Velocity-Based Modeling of Physical Interactions in Multi-Agent Simulations

Sujeong Kim*
University of North Carolina at Chapel Hill

Stephen J. Guy'
University of Minnesota

Dinesh Manocha*
University of North Carolina at Chapel Hill

http://gamma.cs.unc.edu/CrowdInteractions/

Abstract

We present an interactive algorithm to model physics-based interac-
tions in multi-agent simulations. Our approach is capable of model-
ing both physical forces and interactions between agents and obsta-
cles, while allowing the agents to anticipate and avoid collisions for
local navigation. We combine velocity-based collision-avoidance
algorithms with external physical forces. The overall formulation
can approximately simulate various physical effects, including col-
lisions, pushing, deceleration and resistive forces. We have inte-
grated our approach with an open-source physics engine and use
the resulting system to model plausible behaviors of and interac-
tions among large numbers of agents in dense environments. Our
algorithm can simulate a few thousand agents at interactive rates
and can generate many emergent behaviors. The overall approach
is useful for interactive applications that require plausible physical
behavior, including games and virtual worlds.

CR Categories: 1.2.11 [Artificial Intelligence]: Distributed Artifi-
cial Intelligence—Multiagent systems

Keywords: Multi-Agent Simulation, Physical interactions

1 Introduction

Multi-agent simulations are frequently used to model a wide vari-
ety of physical systems, including human crowds; traffic; groups
of birds, bees, fish, ants; and etc. In many of these applications
it is important for the agents to interact in a physical manner with
each other and the environment. Agents often collide, push, and
impart forces on other agents and on the obstacles in the environ-
ment, changing their trajectory or behavior. A challenging goal is to
model these interactions in large multi-agent systems at interactive
rates. Many algorithms based on behavior modeling, social forces,
cellular automata, and velocity-based formulation have been pro-
posed for multi-agent simulation. Most of these techniques, how-
ever, focus on only the local navigation for each agent, and do not
explicitly take into account physical interactions between agents or
between agents and obstacles in the environment.

At a high level, there are two different sources of physical forces
which may affect an agent’s trajectories: interactions with other
agents and interactions with objects in the environments. For ex-
ample, dynamic objects such as falling boxes or moving cars may

*e-mail:sujeong@cs.unc.edu
Te-mail:sjguy @cs.umn.edu
te-mail:dm@cs.unc.edu

Figure 1: Wall Breaking. We demonstrate the physical forces ap-
plied by cylindrical agents to breakable wall obstacles. Our al-
gorithm can model such interactions between the agents and the
obstacles in dense scenarios at interactive rates.

collide with an agent, pushing it from its path. Likewise, an agent
may be pushed by, or bump into, other agents in dense scenarios.
This can happen because of agent’s intention (e.g. aggressive agent)
or because the agent was pushed by an external force.

While physical forces impact an agents trajectory, the agents mo-
tion will also impart forces upon the objects in his environment.
This effect becomes increasingly important when the forces from
many individual agents combine to produce a large effect on the
environment, such as when dense, aggressive crowds bend fences
or break walls. In order to simulate such scenarios, we need
to develop appropriate two-way coupling techniques between au-
tonomous agents and their physical environment.

Main Results: In this paper, we present a new method to model
physical interactions between agents and objects in an interactive
velocity-based multi-agent framework. Our approach incorporates
both an agent’s ability to anticipate the motion of other agents and
avoid collisions using velocity obstacles and respond to physical
forces in a single unified framework. We formulate the computation
of velocity of each agent for each timestep as a linear programming
problem in the velocity space. The linear constraints are computed
by approximating the motion induced on an agent through Newto-
nian dynamics. This allows agents to account for forces from their
environment and from other agents and generate a plausible trajec-
tory. The resulting approach is efficient and can be used to simulate
dense scenarios with thousands of agents at interactive rates. We
have integrated our approach with the Bullet Physics Engine [AMD
2012], and reciprocal velocity obstacles [van den Berg et al. 2011],
and demonstrate its performance in many complex scenarios with
large number of agents and multiple moving obstacles, In practice,
our approach can be used to generate physically plausible behavior
for interactive multi-agent simulation.

The rest of the paper is organized as follows. Section 2 gives a
brief review of related work. Section 3 gives an overview of our
approach, which combines velocity-based multi-agent simulation
and rigid body dynamics. We describe our approximate approach
to computing velocity constraints using Newtonian dynamics for
agent-agent interaction in Section 4 and for agent-obstacle interac-
tion in Section 5. In Section 6, we highlight the performance on
different scenarios and compare it with other techniques.

http://gamma.cs.unc.edu/CrowdInteractions/

2 Related Work

In this section, we give a brief overview of some related work in
multi-agent and physically-based character simulation.

2.1 Multi-Agent and Crowd Simulation Models

Many approaches have been proposed to simulate the motion of
large number of agents and crowds. Often these models are based
on rules, which are used to guide the movement of each agent.
An early example of such an approach is the seminal work of
Reynolds [1999], which uses simple rules to model flocking be-
havior.

Force-based methods, such as the social force model [Helbing and
Molnér 1995], use various forces to model attraction and repulsion
between agents. These forces are not physically based; rather, they
provide a mechanism to model the psychological factors that gov-
ern how agents approach each other. Helbing et al. [2000] model
panic behavior with two additional physical forces (body force and
sliding friction) in addition to the social forces. Yu and Johans-
son [2007] model the turbulence-like motion of a dense crowd by
increasing the repulsive force. Other approaches model collision-
avoidance behavior with velocity-based techniques [van den Berg
et al. 2011; Pettré et al. 2009; Karamouzas and Overmars 2012] or
vision-based steering approaches [Ondfej et al. 2010].

Other techniques have been proposed to model complex social in-
teraction. HiDAC [Pelechano et al. 2007] uses various rules and
social forces to model interactions between agents and obstacles;
collision avoidance and physical interactions between agents and
objects are handled using repulsive forces. The composite agent
formulation [Yeh et al. 2008] uses geometric proxies to model so-
cial priority, authority, guidance, and aggression. Many other multi-
agent simulation algorithms use techniques from sociology [Musse
and Thalmann 1997], biomechanics [Guy et al. 2012], and psychol-
ogy [Sakuma et al. 2005; Durupinar et al. 2011; Guy et al. 2011;
Kim et al. 2012] to model different aspects of agent behaviors and
decision models. These approaches are able to generate realisti-
cally heterogeneous behaviors for agents. Our approach to model
physical interactions can also be combined with many of these ap-
proaches.

Many researchers have proposed cognitive and decision-making
models to generate human-like behaviors [Shao and Terzopoulos
2005; Yu and Terzopoulos 2007; Ulicny and Thalmann 2002], or
use data-driven approaches to the problem [Lee et al. 2007; Lerner
et al. 2009].

Other approaches for modeling crowds are based on continuum or
macroscopic models [Hughes 2003; Treuille et al. 2006; Narain
et al. 2009]. In particular, Narain et al. [2009] present a hybrid
technique using continuum and discrete method for aggregate be-
haviors in large and dense crowds. They are mainly used to simu-
late the macroscopic flow and do not model the interaction between
the crowd and obstacles. In contrast, our approach simulates agent-
agent and agent-obstacles physical interaction.

2.2 Force-Based Techniques for Character Animation

There has been extensive work on using physics-based models to
improve character animation. Sok et al. [2010] use a force-based
approach to ensure that the resulting motions are physically plau-
sible. Other approaches consider geometric and kinematic con-
straints [Shum et al. 2012] or use interactive methods for character
editing [Kim et al. 2009]. These techniques, which are primarily
based on enhancing motion-captured data, can be used to simulate

behaviors of and interactions between the characters and obstacles
in their environment.

Many hybrid techniques have been proposed that bridge the gap
between physics-based simulation of character motion and pre-
recorded animation of characters to model responsive behavior of
character [Shapiro et al. 2003; Zordan et al. 2005]. Muico et
al. [2011] propose a composite method to improve the responsive-
ness of physically simulated characters to external disturbances by
blending or transitioning multiple locomotion skills.

Our approach is quite different from these methods. Unlike charac-
ter animation techniques that mainly focus on generating the full-
body motion of a relatively small number of characters, we focus on
generating physically plausible interactions between a large number
of agents in dense scenarios.

2.3 Crowd Simulation in Game Engines

Some commercial game engines or middleware products can sim-
ulate character motion or crowd behavior. This includes Natural
Motion’s Euphoria, which simulates realistic character behavior
based on biomechanics and physics simulation. There are also com-
mercial Al middlewares for game engines that combine crowd and
physics simulation: Kynapse, Havok Al, and Unreal Engine are ex-
amples of these. These systems primarily focus on the local and
global navigation of each agent using navigation meshes and local
rules. Our approach to generating physical interactions can be com-
bined with these systems to improve local interactions between the
agents and the obstacles in the scene.

3 Overview

Our framework simulates agents and objects differently, based on
two fundamental assumptions about the nature of their motion.
Agents are assumed to be autonomous and self-actuated. In the ab-
sence of external forces, we use velocity-based collision avoidance
techniques to control the paths of the agents, who avoid collisions
using anticipatory techniques. In contrast, objects in the environ-
ment move only when physical forces act on them. The positions
of objects are updated by solving Newton’s equations of motion;
contacts are handled with a constraint-based method. This section
gives an overview of our proposed approach to simulating agents
and objects together in a shared space.

Local navigation and anticipatory collision avoidance of agents can
be efficiently modeled using reciprocal velocity obstacles, which
imposes linear constraints on an agent’s velocity to help it navi-
gate its environment. We extend this framework by representing
the effect of physical forces on agents also as linearized velocity
constraints. This allows us to use linear programming to compute
a new velocity for each agent — one which takes into account both
the navigation and force constraints imposed upon that agent.

Agent simulation is typically performed over discrete timesteps.
Agents are assumed to have a preferred velocity. This is the ve-
locity at which the agent would travel if there were no anticipatory
collision-avoidance or physical constraints. This velocity is used to
define the cost function for linear programming or constrained op-
timization. At each timestep, an agent computes a new velocity that
satisfies the velocity constraints, then updates its position based on
this velocity. A new set of velocity constraints are then computed
based on the new positions and velocities.

There are two types of constraints which we impose on an agent’s
velocity:

¥

Physical Interactions

4|

Object Motion Forces from Agents

Forces from Objects

)

Force Constraint (FC) — st e]

Rigid-Body
Dynamics

Agent-Agent Collision Avoidance

—> Agent-Object Collision Avoidance

Local Navigation (Anticipatory Collision Avoidance)

:|—> ORCA Constraints —

Constrained
Optimization

A

Figure 2: System Overview. The motions for objects and agents are computed by a rigid-body dynamics solver and a constrained optimizer,
respectively. Physical interactions between agents and obstacles determine forces. For obstacles, the forces serve as inputs to the rigid-body
system, for agents, they become force constraints. These force constraints are combined with the original ORCA planning constraints and

serve as inputs to optimization algorithm.

e ORCA Constraints define the space of velocities which are
expected to remain collision-free for a given period of time.
The derivation of agent-agent ORCA constraints is given in
Section 3.1, and that of agent-object ORCA constraints in
Section 5.1.1.

e Force Constraints are constraints which arise out of forces
initiated by physical interactions with other agents and ob-
jects. The details are given in Sections 3.2, 4, and 5.

Fig. 2 gives an overview of the full simulation system for computing
these constraints and for updating an agent’s position and velocity.

3.1 Velocity Constraints for Local Navigation

ORCA constraints are defined by a set of velocities that are guaran-
teed to avoid upcoming collisions with other nearby agents [van den
Berg et al. 2011]. The constraints are represented as the boundary
of a half plane containing the space of feasible, collision-free ve-
locities. Given two agents, A and B, which we represent as 2D
discs, we compute the minimum vector u of the change in relative
velocity needed to avoid collision. ORCA enforces this constraint
by requiring each agent to change their current velocity by at least
1/2u. The ORCA constraint on A’s velocity induced by B would
be:

ORCAxs = {vI(v — (va + %u)) a0}, (D)

where v 4 is A’s current velocity and 1 is the normalized vector u.

If A has multiple neighboring agents, each will impose its own
ORCA constraint on A’s velocity. Local navigation is computed
by finding the new velocity for A (v"*") which is closest to its pre-
ferred velocity (vP™?) while respecting all the ORCA constraints.

3.2 Velocity Constraints from Physical Forces

The set of neighbors involved in physical interactions with an agent
include both nearby agents and obstacles. We define a radius and
an angle that are then used to define a range of physical interac-
tions for each agent. When an agent is pushed, either by another
agent or by an obstacle, the agent experiences an external force. By
Newton’s second law, the net force acting on an agent implies a net
acceleration. Given a known timestep, we can compute the change
in velocity exactly. We represent this change in velocity induced by
a force as an additional constraint on the agent velocity.

One benefits of applying forces as a form of constraint is the ability
of an agent to adapt to the forces. While the constraint guarantees
an acceleration at least as large as that implied by the dynamics,
the actual acceleration from the forces may be greater than that.
When pushed, rather than simply falling sideways, an agent could
accelerate faster to reach a stable, controlled state.

We classity these forces into two types, depending on the origin of
the force:

Forces from agents are generated when an agent pushes (or is
pushed into) another agent, or when there is a collision between
two agents. This effect of a pushing force can persist across mul-
tiple time-steps depending on the agent’s response. The effect of a
pushing force on an agent can also propagate to other agents as a
result of the first agent’s being pushed into others. The force im-
parted by the agent onto an object is given as an input to a rigid
body dynamic simulation, which we use to simulate the behavior
of the objects in the environment. This simulation accounts for the
impact of agent’s force on the motion of the object.

Forces from objects are the forces an agent receives from objects.
Note that forces acting upon agents from objects are only those
caused by the collision, i.e. the reaction force. These forces are then
summed up and represented as a Force Constraint, an additional
constraint to the velocity computation.

3.3 Velocity Computation Algorithm

We can summarize our new velocity computation algorithm as fol-
lows: Given an agent A with neighbors B, we define the permitted
velocities for A, PV 4 as the intersection of all velocity constraints.
We can state our agent update algorithm as an optimization prob-
lem. Formally:

PVa=FCan (] ORCAup @)
B#A
v = argmin ||v — v/ |. 3)
veEPVy

In conditions where the preferred velocity of an agent is only de-
termined by physical forces (i.e., in the absence of navigation con-
straints) the formulation will reproduce the motion based on New-
ton’s second Law. This is because the closest velocity to the agent’s
current velocity will be the perpendicular distance to the velocity
constraint £'C'4.

£

ilk

(b) Collision Force

(a) Pushing Force

Figure 3: Contact Forces An agent (orange disk) can affect nearby
neighbors (grey disks) through physical contact expressed as im-
pulse forces. These physical forces can be used to push other agents
as in (a) or resolve physical collisions as in (b). The red arrows dis-
play the direction of the resulting forces.

4 Force Computation

In this section, we present our approach for computing velocity con-
straints from physical forces. We propose an approximate approach
because we need to handle a large number of agents in dense envi-
ronments. As a result, we approximate the physical interactions
based on appropriate velocity constraints. We assume that these
forces are initiated from a collision or by pushing. When an agent
experiences these forces, the impact on its motion lasts more than
one timestep because of its effort to recover momentum. We ap-
proximate the effects of momentum by using two inferred forces:
a resistive force and a deceleration force. These two additional
forces have the net effect of propagating the momentum through
the crowd.

4.1 Contact Forces

Pushing Forces: Pushing is one of the ways for agents to physically
interact with each other [Pelechano et al. 2007]. Agents can impart
a pushing force on nearby agents. In our formulation, agents can
impart a pushing force to nearby agents; this pushing force follows
the approximate direction of the pushing agent’s preferred velocity
and pushes the blocking agent out of the pushing agent’s path (see
Fig. 3a). The pushing force imparts an impulse to the nearby agents
in the direction of the normal vector from the pushing agent towards
the pushed agent. Formally, the pushing force fﬁ . €xerted by an

agent ¢ pushing another agent k can be given as:

+
Pr — P;
£ = prfy PETPi o
e P]l

where p; and ps indicate the positions of agent ¢ and k, respec-
tively, and p;” = p; + v;At is the pushing agent’s future position
at the next time step. f, is used to define the weight of pushing
force, and we formulate it as an inverse of number of agents that
are pushed.

