fig. 4a). We label this benchmark with
two agents as Lab.

Street Crossing: This data comes from a video of pedestrians
walking on a street, which was captured using an overhead cam-
era. The trajectories of each agent were extracted using multi-object
tracking [Pellegrini et al. 2009] (see Fig. 4b).

Importantly, we use data from two different capture sessions involv-
ing different groups of people crossing the same street. This allows
us to test for correlation in the results of metric between different
groups of people for the same scenario. The datasets from the two
groups are labeled as Street-1 and Street-2.

Narrow Passageway: This data comes from a large indoor experi-
ment designed to capture human exiting behavior through passages
of varying sizes [Seyfried et al. 2010]. The experiment involved use
of markers and optical tracking equipment to gather high-quality
data corresponding to subjects’ positions near the entrance of the
passageway. The experiment was performed with different exit
widths, with each run consisting of hundreds of participants, about
50 of whom were in the tracked area at any given time (see Fig. 4c).

Again, we use data from two different runs of this experiment, the
first with a passage of very narrow width of 1m and the second with
a wider passage of width 2.5m, denoted as Passage-1 and Passage-
2, respectively. This is used to analyze correlation between similar
scenarios.

For all five scenarios, we assume that the goal position for each
agent is the last tracked position in the dataset and compute v

pref

accordingly. However, in some scenarios (such as people moving

Scenario RVO-1 RVO-2 RVO-3 SFM-1 SFM-2 SFM-3 Steer-1 Steer-2 Steer-3
Passage-1 3.048 2.329 3.400 6.576 6.581 6.579 6.403 6.490 6.435
Passage-2 1.991 0.690 1.990 5.430 5.458 5.451 4.713 4.748 4.764
Street-1 2.744 3.156 2.800 4.500 4.707 4.665 2.979 3.569 3.838
Street-2 2.709 2.564 2.520 3.793 3.885 3.780 2.660 2.744 3.060
Lab 1.920 1.610 1.230 2.538 2.523 2.509 1.871 1.847 2.305

Table 1: Entropy Metric for different simulation algorithms on various real-world datasets (lower is better).

(a) Lab (small) (b) Street (medium) (c) Passage (large)

Figure 4: Our rendering of real-world crowd trajectories used for evaluation.

in a maze) this assumption may not hold. In such cases vpref can
be considered as part of the state and inferred along with other pa-
rameters using Bayesian inference.

Scenario Agents Density Capturing technique
Passage-1 40 2.76 optical tracking+camera
Passage-2 59 2.38 optical tracking+camera
Street-1 18 0.42 overhead camera
Street-2 11 0.37 overhead camera
Lab 2 - motion capture

Table 2: Real-world crowd datasets used by our evaluation algo-
rithm. We report the average number of agents per frame and the
density of the agents over the tracked area.

4.3 Results

As can be seen in Table 1, different simulators vary in their abil-
ity to capture the motion characteristics of different datasets. Fur-
thermore, for a given simulation method, different parameter sets
also score better or worse. This suggests that maximizing the sim-
ilarity to the data involves choosing not only the right simulator,
but the right parameters. Some scenarios resulted in a relatively
high Entropy Metric value across all simulators. For example, the
best score for Passage-1 (the narrower passage) was worse than the
worst score for the Lab scenario. This suggests that all the tested
simulators performed poorly in terms of capturing the complex be-
haviors pedestrians exhibited in the narrow passage scenario.

5 Analysis

While Section 4 provides the results of the Entropy Metric on dif-
ferent simulators and validation datasets, this section analyzes the
metric itself. Specifically, we analyze the metric in terms of pre-
dictiveness, consistency, robustness to noise, correlation with per-
ceptual similarity, and other important properties. To begin with,
we highlight several useful properties of the metric which follow
directly from its mathematical definition.

Rankable results: For a given validation dataset, the Entropy Met-
ric provides unique, global rankable results because it computes a

single number in R. The result can be ranked uniquely when there
are no ties. If the Entropy Metric for ˆf1 is lower than the Entropy
Metric for ˆf2, this implies that simulator ˆf1 better captures the ag-
gregate dynamics in that dataset than ˆf2.

Discriminative: The data presented in Table 1 highlights the dis-
criminative nature of the Entropy Metric. In contrast to approaches
which test a simulator against a discrete set of benchmarks, the En-
tropy Metric returns a real number, eliminating the risk of ties. This
allows us to generate a clear quantitative ranking of different simu-
lators.

Generality: The Entropy Metric makes very few assumptions
about the underlying simulator and the real-world data. This is be-
cause the Bayesian inference framework is capable of estimating
the complete simulation state (position, velocity, orientation, etc.)
based on only partial validation data (e.g., only positions). This
allows to us to compare simulators that use only position and ve-
locities to others that also account for orientation and accelerations,
or other simulation specific parameters.

Because the entropy measure directly compares a simulation to ref-
erence data, it directly reflects optimizations made to increase the
accuracy of simulations. Appendix A in the supplemental material
provides a case study showing a correlation between improvements
to RVO, and a decrease in the Entropy scores of the resulting simu-
lations. These results can also be seen in the supplemental video.

5.1 Consistency

It is important that the Entropy Metric provides consistency in terms
of results across similar datasets. Based on the empirical results
presented in Table 1, we can determine that the Entropy Metric has
this property. Specifically, the results on similar benchmarks are
well correlated with each other. For example, the ordering from
best to worst simulators for the benchmarks Passage-1 and Passage-
2 does not differ significantly even though the data changes. This
suggests the metric can reliably capture some inherent aspect of a
simulator’s ability to reproduce the movement through a passage.

We can numerically measure the correlation between scenarios us-
ing Pearson’s correlation coefficient r, which measures correlation

Scenario Correlation
Passage-1 & Passage-2 .975
Street-1 & Street-2 .917
Street-1 & Passage-2 .585
Passage-1 & Street-2 .414

Table 3: The Entropy Metric results on similar datasets such as
(Passage-1,Passage-2) or (Street-1,Street-2) are highly correlated.
The metric shows lower correlation for different dataset pairs.

on a scale from 0 (uncorrelated) to 1 (exactly correlated). The re-
sults from computing the Entropy Metric on two different datasets
from the same scenario are highly correlated (r > .9), implying
a consistency in the metric across similar datasets. The results
from different datasets (e.g. Street vs Passage) are much less corre-
lated. This is because different simulators have different abilities to
capture different types of motion, which is reflected in the metric.
These correlation results are summarized in Table 3.

5.2 Robustness to Noise

Any data-driven analysis of a simulator needs to consider the ef-
fects of noise present in the data. Even in controlled lab settings,
there are small amounts of sensor noise, the effects of which can be
magnified over time. These effects are even more pronounced when
working with data captured from outdoor natural scenes. This data
is normally produced by video processing techniques, which can
have large amounts of errors compared to data gathered in a con-
trolled lab setting.

We can analyze the effect of noise on the Entropy Metric by ar-
tificially adding noise to the validation datasets. In particular, we
highlight the results on the data from outdoor street crossing sce-
nario. We add uniformly distributed noise to the data of up to a
half meter in size (while keeping Q constant). We then compute
the Entropy Metric for three different simulators (RVO-1, SFM-2,
and Steer-3) by varying the noise. The results are shown in Fig 5.

1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0

0 0.1 0.2 0.3 0.4 0.5

En
tr

op
y

M
et

ric

Sensor Noise (m)

RVO-1
SFM-2
Steer-3

Figure 5: We evaluate the impact of adding artificial error (uni-
formly distributed) to the Street-1 benchmark for different simula-
tors. The Entropy Metric is relatively stable to this error and the
relative ranking of different simulators does not change.

As expected, the Entropy score gets worse for all simulators as more
noise is added because the error from the noise is being attributed
to the simulation. However, the metric handles the noise robustly,
with the value of the metric changing in a slow, continuous fashion
as large amounts of noise are added. Even with an extreme value
of .5m of noise being added randomly every timestep, the metric
maintains the same relative ranking between the simulators.

5.3 Similarity between Two Simulators

While the Entropy Metric is designed to compare a simulator to a
validation dataset, we can also use it to compare two simulators.
This comparison is performed by running a simulator to generate
paths and using these paths as the validation dataset for the sec-

Simulator RVO-1 SFM-2 Steer-3
RVO-1 0.19 3.17 3.16
SFM-2 4.34 1.38 1.58
Steer-3 2.26 1.66 0.90

Table 4: Results from using the Entropy Metric to compare two
simulators As expected, the Entropy Metric is the smallest when a
simulator is compared to itself.

ond simulator. In this way we can compute a score measuring the
similarity of two simulators, with a lower score implying a better
match between the aggregate dynamics of two simulators. Table 4
shows the results of this comparison on three different simulators.
The results are asymmetric mainly due to differences in how sensi-
tive each simulator is to the noise. A symmetric comparison can be
achieved by averaging the pairwise differences.

As expected, the similarity matrix is minimized along the diago-
nal, indicating that each simulation is most closely related to itself.
Additionally, the match between RVO and the other two models is
much worse than the match between SFM and Steer (i.e., ⇠3 vs
⇠1.5). We speculate that this is due to the fact that RVO uses a
predictive approach to collision avoidance, while the other two ap-
proaches both use a model based on reactive, distance-based forces.