Collisions: In case of collisions between agents, a collision res-
olution force is applied (Fig. 3b). This force is computed based
on the physically-based simulation approach proposed by [Baraff
1997], and depends on the mass and velocity of colliding agents.
We consider only linear momentum and simulate agents as radially
symmetric disks. As a result, we do not take into account the ori-
entation of the agents. For an agent ¢ colliding with agent k, the

(b) Resistive Force

(a) Deceleration Force

Figure 4: Inferred Forces: Forces between agents can be inferred
based on local navigation. If an agent has a large change in ve-
locity in the absence of force applied to the agent, as in (a), then a
deceleration force, f°, is inferred to have caused the change, and is
applied to nearby agents. (b) Likewise, when a force is applied to
an agent which produces no change in agent’s velocity, we model
in terms of resistive force ", which implicitly opposes this motion.
This inferred resistive force is also applied to nearby agents.

collision force £ is computed as follows:

£ = (S0t n)/AL ®)

1/mi+1/my

where n is the collision normal, pointing towards agent ¢ from agent
j; v is relative velocity; and m; and my, are the mass of agent ¢
and agent k, respectively. ¢ is the coefficient of restitution.

4.2 Inferred Forces

We also define two forces, deceleration force and resistive force,
to model agent’s ability to adjust their motion when external force
is applied. The contact forces that result from agents colliding or
pushing each other are computed as impulses. After being bumped
or pushed, an agent will naturally exert forces in order to quickly re-
cover its preferred velocity. Forces will therefore propagate through
a dense crowd, since one agent is likely to push others in order to
recover from the external pushing force.

This kind of behaviors are inspired from biomechanics, an observa-
tion about how humans react to recover their balance in various con-
ditions including when the external forces are applied to the body.
More details are given in [Kim et al. 2013].

These propagation forces can be inferred when the motion com-
puted using constrained optimization does not match the motion
expected from external physical forces. For example, when an
agent decelerates at a faster rate than that implied by the external
forces, we infer that the agent must be pushing against other agents
or obstacles in order to be able to slow down so quickly. Like-
wise, when an agent accelerates at a rate less than that implied by
external forces, we infer the agent must be pushing against other
agents or obstacles, which resist the effect of the forces. These in-
ferred propagation forces are applied to the appropriate neighboring
agents during the subsequent timestep. We describe the formulation
for each of these forces below.

Deceleration Forces: When an agent reduces speed while preserv-
ing direction to within a certain threshold (64), we introduce a force
into the system based on this velocity change. The deceleration
force generated by agent ¢’s deceleration is defined as:

fd _ k‘threshmiAVi/At if (A{’Z . \72) < —COS(ed)7
P10 otherwise,

(6)

where Av; = v; — v is the change in velocity from the previous
time step to the current time step. Because agents are not rigid
bodies, they can absorb or transform forces. We approximate this
behavior by introducing a parameter kipresh.

We assume that the speed reduction arises from one of two sources:
self-will (e.g. sudden change of preferred velocity) or agent interac-
tion (e.g. impending collision avoidance). When there are no inter-
acting agents, we assume it is the former case, and the deceleration
force is applied back to the agent itself. In the latter case, where
the deceleration is caused by interaction with the agents neighbors,
the behavior of those neighbors should also change as a result of
the interactions; we thus distribute the deceleration force among
them in the case of collision avoidance. Furthermore, a neighbor-
ing agent k causes such behavior if it lies within a cone centered
on v, and is within an angular space of 20, degrees (as shown in
Fig. 4a). For each interacting neighbor k& of agent ¢, the portion of
the deceleration force acting on agent k is defined as:

£, = —0uf}, @)

where ¢y, is a parameter that indicates how the deceleration force is
transferred to agent k. We set this parameter to 1/n, where n is the
number of interacting agents.

Resistive Forces: Resistive forces occur when an agent’s computed
velocity does not account for the entire change in velocity expected
from the external force. This difference is propagated to neighbor-
ing agents via the resistive forces. This force is computed by the
difference between the velocity v computed by (3) and the velocity
v/ computed only from the net force applied to the agent. The re-
sistive force of an agent i experiencing the discrepancy between v¥
and v is:

fr _ kthreshmi(vi — V{)/At if sz ;é 0 8
_ : ®)
0 otherwise.

As in the case of deceleration force, the resistive force is applied
to the agent ¢ when there is no interacting agent. Otherwise, the
resistive force is distributed equally among the interacting agents,
whose position is inside a cone centered on vlf and with an angular
span of 20, degrees (as shown in Fig. 4b). The resistive force),
applied to agent k is given as:

£ = —efl, ©)

where i, is a weighting parameter for agent k (we use 1/n).

The resistive force and deceleration force can be viewed as comple-
mentary to one another. The resistive force is non-zero only in the
presence of external physical forces on an agent, and the decelera-
tion force is non-zero only in the absence of such forces.

4.3 Force Constraints
The net force f is the sum of all the forces applied to the agent.

Mathematically, force f used to compute force constraint F'C' (de-
scribed in (12)) is computed as follows:

£ o= D 4> Y) fP (10)

The force constraint F'C' induced by the net force f is computed as
follows:

vl o= v+ —At 1)
FC

{vl(v—=v)- >0} (12)

FC is a half plane whose boundary, a line through v, is perpen-
dicular to the normalized force f. This half plane contains a set
of velocities that is equal to or greater than the minimum veloc-
ity change required by the force f. This term is used for velocity
computation in Equation (2).

5 Interaction with Obstacles

A key part of our approach is to model interactions between the
agents and static and dynamic objects, i.e. two-way coupling be-
tween agents and obstacles. The behavior of agents towards the ob-
jects around them includes anticipatory collision avoidance, push-
ing, and unintended collisions. An agent might also impose forces
from its motion (e.g., resistive force and deceleration force) on ob-
stacles, as it does to other agents. If there is a collision, then objects
also exert forces on the agent. In this section, we present an efficient
algorithm to model these interactions for interactive applications.

5.1 Dynamic Objects

There are some significant differences between agent-agent and
agent-obstacle interactions, both in terms of the motion computa-
tion and in how an agent responds to those obstacles. Importantly,
the motion of obstacles (e.g. rigid bodies) is governed by Newto-
nian physics, since these objects have no will and are unable to ini-
tiate movement on their own. As a result, the agents cannot assume
that the obstacles will anticipate collisions and change trajectory to
avoid them. Moreover, the rigid body simulation is performed on
the obstacle motion in 3D space, while the agents are constrained
to move on a 2D plane.

5.1.1 Anticipatory Collision Avoidance

In our approach, agents attempt to anticipate and avoid collisions
with the obstacles. Since the agent’s navigation is performed in 2D
space, we project the boundary of the dynamic obstacle onto the 2D
plane (see Fig. 5).

The dynamic object O is represented, like the agents, as an open
disc centered at p with the radius 7 of the bounding sphere of the
object. While we use this bounding shape for collision avoidance
with the agents, the underlying rigid body simulation uses an exact
3D object representation for collision detection and for response to
other objects in the scene.

ORCAY o

Figure 5: Collision Avoidance and Anticipation with a 3D object
projected onto 2D plane We take into account the object location
in computing appropriate collision avoidance constraints for agent
A, shown in the shaded region.

Agents try to avoid collisions with dynamic obstacles, just as they
try to avoid collisions with other agents, whenever the dynamic ob-
stacles are within agent’s visual range. However, agents do not

assume objects will reciprocate in avoiding collisions. Therefore,
assuming that a change in velocity of u (Section 3.1) is required to
avoid an anticipated collision with an obstacle, the agent will mod-
ify its velocity by at least u; this is twice as large as the velocity
bound using ORCA algorithm.

Therefore, the collision avoidance constraint for agent A induced
by object O is:

ORCAL 0 ={v|(v—(va+u)) -n >0} (13)

5.1.2 Agent-Object Collisions

When there is a collision between an agent and an object, the im-
pulse force f¢ is computed by the method used in [Baraff 1997].
We only consider rotational factors in the computation of object
motion, not for the agents. We can compute the impulse force f¢
from the collision between an agent a and object o is as follows:

_ € Vrel
£ = (ot - m)/At, (14)

where m, is the mass of object o, v"®" and n are the relative veloc-
ity and the contact normal between the contact points, respectively.
A force with the same magnitude but with the opposite direction is
applied to the object, which also results in change of angular motion
generated by the torque 7¢:

¢ = ¢ X 1o, (15)

where r, is the displacement vector for the contact point of the
object.

6 Results & Analysis

In this section, we highlight the performance of our algorithm in
different scenarios. We also analyze the approach and compare it
with other techniques.

6.1 Agent-Agent Interaction

We first demonstrate a few scenarios which highlight the effect of
forces propagating in agent-agent interactions.

Running Through Scenario: We demonstrate a scenario where an
agent runs at a high speed through a dense crowd of 25 agents that
are standing still. Figure 6 compares the result of our method to
those achieved using multi-agent simulation without any physical
interactions.

»
| A

While Moving After While Moving After

(a) without physical interactions (b) with physical interactions
Figure 6: Rushing through still agents: The red agent tries to
rush through a group of standing agents, simulated (a) with only
anticipatory collision avoidance and (b) with physical interactions.
Using our method, the forces are propagated among the agents,
resulting in a new distribution pattern (b).

The left side of each image shows a pushing agent (red) passing
through the crowd, and the right side of each image shows the posi-
tion of all other agents in the crowd after the fast-moving agent has
passed. As Fig. 6 demonstrates, agents simulated without physics-
based interaction use minimal motion to avoid collisions. In con-
trast, agents simulated using our physically-based formulation re-
sist the pushing motion (in an attempt to stand still) and propagate
the effects of being pushed to other agents.

time

Figure 7: Pushing through dense crowd: The red agent pushes
through a dense crowd that moves perpendicular to its direction of
travel. Agents are simulated using (a) ancipatory collision avoid-
ance only, and (b) combination of anticipatory collision avoidance
and physically-based interaction. In the latter case, the red agent
can proceed to its goals quickly by pushing other agents through its
path.

Dense Crossing Scenario: In this case, an agent attempts to cross
perpendicularly through a dense stream of crowd flow. Fig. 7 shows
a comparison between our method and using no physical interac-
tions.

As the figure shows, an agent who is only avoiding collisions (with-
out pushing) cannot effectively cut through the crowd’s flow, is
eventually swept up with the crowd, as that motion avoids all im-
pending collision. This is because moving with the crowd success-
fully avoids all impending collisions. However, the pushing force
based on our approach allows an agent to clear its path and move
freely.

Two Bottlenecks Scenario: In this scenario, long lines of closely
spaced walking agents attempt to pass through two narrow bottle-
necks, as illustrated in Fig. 8. The first bottleneck (shown as (2)) is
about the width of two agents; the second is narrower, about wide
enough for one agent (shown as (1)). A local navigation algorithm
that performs collision avoidance frequently results in congestion at
both the bottlenecks due to stable-arch formation of agents (high-
lighted with a yellow circle) in Fig. 8 (a). However, agents sim-
ulated by our physically-based method are able to break this con-
gestion at the bottleneck area by pushing the blocking agents. The
ability to break through bottlenecks also results in a quantitatively
higher rate of flow for agents using our approach. After seconds,
twice as many agents make it through both the bottlenecks, using
our algorithm.

6.2 Agent-object Interaction

We can also demonstrate the effect of two-way coupling between
dynamic objects and agents in multi-agent simulations. In the fol-
lowing scenarios, the Bullet Physics engine [AMD 2012] is used
to compute the 3D rigid body dynamics, which in turn are used to

The forces generated by these collisions affect both the ob-
jects and the agents.

e User Interactions: Our method is fast enough for real-time
interactive simulation. Users can participate in the simulation
by moving rigid bodies inside the scene; this movement dy-
namically changes the environment for the moving agent.

(b) Physical interaction amongst agents and with the walls

Figure 8: Two bottlenecks scenario We simulate and compare
crowd behavior at two narrow bottlenecks in these scenarios, (1)
and (2), which are marked with red dotted lines. Bottleneck (1) is
barely wide enough for one person to pass through; bottleneck (2)
is about twice that width and allows two agents to pass through it at
a time. The result from collision-avoidance-only simulation results
in an arch-shaped arrangement of agents in the crowd (highlighted
with a yellow circle), which causes congestion at the bottleneck.
Our method breaks the congestion by allowing the agents to push
one other in congested conditions.

compute object motion (see Fig. 2). The effects of user interaction
in these scenarios can be seen in the supplemental video'.

Rolling Ball Scenario: In this scenario, a few agents interact with
varying numbers of dynamically generated balls. A user can inter-
act with the agents by moving around the dynamic obstacles, or by
generating new balls. Agents attempt to avoid these dynamically
moving balls and push them away when there is a collision.

Wall Breaking Scenario: In this scenario, long lines of agents
come at a constant rate into the simulated region, which is blocked
off with a movable wall made of 200 blocks glued together. This
wall can be broken into separate blocks if a large external force is
applied by the agents. Agents initially stop to avoid hitting the wall,
but as other agents start to push from behind, the wall breaks apart
and gets carried away with the agents. Fig. 1 shows stills from the
simulation.

Cluttered Office Scenario: In this scenario, several decomposed
3d models - a table, a chair, and a shelf, and several rigid bodies
(e.g. boxes) stacked on top of each other — are placed in the way
of the agents. A long stream of agents attempts to navigate past
the obstacles. Users can throw boxes, which push the agents and
knock over objects in the environment. Fig. 9 shows a still from the
simulation.

These scenarios demonstrate several features of our approach:

e Dynamic Obstacle Avoidance: Agents try to avoid collisions
with other agents and with dynamic obstacles.

o Agent-Object Interactions: Our method takes into account the
collisions which occur between the agents and the objects.

ISupplementary video can be found at
http://gamma.cs.unc.edu/CrowdInteractions/

Figure 9: Office Scenario. Agents navigate to avoid office furni-
ture. As users insert flying pink boxes into the scene, the agents
get pushed, collide into each other, and avoid falling objects (see
video).

6.3 Performance

We measured the simulation timings for the demos we presented
(see Table 1). The timings were computed on a 3.4 GHz Intel i7
processor with 8GB RAM. Our method efficiently simulates large
numbers of agents, and also exhibits interactive performance when
integrated with the Bullet Physics Library.

Dynamic | # Static
Scenario Agents | Obstacles | Obstacles fps
Pushing Through | 1600 0 0 229.6
Two Bottlenecks 1000 0 20 829.7
Rolling Balls 10 1000 2 1205.9
Wall Breaking 1200 200 2 50.1
Office 1200 65 0 69.0

Table 1: Performance on a single core for different scenarios. Our
algorithm can handle all of them at interactive rates.

6.4 Analysis

Our approach is mainly designed for interactive applications that re-
quire plausible physical behavior (e.g. games or virtual worlds). By
using a combination of force and navigation constraints that affect
agents’ behavior, our approach can simulate many use effects and
emergent behaviors. For example, our formulation allows for inten-
tionally uncooperative agents to physically push their way through
a crowd by imparting physical forces to nearby agents. Addition-
ally, agents can use navigation constraints to avoid collisions with
dynamic obstacles as well as other agents. By expressing all inter-
actions as linear velocity constraints, we can naturally combine the
two different simulation paradigms of forces and navigation into
a unified framework and compute the new velocity for each agent
using linear programming. This is useful in generating physically
plausible simulations of large numbers of agents.

Benefits of Our Method

Many techniques have been proposed in the literature for simulat-
ing large numbers of agents that display a wide variety of emergent
behaviors. However, the primary emphasis of these methods is on
collision avoidance — avoiding any physical contact between the

http://gamma.cs.unc.edu/CrowdInteractions/

agents. In other words, they model how agents move around each
other, but do not usually model explicit physical contacts, interac-
tions, and external forces.

Force-based methods such as [Helbing and Molnar 1995] use forces
to describe social factors (e.g. attraction and repulsion) between the
agents, not physical interactions. Most closely related to our work
are methods such as [Helbing et al. 2000; Yu and Johansson 2007;
Pelechano et al. 2007], which model crowd turbulence or physi-
cal interactions among panicking agents by adding explicit physical
force or by increasing repulsive forces. These methods are capable
of reproducing some important emergent crowd phenomena, but do
not account for the anticipation needed to efficiently avoid upcom-
ing collisions with other agents and obstacles [Curtis et al. 2012].

Force-based methods can also suffer from stability issues in dense
scenarios, which require careful tuning and small time steps in order
to remain stable [Curtis et al. 2011]. Our method provides stable,
anticipatory motion for agents while incorporating agent responses
to forces. It can be easily combined with other velocity-based ap-
proaches. Our approach is also stable in terms of varying the size
of time-steps. More details are given in [Kim et al. 2013].