5.4 Data-driven Crowds and Behavior Modeling

Data-driven approaches are becoming more common in crowd sim-
ulation. In part, this is because of their ability to capture com-
plex or subtle behaviors that to not directly map to simulation pa-
rameters. Here, we explore the Entropy Metric as it applies to a
data-driven crowd simulation designed to capture high-level per-
sonality differences. Specifically, we look at simulators based on
high-level personality models such as the Five-factor Trait Theory
or OCEAN model. This model classifies a personality based on
its level of Openness, Conscientiousness, Extraversion, Agreeable-
ness and Neuroticism [Costa and McCrae 1992]. Recent crowd
work such as [Durupinar et al. 2008] and [Guy et al. 2011] have
proposed data-driven models for each of these personality traits.

In order to evaluate our metric, we analyze one trait (Extraversion),
similar results also hold for other data-driven models of high level
behaviors. We use a validation dataset consisting of five agents
walking past each other with a high degree of Extraversion (as re-
ported by [Guy et al. 2011]), and vary the simulator to have differ-
ing amounts of Extraversion. The Entropy results match well when
we choose a simulator trained to match a high Extraversion dataset,
and the Entropy metric was worse when using a simulator trained
for low amounts of perceived Extraversion. As we interpolate be-
tween the two simulators using the perceptually linear personality
space defined in [Guy et al. 2011], we see a linear improvement
in the Entropy metric scores as the simulator moves from less Ex-
traversion to more, see Figure 6. The linearity of the match suggests
the Entropy Metric may also be well correlated with a perceptual
notion of similarity, this is further explored in Section 5.5.

5.5 Comparison to Perceptual Evaluation

We conducted a user study to analyze how well the numerical sim-
ilarity of the Entropy metric corresponds to perceptual similarity.
This study involved 36 participants (22 males) and had two sec-
tions; the first was designed to directly investigate the correlation
between the Entropy metric and perceived similarity, and the sec-
ond section was designed to analyze how well the metric can pre-
dict a user’s perceived similarity. When studying perceptual evalu-
ation in crowd videos it is important to note the effect that rendering
choices, such as cloned appearance and motion of individuals, can

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1

R
el

at
iv

e
E

nt
ro

py
 S

co
re

Percieved Extraversion (0 = low, 1 = high)

Figure 6: Comparison of varying levels of the Extraversion per-
sonality trait to the Entropy score given an dataset of Extraverted
motion. As the data-driven simulation is modified from a less Ex-
traverted model, towards a more extraverted one the Entropy metric
with respect to a highly Extraverted dataset decreases.

affect a user’s perception of simulated crowds [McDonnell et al.
2008]. To mitigate this effect, we rendered all motion users saw
with the same visual crowd models and rendering parameters.

In the first section of the study, users were shown two videos. The
first was a rendering of the simulation and the second was a render-
ing of the real-world data. The real-world motion was re-rendered
with the crowd rendering system used for the simulated motion.
Users were asked to rate the pairs of videos in terms of their simi-
larity to each other on a Likert Scale of 0 (not at all similar) to 10
(very similar); this was done across four different simulators, each
with a different entropy score compared to the real-world data. The
results are shown in Fig 7.

0

2

4

6

8

10

6.07 2.09 1.36 0.75

Pe
rc
ei
ve
d(
Si
m
ila
rit
y(

Entropy(Score(

Figure 7: Comparison of Entropy score (lower is better) to per-
ceived similarity (higher is better) across four different simulators,
error bars represent mean absolute deviation in user scores. Simu-
lators with a lower Entropy Metric were consistently given a higher
score in terms of perceived similarity to the source video by users.

As can be seen in Fig 7, when the entropy score is very large (6.07),
users gave the simulation a low score for similarity, generally rang-
ing from 0 to 4. When the entropy score was very small (0.75),
users gave the simulation a high score for similarity, generally rang-
ing from 8 to 10. For entropy scores in-between, the users gave cor-
respondingly intermediate similarity scores. Numerically, the En-
tropy Metric and user reported perceived similarity have a Pearson’s
correlation coefficient of .91, which indicates the Entropy Metric is
strongly correlated with perceived similarity.

The second section of the user study was structured using the two-
alternative forced choice (2AFC) procedure. For each question,
a user was shown videos from two different simulations along

with reference video from real-humans walking in the same envi-
ronment. The users were asked two questions: which simulator
matched the real-world data better and whether the two simulators
had similar or different behaviors.

A priori, we would expect users to choose the simulator with a
lower Entropy score as the one which matched the data better, as
this is what the Entropy score seeks to measure. Figure 8 shows
the accuracy of this prediction versus the relative differences in En-
tropy score between the two videos. When the Entropy score was
greater than 0.1, the metric correctly predicted the user response
with a high accuracy rate, and at statistically significant level (p 
.01).

When the relative difference in Entropy scores between two simu-
lations were very small (less than 0.1), the metric failed to correctly
predict user preferences at a statistically significant level. However,
for these scenarios the metric correctly classifies the simulators as
“very similar”, with users classifying these simulations as similar
94.3% of the time.

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5

%
 C

or
re

ct
 P

re
di

ct
io

n

Relative Difference in Entropy Score

Figure 8: Relative entropy differences versus user preferences.
When the entropy score difference between two simulators was
more than 0.1, users agreed with the score’s prediction at a sta-
tistically significant rate.

To summarize, the Entropy Metric correlates well with perceived
similarity. When the metric indicated a large difference between
two simulators, the users agreed with the metric at a statically sig-
nificant rate (i.e. a rate much greater than chance). When the metric
indicated very small differences, users also agreed that the differ-
ence was small at a statistically significant rate. This result is sig-
nificant for those using this metric to design data-driven simulators
and for those who want to evaluate simulators used in applications
such as games and special effects. By finding simulation param-
eters that minimize the Entropy Metric, the resulting simulations
will visually appear progressively closer to the target data without
the need for a human in the loop to evaluate the intermediate results.

These results also provide a meaningful scale for the metric. The
sharp inflection in Fig 8 around 0.1 suggests that this value may be
a good estimate of the just-noticeable-difference level in the metric.
Likewise, Figure 7 suggests that simulations with an Entropy score
less than 1 should be considered very visually similar to the source
data and those with a score greater than 6 visually very different.

5.6 Motion Uncertainty

As discussed in Section 2.4, many approaches have been suggested
for evaluating a simulators ability to match data. The main novelty
of the Entropy Metric comes from its ability to effectively handle
sensor noise, its correlation with perceptual similarity, and its robust
treatment of the uncertainty in human motion. The first two of these
features have been discussed above; here, we analyze the effect of
motion uncertainty.

When two people interact, their paths can vary for a variety of rea-
sons. However, small variations early in a path can lead to large
deviations later on. These deviations make it hard to compare two
trajectories directly. This is what makes comparing trajectories an
inappropriate similarity metric. To illustrate this, we used data cor-
responding to two people swapping their positions in the Lab sce-
nario and mirrored the paths so the participants pass on the right
rather than on the left. Both of these paths are equally valid ways of
getting between the given start and end positions, and ideally would
result in similar validation scores for a simulation.

Since the Entropy Metric does not a compare a simulator to the tra-
jectory data directly, but rather to the decisions latent in that data,
it computes nearly identical scores for the two datasets. For exam-
ple, the RVO-3 simulator scores 1.91 for the original and 1.92 for
the mirrored data. However, if average trajectory differences were
used as the metric, the score would change significantly. This is
because one simulator can predict passing either on the left or the
right, but not both. In contrast, because the Entropy Metric is com-
puted over a distribution of likely simulator states, this results in
similar scores for two datasets.

(a) Pass on Left (Entropy for RVO-3: 1.91)

(b) Pass on Right (Entropy for RVO-3: 1.92)

Figure 9: Two agents (red and blue) switch positions. Regardless
of whether the agents pass each other on their left sides (a) or their
right sides (b), the Entropy Metric for a given simulator remains
almost unchanged.

6 Assumptions and Limitations

When deriving our approach, we have made some basic assump-
tions that can help inform the appropriate use of the Entropy Metric
for simulation evaluation. Most importantly, we assume that there
exists some corpus of representative crowd data for a simulator to
be compared to. Because the metric evaluates at the level of in-
dividual motion decisions it is important that the validation dataset
contains motion which is representative of the types of motions con-
sidered realistic. Additionally, the basic formulation of the entropy
metric does not directly measure characteristics arising from emer-
gent phenomena, such as density, lane formation, and overall flow
rate, though such quantities may be indirectly inferred through the
motion of individuals in the crowd and would be of interesting top-
ics for future investigation.

The formulation of the entroy metric assumes that all uncertainties
are known and can be modeled with zero-meaned gaussian distribu-
tions. Such uncertainties include uncertainty in the validation data,
errors in the estimation of the environment, senor noises, etc. This
assumption extends to the error of a given simulation technique,
which is what the Entropy metric seeks the measure. If any of these
errors do not fit this model (for example, a simulation technique
which has a systematic bias), our method will naturally account for
these by estimating a larger variance for the error distribution. Like-
wise, any errors in modeling the environment or sensor uncertainty
will also increase the estimated error of a simulation (see Section
5.2). By explicitly estimating model uncertainty, the Entropy met-
ric seeks to account for the aggregate effect of the non-determinism
in human motion, errors in sensors, and unmodeled sources of er-
ror. In this way, our metric can gracefully handle a breakdown of

the mathematical assumptions underlying its derivation.

While our metric is simple and provides a consistent, rankable mea-
sure of similarity to source data as a single real number, the metric
is not invariant to changes in timestep and measurement units. We
also assume that the sensing accuracy Q is known, though it may
be possible to extend our approach to unknown distributions.

In contrast to other methods that measuring density, collision
counts, and other quantities, this approach instead estimates the er-
ror between the motion computations performed by a given simu-
lator and with those captured in the validation dataset. Fundamen-
tally, this type of analysis is applicable to where there is known
ground truth motion data, along with knowledge about the environ-
ment. Therefore, the Entropy Metric is only defined for a given
set of real-world crowd data and cannot directly compare different
simulators in the absence of such data. It cannot measure the plau-
sibility of a simulator in the absence of real-world ’ground truth’,
nor can it be directly applied to scenarios without data to validate
against.

7 Conclusion and Future Work

We have introduced an Entropy Metric for evaluating crowd simula-
tors against real-world crowd data. Our metric provides a meaning-
ful quantification that can be used to rank various crowd simulators
in a predictive and consistent manner. To the best of our knowl-
edge, this is the first attempt at designing an objective, quantitative
evaluation metric that measures the similarity of crowd simulation
results with respect to real-world data and explicitly accounts for
sensor noise, motion uncertainty, and non-determinism. We have
used it to evaluate the performance of steering behaviors, force-
based models, and predictive crowd simulation algorithms on dif-
ferent real-world datasets.

In the future, we hope to extend this work to analyze other widely
used crowd simulation techniques, such as continuum techniques,
vision-based steering, data-driven approaches, foot-step planners,
and cognitive models – all of them can be described using continu-
ous formulations introduced in this paper. Furthermore, we would
like to apply our metric to a wider variety of real-world crowd data
sets that measure many different aspects of motion, including lo-
cal density, individual behaviors, and apparent personalities. We
are also interested in exploring applications of this metric, such as
automatic optimization of crowd simulations to data.

Acknowledgements We are grateful comments from the reviewers,
and thankful for help from Sujeong Kim and Sean Curtis. This re-
search is supported in part by ARO Contract W911NF-04-1-0088,
NSF awards 0917040, 0904990, 100057 and 1117127, and Intel.

References

COSTA, P., AND MCCRAE, R. 1992. Revised NEO Personality In-
ventory (NEO PI-R) and Neo Five-Factor Inventory (NEO-FFI).
Psychological Assessment Resources.

DURUPINAR, F., ALLBECK, J., PELECHANO, N., AND BADLER,
N. 2008. Creating crowd variation with the OCEAN personality
model. In Autonomous agents and multiagent systems.

ENNIS, C., PETERS, C., AND O’SULLIVAN, C. 2011. Percep-
tual effects of scene context and viewpoint for virtual pedestrian
crowds. ACM Trans. Appl. Percept. 8, 10:1–10:22.

EVENSEN, G. 2003. The ensemble kalman filter: theoretical for-
mulation. Ocean Dynamics 55, 343–367.

FUNGE, J., TU, X., AND TERZOPOULOS, D. 1999. Cognitive
modeling: Knowledge, reasoning and planning for intelligent
characters. Proc. of ACM SIGGRAPH, 29–38.

GALLAGHER, R., AND APPENZELLER, T., Eds. 1999. Science
Magazine, vol. 284. AAAS.

GUY, S., CHUGGANI, J., CURTIS, S., DUBEY, P., LIN, M., AND
MANOCHA, D. 2010. Pledestrians: A least-effort approach
to crowd simulation. Proc. of Eurographics/ACM SIGGRAPH
Symposium on Computer Animation, 119–128.

GUY, S. J., KIM, S., LIN, M., AND MANOCHA, D. 2011. Sim-
ulating heterogeneous crowd behaviors using personality trait
theory. In Eurographics/ACM SIGGRAPH Symposium on Com-
puter Animation, The Eurographics Association, 43–52.

HELBING, D., AND MOLNAR, P. 1995. Social force model for
pedestrian dynamics. Physical Review E 51, 4282.

HELBING, D., FARKAS, I., AND VICSEK, T. 2000. Simulating
dynamical features of escape panic. Nature 407, 487–490.

JARABO, A., EYCK, T. V., SUNDSTEDT, V., BALA, K., GUTIER-
REZ, D., AND O’SULLIVAN, C. 2012. Crowd light: Evaluating
the perceived fidelity of illuminated dynamic scenes. Proc. of
Eurographics. to appear.

KAPADIA, M., WANG, M., SINGH, S., REINMAN, G., AND
FALOUTSOS, P. 2011. Scenario space: characterizing coverage,
quality, and failure of steering algorithms. In Proceedings of the
2011 ACM SIGGRAPH/Eurographics Symposium on Computer
Animation, 53–62.

KARAMOUZAS, I., HEIL, P., BEEK, P., AND OVERMARS, M.
2009. A predictive collision avoidance model for pedestrian sim-
ulation. Proc. of Motion in Games, 41–52.

KRATZ, L., AND NISHINO, K. 2011. Tracking pedestrians us-
ing local spatio-temporal motion patterns in extremely crowded
scenes. IEEE Trans. on Pattern Analysis and Machine Intelli-
gence, 99, 1–1.

LEE, H., CHOI, M., HONG, Q., AND LEE, J. 2007. Group be-
havior from video: a data-driven approach to crowd simulation.
In Proc. of Symposium on Computer Animation, Eurographics
Association, 109–118.

LERNER, A., CHRYSANTHOU, Y., AND LISCHINSKI, D. 2007.
Crowds by example. Computer Graphics Forum (Proceedings
of Eurographics) 26, 3.

LERNER, A., CHRYSANTHOU, Y., SHAMIR, A., AND COHEN-
OR, D. 2009. Data driven evaluation of crowds. In Proceedings
of the 2nd International Workshop on Motion in Games, 75–83.

MCDONNELL, R., LARKIN, M., DOBBYN, S., COLLINS, S.,
AND O’SULLIVAN, C. 2008. Clone attack! perception of crowd
variety. In ACM Transactions on Graphics (TOG), vol. 27, ACM,
26.

MCLACHIAN, G., AND KRISHNAN, T. 1996. The EM Algorithm
and Extensions. John Wiley and Sons.

MEHRAN, R., OYAMA, A., AND SHAH, M. 2009. Abnormal
crowd behavior detection using social force model. In Proc. of
Computer Vision and Pattern Recognition, 935–942.

MOUSSAÏD, M., HELBING, D., AND THERAULAZ, G. 2011. How
simple rules determine pedestrian behavior and crowd disasters.
Proceedings of the National Academy of Sciences 108, 17, 6884.

NARAIN, R., GOLAS, A., CURTIS, S., AND LIN, M. C. 2009.
Aggregate dynamics for dense crowd simulation. ACM Transac-
tions on Graphics (Proc. of ACM SIGGRAPH Asia) 28, 5, 122.

ONDREJ, J., PETTRE, J., OLIVIER, A., AND DONIKAN, S. 2010.
A synthetic-vision based steering approach for crowd simula-
tion. ACM Trans. on Graphics 29, 4, 123:1–123:9.

PATIL, S., VAN DEN BERG, J., CURTIS, S., LIN, M. C., AND
MANOCHA, D. 2011. Directing crowd simulations using nav-
igation fields. IEEE Trans. on Vis. and Comp. Graphics 17, 2,
244–254.

PELECHANO, N., ALLBECK, J. M., AND BADLER, N. I. 2007.
Controlling individual agents in high-density crowd simulation.
Proc. of Symposium on Computer Animation, 99–108.

PELECHANO, N., STOCKER, C., ALLBECK, J., AND BADLER, N.
2008. Being a part of the crowd: towards validating vr crowds
using presence. In Proc. of 7th Int. Joint Conference on Au-
tonomous Agents and Multiagent Systems (AAMAS), 136–142.

PELLEGRINI, S., ESS, A., SCHINDLER, K., AND VAN EOOL, L.
2009. You’ll never walk alone: Modeling social behavior for
multi-target tracking. In Proc. of Int. Conf. on Computer Vision,
261–268.

PETTRE, J., ONDREJ, J., OLIVIER, A., CRETUAL, A., AND
DONIKIAN, S. 2009. Experiment-based modeling, simulation
and validation of interactions between virtual walkers. In Proc.
of Symposium on Computer Animation, ACM, 189–198.

REYNOLDS, C. W. 1987. Flocks, herds and schools: A distributed
behavioral model. Proc. of ACM SIGGRAPH 21, 25–34.

REYNOLDS, C. W. 1999. Steering behaviors for autonomous char-
acters. Game Developers Conference.

RODRIGUEZ, M., ALI, S., AND KANADE, T. 2009. Tracking in
unstructured crowded scenes. In Computer Vision, 2009 IEEE
12th International Conference on, 1389–1396.

SCHADSCHNEIDER, A., CHOWDHURY, D., AND NISHINARI,
K. 2011. Stochastic Transport in Complex Systems: From
Molecules to Vehicles. Elsevier.

SEYFRIED, A., BOLTES, M., KÄHLER, J., KLINGSCH, W.,
PORTZ, A., RUPPRECHT, T., SCHADSCHNEIDER, A., STEF-
FEN, B., AND WINKENS, A. 2010. Enhanced empirical data
for the fundamental diagram and the flow through bottlenecks.
Pedestrian and Evacuation Dynamics 2008, 145–156.

SINGH, S., KAPADIA, M., REINMANN, G., AND FALOUTSOS,
P. 2009. Steerbench: A benchmark suite for evaluating steering
behaviors. Computer Animation and Virtual Worlds 20, 533–
548.

SUNG, M., GLEICHER, M., AND CHENNEY, S. 2004. Scalable
behaviors for crowd simulation. Computer Graphics Forum 23,
3 (Sept), 519–528.

TREUILLE, A., COOPER, S., AND POPOVIC, Z. 2006. Continuum
crowds. Proc. of ACM SIGGRAPH, 1160 – 1168.