Limitations

We use a physically-inspired approach to simulate the interactions
between a high number of agents and the obstacles. However, it is
only an approximation and may not be physically accurate. Sec-
ondly, we assume that agents are constrained to move along a 2D
plane, and we use the projected positions of 3D dynamic objects to
compute the interactions. Third, like other agent-based simulation
methods, we use a rather simple approximation for each agent (a
2D circle). This means that we cannot accurately simulate physical
interactions with human-like articulated models and 3D objects.

7 Conclusion and Future Work

We have proposed a novel method to combine physics-based in-
teractions with anticipatory collision-avoidance techniques that use
velocity-based formulation. Our method can generate many emer-
gent behaviors, physically-based collision responses, and propaga-
tion of forces to the agent’s nearby neighbors. In combination with
the Bullet Physics library, we were able to simulate complex inter-
actions between agents and dynamic obstacles in the environment.
The resulting approach is useful for interactive large-scaled simu-
lations and can generate physically plausible behaviors. This ap-
proach has been extended to model physical interactions between
dense crowds and applied to Tawaf simulation [Kim et al. 2013].

In our future work, we would like to further explore our method
by comparing the results with real-world crowd behaviors and by
performing more validation. We would like also to extend our
model to agents moving in 3D space or multi-layer frameworks, and
to consider using more complex shapes, or even articulated body
models, to represent agents, as this would allow for more accurate
force computation. Finally, we would like to use more accurate
physically-based modeling algorithms to generate appropriate be-
haviors.

Acknowledgements

We are grateful to the reviewers for their comments, we would like
to thank Sean Curtis, Ming C. Lin and Ioannis Karamouzas for their
help and feedback, and Karl Hillesland, Erwin Coumans, and Jason
Yang from AMD for their support. This research is supported in
part by ARO Contracts W911NF-10-1-0506, W911NF-12-1-0430,
NSF awards 0917040, 0904990, 100057, and 1117127, AMD, and
Intel.

References

AMD, 2012. Bullet Physics 2.80. http://bulletphysics.org.

BARAFF, D. 1997. An introduction to physically based modeling:
Rigid body simulation i - unconstrained rigid body dynamics. In
In An Introduction to Physically Based Modelling, SIGGRAPH
97 Course Notes, 97.

CURTIS, S., GUY, S. J., ZAFAR, B., AND MANOCHA, D. 2011.
Virtual tawaf: A case study in simulating the behavior of dense,
heterogeneous crowds. In /st IEEE Workshop on Modeling, Sim-
ulation and Visual Analysis of Large Crowds, 128-135.

CURTIS, S., ZAFAR, B., GUTUB, A., AND MANOCHA, D. 2012.
Right of way. The Visual Computer, 1-16.

DURUPINAR, F., PELECHANO, N., ALLBECK, J., GU ANDDU
ANDKBAY, U., AND BADLER, N. 2011. How the ocean person-
ality model affects the perception of crowds. Computer Graphics
and Applications, IEEE 31, 3 (may-june), 22 -31.

Guy, S.J., KM, S., LIN, M. C., AND MANOCHA, D. 2011. Sim-
ulating heterogeneous crowd behaviors using personality trait
theory. In Symposium on Computer Animation, ACM, 43-52.

Guy, S. J., CUrTIS, S., LIN, M. C., AND MANOCHA, D. 2012.
Least-effort trajectories lead to emergent crowd behaviors. Phys.
Rev. E 85 (Jan), 016110.

HELBING, D., AND MOLNAR, P. 1995. Social force model for
pedestrian dynamics. Phys. Rev. E 51 (May), 4282-4286.

HELBING, D., FARKAS, 1., AND VICSEK, T. 2000. Simulating
dynamical features of escape panic. Nature 407, 6803 (Sept.),
487-490.

HUGHES, R. L. 2003. The flow of human crowds. Annual Review
of Fluid Mechanics 35, 1, 169-182.

KARAMOUZAS, 1., AND OVERMARS, M. 2012. Simulating and
evaluating the local behavior of small pedestrian groups. IEEE
Trans. on Visualization and Computer Graphics 18, 3, 394-406.

Kim, M., HYUN, K., KiMm, J., AND LEE, J. 2009. Synchronized
multi-character motion editing. ACM Trans. Graph. 28, 3 (July),
79:1-79:9.

Kim, S., Guy, S. J., MANOCHA, D., AND LIN, M. C. 2012.
Interactive simulation of dynamic crowd behaviors using general
adaptation syndrome theory. In Symposium on Interactive 3D
Graphics, ACM, New York, NY, USA, I3D *12, 55-62.

KM, S., GUY, S. J., ZAFAR, B., GUTUB, A., AND MANOCHA,
D. 2013. Velocity-based modeling of physical interactions in
multi-agent simulations in dense crowd. Tech. rep., Department
of Computer Science, University of North Carolina at Chapel
Hill.

LEE, K. H., CHOI, M. G., HONG, Q., AND LEE, J. 2007. Group
behavior from video: a data-driven approach to crowd simula-
tion. In Symposium on Computer Animation, 109-118.

LERNER, A., CHRYSANTHOU, Y., SHAMIR, A., AND COHEN-
OR, D. 2009. Data driven evaluation of crowds. In MIG, 75-83.

Muico, U., PopoviC, J., AND PoPoOVIC, Z. 2011. Composite
control of physically simulated characters. ACM Transactions
on Graphics 30, 3.

MUSSE, S. R., AND THALMANN, D. 1997. A model of human
crowd behavior: Group inter-relationship and collision detection

analysis. In Proc. Workshop of Computer Animation and Simu-
lation of Eurographics’97, 39-51.

NARAIN, R., GOLAS, A., CURTIS, S., AND LIN, M. C. 2009.
Aggregate dynamics for dense crowd simulation. ACM Trans.
Graph. 28, 5 (Dec.), 122:1-122:8.

ONDRE]J, J., PETTRE, J., OLIVIER, A.-H., AND DONIKIAN, S.
2010. A synthetic-vision based steering approach for crowd sim-
ulation. ACM Trans. Graph. 29, 4 (July), 123:1-123:9.

PELECHANO, N., ALLBECK, J. M., AND BADLER, N. I. 2007.
Controlling individual agents in high-density crowd simulation.
In Symposium on Computer animation, 99-108.

PETTRE, J., ONDREJ, J., OLIVIER, A.-H., CRETUAL, A., AND
DONIKIAN, S. 2009. Experiment-based modeling, simulation
and validation of interactions between virtual walkers. In Sym-
posium on Computer Animation, ACM, SCA ’09, 189-198.

REYNOLDS, C. 1999. Steering Behaviors for Autonomous Char-
acters. In Game Developers Conference 1999.

SAKUMA, T., MUKALI, T., AND KURIYAMA, S. 2005. Psycholog-
ical model for animating crowded pedestrians: Virtual humans
and social agents. Comput. Animat. Virtual Worlds 16, 343-351.

SHAO, W., AND TERZOPOULOS, D. 2005. Autonomous pedestri-
ans. In Symposium on Computer animation, 19-28.

SHAPIRO, A., PIGHIN, F., AND FALOUTSOS, P. 2003. Hybrid
control for interactive character animation. In Pacific Confer-

ence on Computer Graphics and Applications, IEEE Computer
Society, Washington, DC, USA, PG *03, 455-.

SHUM, H. P. H., KOMURA, T., AND YAMAZAKI, S. 2012. Simu-
lating multiple character interactions with collaborative and ad-
versarial goals. IEEE Transactions on Visualization and Com-
puter Graphics 18, 5 (May), 741-752.

Sok, K. W., YAMANE, K., LEE, J., AND HODGINS, J. 2010.
Editing dynamic human motions via momentum and force. In
Symposium on Computer Animation, Eurographics Association,
Aire-la-Ville, Switzerland, Switzerland, SCA 10, 11-20.

TREUILLE, A., COOPER, S., AND PoPoVI¢, Z. 2006. Continuum
crowds. In ACM SIGGRAPH 2006, ACM, 1160-1168.

ULICNY, B., AND THALMANN, D. 2002. Towards interactive real-
time crowd behavior simulation. In Computer Graphics Forum,
vol. 21, Wiley Online Library, 767-775.

VAN DEN BERG, J., GUy, S. J., LIN, M., AND MANOCHA, D.
2011. Reciprocal n-body collision avoidance. In Robotics Re-
search: 14th ISRR (STAR), vol. 70, 3-19.

YEH, H., CURTIS, S., PATIL, S., VAN DEN BERG, J., MANOCHA,
D., AND LIN, M. 2008. Composite agents. In Symposium on
Computer Animation, 39—-47.

YU, W., AND JOHANSSON, A. 2007. Modeling crowd turbulence
by many-particle simulations. Phys. Rev. E 76 (Oct), 046105.

YU, Q., AND TERZOPOULOS, D. 2007. A decision network frame-
work for the behavioral animation of virtual humans. In Sympo-
sium on Computer animation, 119-128.

ZORDAN, V. B., MAIKOWSKA, A., CHIU, B., AND FAST, M.
2005. Dynamic response for motion capture animation. ACM
Trans. Graph. 24, 3 (July), 697-701.

COMPUTER ANIMATION AND VIRTUAL WORLDS
Comp. Anim. Virtual Worlds 2011; 22:151-158
Published online 12 April 2011 in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/cav.403

SPECIAL ISSUE PAPER

Footstep navigation for dynamic crowds

Shawn Singh*, Mubbasir Kapadia, Glenn Reinman and Petros Faloutsos

Department of Computer Science, University of California, Los Angeles, USA

ABSTRACT

The majority of steering algorithms output only a force or velocity vector to an animation system, without modeling the
constraints and capabilities of human-like movement. This simplistic approach lacks control over how a character should
navigate. This paper proposes a steering method that uses footsteps to navigate characters in dynamic crowds. Instead of an
oriented particle with a single collision radius, we model a character’s center of mass and footsteps using a 2D
approximation of an inverted spherical pendulum model of bipedal locomotion. We use this model to generate a timed
sequence of footsteps that existing animation techniques can follow exactly. Our approach not only constrains characters to
navigate with realistic steps but also enables characters to intelligently control subtle navigation behaviors that are possible
with exact footsteps, such as side-stepping. Our approach can navigate crowds of hundreds of individual characters with
collision-free, natural steering decisions in real-time. Copyright © 2011 John Wiley & Sons, Ltd.

KEYWORDS
crowds; footprints; footsteps; navigation; steering

*Correspondence

Shawn Singh, Department of Computer Science, University of California, Los Angeles, Boelter Hall 4531F, Los Angeles, CA 90095,
USA.

E-mail: shawnsin@cs.ucla.edu

1. INTRODUCTION

timed footsteps exactly [1-6], the main challenge and focus
of our work is how to generate footsteps as the output of

The majority of previous steering algorithms represent a
character as an oriented particle that moves by choosing a
force or velocity vector. Often, orientation is heuristically
chosen to be the particle’s velocity. This approach has the
two key disadvantages:

e Limited locomotion constraints: Most steering algor-
ithms do not account for constraints of real human
movement. Trajectories may have discontinuous vel-
ocities, oscillations, awkward orientations, or may try
to move a character unnaturally, and these side-effects
make it harder to animate the character intelligently.

e Limited navigation control: It is common to assume that
an animation system will know how to interpret a vector-
based steering decision. In practice, a vector does not
have enough information to indicate appropriate man-
euvers, such as side-stepping versus reorienting the
torso, stepping backwards versus turning around, plant-
ing a foot to change momentum quickly, or carefully
placing steps in exact locations.

We propose to generate sequences of footsteps as the
output of navigation. Since there are already several ani-
mation techniques that can animate a character to follow

Copyright © 2011 John Wiley & Sons, Ltd.

navigation. Footsteps are an intuitive abstraction for most
locomotion tasks, and they provide precise, unambiguous
spatial and timing information to animation.

In our system, each step is defined by a 2D parabolic
trajectory that approximates the motion of a 3D inverted
pendulum. The location, orientation, and timing of
footsteps are derived from the these trajectories. We use
a best-first search to plan a sequence of space-time
parabolic trajectories and the associated footsteps that
avoids time-varying collisions, satisfies footstep con-
straints for natural locomotion, and minimizes the effort
to reach a local goal. Characters successfully avoid
collisions with each other and choose steps that correspond
to natural and fluid motion, including precise timing.
Because the most significant biomechanics constraints are
already taken into account in our model, integrating our
results with an existing animation algorithm that follows
footsteps is straightforward and results in navigation that is
often richer and less awkward than vector-based naviga-
tion.

Contributions. This paper presents a new approach to
steering in dynamic crowds that uses a simple biomecha-
nically-based footstep model combined with space—time

151

Footstep navigation for dynamic crowds

planning. Our work demonstrates that a steering algorithm
can have better navigation features than a vector interface,
while still retaining fast performance. These features
include: short-term space—time planning, dynamic col-
lision bounds, appropriate movement constraints, and more
precise navigation control. Because substantial work
already exists to animate characters to follow exact
footsteps including timing information, we focus on the
navigation: how to generate biomechanically plausible
footsteps for dynamic crowds.

2. RELATED WORK

Two widely accepted strategies are (1) the social forces
model [7], which associates a small force field around
agents and obstacles, and (2) the steering behaviors model
[8], where forces are procedurally computed to perform
desired functions such as seek, flee, pursuit, evasion, and
collision avoidance. Many works are extensions or
elaborations of these two ideas [9-17]. A more complete
survey of collision avoidance, navigation, and crowd
simulation work can be found in Reference [18]. The
common theme in these works is the use of force or
velocity vectors as navigation decisions, which has the
limitations described above.

Only a few steering techniques take into account
locomotion constraints that an animation system will have.
Paris and Donikian [19] demonstrate a framework where
the animation module can potentially tell steering that an
action is not plausible. Musse and Thalmann [20] and Shao
and Terzopoulos [21] both address higher-level aspects of
pedestrians, and their navigation modules output a choice
from a set of navigation behaviors that correspond directly
to animations the character can produce. Van Basten
and Egges [22] discuss problems of interfacing navigation
with animation, proposing abstractions that reduce such
discrepancies.

Another approach to navigation is to plan sequences of
motion clips [23], demonstrated this is possible in real-time
for crowds, by precomputing a tree of all possible
sequences of motion clips. However, a large number of
motion clips would be needed to emulate the versatility of
far fewer stepping options. The technique of precomputing
a search tree can also be applied to our footstep planner, but
our approach is scalable even without this extension.

Footsteps. Several animation techniques, academic and
commercial, can follow a given sequence of footsteps [1—
6], and more. Animation methods in these works include
forward and inverse kinematics, physically based control,
and motion capture.

The challenge of generating footsteps has so far only
been explored for single characters in static environments.
Research in robotics [24-28] explores autonomous foot-
placement to avoid obstacles while navigating towards a
goal. Their focus is practical robot control, and so they do
not consider issues of real human locomotion. Torkos and
Van de Panne [1] generate footsteps to randomly wander,

S. Singh et al.

changing direction if nearby objects are too close, used to
demonstrate their animation system. Chung and Hahn [2]
input a trajectory, and generate footsteps by aligning each
step to the orientation of the trajectory, with smaller
footsteps around curves. Choi et al. [29] use roadmaps to
plan sequences of steps, choosing from steps that are
possible with the given motion clips and requiring costly
roadmap construction and footstep verification. Zhang
et al. [30] propose a hierarchical planning approach that
computes full-body motion including footsteps for tasks in
highly constrained environments. Recently several papers
have considered footsteps as a way of guiding controllers
for physically-based character animations [3,31].

3. FOOTSTEP MODEL

The primary data structure in our model is a footstep, which
includes: (1) the position, velocity, and timing of the
character’s center of mass trajectory, (2) the location and
orientation of the foot, and (3) the cost of taking the step. In
this section, we describe these aspects of a footstep, as well
as the constraints for choosing footsteps.

Center of Mass Trajectory. The analogy between human
locomotion and the inverted pendulum is well known [32];
the pendulum pivot represents a point on or near a footstep,
while the pendulum mass represents a character’s center of
mass. We define a 2D analytical approximation to the
dynamics of an inverted spherical pendulum using
parabolas. Piecewise parabolic curves are enough to
capture the variety of trajectories that a human’s center
of mass will have: varying curvature, speed, and step sizes.
Each step is a parabola defined with the following
parameters in local space:

(x(2), (1), (1), 3(t)) = (vxot, 0t vy, 20t (1)

such that both v,, and « are positive.

Equation 1 allows us to analytically evaluate the
position and velocity of a character’s center of mass at any
time ¢. This makes it practical to search through many
possible trajectories for many characters in real-time.