VAN DEN BERG, J., GUY, S. J., LIN, M. C., AND MANOCHA, D.
2009. Reciprocal n-body collision avoidance. Proc. of Interna-
tional Symposium on Robotics Research (ISRR), 3–19.

YU, Q., AND TERZOPOULOS, D. 2007. A decision network frame-
work for the behavioral animation of virtual humans. In Proc. of
Symposium on Computer animation, 119–128.

Appendices

A Case Study: Optimizing RVO

The Entropy metric seeks to capture how well a simulator captures
the aggregate dynamics of the motion observed in real-world data.
For simple scenarios it maybe possible to perform other, simple
data analysis, such as measuring average speed or minimum dis-
tance between the agents to reliably indicate a failure to capture
the recorded motion. Examples include measuring average speed
or minimum distance between the agents. This type of analysis
is commonly used to improve the simulator and lower the entropy
score.

As an example, we chose the Lab scenario of two people passing
each other. First we evaluated the Entropy metric with an inten-
tionally poor set of parameters, labeled RVO-A, which resulted in
a large Entropy score of 6.07. Next, we improve the simulator by
measuring the closest distance between the two participants and us-
ing that parameter to set the radius (RVO-B). The simulator’s sim-
ilarity can be further improved by setting the preferred agent speed
to be the average speed of the two participants (RVO-C). Finally,
we increase the time horizon over which agents plan their colli-
sion avoidance to improve the anticipation in motion (RVO-D). As
shown in Table 5, each change in the parameters lowers the Entropy
score.

The simulations generated from each step of changing the parame-
ters can be seen in the accompanying video. We note that because
of the logarithmic scale of the Entropy metric, a reduction in score
from 6.07 to 0.75 indicates more than an order of magnitude in re-
duction of error. The correlation between hand-tuned results and
the Entropy metric provide an indication of the metric’s ability to
capture meaningful errors in terms of aggregate dynamics.

Pref Time Improvement
RVO Metric Rad. Speed Horiz Method
A 6.07 1.0m 0.9 m/sec 0.1 sec -
B 2.09 .25m 0.9 m/sec 0.1 sec Match radius from data
C 1.36 .25m 1.2 m/sec 0.1 sec Match speed from data
D 0.75 .25m 1.2 m/sec 1.0 sec Increase planning horizon

Table 5: As we improve the similarity of the RVO benchmark based
on the data from Lab benchmark, the entropy metric decreases.
RVO-A is the worst algorithm for this benchmark and RVO-D is
the best algorithm (as shown in video). We see a direct correlation
between the entropy metric and similarity of the simulation algo-
rithm.

This result also indicate that the Entropy metric can be used to de-
sign data-driven crowd simulation algorithms. Given a motion data
from a target set of behaviors, changing the simulator parameters to
optimize the Entropy metric will result in a simulator that closely
matches the desired behavior.

B Implementation Details

For the results presented in Section 4 we used the same crowd state
vector format (Xk), the same observed validation data (z0, . . . , zt),
and the same observation function (h) for all simulators tested. We
varied only the simulator (ˆf). We briefly give details of each below.

State Vector (Xk) The state of each agent was defined as a four
dimensional vector of 2D position and 2D velocity.

Validation Data (z0, . . . , zt) The validation data used was a series
of 2D positions for each person being tracked, the data was gener-
ally between 10-15Hz.

Observation Function (h) The observation function must be
defined to convert an instance of the state vector to the for-
mat found in the validation data. In our case, the function
h simply returns the position component of the state vector
h((pos.x, pos.y, vel.x, vel.y)) = (pos.x, pos.y).

Simulation Function (ˆf) The details of this function varies be-
tween different simulators and each are discussed in more detail
below. All simulators share some common features: all agents were
restricted to a maximum velocity of 2.5m/s and all simulators con-
sidered only the 10 closest neighbors in velocity computations.

B.1 Social Force Simulation Details

Our implementation of a social force model (SFM) approach
to simulation is based on the approach detailed by Helbing et
al. [2000]. Each agent experiences an avoidance force from all
neighboring agents with decreases exponential with distance from
the agent, along with frictional and pushing forces that effect agents
in contact with each other. All of the SFM simulators shared the
same force balancing constants: a social scaling force of 2000N, an
agent reaction time of 0.5s, a repulsive pushing spring constant of
120, 000 kg/s2, and a sliding friction constant of 240, 000 kg/s2.

Simulator Pref Speed (m/s) Radius (m) Mass (kg)
SFM-1 1.40 0.16 80
SFM-2 1.10 0.31 80
SFM-3 1.20 0.20 80

Table 6: Parameters used in various social force simulators.

B.2 RVO Simulation Details

Our implementation of a predictive planning approach to simulation
is based on the Reciprocal Velocity Obstacle (RVO) based approach
detailed by Van den Berg et al. [2009]. Each agent chooses a veloc-
ity towards its goal which will minimize it’s expected collision with
all neighboring agents. The RVO simulators vary in the radius and
preferred speed of the simulated agents as well as the time horizon
agents plan over and the maximum distance at which a neighbor
can effect planning. The various simulators are detailed below:

Pref Radius Tim Neighbor
Simulator Speed (m/s) (m) Horiz. (s) Dist. (m)
RVO-1 1.44 0.20 1.7 41
RVO-2 1.10 0.20 1000 41
RVO-3 1.20 0.25 1000 200

Table 7: Parameters used in various RVO simulators.

B.3 Steering Simulation Details

Our implementation of a steering approach to simulation is based
on the approach in OpenSteer by Reynolds [1999]. The final action
of each agent is decided by a combination of a force towards the
goal, and a force away from the nearest obstacle and pedestrian.
All of the Steer simulators shared the same blending factor between
goal-directed and avoidance forces, they differed in the preferred
speed and radius of the agents.

Simulator Pref Speed (m/s) Radius (m)
Steer-1 1.44 0.20
Steer-2 1.00 0.30
Steer-3 0.85 0.20

Table 8: Parameters used in various steering simulatiors.

Copyright © 2011 by the Association for Computing Machinery, Inc.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for commercial advantage and that copies bear this notice and the full
citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from Permissions Dept, ACM Inc., fax +1 (212) 869-0481 or e-mail permissions@acm.org.
SCA 2011, Vancouver, British Columbia, Canada, August 5 – 7, 2011.
© 2011 ACM 978-1-4503-0923-3/11/0008 $10.00

Eurographics/ ACM SIGGRAPH Symposium on Computer Animation (2011)
A. Bargteil and M. van de Panne (Editors)

Scenario Space:

Characterizing Coverage, Quality, and Failure of Steering

Algorithms

Mubbasir Kapadia1,2, Matt Wang1, Shawn Singh1,3, Glenn Reinman1, Petros Faloutsos1

1University of California Los Angeles
2University of Pennsylvania

3Google Inc.

Abstract

Navigation and steering in complex dynamically changing environments is a challenging research problem, and a

fundamental aspect of immersive virtual worlds. While there exist a wide variety of approaches for navigation and

steering, there is no definitive solution for evaluating and analyzing steering algorithms. Evaluating a steering

algorithm involves two major challenges: (a) characterizing and generating the space of possible scenarios that

the algorithm must solve, and (b) defining evaluation criteria (metrics) and applying them to the solution. In this

paper, we address both of these challenges. First, we characterize and analyze the complete space of steering

scenarios that an agent may encounter in dynamic situations. Then, we propose the representative scenario space

and a sampling method that can generate subsets of the representative space with good statistical properties. We

also propose a new set of metrics and a statistically robust approach to determining the coverage and the quality

of a steering algorithm in this space. We demonstrate the effectiveness of our approach on three state of the art

techniques. Our results show that these methods can only solve 60% of the scenarios in the representative scenario

space.

Categories and Subject Descriptors (according to ACM CCS): I.2.11 [Artificial Intelligence]: Distributed Artifi-
cial Intelligence—Multiagent Systems I.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism—
Animation I.6.6 [Simulation and Modeling]: —Simulation Output Analysis

1. Introduction

Immersive virtual worlds have quickly come to the forefront
in both industry and academia with their applicability being
realized in a wide variety of areas from education, collab-
oration, urban design, and entertainment. A key aspect of
immersion in virtual environments is the use of autonomous
agents to inject life into these worlds. Autonomous agents
require efficient, robust algorithms for navigation and steer-
ing in large, complex environments where the space of all
possible situations an agent is likely to encounter is in-
tractable. The rich set of scenarios and corresponding steer-
ing choices have resulted in a large variety of techniques
that are focused on tackling a subset of this problem. To our
knowledge, there exists no definitive measure of the ability

of a steering algorithm to successfully handle the space of
all possible scenarios that it is likely to encounter in com-
plex environments. This greatly limits future researchers and
end-users in objectively evaluating and analyzing the current
state of the art before choosing their own direction of explo-
ration.

There are two key requirements to doing a comprehensive
evaluation of a steering technique. First, we must be able to
sufficiently sample the representative set of challenging sit-
uations that an agent is likely to encounter. Next, we need a
measure of scoring success for an algorithm for a particular
scenario that has meaning on its own as well as in compari-
son with the scores for other approaches.

Previous approaches have addressed these issues with

53

Mubbasir Kapadia, Matt Wang, Shawn Singh, Glenn Reinman, Petros Faloutsos / Scenario Space

small sets of manually designed test cases, and ad hoc,
scenario-dependent criteria. In this paper, we address both
of these challenges with rigorous, statistically-based ap-
proaches.