3.1. Footstep Actions

The state of the character s€S is defined as follows
(Figure la):

s = {(xuy)v ().Cv).))v (ﬁfvf.\’)vf¢71€{L7R}}

where (x, y) and (X, y) are the position and velocity of the
center of mass of the character at the end of the step, (5, f,)
and f;, are the location and orientation of the foot, and /is an
indicator of which foot (left or right) is taking the step.
The state space S is the set of valid states that satisfy the
constraints described below.

152 Comp. Anim. Virtual Worlds 2011; 22:151-158 © 2011 John Wiley & Sons, Ltd.

DOI: 10.1002/cav

S. Singh et al.

*.y)
A

&

Previous
foot
.‘ J Current foot
/ (1.1

¢ -

World Space o

Footstep navigation for dynamic crowds

Figure 1. Ourfootstep model. (a) Depiction of state and action parameters. (b) A sagittal view of the pendulum model used to estimate
energy costs. (c) The collision model uses five circles that track the torso and feet over time, allowing tighter configurations than a single
coarse radius.

A footstep action determines the next parabolic
trajectory, defined as a€.A:

a= {¢7 Vdesired s T}

where ¢ is the desired orientation of the parabola, V4egireq 1S
the desired initial speed of the center of mass, and T is the
desired time duration of the step. The action space A is the
set of valid footstep actions, where the input and output
states are both valid. Note that when the character’s
previous step is fixed, varying ¢ directly affects the width
of the parabolic trajectory, thus allowing a large variety of
step choices.

A key aspect of the model is the transition function,
s" = createFootstep(s, a). This function receives a desired
footstep action a and a state s and returns a new state s’ if
the action is valid. It is implemented as follows. First, ¢,
which indicates the orientation of the parabola, is used to
compute a transform from world space to local parabola
space. Then, the direction of velocity (x, y) from the end of
the previous step is transformed into local space, normal-
ized, and re-scaled by the desired speed Vgegirea- With this
local desired velocity, there is enough information to solve
for o, and then Equation 1 is used to compute (x, y) and (x,
y) at the end of the next step. In local space, the foot
location is always located at (fy,f,) = (0, —d), where d is
describes the distance between a character’s foot and center
at rest. Finally, all state information is transformed back
into world space, which serves as the input to create the
next footstep.

3.2. Locomotion Constraints

3.2.1. Biomechanical Properties.

Several properties of human locomotion are automatically
enforced by the definition of our model. The piecewise
parabola will be G-1 continuous, and the center of mass
will remain between the two feet by enforcing the local-
space parabola remains positive. Our footstep model offers
a number of intuitive parameters with meaningful defaults
and well-defined physical meaning. These parameters

include the height of the character’s center of mass,
the min, max, and preferred step timing and stride length,
the preferred and max velocities of the character’s walk,
the interval of valid foot orientations, etc. If these
constraints are violated, the footstep is considered invalid.
A user can modify these parameters to create new
locomotion styles. For example, restricting the valid range
of step timing and output velocity for one foot results in
asymmetric limping, like an injured character.

3.2.2. Footstep Orientation.

Intuitively, it may seem that footstep orientations must be
an additional control parameter when creating a footstep.
However, the choice of footstep orientation has no direct
effect on the dynamics of the center of mass trajectory; the
foot orientation only constrains the options for current
trajectory and future footsteps. This is a key aspect to our
model’s efficiency—instead of increasing the dimension-
ality of our search space to include foot orientation, we use
orientation to constrain the search space of a lower
dimensional system.

To implement this constraint, we compute an interval
[fpinners fopouter] Of valid foot orientations. This interval is
constrained by the same interval from the previous step,
and further constrained by the parabola orientation ¢ used
to create the next footstep (Figure 2):

[fd)next,inner 1f ¢next,outer}

T .
= fd)prev,outer7f¢prev,inner + 5 ﬁ[d), atan2 (y7 X)]

If this intersection becomes an empty set, that implies
that no foot orientation can satisfy the step constraints, so
the step is invalid. Note the ordering of bounds in these
intervals; the next foot’s outer bound is constrained by the
previous foot’s inner bound. In words, the interval
[¢, atan2(y, x)] describes two constraints: (1) the character
would not choose a foot orientation that puts his center of
mass on the outer side of the foot, (2) a human would rarely
orient the next step more outwards than the direction of
momentum; violating this constraint would put the

Comp. Anim. Virtual Worlds 2011; 22:151-158 © 2011 John Wiley & Sons, Ltd. 153

DOI: 10.1002/cav

Footstep navigation for dynamic crowds

S. Singh et al.

Figure 2. An interval of valid foot orientations (the blue and green feet) is maintained for each step, constrained by the previous step
(red foot) and the chosen trajectory (red line).

character’s center of mass on the wrong side of the foot.
The exact orientation is chosen as a fast postprocess,
described below.

3.2.3. Space-Time Collision Model.

For any given footstep, our model computes the time-
varying collision bounds of the character at any exact time.
To determine if a footstep causes a collision, we iterate
over several time-steps within the footstep and query the
collision bounds of nearby characters for that time. The
collision bounds are five circles, depicted in Figure lc.
Each circle associated with a foot exists while the foot is
planted on the ground. The three circles associated with the
torso are placed on the center of mass, which moves along
the parabola over several time-steps. If any of these circles
collide with an obstacle or another character’s circles, the
footstep is considered invalid.

3.3. Cost Function

We define the cost of a given step as the energy spent to
execute the footstep action. We model three forms of
energy expenditure for a step: (1) AEj, a fixed rate of
energy the character spends per unit time, (2) AE,, the
work spent due to ground reaction forces to achieve the
desired speed, and (3) AE3, the work spent due to ground
reaction forces accelerating the center of mass along the
trajectory. The total cost of a footstep action transitioning a
character from s to s is given by:

C(S,S’) = AEl + AE2 + AE3 (2)

3.3.1. Fixed Energy Rate.

The user defines a fixed rate of energy spent per second,
denoted as R. For each step, this energy rate is multiplied
by the time duration of the step 7 to compute the cost:

AE, =R-T 3)

This cost is proportional to the amount of time it takes to
reach the goal, and thus minimizing this cost corresponds
to the character trying to minimize the time it spends
walking to his goal. We found that good values for R are
roughly proportional to the character’s mass.

3.3.2. Ground Reaction Forces.

As a character pushes against the ground, the ground exerts
equal and opposite forces on the character. We model three
aspects of ground reaction forces that are exerted on the
character’s center of mass, from the study of biomechanics.
The geometry and notation of the cost model is shown in
Figure 1b. First, at the beginning of a new step (heel-
strike), some of the character’s momentum dissipates into
the ground. We estimate this as an instantaneous loss of
momentum along the pendulum shaft, reducing the
character’s speed from vy to vocos(26). In order to resume
a desired speed, the character actively exerts additional
work on his center of mass, computed as:

AEy = 2 |(vgesed) = (v0cos20)°| @)

This cost measures the effort required to choose a
certain speed. At every step, some energy is dissipated into
the ground, and if a character wants to maintain a certain
speed, it must actively add the same amount of energy back
into the system. On the other hand, not all energy dissipates
from the system after a step, so if the character wants to
come to an immediate stop, the character also requires
work to remove energy from the system. Minimizing this
cost corresponds to finding footsteps that require less
effort, and thus tend to look more natural. Furthermore,
when walking with excessively large steps, cos(20)
becomes smaller, implying that more energy is lost per
step.

It should be noted that there is much more complexity to
real bipedal locomotion than this cost model. For example,
the appropriate bending of knees and ankles and the
elasticity of human joints can significantly reduce the
energy lost per step, reducing the required work for a real
human. While the model is not an accurate measurement of
energy spent, it is sufficient for comparing the effort of
different steps.

AE, captures only the cost of changing a character’s
momentum at the beginning of each step. The character’s
momentum may also change during the trajectory. For
relatively straight trajectories, this change in momentum is
mostly due to the passive inverted pendulum dynamics that
requires no active work. However, for trajectories of high
curvature, a character spends additional energy to change
his momentum. We model this cost as the work required to

154 Comp. Anim. Virtual Worlds 2011; 22:151-158 © 2011 John Wiley & Sons, Ltd.

DOI: 10.1002/cav

S. Singh et al.

change momentum (denoted as P) over the length of the
step, weighted by constant w:

dP
AE; =w- e length = w - mo - length 5)

Note that o is the same coefficient in Equation 1, the
acceleration of the trajectory. « increases if the curvature of
the parabola is larger, and also if the speed of the character
along the trajectory is larger. Minimizing this cost
corresponds to preferring straight steps when possible,
and preferring to go slower (and consequently, taking
smaller steps) when changing the direction of momentum
significantly. The weight w can be adjusted to change
whether it costs more energy to walk around an obstacle or
to stop and wait for the obstacle to pass. We found good
values of w to be between 0.2 and 0.5, meaning that 20 to
50 per cent of the curvature is due to the character’s active
effort, and the rest due to the passive inverted pendulum
dynamics.

4. Generating Sequences of Steps
4.1. Discretizing Action Space

The choices for a character’s next step are generated by
discretizing the action space A described above, in all three
dimensions and using the createFootstep(s, a) function to
compute the new state and cost of each action. We have
found that vgegiea and T can be discretized extremely
coarsely, as long as there are at least a few different speeds
and timings. Further optimizations are made by observing
that speed Vgesirea and step timing 7 have a slight inverse
correlation, and so not all combinations of vyeieq and T
need to be generated. Most of the complexity of the action
space lies in the choices for the parabola orientation, ¢. The
choices for ¢ are defined relative to the orientation of the
velocity vector (X, y) from the end of the previous footstep,
and the discretization of ¢ ranges from almost straight to
almost U-turns. We note that the first choice that real
humans would consider when navigating is to step directly
toward the local goal. To address this, we create a special
option for ¢ that would orient the character directly toward
its goal. With this specialized goal-dependent option, we
found it was possible to give fewer fixed options for ¢,
focusing on larger turns. Without this option, even with a
large variety of choices for ¢, the character appears to steer
toward an offset of the actual goal and then takes an
unnatural corrective step.

4.2. Short-Horizon Best-First Search

We use a best-first search planner for a sequence of
footsteps that minimizes energy cost. The implementation
of our planner is the same as an A search, except for the
horizon, described below.

Footstep navigation for dynamic crowds

The cost of taking a step is computed using Equations 2—
5. The heuristic function used by the best-first search, A(s),
estimates the energy cost from the current state to a local
goal:

h(Y) = C expected xXn (6)

Where Cexpeciea 18 the energy spent in taking one normal
footstep action based on the character’s user-defined
parameters, and 7 is the number of steps it would take to
travel directly to the goal.

The horizon of our planner is the maximum number of
nodes to be expanded for a single search. In most cases, a
path is found before this threshold. We limit the horizon so
that difficult or unsolvable situations will not cause a
significant delay. If the planner searches too many nodes
without reaching the goal, we instead construct a path to a
node from the closed list that had the best heuristic value
(the same closed list used in A*). Intuitively, this means
that if no path is found to the goal within the search
horizon, the planner returns a path to the reachable state
that had the most promise of reaching the goal. The short-
horizon approach guarantees that we will have at least
some path for the character to use, even in difficult or
unsolvable planning problems. In worst case, if no good
solution is found, the path will simply be a sequence of
‘stop’ actions. For example, this can occur when a
character is stuck dense environment. Eventually when the
density clears, the character will continue.

4.3. Local Goals and Collision Avoidance

To navigate through large environments, we first plan a
path using AX (a traditional spatial path, not footsteps).
Whenever a character needs to plan more footsteps, a local
footstep goal is chosen, placed approximately 10 m ahead
on the spatial path. This 10 m requirement is not strict; we
experimented with other methods of choosing a local
footstep goal, and they all worked decently well.
Characters that are visible to each other can read each
other’s plans in order to predict their dynamic collision
bounds at any given time. Visibility is determined by (1)
having line-of-sight between the two characters, and (2)
being within the character’s visual field, modeled as a
hemisphere centered around the character’s forward-facing
direction. This knowledge is analogous to the unspoken
communication that occurs between real human ped-
estrians that makes human steering very robust. When a
character re-plans, it does not try to avoid characters that it
does not see, and therefore other characters, who are still
executing old plans, may collide. The number of collisions
can be drastically reduced by re-planning n steps in
advance, before the previous plan is fully completed. This
way there is always a ‘buffer’ of 2 or 3 steps that are
guaranteed to be correct when a character predicts how to
steer around another character. While deadlocks and
collisions are still possible with this scheme, collisions are

Comp. Anim. Virtual Worlds 2011; 22:151-158 © 2011 John Wiley & Sons, Ltd. 155

DOI: 10.1002/cav

Footstep navigation for dynamic crowds

S. Singh et al.

Figure 3. (Left) A character side-steps and yields to the other pedestrian, then precisely navigates through the narrow doorway. (Right)
An egress simulation. Characters do not get stuck around the corners of the glass door.

very rare, and we have not yet encountered a deadlock in
our experiments.

4.4. Choosing Exact Footstep Orientation

As described above, the planner maintains an interval of
valid foot orientations for every step, constrained by the
previous step’s interval, as well as the trajectory of the
current step. Once a sequence of footsteps has been
planned, it is possible to choose exact footstep orientations.
We constrain the interval of valid orientations once more
using the next step’s trajectory, now that this information is
available. This computation relies on the same interval
arithmetic described in Section 3. It is easy to see by
contradiction that this process will not cause an invalid
interval of orientations: if the interval becomes invalid
during this postprocess, that would imply that no
orientation of the current step could have produced a
valid interval of the next step—but if this is true, that
option would have already been pruned during planning
and would not be encountered here. The exact orientation
can be any value within this final interval; we found a good
heuristic is to orient the foot as closely as possible to the
orientation of the step’s trajectory, with a special case for
large turns.

5. RESULTS

For most results, characters are modeled with a center of
mass 1 m above the ground, with a step length between
0.1m and 1.0m, step timing between 0.2seconds and
0.8 seconds, and torso width of 60 cm.

Our short-horizon planner can solve challenging
situations such as potential deadlocks in narrow spaces.
Figure 3 depicts a challenging doorway situation. In many
previous algorithms, characters would ‘fight” at the
doorway and may reach deadlock. In our method, the
characters exhibit predictive cooperation, where one
character steps aside. The doorway, 70 cm wide, is barely
wide enough to fit a single pedestrian. In this tight situation,
vector-based techniques would rely on collision prevention
at the walls until the character eventually finds the door.

Our collision model allows tighter spacing in crowded
conditions. An example is shown in Figure 3, where a
group of characters squeeze through a glass door. With

characters are comfortable placing their feet and shoulders
close to others in the dense crowd.

Our planner works online, in real-time. Performance is
shown in Table 1, measured on a Core 2 processor, using a
single thread. Planning is fast is because of the scope of
footsteps: a short horizon plan of 5-10 footsteps takes
seconds to execute but only a few milliseconds to compute.
The amortized cost of updating a character at 20 Hz is also
shown in Table 1.

6. DISCUSSION AND FUTURE
WORK

Footsteps are an appropriate form of control since they are
the major contact point between a bipedal system and
the external environment. By generating space—time
sequences of footsteps, and by considering tighter dynamic
collision bounds, our approach is able to control characters
more precisely than existing crowd navigation techniques.

A ‘stop’ step is a specialized action in our planner. Being
based on general planning, our technique can extend to use
other specialized actions, such as running, jumping, even
motion capture clips, as long as the action has well defined
transitions, costs, and constraints. Existing steering
techniques can also be emulated, for example, social
forces models can be mapped to cost functions used by our
planner.

There are some prominent aspects of bipedal loco-
motion which should be addressed in future work. Knee
joints, ankle joints, muscles, angular momentum, and the
center of pressure (pendulum pivot) shifting from heel-to-
toe during a step—all of these affect the energy cost of real
footsteps. We would also like to explore social and
cognitive costs, where a character’s objective may not
necessarily be to minimize effort.

Table 1. Performance of our footstep planner for a character.
The typical worst case plan generated up to 5000 nodes and
expanded about 3000 nodes.

Egress 2-way hall 700 boxes

50 agents 200 agents 500 agents

Avg. # nodes generated 137 234 261
Avg. # nodes expanded 82 190 192

s s . Planner performance 1.6ms 4.4ms 3ms
a single coarse collision radius, there would be many A e 0H 0.037 0 011
false-positive collisions. Instead, like real humans, these mortized cost z D5/ ms . ms S 1ms
156 Comp. Anim. Virtual Worlds 2011; 22:151-158 © 2011 John Wiley & Sons, Ltd.

DOI: 10.1002/cav

S. Singh et al.

ACKNOWLEDGEMENTS

Authors thank Intel Corp. for their generous support
through equipment and grants.

REFERENCES

1.

2.

10.

11.

12.

13.

14.

15.

16.

van de Panne M. From footprints to animation.
Computer Graphics Forum 1997; 16(4): 211-223.
Chung S-K, Hahn JK. Animation of human walking in
virtual environments. In Computer Animation, 1999;
4-15.

. Coros S, Beaudoin P, Yin KK, van de Panne M.

Synthesis of constrained walking skills. ACM Trans-
actions on Graphics 2008; 27(5): 1-9.

. Wu C-C, Medina J, Zordan VB. Simple steps for

simply stepping. In ISVC (1), 2008; 97-106.

. van Basten BJH, Peters PWAM, Egges A. The

Stepspace: Example-Based Footprint-Driven Motion
Synthesis. In Computer Animation and Virtual Worlds,
CASA 2010 Special Issue, Vol 21, Issue 3-4, Chiche-
ster, UK: John Wiley and Sons Ltd., 2010.

. Autodesk. 3ds Max, 2010.
. Helbing D, Molnar P. Social force model for ped-

estrian dynamics. Physical Review E 1995; 51(5):
4282-4286.

. Reynolds CW. Steering Behaviors for Autonomous

Characters, in the proceedings of Game Developers
Conference 1999 held in San Jose, California. Miller
Freeman Game Group, San Francisco, California.
1999. 763-782.

. Kapadia M, Singh S, Hewlett W, Faloutsos P. In

Proceedings of the ACM SIGGRAPH Symposium
on Interactive 3D Graphics and Games, 2009. 215-
223.

Singh S, Kapadia M, Hewlett W, Reinman G,
Faloutsos P. In Proceedings of the ACM SIGGRAPH
Symposium on Interactive 3D Graphics and Games,
2011.

Pelechano N, Allbeck JM, Badler NI. Controlling
individual agents in high-density crowd simulation.
In SCA, Eurographics Association, 2007; 99-108.
Gayle R, Sud A, Andersen E, Guy SJ, Lin MC,
Manocha D. Interactive navigation of heterogeneous
agents using adaptive roadmaps. IEEE Transactions
on Visualization and Computer Graphics 2009; 15(1):
34-48.

Boulic R. Relaxed steering towards oriented region
goals. In MIG’08, 2008; 176—187.

van den Berg JP, Lin MC, Manocha D. Reciprocal
velocity obstacles for real-time multi-agent naviga-
tion. In /CRA, 2008; 1928-1935.

Lamarche F, Donikian S. Crowd of virtual humans: a
new approach for real time navigation in complex and
structured environments. Computer Graphics Forum
2004, 23(3): 509-518.

Paris S, Pettré J, Donikian S. Pedestrian reactive
navigation for crowd simulation: a predictive

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

Comp. Anim. Virtual Worlds 2011; 22:151-158 © 2011 John Wiley & Sons, Ltd.
DOI: 10.1002/cav

Footstep navigation for dynamic crowds

approach. In Eurographics 2007, Vol. 26, 2007;
665-674. http://www.morganclaypool.com/doi/abs/
10.2200/S00123ED1V01Y200808CGRO08

Feurtey F. Simulating the collision avoidance behavior
of pedestrians. Master’s Thesis, The University of
Tokyo, School of Engineering, 2000.

Badler N. Virtual Crowds: Methods, Simulation, and
Control. Morgan and Claypool Publishers, 2008.
DOI: 10.2200/S00123ED1V01Y200808 CGRO008
http://www.morganclaypool.com/doi/abs/10.2200/
S00123ED1V01Y200808CGRO08

Paris S, Donikian S. Activity-driven populace: a cog-
nitive approach to crowd simulation. IEEE Computer
Graphics and Applications 2009; 29(4): 34-43.
Musse SR, Thalmann D. A model of human crowd
behavior. In Proceedings of the CAS’97, Springer
Verlag, Wien, 1997; 39-51.

Shao W, Terzopoulos D. Autonomous pedestrians. In
SCA, 2005; 19-28.

van Basten BJH, Egges A. Path abstraction for com-
bined navigation and animation. MIG’09, 5884/2009,
2009; 182-193.

Lau M, Kuffner JJ. Precomputed search trees: plan-
ning for interactive goal-driven animation. In SCA,
September 2006; 299-308.

Kuffner,J.J., Jr., Nishiwaki K, Kagami S, Inaba M,
Inoue H. Footstep planning among obstacles for biped
robots. In IEEE Intelligent Robots and Systems (IEEE/
RSJ), Vol. 1, 2001; 500-505.

Nishiwaki Kh, Sugihara T, Kagami S, Inaba My, Inoue
S. Online mixture and connection of basic motions for
humanoid walking control by footprint specification.
In ICRA, Vol. 4, 2001; 4110-4115.

Kuffner J, Nishiwaki K, Kagami S, Kuniyoshi Y,
Inaba M, Inoue H. Online footstep planning for huma-
noid robots. In Proceedings of the IEEE International
Conference on Robotics and Automation, September
2003.

Li T-Y, Chen P-F, Huang P-Z. Motion planning for
humanoid walking in a layered environment. In /CRA,
Vol. 3, 2003; 3421-3427.

Chestnutt J, Lau M, Cheung KM, Kuffner J, Hodgins
JK, Kanade T. Footstep planning for the honda asimo
humanoid. In /CRA, April 2005.

Choi MG, Lee J, Shin SY. Planning biped locomotion
using motion capture data and probabilistic roadmaps.
ACM Transactions on Graphics 2003; 22(2): 182—
203.

Zhang L, Pan J, Manocha D. Motion planning and
synthesis of human-like characters in constrained
environments. MIG’09, 5884/2009, 2009; 138-145.
Wu J-C, Popovi¢ Z. Terrain-adaptive bipedal loco-
motion control. ACM Transactions on Graphics 2010;
29(4): 72:1-72:10.

Kuo AD. The six determinants of gait and the
inverted pendulum analogy: a dynamic walking
perspective. Human Movement Science 2007; 26(4):
617-656.

157

Footstep navigation for dynamic crowds

AUTHORS' BIOGRAPHIES

Shawn Singh is currently working
on his Ph.D. at the University of
California, Los Angeles. He received
his M.S. in computer science from
the University of Southern Califor-
nia. His research includes real-time
photon mapping, novel forms of
computation, and robust virtual
pedestrian steering behaviors.

Mubbasir Kapadia received his B.E.
in Computer Engineering in 2007
from University of Mumbai, India.
He is currently working on his M.S.
at the University of California, Los
Angeles. His current research is
applying egocentric approaches to
B pedestrian simulation and the eva-

* luation of agent steering behaviors.

Glenn Reinman is an assistant pro-
fessor in the department of compu-
ter science at UCLA. He received his
B.S. from MIT in 1996 and his PhD
and M.S. in Computer Science from
UCSD in 2001. His main area of
research is microprocessor architec-
ture, and he directs the MARS lab at
UCLA.

S. Singh et al.

Petros Faloutsos is an assistant pro-
fessor at the Department of Com-
puter Science at the University of
California at Los Angeles. He
received his PhD degree (2002)
and his MSc degree in Computer
Science from the University of Tor-
onto, Canada and his BEng degree
in Electrical Engineering from the
National Technical University of Athens, Greece. Pro-
fessor Faloutsos is the founder and the director of the
graphics lab at the Department of Computer Science at
UCLA. The lab, called MAGIX (Modeling Animation
and GrafIX), performs state of the art research in all
aspects of graphics, focusing on virtual actors, virtual
reality, physics-based animation and motor control.
Professor Faloutsos is also interested in computer net-
works and he has co-authored a highly cited paper on
the topology of the Internet. Professor Faloutsos is a
member of the Editorial Board of the Journal Of The
Visual Computer and has served as a Progam Co-Chair
for the 2005 ACM SIGGRAPH/Eurographics Synmpo-
sium on Computer Animation. He is a member of the
ACM and the Technical Chamber of Greece.

158 Comp. Anim. Virtual Worlds 2011; 22:151-158 © 2011 John Wiley & Sons, Ltd.

DOI: 10.1002/cav

Multi-Domain Real-time Planning in Dynamic Environments

Mubbasir Kapadia*!, Alejandro Beacco!?, Francisco Garcia®?, Vivek Reddy$', Nuria Pelechano¥?, and Norman I. Badler!

'University of Pennsylvania
2Universitat Politécnica de Catalunya
3University of Massachusetts Amherst

Figure 1: Two agents navigating with space-time precision through a complex dynamic environment.

Abstract

This paper presents a real-time planning framework for multi-
character navigation that enables the use of multiple heterogeneous
problem domains of differing complexities for navigation in large,
complex, dynamic virtual environments. The original navigation
problem is decomposed into a set of smaller problems that are dis-
tributed across planning tasks working in these different domains.
An anytime dynamic planner is used to efficiently compute and re-
pair plans for each of these tasks, while using plans in one domain
to focus and accelerate searches in more complex domains. We
demonstrate the benefits of our framework by solving many chal-
lenging multi-agent scenarios in complex dynamic environments
requiring space-time precision and explicit coordination between
interacting agents, by accounting for dynamic information at all
stages of the decision-making process.

CR Categories: 1.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation;

Keywords: real-time navigation, space-time planning, multiple
problem domains, crowd simulation

1 Introduction

The next generation of interactive applications requires high fidelity
navigation of interacting autonomous agents in non-deterministic,
dynamic virtual worlds. The environment and agents are constantly

*mubbasir @seas.upenn.edu
Tabeacco@lsi.upc.edu
*fmaxgarcia@gmail.com
8vivreddy @seas.upenn.edu
9npelechano@lsi.upc.edu
Ibadler@ seas.upenn.edu

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for commercial advantage and that copies bear this notice and the full citation on the
first page. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on
servers, or to redistribute to lists, requires prior specific permission and/or a fee.
Request permissions from permissions@acm.org.

SCA 2013, July 19 — 21, 2013, Anaheim, California.

Copyright © ACM 978-1-4503-2132-7/13/07 $15.00

115

affected by unpredictable forces (e.g., human input), making it im-
possible to accurately extrapolate the future world state to make
optimal decisions. These complex domains require robust naviga-
tion algorithms that can handle partial and imperfect knowledge,
while still making decisions which satisfy space-time constraints.

Different situations require different granularity of control. An
open environment with no agents and static obstacles requires only
coarse-grained control while cluttered dynamic environments re-
quire fine-grained character control with careful planned decisions
that have spatial and temporal precision. Some situations (e.g., po-
tential deadlocks) may require explicit coordination between mul-
tiple agents.

The problem domain of interacting autonomous agents in dynamic
environments is extremely high-dimensional and continuous, with
infinite ways to interact with objects and other agents. Having a
rich action set, and a system that makes intelligent action choices,
facilitates robust, intelligent virtual characters, at the expense of in-
teractivity and scalability. Greatly simplifying the problem domain
yields interactive virtual worlds with hundreds and thousands of
agents that exhibit simple behavior. The ultimate, far-reaching goal
is still a considerable challenge: a real-time system for autonomous
character control that can handle many characters, without compro-
mising control fidelity.

Previous work simulates crowds by decoupling global naviga-
tion [Sung et al. 2005; Kallmann 2010] and local collision avoid-
ance [Pelechano et al. 2008], or demonstrates space-time planning
for global navigation for a single character [Levine et al. 2011],
while meeting real-time constraints. These approaches provide a
tradeoff between number of agents, control fidelity, and environ-
ment complexity. To our knowledge, no proposed technique effi-
ciently accounts for the dynamic nature of the environment at all
levels of the decision-making process.

This paper proposes a real-time planning framework for multi-
character navigation that uses multiple heterogeneous problem do-
mains of differing complexities for navigation in large, complex,
dynamic virtual environments. We define a set of problem domains
(spaces of decision-making) which differ in the complexity of their
state representations and the fidelity of agent control. These range
from a static navigation mesh domain which only accounts for static
objects in the environment, to a space-time domain that factors in

dynamic obstacles and other agents at much finer resolution. These
domains provide different trade-offs in performance and fidelity of
control, requiring a framework that efficiently works in multiple do-
mains by using plans in one domain to focus and accelerate searches
in more complex domains.

A global planning problem (start and goal configuration) is dynam-
ically decomposed into a set of smaller problem instances across
different domains, where an anytime dynamic planner is used to ef-
ficiently compute and repair plans for each of these problems. Plan-
ning tasks are connected by either using the computed path from
one domain to define a tunnel to focus searches, or using succes-
sive waypoints along the path as start and goal for a planning task
in another domain to reduce the search depth, thereby accelerat-
ing searches in more complex domains. Using our framework, we
demonstrate real-time character navigation for multiple agents in
large-scale, complex, dynamic environments, with precise control,
and little computational overhead.

2 Related Work

There is extensive research in multi-agent simulations with many
proposed techniques that differ in domain complexity and control
fidelity. Global navigation approaches [Sung et al. 2005; Sud et al.
2007; van den Berg et al. 2008b; Kallmann 2010] precompute a
roadmap of the global environment which is used for making effi-
cient navigation queries, but generally regard the environment to be
static. Crowd approaches [Pelechano et al. 2008; Thalmann 2008]
compromise on control fidelity in an effort to efficiently simulate
a large number of agents in real-time. Continuum-based meth-
ods [Treuille et al. 2006] model macroscopic crowd flow, while
agent-based approaches [Reynolds 1987; Lamarche and Donikian
2004; Loscos et al. 2003] model collision avoidance for goal-
directed agents using rules. Predictive approaches [van den Berg
et al. 2008a; Paris et al. 2007; Kapadia et al. 2009] approximate
the trajectories of neighboring agents in choosing collision-free ve-
locities, and the work in [Singh et al. 2011a] proposes a hybrid
technique that combines reactive rules, predictions, and planning.

Planning based control of autonomous agents has demonstrated
control of single agents with large action spaces [Choi et al. 2003;
Fraichard 1999; Shapiro et al. 2007]. In an effort to scale to a large
number of agents, meet real-time constraints, and handle dynamic
environments, a large variety of methods [Pettré et al. 2008] have
been proposed. The complexity of the domain is made simpler [Lau
and Kuftner 2005; Lo and Zwicker 2008] to reduce the branching
factor of the search, or the horizon of the search is limited to a
fixed depth [Singh et al. 2011b; Choi et al. 2011]. Anytime plan-
ners [Likhachev et al. 2003; van den Berg et al. 2006] tradeoff opti-
mality to satisfy strict time constraints, and have been successfully
demonstrated for motion planning for a single character [Safonova
and Hodgins 2007]. Randomized planners [Hsu et al. 2002; Shapiro
et al. 2007] expand nodes in the search graph using sampling meth-
ods, greatly reducing search efforts to make it a feasible solution
in high-dimensional, continuous domains. The work in [Hoff et al.
2000] exploits the use of graphics hardware to enable interactive
motion planning in dynamic environments.

Hierarchical Planning. Hierarchical planners [Botea et al. 2004;
Bulitko et al. 2007; Holte et al. 1996] reduce the problem complex-
ity by precomputing abstractions in the state space, which can be
used to speed up plan efforts. Given a discrete environment rep-
resentation, neighboring states are first clustered together to pre-
compute abstractions for high-level graphs. Different algorithms
are proposed [Kring et al. 2010] which plan paths hierarchically
by planning at the top level first, then recursively planning more
detailed paths in the lower levels, using different methods [Lacaze

116

2002; Sturtevant and Geisberger 2010] to communicate informa-
tion across hierarchies. These include using the plans in high-
level graphs to compute heuristics for accelerating searches in low-
level graphs [Holte et al. 2005], using the waypoints as intermedi-
ate goals, or using the high-level path to define a tunnel [Gochev
et al. 2011] to focus the search in the low-level graph. The work
in [Arikan and Forsyth 2002] demonstrates the use of randomized
search in a hierarchy of motion graphs for interactive motion syn-
thesis.

Comparison to Prior Work. Our work builds on top of excel-
lent recent contributions [Levine et al. 2011; Lopez et al. 2012]
showcasing the use of space-time planning for global navigation
in dynamic environments, for a single agent. Levine et al. [2011]
uses parameterized locomotion controllers to efficiently reduce the
branching factor of the search and assumes that object motion
have known trajectories, thus mitigating the need for replanning.
Lopez et al. [2012] introduces a dynamic environment represen-
tation which is computed by deducing the evolution of the en-
vironment topology over time, thus enabling space-time collision
avoidance with no prior knowledge of how the world changes. In
contrast, we use multiple heterogeneous domains of control, and
present a planning-based control scheme that reuses plan efforts
across domains to demonstrate real-time, multi-character naviga-
tion, in constantly changing dynamic environments. Instead of au-
tomatically computing abstractions from a given representation, we
develop a set of heterogeneous domains with different state and ac-
tion representations that provide trade-offs in control fidelity and
computational performance, and investigate different methods of
communicating between domains to meet our application needs.