We examine the complete space of possible scenarios that
a steering algorithm may need to solve given a set of user de-
fined parameters, such as the size of the agents. After show-
ing that an exhaustive sampling of this space is not practical,
we propose the representative scenario and an associated
sampling method. Both the representative scenario space and
the sampling method are constrained to produce test sets that
favor complexity, and avoid easy to solve cases. To evaluate
a steering algorithm on a single scenario we propose a set of
metrics that can be normalized with respect to ideal values so
as to become scenario independent. Based on these metrics,
we then propose the concepts of coverage, average quality

and failure set and show how they can be computed over
the representative scenario space. Computing these concepts
over an entire scenario space provides a rigorous, statistical
view of an algorithm, and can be used to evaluate a single
approach or compare different approaches. In our opinion,
our work is the first attempt to evaluate steering techniques
in an automated and statistically sound fashion.

This paper makes the following contributions:

• We propose three concepts to statistically evaluate steer-
ing algorithms over a scenario space: coverage, average
quality and failure set.

• We define the space of all possible scenarios that an agent
could encounter while steering and navigating in dynam-
ically changing environments. In addition, we present a
method of sufficiently sampling the representative scenar-
ios in this space in order to effectively compute average
quality and coverage for a particular steering algorithm.

• We provide a method of automatically determining a fail-

ure set for an algorithm – a subset of scenarios where the
algorithm performs poorly based on some criteria. This
provides an invaluable tool for users and AI developers in
evaluating their own steering techniques.

• We demonstrate the effectiveness of our framework in
analyzing four agent-based techniques: three state of the
art [KSHF09, SKHF11, vdBLM08], and one simple base-
line algorithm that only reacts to the most immediate
threat.

2. Related Work

There are three broad categories when it comes to the analy-
sis and evaluation of crowd simulations: (1) comparing sim-
ulations to real world data, (2) performing user-studies to de-
termine if the desired qualities of the simulation have been
met and to manually detect the presence of anomalous be-
haviors, and (3) using statistical tools to analyze simula-
tions. The real world and its real human characters are ex-
tremely complex, which makes it very difficult to compare

a simulation to real events. Manual inspection of simula-
tions is prone to human error and personal inclinations. Sur-
veys [LS02, McF06] show that automated evaluation, espe-
cially for autonomous characters, is yet to be fully realized
in the games industry. Hence, the focus of this work is in
the use of computational methods and statistical tools to an-
alyze, evaluate, and test crowd simulations.

Section 2.1 reviews the traditional methods adopted in
sampling the space of scenarios. Section 2.2 describes the
metrics used for evaluation. Section 2.3 reviews some of the
popular techniques used for steering. Section 2.4 describes
our method in relation to prior work.

2.1. Benchmarks for Evaluation

Steering approaches, outlined in Section 2.3, are generally
targeted at specific subsets of human steering behaviors and
use their own custom test cases for evaluation and demon-
stration. The work in [SKN∗09] proposes a standard suite
of test cases that represent a large variety of steering be-
haviors and is independent of the algorithm used. In addi-
tion, [SKFR09] provides a suite of tools and helper functions
to allow AI developers to quickly get started with their own
algorithms. However, even the 42 test cases described here
still cannot capture the large space of possible situations an
agent will encounter in dynamic environments of realistic
complexity.

2.2. Metrics for Evaluation

Prior work has proposed a rich set of application-specific
metrics to evaluate and analyze crowd simulations. The work
of [PSAB08] uses presence as a metric for crowd evaluation.
Number of collisions and effort are often used as metrics
to minimize when developing steering algorithms [ST05,
GCC∗10]. The work in [HFV00] uses “rate of people exit-
ing a room” to analyze evacuation simulations. [LCSCO10]
presents a data-driven approach for evaluating the behaviors
of individuals within a simulated crowd. [RP07] describes a
set of task-based metrics to evaluate the capability of a mo-
tion graph across a range of tasks and environments. The
work in [SKN∗09, KSA∗09] proposes a rich set of derived
metrics that provide an empirical measure of the perfor-
mance of an algorithm. However, the values of these metrics
(e.g. path length, total kinetic energy, total change in acceler-
ation, etc.) are tightly coupled with the the length and com-
plexity of a scenario, which prevents users from interpreting
these metrics in a scenario-independent fashion.

2.3. Steering Approaches

Since the seminal work of [Rey87, Rey99], there has been a
growing interest in pedestrian simulation with a wide array
of techniques being tested and implemented. A comprehen-
sive overview of the related work in steering and navigation
techniques can be found here [PAB08].

54

Mubbasir Kapadia, Matt Wang, Shawn Singh, Glenn Reinman, Petros Faloutsos / Scenario Space

Centralized techniques [MRHA98, Lov94, Hen71] focus
on the system as a whole, modeling the characteristics of
the flow rather than individual pedestrians. Centralized ap-
proaches usually model a broader view of crowd behaviors
as flows rather than focusing on individual specialized agent
behaviors.

De-centralized approaches model the agent as an in-
dependent entity that performs collision avoidance with
static obstacles, reacts to dynamic threats in the environ-
ment, and steers its way to its target. Particle based ap-
proaches [Rey87,Rey99] model agents as particles and sim-
ulate crowds using basic particle dynamics. The social force
model [HBJW05, BMOB03, BH97] solves Newton’s equa-
tions of motion to simulate forces such as repulsion, at-
traction, friction and dissipation for each agent to simu-
late pedestrians. Rule-based approaches [LD04, LMM03,
Rey99, RMH05, PAB07, SGA∗07, vdBPS∗08] use various
conditions and heuristics to identify the exact situation of
an agent. Data-driven methods use existing video data or
motion capture to derive steering choices that are then
used in virtual worlds (e.g., [LCHL07, LCL07]). The works
of [Feu00,PPD07] use predictions in the space-time domain
to perform steering in environments populated with dynamic
threats. Predicting potential threats ahead of time results in
more realistic steering behaviors.

We use three state of the art steering techniques to serve as
the basis for the analysis results shown in this paper. In addi-
tion, we also evaluate a purely reactive approach to steering
to demonstrate the efficacy of our framework over a variety
of steering approaches.

• Egocentric. The work in [KSHF09] proposes the use
of egocentric affordance fields to model local variable-
resolution perception of agents in dynamic virtual en-
vironments. This method combines steering and local
space-time planning to produce realistic steering behav-
iors in challenging local interactions as well as large scale
scenarios involving thousands of agents.

• PPR. The work in [SKHF11] presents a hybrid frame-
work that combines reaction, prediction and planning into
one single framework.

• RVO. The work in [vdBLM08] proposes the use of re-
ciprocal velocity obstacles to serve as a linear model of
prediction for collision avoidance in crowds.

• Reactive. This steering technique employs the use of a
simple finite state machine of rules to govern the behav-
ior of an autonomous agent in a crowd. This technique
is purely reactive in nature and does not employ the use
of any form of predictive collision avoidance. A descrip-
tion of the implementation of this technique can be found
in [SKHF11].

2.4. Comparison to Related Work

Our work leverages was inspired by SteerBench [SKN∗09]
and [RP07]. The work in [RP07] presented a method of cal-

culating coverage of motion graphs for a set of animation
and navigation benchmarks. SteerBench proposed an objec-
tive set of test cases and an ad hoc, automatic method of
scoring the performance of steering algorithms. The approx-
imately 42 test cases provide a fixed and very sparse sam-
pling of the scenario space. In this paper, we take a large step
along this direction. First, we characterize the entire scenario
space, and propose a sampling based approach to estimate,
for the first time, the coverage of a steering algorithm. We
also propose a new set of performance metrics and a robust
statistical method for automatically analyzing the effective-
ness of steering algorithms.

3. Scenario Space

Like real people, virtual agents make their steering de-
cisions by considering their surrounding environment and
their goals. The environment usually consists of static ob-
stacles and other agents. In this section we describe how we
represent all the elements of a steering problem, which we
refer to as a scenario.

We define a scenario as one possible configuration of ob-
stacles and agents in the environment. The configuration of
an obstacle is its position in the environment along with the
information of its bounding box (we assume rectangular ob-
stacles). The configuration of an agent includes its initial po-
sition, target location, and desired speed. The configuration
of agents and obstacles can be extended or modified to meet
the needs of any application. The scenario space is defined
as the space of all possible scenarios that an agent can en-
counter while steering in dynamic environments. The ratio
of the subspace of scenarios that a steering algorithm can
successfully handle is defined as the coverage of the algo-
rithm. An ideal steering algorithm would be able to success-
fully handle all the scenarios in this extremely high dimen-
sional space, thus having a coverage of 1. In order to be able
to determine the coverage of a steering algorithm, we need
the ability to sample the scenario space in a representative
fashion and to objectively determine the performance of an
algorithm for a particular scenario.

Section 3.1 describes a set of user-defined parameters
used to define a space of scenarios. In Section 3.2, we de-
scribe the results of our experiment to determine coverage
of three steering algorithms in the complete space of scenar-
ios. We observe that the value of coverage for each of these
algorithms does not converge for even up to 10,000 sam-
ple points. Section 3.3 describes a set of constraints that are
imposed on the complete scenario space to define the space
of representative scenarios. We observe rapid convergence
of coverage of steering algorithms in the representative sce-
nario space.

55

Mubbasir Kapadia, Matt Wang, Shawn Singh, Glenn Reinman, Petros Faloutsos / Scenario Space

(a) (b)

Figure 1: The success rate of the four algorithms in the complete (a) and representative (b) scenario space vs the number of

samples (size) of the test set.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2: Figures (a)-(d) Scenarios randomly generated in the complete scenario space. A black line indicate an agent’s optimal

path to the goal. Figures (e)-(h) Scenarios randomly generated in the representative scenario space. Our sampling process

ensures that all agents interact with the reference agent (in blue) which is always placed in the center of the environment.