3 Overview

The problem domain of a planner determines its effectiveness in
solving a particular problem instance. A complex domain that ac-
counts for all environment factors such as dynamic environments
and other agents, and has a large branching factor in its action space
can solve more difficult problems, but at a larger cost overhead. A
simpler domain definition provides the benefit of computational ef-
ficiency while compromising on control fidelity. Our framework
enables the use of multiple heterogeneous domains of control, pro-
viding a balance between control fidelity and computational effi-
ciency, without compromising either.

A global problem instance P, is dynamically decomposed into a

set of smaller problem instances {P'} across different planning
domains {X; }. Section 4 describes the different domains, and Sec-
tion 5 describes the problem decomposition across domains. Each

problem instance P s assigned a planning task T(P'), and an
anytime dynamic planner (Section 5.1) is used to efficiently com-
pute and repair plans for each of these tasks, while using plans in
one domain to focus and accelerate searches in more complex do-
mains. Plan efforts across domains are reused in two ways. The
computed path from one domain can be used to define a tunnel
which focuses the search, reducing its effective branching factor.
Each pair of successive waypoints along a path can also be used
as start,goal pairs for a planning task in another domain, thus re-
ducing the search depth. Both these methods are used to focus and
accelerate searches in more complex domains, providing real-time
efficiency without compromising on control fidelity. Section 6 de-
scribes the relationships between domains.

4 Planning Domains

A problem domain is defined as 3 = (S, A, c(s, s'), h(s, Sgoal)) »
where the state space S = {Sseif X Senv X Sagents} includes the

internal state of the agent Sz, the representation of the environ-
ment Ser., and other agents Sagents. Ssers may be modeled as a
simple particle with a collision radius. Sc,, can be an environment
triangulation with only static information or a uniform grid repre-
sentation with dynamic obstacles. Sqgents is defined by the vicinity
within which neighboring agents are considered. Imminent threats
may be considered individually or just represented as a density dis-
tribution at far-away distances. The action space A defines the set
of all possible successors succ(s) and predecessors pred(s) at
each state s, as shown in Equation 1. Here, &(s,) describes the i*"
transition, and ®(s, s) is used to check if the transition from s to s’
is possible. The cost function c(s, s’) defines the cost of transition
from s to s’. The heuristic function h(s, S40q1) defines the estimate
cost of reaching a goal state.

succ(s) = {s 4 8(s,i)|®(s,s’) = TRUE Vi} (1)

A problem definition P = (X, Sstart, Sgoal) describes the initial
configuration of the agent, the environment and other agents, along
with the desired goal configuration in a particular domain. Given
a problem definition P for domain X, a planner searches for a
sequence of transitions to generate a plan II(X, Sstart, Sgoal) =
{si|si € S(X)} that takes an agent from Sszart t0 Sgoal.

4.1 Multiple Domains of Control
We define 4 domains which provide a nice balance between global
static navigation and fine-grained space-time control of agents in
dynamic environments. Figure 2 illustrates the different domain
representations for a given environment.

Static Navigation Mesh Domain ¥;. This domain uses a triangu-
lated representation of free space and only considers static immov-
able geometry. Dynamic obstacles and agents are not considered in
this domain. The agent is modeled as a point mass, and valid tran-
sitions are between connected free spaces, represented as polygons.
The cost function is the straight line distance between the center
points of two free spaces. Additional connections are also precom-
puted (or manually annotated) to represent transitions such as jump-
ing with a higher cost definition. The heuristic function is the Eu-
clidean distance between a state and the goal. Searching for an op-
timal solution in this domain is very efficient and quickly provides
a global path for the agent to navigate. We use Recast [Mononen
2009] to precompute the navigation mesh for the static geometry in
the environment.

Dynamic Navigation Mesh Domain >,. This also uses triangu-
lations to represent free spaces and coarsely accounts for dynamic
properties of the environment to make a more informed decision at
the global planning layer. The work in [van Toll et al. 2012] em-
beds population density information in environment triangulations
to account for the movement of agents at the global planning layer.
We adopt a similar method by defining a time-varying density field
@(t) which stores the density of moveable objects (agents and ob-
stacles) for each polygon in the triangulation at some point of time
t. ¢(to) represents the density of agents and obstacles currently
present in the polygon. The presence of objects and agents in poly-
gons at future timesteps can be estimated by querying their plans (if
available). The space-time positions of deterministic objects can be
accurately queried while the future positions of agents can be ap-
proximated based on their current computed paths, assuming that
they travel with constant speed along the path without deviation.
@(t) contributes to the cost of selecting a waypoint in 32 during
planning. The resolution of the triangulation may be kept finer than
32 to increase the resolution of the dynamic information in this do-
main. Hence, a set of global waypoints are chosen in this domain

117

which avoids crowded areas or other high cost regions.

Grid Domain 3. The grid domain discretizes the environment
into grid cells where a valid transition is considered between adja-
cent cells that are free (diagonal movement is allowed). An agent
is modeled as a point with a radius (orientation and agent speed is
not considered in this domain). This domain only accounts for the
current position of dynamic obstacles and agents, and cannot pre-
dict collisions in space-time. The cost and heuristic are distance
functions that measure the Eucledian distance between grid cells.

Space-Time Domain .

This domain models the §'=<xH(viAV).At,

v+Av, t+At >
current state of an agent as
a space-time position with a @\ v
current velocity (x,v,t). The ¢ % N
As,

figure alongside illustrates the
schematic illustration of the
state and action space in X4,
showing a valid transition,
and an invalid transition due
to a space-time collision with
a neighboring agent. The transition function d(s,4) for X4 is
defined below:

t+At \kl;—

N

s=<Xx,V,t>

0(s,1) = {Av; - At|Av; = (Awv; - sin Ab;, Av; - cos AB;)Vi}

where Av = {0, a} is the possible speed changes and A9 =
{0, £+ st S } is the possible orientation changes the agent can
make from its current state. For example, Av = a, A = § pro-
duces a transition where the agent accelerates by a for the duration
of the timestep and rotates by §. The bounds of Af are limited be-
tween {—7, 5} to limit the maximum rate of turning. Transitions
are also bound so that the speed and acceleration of an agent cannot
exceed a given threshold. Jumps are additionally modeled as a high
cost transition between two space-time points such that the region
between them may be occupied or untraversable for that time inter-
val. Inspite of the coarse discretization of A, the branching factor
of this domain is much higher, providing greater degree of control

fidelity with added computational overhead.

>34 accounts for all obstacles (static and dynamic) and other agents.
The traversability of a grid cell is queried in space-time by checking
to see if moveable obstacles and agents occupy that cell at that par-
ticular point of time, by using their published paths. For space-time
collision checks, only agents and obstacles that are within a certain
region from the agent, defined using a foveal angle intersection, are
considered. The cost and heuristic definitions have a great impact
on the performance in ¥4. We use an energy based cost formula-
tion that penalizes change in velocity with a non-zero cost for zero
velocity. Jump transitions incur a higher cost. The heuristic func-
tion penalizes states that are far away from s4,4; in both space and
time. This is achieved using a weighted combination of a distance
metric and a penalty for a deviation of the current speed from the
speed estimate required to reach sgoai.

The domains described here are not a comprehensive set and only
serve to showcase the ability of our framework to use multiple het-
erogeneous domains of control in order to solve difficult problem
instances at a fraction of the computation cost. Our framework can
be easily extended to use other domain definitions (e.g., a footstep
domain), as described in Section 7.4.

(b)

Figure 2: (a) Problem definition with initial configuration of agent and environment. (b) Global plan in static navigation mesh domain 3,
accounting for only static geometry. (c) Global plan in dynamic navigation mesh domain %o accounting for cumulative effect of dynamic
objects. (d) Grid plan in ¥3. (e) Space-time plan in ¥4 that avoids dynamic threats and other agents.

g\\ f
TUNNEL)
T(Z‘) CHANGE &) //.
I
.
TUNNEL
TG CHANGE TQY /\
[{m
IS
1
35 T TUNNEL_ (.
7 (02 crance”\ 1)
g8
E E al8
o 3
0 & E
=0
"

Figure 3: Expanded illustration of domain relationship shown in Figure 4(b). A global problem instance (start and goal state) is decomposed
into a set of smaller problem instances across multiple planning domains. Planning tasks T (3) are assigned to each of these problems and
scheduled using a dynamic priority scheme based on events from the environment and other tasks.

5 Problem Decomposition and Multi-Domain
Planning

Figure 4(a) illustrates the use of tunnels to connect each of the 4 do-
mains, ensuring that a complete path from the agents initial position
to its global target is computed at all levels. Figure 4(b) shows how
32 and X3 are connected by using successive waypoints in II(Z2)
as start and goal for independent planning tasks in 3. This relation
between X and Y3 allows finer-resolution plans being computed
between waypoints in an independent fashion. Limiting >3 (and
3.4) to plan between waypoints instead of the global problem in-
stance ensures that the search horizon in these domains is never
too large, and that fine-grained space-time trajectories to the initial
waypoints are computed quickly. However, completeness and op-
timality guarantees are relaxed as X3, >4 never compute a single
path to the global target.

Figure 3 illustrates the different events that are sent between plan-
ning tasks to trigger plan refinement and updates for the domain
relationship in Figure 4(b). X, is first used to compute a path
from Ss¢art tO Sgoal, ignoring dynamic obstacles and other agents.
II(X1) is used to accelerate computations in X2, which refines the
global path to factor in the distribution of dynamic objects in the
environment. Depending on the relationship between X2 and X3,
a single planning task or multiple independent planning tasks are

118

/7 PATH
2 ehanc

PATH PATH
T(31) T(33)
CHANGE E HANGE

(b)

Figure 4: Relationship between domains. (a) Use of tunnels to
connect each of the 4 domains. (b) Use of successive waypoints in
I1(X2) as start, goal pairs to instantiate multiple planning tasks in
23 and 24.

used in X3. Finally, the plan(s) of 7'(X3) are used to accelerate
searches in Y4.

Changes in Sstart and Sqoq: trigger plan updates in 7°(31), which
are propagated through the task dependency chain. T'(X5) monitors

plan changes in 7'(31) as well as the cumulative effect of changes
in the environment to refine its path. Each 7'(X3) instance monitors
changes in the waypoints along II(X2) to repair its solution, as well
as nearby changes in obstacle and agent position. Finally, 7'(24)
monitors plan changes in 7'(X3) (which it depends on) and repairs
its solution to compute a space-time trajectory that avoids collisions
with static and dynamic obstacles, as well as other agents.

Events are triggered (outgoing edges) and monitored (incoming
edges) by tasks, creating a cyclic dependency between tasks, with
To (agent execution) monitoring changes in the plan produced by
the particular 7'(24), which monitors the agents most imminent
global waypoint. Tasks that directly affect the agent’s next decision,
and tasks with currently invalid or sub-optimal solutions are given
higher priority. Given the maximum amount of time to deliberate
tmaz, the agent pops one or more tasks that have highest priority
and divides the deliberation time across tasks (most imminent tasks
are allocated more time). Task priorities constantly change based
on events triggered by the environment and other tasks.

5.1 Planning Tasks

A task T'(P) is a planner which is responsible for generating and
maintaining a valid (and ideally optimal) solution for a particular
problem definition P = (3, Sstart, Sgoal) Where Sstart, Sgoal, and
the search graph may be constantly changing. There are 4 types of
tasks, each of which solves a particular problem in the domains de-
scribed in Section 4. An additional task Ty is responsible for mov-
ing the agent along the path, while enforcing steering and collision
constraints.

Planning tasks constantly receive events from the environment and
other tasks, which render the current plan invalid, forcing it to con-
stantly update, refine, and repair its existing plan. For this purpose,
we use the Anytime Dynamic A* planner [Likhachev et al. 2005]
which combines the properties of incremental planners such as D*
Lite [Koenig and Likhachev 2002] and anytime algorithms such as
ARA* [Likhachev et al. 2003] to provide an algorithm which ef-
ficiently repairs its solutions to accommodate world changes and
agent movement, while providing solution guarantees under strict
time constraints. It performs repeated backward searches (from
goal to start), reusing previous search efforts to iteratively produce
solutions with improved bounds on optimality, like ARA*. This is
done using an inflation factor € which effectively weighs the contri-
bution of the heuristic value in estimation of node costs, thus focus-
ing the search towards the goal, expanding fewer nodes to produce
€ sub-optimal solutions [Pearl 1984]. We provide an overview of
the algorithmic details of the planning task in the supplementary
document and refer the readers to a comprehensive review of the
AD* algorithm here [Likhachev et al. 2005].

Plan Repair vs. Planning from Scratch. Note that there are often
instances during the simulation when the start and goal changes of
planning tasks change or when plans are invalidated due to obstacle
movement. Plans are always recomputed for goal changes. AD*
performs a backward search which allows it to efficiently update
the search graph to accommodate agent movement along the path.
For significant start changes or when the plan is invalidated due
to obstacle movement, the choice between replanning or repairing
a plan is a heuristic decision with tradeoffs in performance. Plan
repair may expand lesser nodes in the current iteration but bloat the
number of nodes visited, thus impacting performance in subsequent
plan iterations. It is not uncommon to plan from scratch during the
simulation. By resetting the inflation factor to a high value, we
can quickly compute a valid sub-optimal plan while meeting time
constraints and refine it in successive plan iterations.

119

5.2 Events and Task Priorities

Events are triggered and monitored by planning tasks in different
domains, as illustrated in Figure 3. Changes in start and goal, or en-
vironment changes may potentially invalidate current plans, requir-
ing plan refinement. Tasks that use tunnels to accelerate searches
in more complex domains, monitor plan changes in other tasks. Fi-
nally, tasks observe the optimality status of their own plans to de-
termine their task priority. The supplementary document describes
the different events in more detail.

The priority of a task p(T,) determines the tasks that are picked
to be executed at every time step, with tasks having smallest p(Tq)
chosen for execution (p(T4) is short for p(T'(X,))). Task To, which
handles agent movement always has a priority of 1. Priority of other
tasks is calculated as follows:

1if Ta = To

1(Ta, To) - 2(Taq) else @

p(Ta) = {

where 11(Tq, To) is the number of edge traversals required to reach
To from T, in the task dependency chain (Figure 3). 2(T,) denotes
the current state of the plan of T, and is defined as follows:

1if SOLUTION_INVALID
€ if plan inflation factor, € > 1
oo if plan inflation factor, € = 1

Q(Ta) = 3)

where € is the inflation factor used to determine the optimality
bounds of the current plan for that task. The agent pops one or
more tasks that have highest priority and divides the deliberation
time available across tasks, with execution-critical tasks receiving
more time. Tasks that have the same priority are ordered based on
task dependency. Hence, Tg is always executed at the end of every
update after all planning tasks have completed.

The overall framework enforces strict time constraints. Given an
allocated time to deliberate for each agent (computed based on de-
sired frame rate and number of agents), the time resource is dis-
tributed based on task priority. In the remote event that there is
no action to execute, the agent remains stationary (no impact on
frame-rate) for a few frames (fractions of a second) until a valid
plan is computed.

6 Relationship between Domains

The complexity of the planning problem increases exponentially
with increase in dimensionality of the search space — making the use
of high-dimensional domains nearly prohibitive for real-time appli-
cations. In order to make this problem tractable, planning tasks
must efficiently use plans in one domain to focus and accelerate
searches in more complex domains. Section 6.1 describes a method
for mapping a state from a low-dimensional domain to one or more
states in a higher dimensional domain. Sections 6.2 and 6.3 de-
scribe two ways in which plans in one domain can be used to focus
and accelerate searches in another domain.

6.1 Domain Mapping

We define a 1 : n function A(s, X, E/) that allows us to maps states
in S(X) to one or more equivalent states in ().

A3, 5,8) s = {55 €S(E)As =5} @)

The mapping functions are defined specifically for each domain
pair. For example, A(s, ¥1,X2) maps a polygon s € S(X1) to
one or more polygons {s'|s" € S(Z2)} such that s’ is spatially
contained in s. If the same triangulation is used for both ¥; and
3o, then there exists a one-to-one mapping between states. Sim-
ilarly, A(s,X2,33) maps a polygon s € S(32) to multiple grid
cells {s’'|s’" € S(X3)} such that s’ is spatially contained in s.
A(s, X3, X4) is defined as follows:

A(s,23,%24) : (x) = {(x+ W(AXx),t + W(AL)} (5)
where W (A) is a window function in the range [—A, +A]. The
choice of t is important in mapping >3 to 4. Since we use A
to effectively map a plan IT(Xs, Sstart, Sgoar) in X3 to a tunnel in
3.4, we can exploit the path and the temporal constraints of Sstart
and sgoq; to define ¢ for all states along the path. We do this by
calculating the total path length and the time to reach sgoq;. This
allows us to compute the approximate time of reaching a state along
the path, assuming the agent is traveling at a constant speed along
the path.