3.1. Parametrization of Scenario Space

The space of all scenarios is determined by the number of
obstacles and agents, the size of the environment, and the
size of obstacles. A user may wish to test his steering algo-
rithm on local interactions between agents in small environ-
ments with 2 or 3 agents. Alternatively, a user may wish to
stress test his or her algorithm on large environments with a
large distribution of agents and obstacles. We expose these

parameters to the user to allow him to define the space of
scenarios to meet the need of his application.

The set of parameters, P is defined as follows:

• Environment size. The size of the environment is defined
as the radial distance, r, from the egocentric agent that is
positioned at the center of the environment.

• Obstacle Discretization. Obstacles are represented by a
grid of rectangular blocks that are either on or off. The

56

Mubbasir Kapadia, Matt Wang, Shawn Singh, Glenn Reinman, Petros Faloutsos / Scenario Space

size of these blocks is determined by two parameters: res-
olution in X dx and resolution in Y dy. These values spec-
ify how many cells exist within the width and height of
the environment as determined by the radial distance r de-
fined above.

• Number of agents. The number of agents in a scenario is
governed by two user-defined parameters: the minimum
and maximum number of agents (nmin,nmax).

• Target speed of agents. Some steering algorithms can
specify a target speed for an agent. The range of possible
values is determined by a minimum and maximum speed
parameter (smin,smax).

Given a specific set of parameter values P that define a
space of scenarios, we can procedurally or randomly sample
scenarios with initial configurations of obstacles and agents
that lie in that scenario space.

3.2. The Complete Scenario Space

The complete scenario space, S(P) represents all the pos-
sible scenarios that can be generated for a particular set of
user-defined parameters P. In order to prevent sampling of
invalid scenarios that have no solution, we place certain va-
lidity constraints on the scenario space.

• Collision-Free. The initial configurations of obstacles
and agents must not be in a state of collision.

• Solvable. There must exist a valid path taking an agent
from its initial position to its target location.

The space S(P) is infinite and cannot be sampled ex-
haustively. Instead, we aim to find a representative set of
samples that describes this space sufficiently. To determine
whether we can generate such a set, we first perform a ran-
dom sampling experiment in S(P) where P = {r = 7,dx =
dy = 10,nmin = 3,nmax = 6,smin = 1,smax = 2.7} .

A scenario is randomly generated as follows: First, we
generate the obstacles by randomly turning on or off cells
in our obstacle grid. Next, we select a number of agents to
simulate by randomly sampling the range defined above. For
each agent, we choose a random obstacle-free position and
orientation. We also choose a random obstacle-free position
for each agent’s goal. All positions are chosen within the
radius r and all orientations are sampled uniformly within
[0, 2π).

The performance of an algorithm for a scenario is evalu-
ated as a boolean measure of whether or not it could com-
plete the scenario. A scenario is said to be successfully com-
pleted if all agents reach the goal within a time threshold
without any collisions. The coverage of an algorithm is the
ratio of all scenarios that it could successfully complete.

In this experiment we iteratively increase the number of
sample points from N = 100 to 10,000. The results are il-
lustrated in Figure 1(a). We observe that the coverage of an

algorithm fluctuates between 0.9 and 0.95 and does not con-
verge within reasonable bounds. Also, the minimum cover-
age of the three reference algorithms is quite high (> 0.9).
Similarly, even the baseline reactive algorithm seems to per-
form well with a coverage of approximately 0.89. These ob-
servations suggest that the experiments contain many trivial
or easy scenarios that greatly skew the computed measure of
coverage, and affect its convergence. To get a better picture
of the areas in the scenario space that algorithms may have
trouble succeeding, we propose the Representative Scenario

Space, and an egocentric evaluation method, which are de-
scribed below.

Algorithm S(P) R(P) SteerBench

PPR 0.919 0.583 0.86(36/42)

Egocentric 0.915 0.568 0.86(36/42)
RVO 0.931 0.591 0.86(36/42)

Reactive 0.887 0.459 0.83(35/42)

Figure 3: The estimated coverage of the steering algorithms

in the complete space S(P), the representative space R(P),
and the 42 cases of SteerBench [SKN∗09].

3.3. The Representative Scenario Space

We eliminate trivial scenarios by applying the following con-
straints on the complete scenario space and the associated
sampling method:

• Reference Agent. The first agent is always placed at the
origin of the environment and is known as the reference
agent. The scenario is evaluated with respect to the refer-
ence agent.

• Goals and Orientations. The goal of an agent is re-
stricted to one of 8 choices that are located at the boundary
of the scenario. The agent’s initial orientation is always
pointing towards the agent’s goal.

• Agent Spatial Positions. Instead of uniformly sampling
the space for agent positions, we model the probability
of a location in the environment ~x being sampled using
a normal distribution N(~x,~µ = ~O,σ2 = 0.4). This implies
that agents are more likely to be placed closer to the ori-
gin, i.e. closer to the reference agent, which increases the
likelihood of interaction between agents.

• Agent Interactions. We place a constraint on the config-
uration of an agent placed in the scenario to ensure that it
interacts with the reference agent. We compute an optimal
path (using A*) for the agent from its start position to its
goal. If the planned path of the agent intersects with the
planned path of the reference agent in space and time (we
assume constant speed of motion along the optimal path)
then the agent is considered relevant and is placed in the
scenario.

• Agent Speeds. Instead of varying the desired speed of
agents, we keep it a constant (1.7 m/s) as we observe that
desired speed variations do not have a large impact on the
resulting behavior of most steering approaches.

57

Mubbasir Kapadia, Matt Wang, Shawn Singh, Glenn Reinman, Petros Faloutsos / Scenario Space

The resulting space of scenarios that meet these constraints
is the representative scenario space, denoted by R(P).

We change our evaluation method of a scenario to be with
respect to the reference agent alone. Hence, an algorithm is
successful on a scenario if the reference agent reaches its
goal and there are no collisions with other agents.

We run the same sampling experiment described above in
the representative scenario space (Figure 1(b)). We observe
convergence of coverage between N = 5,000 to 10,000. We
also observe that the coverage of the algorithms is much
lower. The three reference algorithms can only complete ap-
proximately half of the scenarios sampled. We also see a
much larger difference in the coverage of the baseline re-
active algorithm in comparison to the three reference algo-
rithms, as one would expect. Figure 3 compares the coverage
of algorithms in S(P), R(P), and using the test cases pro-
vided in SteerBench [SKN∗09]. The algorithms have very
high coverage in both S(P) and SteerBench. The reactive
algorithm fails in only one more scenario than the other
three reference steering techniques in the 42 test cases that
SteerBench provides. In contrast, the scenarios generated are
much more challenging in R(P) which is reflected in low
coverage values and a much larger difference between the
baseline reactive technique and the three more sophisticated
ones.

In conclusion, we can make two important observations.
First, the representative space sampled with our constrained
sampling technique can produce test sets that expose the
difficulties of steering algorithms. Second, approximately
10,000 samples seem to be enough for analyzing an algo-
rithm, as indicated by the convergence of the coverage of
the four algorithms.

4. Evaluation Criteria

We evaluate a scenario by computing 3 primary metrics that
quantify the success of the egocentric agent in completing
the scenario. These metrics characterize whether or not the
egocentric agent successfully reached its goal, the total time
it took to reach its goal, and the total distance traveled in
reaching the goal. By defining the metrics as a ratio to its
optimal value, we can compare and evaluate these metrics
on an absolute scale.

• Scenario Completion. For an algorithm a and a scenario
s, if the reference agent reaches its goal within the time
limit without colliding with any agents or obstacles, the
scenario is said to have successfully completed. In this
case, mc(s,a) = 1 else mc(s,a) = 0.

• Path Length. The path length ml(s,a) is the total distance
traveled by the egocentric agent to reach its goal.

• Total Time. The total time mt(s,a) is the time taken by
the egocentric agent in reaching the goal.

In addition, we compute optimal values of path length and
total time to serve as an absolute reference that can be used

to normalize the values of ml(s,a) and mt(s,a). The optimal
path length, m

opt
l (s,a), and optimal time, m

opt
t (s,a), are the

path length and time taken to travel along an optimal path
to the goal by an algorithm a for a particular scenario s, ig-
noring neighboring agents. Using the optimal values, we can
compute the ratio for a particular metric m(s,a) as follows:

m
r(s,a) =

mopt(s,a)

m(s,a)
×mc(s,a). (1)

The value of mr(s,a) is equal to 1 when the value of the
metric is equal to its optimal value and is close to 0 when
the value is far away from its optimal value. Also, mr(s,a)
is only computed when the scenario has successfully com-
pleted. Using Equation 1, we can compute mr

l(s,a) and
mr

t(s,a) to effectively quantify the performance of a steering
algorithm for a particular scenario which can be compared
across algorithms and scenarios.

5. Coverage, Average Quality and Failure Set

In this section, we show how we use our representative sce-
nario space and evaluation criteria to derive a set of well-
defined, statistical metrics that characterize key aspects of a
steering algorithm.

Scenario Set. The scenario set Sa
m(T1,T1) for an algorithm a

on a metric m is defined as the subset of all scenarios within
the representative space of scenarios for which the value of
m(s,a) is in the range [T1,T2).

S
a
m(T1,T2) = {s|s ∈ R(P)∧T1 <= m(s,a) < T2}. (2)

Using only T1 we can find the success set of an algorithm
as the set of the scenarios for which the metric was greater
than a threshold. Similarly, using only T2 allows us to define
a failure set of an algorithm.