6.2 Mapping Successive Waypoints to Independent
Planning Tasks.

Successive waypoints along the plan from one domain can be used
as start and goal for a planning task in another domain. This effec-
tively decomposes a planning problem into multiple independent
planning tasks, each with a significantly smaller search depth.

Consider a path II(X2) = {s;|s; € S(32),Vi € (0,n)} of
length n. For each successive waypoint pair (s;, si+1), we define
a planning problem P; = (X3, Sstart, Sgoat) Such that sstare =
A(si,32,X3) and Sgoar = A(Sit1, X2, 23). Even though A may
return multiple equivalent states, we choose only one candidate
state. For each problem definition P;, we instantiate an indepen-
dent planning task 7"(P;)which computes and maintains path from
Si to s;+1 in X3. Figure 4 illustrates this connection between o
and 23.

6.3 Tunnels

The work in [Gochev et al. 2011] observes that a plan in a low
dimensional problem domain can often be exploited to greatly ac-
celerate high-dimensional complex planning problems by focusing
searches in the neighborhood of the low dimensional plan. They in-
troduce the concept of a tunnel 7(Xxq, II(X14), tw) as a sub graph
in the high dimensional space 3j,4 such that the distance of all states
in the tunnel from the low dimensional plan IT(3;q) is less than the
tunnel width ¢,,. Based on their work, we use plans from one do-
main in order to accelerate searches in more complex domains with
much larger action spaces. A planner is input a low dimensional
plan IT(X;4) which is used to focus state transitions in the sub graph
defined by the tunnel 7(Xpq, I1(X14), tw)-

To check if a state s lies within a tunnel 7(Xnq, II(3i4), tw)
without precomputing the tunnel itself, the low dimensional
plan II(X;4) is first converted to a high dimensional plan
I (Xhd, Sstart, Sgoar) by mapping all states of I to their corre-
sponding states in H,, using the mapping function A(s, ¥4, Xra)
as defined in Equation 4. Note that the resulting plan I may
have multiple possible trajectories from ss¢art t0 Sgoar due to
the 1 : n mapping of A\. Next, we define a distance measure
d(s,II(X)) which computes the distance of s from the path II(X).
During a planning iteration, a state is generated if and only if
d(s,II(Xnq)) < tw. This is achieved by redefining the succ(s)

120

and pred(s) to only consider states that lie in the tunnel. Further-
more, node expansion can be prioritized to states that are closer to
the path by modifying the heuristic function as shown in below.

ht(s,sstart) = h(S,Sstart) + |d(5,H(E))‘ (6)
Note that the heuristic h:(s, Sstart) is an estimate of the distance
from s to ss¢q+¢ Since we use a backward search from sgoq1 t0 Sstart
to accomodate start movement. For spatial domains 31, Y2, and
Y3, d(s, II(X)) is the perpendicular distance between s and the line
segment connecting the two nearest states in II(X). d(s,II(Z4))
will return a two-tuple value for spatial distance as well as temporal
distance.

TunnelChangeUpdate. When the tunnel changes, previously vis-
ited nodes that are no longer within the new tunnel are assigned
an infinite cost and the changes are propagated to their successors.
Also, their heuristic values are updated to reflect the new tunnel
distance using Equation 6, which re-prioritizes node expansion to
nodes that are closer to the new path. The tunnel width ¢,,is in-
versely proportional to the inflation factor e. Thus, a high € focuses
the search within a narrow tunnel, which is iteratively expanded
when e is reduced to increase the breadth of the search. Due to the
extremely dynamic nature of the planning tasks, we find that a rea-
sonably narrow tunnel allows solutions to be returned very quickly
which can be improved, if time permits. If the tunnel is too narrow,
however, no plan maybe returned, requiring a replan in a wider tun-
nel. The supplementary document provides the algorithmic details
to handle tunnel changes that are sent between planning tasks in
different domains.

Completeness and Optimality Guarantees. The use of tunnels
enables AD* to leverage plans across domains in order to expedite
searches in high-dimensional domains. However; by modifying the
definition of succ(s) and pred(s) to prune nodes that lie outside
the tunnel, we sacrifice the strict bounds on optimality provided by
AD¥*, as nodes that lie outside the tunnel may lead to a more opti-
mal solution. By iteratively expanding the tunnel width ¢,,, when
the search is unsuccessful, we ensure that a solution will be found,
if one exists. For practical purposes, we find that a constantly dy-
namic world mitigates the need for strict optimality bounds as solu-
tions are constantly invalidated, before their use. In our experiments
(Section 7.1), we find that the computational benefit of using tun-
nels far outweighs its drawbacks, providing an exponential reduc-
tion in the nodes expanded, while still producing reasonable quality
solutions.

7 Results

7.1 Comparative Evaluation of Domain Relationships

We randomly generate 1000 scenarios of size 100m x 100m, with
random configurations of obstacles (both static and dynamic), start
state, and goal state and record the effective branching factor, num-
ber of nodes expanded, time to compute a plan, success rate, and
quality of the plans obtained. The effective branching factor is the
average number of successors that were generated over the course
of one search. Success rate is the ratio of the number of scenarios
for which a collision-free solution was obtained. Plan quality is the
ratio of the length of the static optimal path and the path obtained.
A plan quality of 1 indicates that the solution obtained was able to
minimize distance without any deviations. Similar metrics for an-
alyzing multi-agent simulations have been used in [Kapadia et al.
2011]. The aggregate metrics for the different domains and domain
relationships are shown in Table 1. Rows 3 and 6 in Table 1 in-
clude the added time to compute plans in earlier domains for tunnel

search, to provide an absolute basis of comparison. All experiments
were performed on a single-threaded 2.80 GHz Intel(R) Core(TM)
i7 CPU.

33 and X5 can quickly generate solutions but is unable to solve
most of the scenarios as they don’t resolve fine-grained collisions.
The use of plans from 3, accelerates searches in 3o (Table 1, Row
3). However, the real benefit of using both ¥, and ¥ is evident
when performing repeated searches across domains in large envi-
ronments when an initial plan II(X;) accelerates repeated refine-
ments in X, (and other subsequent domains). Using X3 in a large
environment takes significantly longer to produce similar paths. >4
is unable to find a complete solution for large-scale problem in-
stances (we limit maximum number of nodes expanded to 10%),
and the partial solutions often suffer from local minima, resulting
in a low success rate. The benefit of using tunnels is evident in
the dramatic reduction of the effective branching factor and nodes
expanded for 34.

When using the complete global path from X3 as a tunnel for ¥4
(Figure 4(a) and Row 6 in Table 1), the effective branching factor
reduces from 21.5 to 5.6, producing an exponential drop in node
expansion and computation time, and enabling complete solutions
to be generated in the space-time domain. This planning task is
able to successfully solve nearly 92% of the scenarios that were
generated. However, since Sstqrt and sgoq; are far apart, the large
depth of the search prevents this from being used at interactive rates
for many agents.

By using successive waypoints in II(X2) as Sstart and Sgoar to cre-
ate a series of planning tasks in X3 and >4 (Figure 4(b) and Row 7
in Table 1), we reduce the breadth and depth of the search, allow-
ing solutions to be returned at a fraction of the time (6 ms), without
significantly affecting the success rate. The tradeoff is that indepen-
dent plans are generated between waypoints along the global path,
creating a two-level hierarchy between the domains.

Domain | BF | N | T | S | Q
T(Z1) 37 | 43 3 0.17 | 0.76
T(22) 46 | 85 8 0.23 | 0.57
T(22,I1(Z1)) 2.1 17 5 032 | 0.65
T(Z3) 74 | 187 18 | 0.68 | 0.73
T(Z4) 215 | 10* | 2487 | 034 | 0.26
T(24, (T3, T2, 51)) 56 | 765 | 136 | 092 | 0.64
S Ti(24,T(23,82,%1)) | 54 | 75 8 0.86 | 0.58

Table 1: Comparative evaluation of the domains, and the use of
multiple domains. BF = Effective branching factor. N = Average
number of nodes expanded. T = Average time to compute plan (ms).
S = Success rate of planner to produce collision-free trajectory. Q
= Plan quality. Row 6,7 corresponds to the domain relationships
illustrated in Figures 4(a) and (b) respectively.

Conclusion. The comparative evaluations of domains shows that
no single domain can efficiently solve the challenging problem in-
stances that were sampled. The use of tunnels significantly reduce
the effective branching factor of the search in ¥z and 34, while
mapping successive waypoints in II1(32) to multiple independent
planning tasks reduce the depth of the search in 33 and >4, without
significantly impacting success rate and quality. For the remaining
results in the paper, we adopt this domain relationship as it works
well for our application of simulating multiple goal-directed agents
in dynamic environments at interactive rates. Users may choose a
different relationship based on their specific needs.

7.2 Performance

We measure the performance of the framework by monitoring the
execution time of each task type, with multiple instances of plan-

121

ning tasks for 33 and 4. We limit the maximum deliberation time
tmae = 10 ms, which means that the total time executing any of the
tasks at each frame cannot exceed 10ms. For this experiment, we
limit the total number of tasks that can be executed in a single frame
to 2 (including To) to visualize the execution time of each task over
different frames. Figure 6 illustrates the task execution times of a
single agent over a 30 second simulation for the scenario shown in
Figure 2(a). The execution task To which is responsible for charac-
ter animation and simple steering takes approximately 0.4 — 0.5 ms
of execution time every frame. Spikes in the execution time corre-
late to events in the world. For example, a local non-deterministic
change in the environment (Frames 31,157) triggers a plan update
in T'(X33), which in turn triggers an update in 7'(X4). A global
change such as a crowd blocking a passage or a change in goal
(Frames 39, 237,281) triggers an update in 7'(X2) or T'(31) which
in turn propagates events down the task dependency chain.

Note that there are often instances during the simulation when the
start and goal changes significantly or when plans are invalidated,
requiring planning from scratch. However, we ensure that our
framework meets real-time constraints due to the following design
decisions: (a) limiting the maximum amount of time to deliber-
ate for the planning tasks, (b) intelligently distributing the available
computational resources between tasks with highest priority, and
(c) increasing the inflation factor to quickly produce a sub-optimal
solution when a plan is invalidated, and refining the plan in succes-
sive frames.

7

@=T(31) =—T(22) —T(33) —T(z4) —T(0)

w B L] o

TASK EXECUTION TIME (ms)
N

150 200 300 350

FRAME NUMBER

100

0o 50 250

Figure 6: Task execution times of the different tasks in our frame-
work over the course of a 60 second simulation.

Memory. 7'(X:1) and T'(X2) precomputes navigation meshes for
the environment whose size depend on environment complexity,
but are shared by all agents in the simulation. The runtime memory
requirement of these tasks is negligible since it expands very few
nodes. The memory footprint of 7'(33) and T'(34) is defined by
the number of nodes visited by the planning task during the course
of a simulation. Since each planning task in >3 and ¥4 searches
between successive waypoints in the global plan, the search hori-
zon of the planners is never too large. On average, the number
of visited nodes is 75 and 350 for T'(X3) and T'(X4) respectively
with each node occupying 16 — 24 bytes in memory. For 5 run-
ning instances of T'(X3) and T'(X.4), this amounts to approximately
45K B of memory per agent. Additional memory for storing other
plan containers such as OPEN and CLOSED are not considered in
this calculation as they store only node references and are cleared
after every plan iteration.

Scalability. Our approach scales linearly with increase in number
of agents. The maximum deliberation time for all agents can be

(a) (b)

© (d)

Figure 5: Different scenarios. (a) Agents crossing a highway with fast moving vehicles in both directions. (b) 4 agents solving a deadlock
situation at a 4-way intersection. (c) 20 agents distributing themselves evenly in a narrow passage, to form lanes both in directions. (d) A
complex environment requiring careful foot placement to obtain a solution.

chosen based on the desired frame rate which is then distributed
among agents and their respective planning tasks at each frame.
The cost of planning is amortized over several frames and all agents
need not plan simultaneously. Once an agent computes an initial
plan, it can execute the plan with efficient update operations until
it is allocated more deliberation time. If its most imminent plan is
invalidated, it is prioritized over other agents and remains station-
ary till computational resources are available. This ensures that the
simulation meets the desired framerate.

7.3 Scenarios

We demonstrate the benefits of our framework by solving many
challenging scenarios (Figure 5) requiring space-time precision, ex-
plicit coordination between interacting agents, and the factoring of
dynamic information (obstacles, moving platforms, user-triggered
changes, and other agents) at all stages of the decision process. All
results shown here were generated at 30 fps or higher, which in-
cludes rendering and character animation. We use an extended ver-
sion of the ADAPT character animation system [Johansen 2009] for
the results shown in the video.

Deadlocks. Multiple oncoming and crossing agents in narrow pas-
sageways cooperate with each other with space-time precision to
prevent potential deadlocks. Agents observe the presence of dy-
namic entities at waypoints along their global path and refine their
plan if they notice potentially blocked passageways or other high
cost situations. Crowd simulators deadlock for these scenarios,
while a space-time planner does not scale well for many agents.

Choke Points. This scenario shows our approach handling agents
arriving at a common meeting point at the same time, producing
collision-free straight trajectories. Figure 7 compares the trajec-
tories produced using our method with an off the shelf navigation
and predictive collision avoidance algorithm in the Unity game en-
gine. Our framework produces considerably smoother trajectories
and minimizes deviation by using subtle speed variations to avoid
collisions in space-time.

Unpredictable Environment Change. Our method efficiently re-
pairs solutions in the presence of unpredictable world events, such
as the user-placement of obstacles or other agents, which may in-
validate current paths.

Road Crossing. The road crossing scenario demonstrates 40 agents
using space-time planning to avoid fast moving vehicles and other
crossing agents.

Lane Selection for Bi-directional Traffic. This scenario requires
agents to make a navigation decision in choosing one of 4 lanes
created by the dividers. Agents distribute themselves among the
lanes, while bi-directional traffic chooses different lanes to avoid

122

b
I\

BT < S

Unity navigation and steering

ot

Our framework

Figure 7: Trajectory comparison of our method with an off the
shelf predictive steering algorithm in the Unity game engine. Our
framework minimizes deviation and uses speed variations to avoid
collisions in space-time.

deadlocks. This scenario requires non-deterministic dynamic in-
formation (other agents) to be accounted for while making global
navigation decisions. This is different from emergent lane forma-
tion in crowd approaches, which bottlenecks at the lanes and cause
deadlocks without a more robust navigation technique.

Four-way Crossing We simulate 100 oncoming and crossing
agents in a four-way crossing. The initial global plans in X, take the
minimum distance path through the center of the crossing. How-
ever, Yo predicts a space-time collision between groups at the cen-
ter and performs plan refinement so that agents deviate from their
optimal trajectories to minimize group interactions. A predictive
steering algorithm only accounts for imminent neighboring threats
and is unable to avoid mingling with the other groups (second row
of Figure 7).

Space-Time Goals. We demonstrate a complex scenario where 4
agents in focus (additional agents are also simulated) have a tem-
poral goal constraint, defined as an interval (40 4+ / — lsecond).
Agents exhibit space-time precision while jumping across moving
planes to reach their target and the temporal goal significantly im-
pacts the decision making at all levels, where the space-time do-
main maybe unable to meet the temporal constraint and require
plans to be modified in earlier domains. No other approach can
solve this with real-time constraints.

Many of these scenarios cannot be solved by the current state of the

art in multi-agent motion planning, which is able to either handle a
single agent with great precision, or simulate many simple agents
that exhibit reactive collision avoidance.

7.4 Framework Extensibility

The potential of our framework lies in the ability to use multiple
domains of control, and is not limited to the domains described in
Section 4.1, which only serve as a sufficient set to showcase the
benefits of our method. For example, the scenario shown in Fig-
ure 5(d) requires careful control over how the character chooses
its footsteps and cannot be solved by 34, which does not model
bipedal locomotion.

We add a footstep domain X5, which models the motion of the
character’s center of mass and feet placement using an inverted
spherical pendulum model for bipedal locomotion. The agent state
s = (x,v,fs, fs,I € {L, R}) includes the center of mass position
and velocity, the position and orientation of the current support foot,
and an indicator function for the swing foot. An action is chosen by
selecting the time period of the footstep, the orientation and speed
of the center of mass at the end of the step, and the orientation of
the foot plant. The space of possible values of these parameters,
while satisfying the constraints enforced by the inverted pendulum
model, defines the action space of ¥5. We discretize this space to
keep the set of possible footstep transitions at each state to approx-
imately 35. For implementation details of this domain, please refer
to [Singh et al. 2011b].