The common failure set Sm(0,Tmin) for all algorithms a ∈ A

is the intersection of the failure sets Sa
m(0,Tmin) of all evalu-

ated steering algorithms:

Sm(0,Tmin) =
\

a∈A

S
a
m(0,Tmin). (3)

The common failure set can be used to identify particularly
difficult scenarios.

Coverage. The coverage ca
m of a steering algorithm a can be

computed as the ratio of the subset of scenarios in the sce-
nario space that a steering algorithm can successively handle
with respect to a particular metric, m(s,a).

c
a
m =

|Sa
m(Tmax,1)|

|R(P)|
, (4)

where |S| denotes the cardinality of the set S.

Average Quality. The average quality of a steering algo-
rithm for a particular method of evaluation can similarly be

58

Mubbasir Kapadia, Matt Wang, Shawn Singh, Glenn Reinman, Petros Faloutsos / Scenario Space

computed as the average value of m(s,a) for all sampled sce-
narios.

q
a
m =

∑
s∈Sa

m(Tmax,1)

m(s,a)

|R(P)|
. (5)

Using Equations 4 and 5, we can compute coverage and av-
erage quality for ms(s,a), mr

l(s,a) and mr
t(s,a). Note that the

coverage and average quality for ms(s,a) will be the same
since it is a boolean value.

The three concepts defined in this section provide a rig-
orous and objective statistical view of a steering algorithm.
They can be intuitively used to evaluate the effectiveness of
a single algorithm or to compare different approaches.

6. Results

Using the concepts and evaluation method proposed in pre-
vious sections, we can now analyze and compare our four
steering algorithms. All algorithms are tested on the same
set of 10,000 scenarios randomly selected from the repre-
sentative scenario space, R(P), with user defined parameters
P = {r = 7,dx = dy = 10,nmin = 3,nmax = 6,s = 2.7}. In
Section 3.3 we showed that the success rate of the four algo-
rithms converges for test sets with 5,000-10,000 samples in
the representative scenario space. This is a good indication
that a test set of size 10,000 should be sufficient for our anal-
ysis. It takes our system a few minutes to run 10,000 samples
(depending on the performance of the steering algorithm).

6.1. Coverage and Average Quality

The coverage and average quality for each algorithm for
all three metrics are given in Table 5 and Table 6. Note
that the values of mr

l(s,a) and mr
t(s,a) are only considered

when the algorithm successfully completes the scenario, i.e.
mc(s,a) = 1. To compute coverage for mr

l(s,a) and mr
t(s,a),

we specify the thresholds equal to the mean of the average
quality for each metric computed for the three algorithms
(Reactive is not considered). Thus, the coverage gives us
a measure of the ratio of the number of scenarios that are
above the average quality measure for that metric.

Algorithm mr
l(s,a) mr

t(s,a)

PPR 0.789 0.683
Egocentric 0.723 0.63

RVO 0.743 0.731
Reactive 0.617 0.586

Figure 5: The average quality qa
m of the steering algorithms

for ratio to optimal path length, mr
l(s,a), and ratio to optimal

total time, mr
t(s,a).

Observations. We observe that the average quality of the
algorithms for path length, mr

l(s,a), is approximately 0.75.

Algorithm ms(s,a) mr
l(s,a) mr

t(s,a)

PPR 0.583 0.748 0.608
Egocentric 0.568 0.681 0.515

RVO 0.591 0.762 0.662
Reactive 0.459 0.212 0.178

Figure 6: The coverage ca
m of the steering algorithms for

the three metrics.

This implies that the three algorithms generally produce so-
lutions with path lengths that are 75% of the optimal values.
In contrast, the average quality of algorithms for total time,
mr

t(s,a), is approximately 0.68 which is considerably lower.
This is because steering algorithms generally prefer to slow
down instead of deviating from their planned paths. When
comparing PPR and RVO, we notice that PPR has a better
quality measure for path length than time. This is because
PPR has a greater proclivity for predictively avoiding dy-
namic threats by slowing down if it anticipates a collision.
Due to the variable resolution nature of the perception fields
modeled in Egocentric, the trajectories produced by this
method are curved and produce less optimal results. The per-
formance of Reactive is reflected in its measure of cov-
erage. We observe that Reactive can only solve 45% of
the scenarios (compared to nearly 60% for the other 3 al-
gorithms), and that only 20% of its solutions are above the
average quality measure.

6.2. Failure Set

The coverage and average quality provide a good aggregate
measure of the performance of an algorithm over a large
sample of scenarios and serve as a good basis of compar-
ison. However, it is particularly useful to be able to auto-
matically generate scenarios of interest where an algorithm
performs poorly. Our framework automatically computes a
failure set for an algorithm as the set of all scenarios where
a particular metric falls below a threshold. Figure 7(a) and
(b) measures the number of scenarios for which mr

l(s,a) and
mr

t(s,a) fall within a specified region. The set Sa
m(0,0) clus-

ters all scenarios for which the algorithm has failed to find a
solution (ms(s,a) = 0). The set Sa

m(1,0) measures the num-
ber of scenarios for which the algorithms produced optimal
solutions for mr

l(s,a) or mr
t(s,a). A small number of samples

in this cluster is indicative that scenarios produced in the rep-
resentative space are challenging and require complex inter-
actions between agents. The sets Sa

m(0,0.3) and Sa
m(0.3,0.6)

represent scenarios for which a steering algorithm generated
highly sub-optimal solutions.

We also find the common failure set Sm(0,0) of all four
steering algorithms. This set represents the set of scenar-
ios for which no steering algorithm could find a solution. In
these cases, the agents either reach a deadlock situation and
time out or reach their goals by colliding with other agents.
Figure 4 highlights some particularly challenging scenarios

59

Mubbasir Kapadia, Matt Wang, Shawn Singh, Glenn Reinman, Petros Faloutsos / Scenario Space

(a) (b) (c) (d)

Figure 4: Challenging scenarios sampled in the representative space that resulted in collisions or no solution.

(a) (b)

Figure 7: Failure sets of each algorithm for ratio to optimal path length mr
l(s,a) and ratio to optimal time mr

t(s,a).

that fall within the common failure set. Note, that the narrow
passageways in the figure are traversable. For 10,000 sample
points, the cardinality of the failure set is |Sm(0,0)|= 1,710.
This means that 17% of the scenarios that were sampled
could not be successfully handled by any steering approach.
By visually inspecting these scenarios, we arrive at the fol-
lowing generalization for particularly challenging scenarios:

• Series of sharp turns Narrow passageways where agents
had to make a sequence of sharp turns often resulted in
soft collisions.

• Complex Interactions Scenarios where the reference
agent was forced to interact with multiple crossing and
oncoming threats in the presence of obstacles often re-
sulted in failure.

• Deadlocks In certain situations, agents need communica-
tion and space-time planning to effectively cooperate on
resolving a situation, such as one agent backing all the
way up in a very narrow passage to allow another agent to
pass first.

7. Conclusion and Future Work

In this paper, we address the fundamental challenge of evalu-
ating and analyzing steering techniques for multi-agent sim-
ulations. We present a method of automatically generating
and sampling the representative space of challenging scenar-
ios that a steering agent is likely to encounter in dynamically
changing environments with both static and dynamic threats.
In addition, we propose a method of determining coverage

and quality of a steering algorithm in this space.

We observe that the three agent-based steering approaches
we examined are capable of successfully handling 60% of
the scenarios that are in the representative scenario space.
After examining their failure sets, we see that particularly
challenging scenarios include combinations of oncoming
and crossing threats in environments with limited room to
maneuver, and situations where agents find themselves in
deadlocks that require complex coordination between mul-
tiple agents. Steering approaches usually time out in these
cases or allow collisions so that agents can push through the
deadlocks.

The work in [TCP06,GCC∗10] optimizes metrics such as

60

Mubbasir Kapadia, Matt Wang, Shawn Singh, Glenn Reinman, Petros Faloutsos / Scenario Space

path length, time, and effort in order to generate collision-
free trajectories in multi-agent simulations. It would be par-
ticularly interesting to see if steering methods that are based
on optimality considerations have better coverage and qual-
ity using our method of evaluation. Another factor contribut-
ing to the low coverage of the evaluated methods is the non-
holonomic control of the agents. Many nuanced locomo-
tion capabilities of humans such as sidestepping and careful
foot placement are not modeled by these approaches, which
greatly limits their ability to handle challenging scenarios.
Recent work in navigation [SKRF11] has addressed these
limitations in an effort to better model the locomotion of
virtual humans. However, modeling agents as discs is still
common practice in interactive applications such as games.
Our approach can be extended to handle different types of
locomotion.

This paper analyzes steering algorithms based on a par-
ticular parameterization of the scenario space that focuses
on interactions between a small number of proximate agents.
Further investigation is needed in order to determine the sen-
sitivity of the evaluation based on these parameters. In addi-
tion, applications may require different scenario spaces, for
example situations involving large crowds in urban environ-
ments. It would be particularly beneficial to design a spec-
ification language whereby users can specify and generate
benchmarks that meet their requirements.

Our current approach performs random sampling in this
space in order to calculate the coverage of an algorithm. In
the future, we would like to investigate adaptive sampling
methods that use our evaluation criteria to identify and sam-
ple more densely areas of interest. Further analysis is also re-
quired to automatically cluster and generalize scenarios that
are challenging for steering algorithms. Defining sub-spaces
in this extremely high dimensional space that are of interest
to the research community can prove valuable in the devel-
opment of the next generation of steering techniques.

8. Acknowledgements

The work in this paper was partially supported by Intel
through a Visual Computing grant, and the donation of a 32-
core Emerald Ridge system with Xeon processors X7560.
In particular we would like to thank Randi Rost, and Scott
Buck from Intel for their support.

References

[BH97] BROGAN D. C., HODGINS J. K.: Group behaviors for
systems with significant dynamics. Auton. Robots 4, 1 (1997),
137–153.

[BMOB03] BRAUN A., MUSSE S. R., OLIVEIRA L. P. L. D.,
BODMANN B. E. J.: Modeling individual behaviors in crowd
simulation. In CASA ’03: Proceedings of the 16th International

Conference on Computer Animation and Social Agents (CASA

2003) (Washington, DC, USA, 2003), IEEE Computer Society,
p. 143.

[Feu00] FEURTEY F.: Simulating the Collision Avoidance Be-

havior of Pedestrians. Master’s thesis, The University of Tokyo,
School of Engineering, 2000.

[GCC∗10] GUY S. J., CHHUGANI J., CURTIS S., DUBEY

P., LIN M., MANOCHA D.: Pledestrians: a least-effort ap-
proach to crowd simulation. In Proceedings of the 2010 ACM

SIGGRAPH/Eurographics Symposium on Computer Animation

(Aire-la-Ville, Switzerland, Switzerland, 2010), SCA ’10, Euro-
graphics Association, pp. 119–128.

[HBJW05] HELBING D., BUZNA L., JOHANSSON A., WERNER

T.: Self-organized pedestrian crowd dynamics: Experiments,
simulations, and design solutions. Transportation Science 39,
1 (2005), 1–24.

[Hen71] HENDERSON L. F.: The statistics of crowd fluids. Na-

ture 229, 5284 (February 1971), 381–383.

[HFV00] HELBING D., FARKAS I., VICSEK T.: Simulating dy-
namical features of escape panic. NATURE 407 (2000), 487.

[KSA∗09] KAPADIA M., SINGH S., ALLEN B., REINMAN G.,
FALOUTSOS P.: Steerbug: an interactive framework for specify-
ing and detecting steering behaviors. In SCA ’09: Proceedings of

the 2009 ACM SIGGRAPH/Eurographics Symposium on Com-

puter Animation (2009), ACM, pp. 209–216.

[KSHF09] KAPADIA M., SINGH S., HEWLETT W., FALOUT-
SOS P.: Egocentric affordance fields in pedestrian steering. In
I3D ’09: Proceedings of the 2009 symposium on Interactive 3D

graphics and games (2009), ACM, pp. 215–223.

[LCHL07] LEE K. H., CHOI M. G., HONG Q., LEE J.:
Group behavior from video: a data-driven approach to crowd
simulation. In SCA ’07: Proceedings of the 2007 ACM

SIGGRAPH/Eurographics symposium on Computer animation

(Aire-la-Ville, Switzerland, Switzerland, 2007), Eurographics
Association, pp. 109–118.

[LCL07] LERNER A., CHRYSANTHOU Y., LISCHINSKI D.:
Crowds by example. Computer Graphics Forum 26, 3 (Septem-
ber 2007), 655–664.

[LCSCO10] LERNER A., CHRYSANTHOU Y., SHAMIR A.,
COHEN-OR D.: Context-dependent crowd evaluation. Comput.

Graph. Forum 29, 7 (2010), 2197–2206.

[LD04] LAMARCHE F., DONIKIAN S.: Crowd of virtual humans:
a new approach for real time navigation in complex and struc-
tured environments. In Computer Graphics Forum 23. (2004).

[LMM03] LOSCOS C., MARCHAL D., MEYER A.: Intuitive
crowd behaviour in dense urban environments using local laws.
In TPCG ’03: Proceedings of the Theory and Practice of Com-

puter Graphics 2003 (Washington, DC, USA, 2003), IEEE Com-
puter Society, p. 122.

[Lov94] LOVAS G.: Modeling and simulation of pedestrian traffic
flow. In Transportation Research Record (1994), pp. 429–443.

[LS02] LLOPIS N., SHARP B.: By the Books: Solid Software
Engineering for Games, 2002. Games Developers Conference,
Round Table.

[McF06] MCFADDEN C.: Improving the QA Process, 2006.
Games Developers Conference, Round Table.

[MRHA98] MILAZZO J., ROUPHAIL N., HUMMER J., ALLEN

D.: The effect of pedestrians on the capacity of signalized inter-
sections. In Transportation Research Record (1998), pp. 37–46.

[PAB07] PELECHANO N., ALLBECK J. M., BADLER N. I.:
Controlling individual agents in high-density crowd sim-
ulation. In SCA ’07: Proceedings of the 2007 ACM

SIGGRAPH/Eurographics symposium on Computer animation

(Aire-la-Ville, Switzerland, Switzerland, 2007), Eurographics
Association, pp. 99–108.

61

Mubbasir Kapadia, Matt Wang, Shawn Singh, Glenn Reinman, Petros Faloutsos / Scenario Space

[PAB08] PELECHANO N., ALLBECK J. M., BADLER N. I.: Vir-

tual Crowds: Methods, Simulation, and Control. Synthesis Lec-
tures on Computer Graphics and Animation. Morgan & Claypool
Publishers, 2008.

[PPD07] PARIS S., PETTRÉ J., DONIKIAN S.: Pedestrian reac-
tive navigation for crowd simulation: a predictive approach. In
EUROGRAPHICS 2007 (2007), vol. 26, pp. 665–674.

[PSAB08] PELECHANO N., STOCKER C., ALLBECK J.,
BADLER N.: Being a part of the crowd: towards validating vr
crowds using presence. In Proceedings of the 7th international

joint conference on Autonomous agents and multiagent systems -

Volume 1 (2008), AAMAS ’08, pp. 136–142.

[Rey87] REYNOLDS C. W.: Flocks, herds and schools: A dis-
tributed behavioral model. In SIGGRAPH ’87: Proceedings of

the 14th annual conference on Computer graphics and interac-

tive techniques (1987), ACM, pp. 25–34.

[Rey99] REYNOLDS C.: Steering behaviors for autonomous char-
acters, 1999.

[RMH05] RUDOMÍN I., MILLÁN E., HERNÁNDEZ B.: Fragment
shaders for agent animation using finite state machines. Simula-

tion Modelling Practice and Theory 13, 8 (2005), 741–751.

[RP07] REITSMA P. S. A., POLLARD N. S.: Evaluating motion
graphs for character animation. ACM Trans. Graph. 26 (October
2007).

[SGA∗07] SUD A., GAYLE R., ANDERSEN E., GUY S., LIN

M., MANOCHA D.: Real-time navigation of independent agents
using adaptive roadmaps. In VRST ’07: Proceedings of the

2007 ACM symposium on Virtual reality software and technol-

ogy (2007), ACM, pp. 99–106.

[SKFR09] SINGH S., KAPADIA M., FALOUTSOS P., REINMAN

G.: An open framework for developing, evaluating, and shar-
ing steering algorithms. In Proceedings of the 2nd International

Workshop on Motion in Games (Berlin, Heidelberg, 2009), MIG
’09, Springer-Verlag, pp. 158–169.

[SKHF11] SINGH S., KAPADIA M., HEWLETT W., FALOUTSOS

P.: A modular framework for adaptive agent-based steering. In
Proceedings of the 2011 symposium on Interactive 3D graphics

and games (2011), I3D ’11, ACM.

[SKN∗09] SINGH S., KAPADIA M., NAIK M., REINMAN G.,
FALOUTSOS P.: SteerBench: A Steering Framework for Evaluat-
ing Steering Behaviors. Computer Animation and Virtual Worlds

(2009). http://dx.doi.org/10.1002/cav.277.

[SKRF11] SINGH S., KAPADIA M., REINMAN G., FALOUTSOS

P.: Footstep navigation for dynamic crowds. In Symposium on In-

teractive 3D Graphics and Games (New York, NY, USA, 2011),
I3D ’11, ACM, pp. 203–203.

[ST05] SHAO W., TERZOPOULOS D.: Autonomous pedes-
trians. In SCA ’05: Proceedings of the 2005 ACM

SIGGRAPH/Eurographics symposium on Computer animation

(2005), ACM, pp. 19–28.

[TCP06] TREUILLE A., COOPER S., POPOVIĆ Z.: Continuum
crowds. ACM Trans. Graph. 25, 3 (2006), 1160–1168.

[vdBLM08] VAN DEN BERG J., LIN M. C., MANOCHA D.: Re-
ciprocal velocity obstacles for real-time multi-agent navigation.
In Proceedings of ICRA (2008), IEEE, pp. 1928–1935.

[vdBPS∗08] VAN DEN BERG J., PATIL S., SEWALL J.,
MANOCHA D., LIN M.: Interactive navigation of multiple
agents in crowded environments. In SI3D ’08: Proceedings of the

2008 symposium on Interactive 3D graphics and games (2008),
ACM, pp. 139–147.

62

	s5_2_1_CrowdPhysicalInteractions-SCA-2013
	s5_2_2_footstep-navigation-cavw-2011
	s5_2_2_multi-domain-planning-sca-2013
	s5_3_1_durupinar_ieee_cga-2011
	s5_3_1_PopulationsWithPurpose-MIG-2011
	s5_3_3_adapt-i3d-2013
	s5_4_1_Beacco-CGF-2011
	s5_4_1_Personality-SCA-2011
	s5_4_2_EntropyMetric-SigAsia-2013
	s5_5_1_scenario-space-sca-2013