A(s, X4, X5) maps states in 34 to one or more states in X5 in order
to define a tunnel 7(3s, I1(X4), t.) around I1(34). We start from
a default double support configuration of the character at the start
and assume that the character takes a left foot stride first. The COM
position is used to define a set of valid positions of the support foot
at each space-time waypoint, and f, is constrained based on the
future COM position (where the character turns to next).

8 Discussion

Choice of Domains. The domains described in this paper repre-
sent popular solutions that are used in both academia and industry.
Navigation meshes (31) are a standard solution [Mononen 2009]
for representing free spaces in arbitrarily large, complex, static en-
vironments with recent proposed extensions [van Toll et al. 2012]
that account for dynamic information (32). A grid-based represen-
tation (X3) provides a uniform discretization of the environment,
and is widely used in robot motion planning [Koenig and Likhachev
2002; Likhachev et al. 2005]. The introduction of time as a third
dimension (34) enables collision checks in the future, facilitating
more robust collision resolution.

These domains provide a nice balance between global navigation
and space-time planning, enabling us to showcase the strength of
our framework: the ability to use multiple domains of control, and
leverage solutions across domains to accelerate computations while
still providing a high degree of control fidelity. Additional do-
mains can be easily integrated (e.g., a footstep domain) to meet
application-specific needs, or solve more challenging motion plan-
ning problems.

Relationship Between Domains. Domains can be connected by
using the plan from one domain as a tunnel for the other, or by us-
ing successive waypoints along the plan as start and goal pair for
multiple planning tasks in a more complex domain. We evaluated
both domain relationships based on computational efficiency and
coverage, as shown in Table 1. Using waypoints from the navi-
gation mesh domain as start, goal pairs for planning tasks in the

123

grid and space-time domain keeps the search depth for >3 and ¥4
within reasonable bounds. The tradeoff is that a space-time plan is
never generated at a global level from an agent’s start position to its
target, thus sacrificing completeness guarantees. This design choice
worked well for our experiments where the reduction in success rate
of our framework when using this scheme was within reasonable
bounds, while providing a considerable performance boost, making
it suitable for practical game-like applications. Users may wish to
opt for different domain relationships depending on the application.

Acknowledgements

This research was sponsored by the Army Research Laboratory and
was accomplished under Cooperative Agreement # W911NF-10-2-
0016. The views and conclusions contained in this document are
those of the authors and should not be interpreted as representing
the official policies, either expressed or implied, of the Army Re-
search Laboratory or the U.S. Government. The U.S. Government
is authorized to reproduce and distribute reprints for Government
purposes notwithstanding any copyright notation herein. This work
has been partially funded by the Spanish Ministry of Science and
Innovation under Grant TIN2010-20590-C01-01. A. Beacco is also
supported by the grant FPUAP2009-2195 (Spanish Ministry of Ed-
ucation).

References

ARIKAN, O., AND FORSYTH, D. A. 2002. Interactive motion
generation from examples. In SIGGRAPH, ACM, 483—490.

BOTEA, A., MLLER, M., AND SCHAEFFER, J. 2004. Near optimal
hierarchical path-finding. Journal of Game Development 1, 7—
28.

BULITKO, V., STURTEVANT, N., LU, J., AND YAU, T. 2007.
Graph abstraction in real-time heuristic search. J. Artif. Int. Res.
30, 1 (Sept.), 51-100.

CHOI, M. G., LEE, J., AND SHIN, S. Y. 2003. Planning biped lo-
comotion using motion capture data and probabilistic roadmaps.
ACM Trans. Graph. 22, 2 (Apr.), 182-203.

CHol, M. G., KiM, M., HYUN, K., AND LEE, J. 2011. De-
formable motion: Squeezing into cluttered environments. Com-
put. Graph. Forum 30, 2, 445-453.

FRAICHARD, T. 1999. Trajectory planning in a dynamic
workspace: a’state-time space’approach. Advanced Robotics 13
6, 8, 7594.

GOCHEV, K., COHEN, B. J., BUTZKE, J., SAFONOVA, A., AND
LIKHACHEV, M. 2011. Path planning with adaptive dimension-
ality. In SOCS.

Horr, K., I., CULVER, T., KEYSER, J., LIN, M., AND
MANOCHA, D. 2000. Interactive motion planning using
hardware-accelerated computation of generalized voronoi dia-
grams. In ICRA, vol. 3, 2931-2937 vol.3.

HOLTE, R. C., PEREZ, M. B., ZIMMER, R. M., AND MACDON-
ALD, A. J. 1996. Hierarchical A *: searching abstraction hi-
erarchies efficiently. In National conference on Artificial intelli-
gence, AAAI Press, AAAI 530-535.

HOLTE, R., GRAJKOWSKI, J., AND TANNER, B. 2005. Hierarchi-
cal heuristic search revisited. In Abstraction, Reformulation and
Approximation, vol. 3607 of LNCS. Springer Berlin Heidelberg,
121-133.

Hsu, D., KINDEL, R., LATOMBE, J.-C., AND ROCK, S. 2002.
Randomized kinodynamic motion planning with moving obsta-
cles. The International Journal of Robotics Research 21, 3, 233—
255.

JOHANSEN, R. S. 2009. Automated Semi-Procedural Animation
for Character Locomotion. Master’s thesis, Aarhus University.

KALLMANN, M. 2010. Shortest paths with arbitrary clearance
from navigation meshes. In ACM SIGGRAPH/Eurographics
SCA, 159-168.

KAPADIA, M., SINGH, S., HEWLETT, W., AND FALOUTSOS, P.
2009. Egocentric affordance fields in pedestrian steering. In
Symposium on Interactive 3D graphics and games, ACM, 13D,
215-223.

KAPADIA, M., WANG, M., SINGH, S., REINMAN, G., AND
FAaLouUTsOsS, P. 2011. Scenario space: characterizing cov-
erage, quality, and failure of steering algorithms. In ACM
SIGGRAPH/Eurographics Symposium on Computer Animation,
SCA, 53-62.

KOENIG, S., AND LIKHACHEV, M. 2002. D* Lite. In National
Conf. on AI, AAAI, 476-483.

KRING, A. W., CHAMPANDARD, A. J., AND SAMARIN, N. 2010.
DHPA* and SHPA*: Efficient Hierarchical Pathfinding in Dy-
namic and Static Game Worlds. In AIIDE, The AAAI Press.

LACAZE, A. 2002. Hierarchical planning algorithms. In SPIE
Int. Symposium on Aerospace/Defense Sensing, Simulation, and
Controls.

LAMARCHE, F., AND DONIKIAN, S. 2004. Crowd of virtual hu-
mans: a new approach for real time navigation in complex and
structured environments. In Computer Graphics Forum 23.

LAU, M., AND KUFFNER, J. J. 2005. Behavior planning for char-
acter animation. In ACM SIGGRAPH/Eurographics SCA, 271-
280.

LEVINE, S., LEE, Y., KOLTUN, V., AND PopPoVI(¢, Z. 2011.
Space-time planning with parameterized locomotion controllers.
ACM Trans. Graph. 30 (May), 23:1-23:11.

LIKHACHEV, M., GORDON, G. J., AND THRUN, S. 2003. ARA*:
Anytime A* with Provable Bounds on Sub-Optimality. In NIPS.

LIKHACHEV, M., FERGUSON, D. I., GORDON, G. J., STENTZ,
A., AND THRUN, S. 2005. Anytime Dynamic A*: An Anytime,
Replanning Algorithm. In ICAPS, 262-271.

Lo, W.-Y., AND ZWICKER, M. 2008. Real-time planning for pa-
rameterized human motion. In ACM SIGGRAPH/Eurographics
SCA, 29-38.

Lopez, T., LAMARCHE, F., AND L1, T.-Y. 2012. Space-time
planning in changing environments : using dynamic objects for
accessibility. CAVW 23, 2, 87-99.

Loscos, C., MARCHAL, D., AND MEYER, A. 2003. Intuitive
crowd behaviour in dense urban environments using local laws.
In TPCG, IEEE, 122.

MONONEN, M., 2009. Recast: Navigation-mesh construction
toolset for games. http://code.google.com/p/recastnavigation/.

PARIS, S., PETTRE, J., AND DONIKIAN, S. 2007. Pedestrian
reactive navigation for crowd simulation: a predictive approach.
In EUROGRAPHICS 2007, vol. 26, 665-674.

124

PEARL, J. 1984. Heuristics: intelligent search strategies for com-
puter problem solving. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA.

PELECHANO, N., ALLBECK, J. M., AND BADLER, N. I. 2008.
Virtual Crowds: Methods, Simulation, and Control. Synthesis
Lectures on Computer Graphics and Animation.

PETTRE, J., KALLMANN, M., AND LIN, M. C. 2008. Motion
planning and autonomy for virtual humans. In ACM SIGGRAPH
classes, 1-31.

REYNOLDS, C. W. 1987. Flocks, herds and schools: A distributed
behavioral model. In ACM SIGGRAPH, 25-34.

SAFONOVA, A., AND HODGINS, J. K. 2007. Construction and op-
timal search of interpolated motion graphs. In ACM SIGGRAPH.

SHAPIRO, A., KALLMANN, M., AND FALOUTSOS, P. 2007. In-
teractive motion correction and object manipulation. In ACM
SIGGRAPH I3D.

SINGH, S., KAPADIA, M., HEWLETT, B., REINMAN, G., AND
FALOUTSOS, P. 2011. A modular framework for adaptive agent-
based steering. In ACM SIGGRAPH Symposium on Interactive
3D Graphics and Games, 13D, 141-150 PAGE @9.

SINGH, S., KAPADIA, M., REINMAN, G., AND FALOUTSOS, P.
2011. Footstep navigation for dynamic crowds. Computer Ani-
mation and Virtual Worlds 22, 2-3, 151-158.

STURTEVANT, N., AND GEISBERGER, R. 2010. A comparison of
high-level approaches for speeding up pathfinding. 76-82.

SuD, A., GAYLE, R., ANDERSEN, E., GUy, S., LIN, M., AND
MANOCHA, D. 2007. Real-time navigation of independent
agents using adaptive roadmaps. In VRST, ACM, 99-106.

SUNG, M., KOVAR, L., AND GLEICHER, M. 2005. Fast and ac-
curate goal-directed motion synthesis for crowds. In ACM SIG-
GRAPH/Eurographics SCA, 291-300.

THALMANN, D. 2008. Crowd simulation. In Wiley Encyclopedia
of Computer Science and Engineering.

TREUILLE, A., COOPER, S., AND PoPoVI¢, Z. 2006. Continuum
crowds. In ACM SIGGRAPH, 1160-1168.

VAN DEN BERG, J., FERGUSON, D., AND KUFFNER, J. 2006.
Anytime path planning and replanning in dynamic environments.
In ICRA, 2366 -2371.

VAN DEN BERG, J., LIN, M. C., AND MANOCHA, D. 2008. Re-
ciprocal velocity obstacles for real-time multi-agent navigation.
In Proceedings of ICRA, IEEE, 1928-1935.

VAN DEN BERG, J., PATIL, S., SEWALL, J., MANOCHA, D., AND
LIN, M. 2008. Interactive navigation of multiple agents in
crowded environments. In ACM SIGGRAPH 13D, 139-147.

VAN TOLL, W. G., COOK, A. F., AND GERAERTS, R. 2012. Real-
time density-based crowd simulation. CAVW 23, 1, 59-69.

Feature Article

How the Ocean Personality Model
Affects the Perception of Crowds

Funda Durupinar = Bilkent University

Nuria Pelechano = Universitat Politécnica de Catalunya

Jan M. Allbeck = George Mason University

Ugur Giidiikbay = Bilkent University

Norman I. Badler = University of Pennsylvania

imulating the behavior of animated vir-
tual crowds is a challenge for the computer
graphics community. To achieve realistic be-
havior in virtual crowds requires extensive study
of the semantics underlying real crowds’ motion.

This approach extends

the HiDAC (High-Density
Autonomous Crowds)
system by providing each
agent with a personality
model based on the Ocean
(openness, conscientiousness,
extroversion, agreeableness,
and neuroticism) personality
model. Each personality trait
has an associated nominal
behavior. Specifying an
agent’s personality leads to
an automation of low-level
parameter tuning.

Psychologists study human na-
ture to identify salient behavior
characteristics. There has been
extensive research on incorpo-
rating psychological models into
the simulation of autonomous
agents. Here, however, we're not
interested in a person’s person-
ality, per se, but in incorporating
a personality model into large
groups of people. By changing
the parameters, we examine how
subgroups of people with differ-
ent personality traits interact and,
accordingly, how global crowd
behavior is influenced. The user
decides the percentage and distri-
bution of the personality traits.
Personality is a pattern of a

22

person’s behavioral, temperamental, emotional,
and mental traits. Considerable controversy exists
in personality research about how many personal-
ity traits there are. However, one popular model
is the Five Factor, or Ocean (openness, conscien-
tiousness, extroversion, agreeableness, and neu-

May/June 2011

Published by the IEEE Computer Society

roticism) model.! These five factors are orthogonal
dimensions of the personality space. Openness de-
scribes the imaginative and creative aspect of hu-
man character. Conscientiousness determines to
what level a person is organized and careful. Ex-
troversion relates to how outgoing and sociable a
person is. Agreeableness is friendliness, generosity,
and the tendency to get along with other people.
Finally, neuroticism refers to emotional instability
and the tendency to experience negative emotions.
Each factor is bipolar and has several traits, which
essentially are adjectives used to describe people.?
We've mapped these trait terms to the set of be-
haviors in the HIDAC (High-Density Autonomous
Crowds) crowd simulation system.? HIDAC models
individual differences by assigning each person dif-
ferent psychological and physiological traits. Users
normally set these parameters to model a crowd’s
nonuniformity and diversity. Our approach frees
users of the tedious task of low-level parameter
tuning and combines all these behaviors in dis-
tinct personality factors. To verify our mapping’s
plausibility, we evaluated users’ perception of the
personality traits in generated animations.

The System

By combining a standard personality model with a
high-density crowd simulation, our approach cre-
ates plausible variations in the crowd and enables
novice users to dictate these variations.*

0272-1716/11/$26.00 © 2011 IEEE

Table 1. Low-level parameters versus trait-descriptive adjectives.

Agent behavior
Leadership

Trained or untrained
Communication

Panic

Impatience

Pushing

Right preference
Avoidance or personal space
Waiting radius

Waiting timer
Exploring environment

Walking speed

Personality factor

Assertive, social, unsocial, calm, fearful

Informed, ignorant

Social, unsocial

Oversensitive, fearful, calm, orderly, predictable
Rude, assertive, patient, stubborn, tolerant, orderly
Rude, kind, harsh, assertive, shy

Cooperative, predictable, negative, contrary, changeable
Social, distant

Tolerant, patient, negative

Kind, patient, negative

Curious, narrow

Energetic, lethargic, vigorless

Ocean factor*
E, N
O
E
N, C+
E+ C, A
A E
A C

Gesturing Social, unsocial, shy, energetic, lethargic

m m O >» > m

*The letters in this column stand for openness, conscientiousness, extroversion, agreeableness, and neuroticism.

HiDAC

HiDAC addresses the simulation of local behaviors
and the global wayfinding of crowds in a dynami-
cally changing environment. It directs autonomous
agents’ behavior by combining geometric and psy-
chological rules. Psychological attributes include
impatience, panic, and leadership behaviors, which
are determined by traits such as locomotion, en-
ergy levels, and maximum speed. Agents have skills
such as navigation in complex environments, com-
munication, learning, and certain kinds of decision
making. Agents also have perception so that they
can react to obstacles, other agents, and dynamic
changes in the environment.

To achieve realistic behavior, HIDAC handles
collisions through avoidance and response forces.
Over long distances, the system applies collision
avoidance so that agents can steer around ob-
stacles. Over shorter distances, it applies collision
response to prevent agents from overlapping with
each other and the environment.

Besides the usual crowd behavior, agents might
display pushing behavior or show that they can wait
for other agents to pass first, depending on their po-
liteness and patience. Pushing behavior arises from
varying each agent’s personal-space threshold. Im-
patient agents don’t respect others’ personal space
and appear to push their way through the crowd.
Relaxed agents temporarily stop when another
agent moves into their path; impatient agents don’t
respond to this feedback and tend to push.

Integrating the Ocean Model into HiDAC

A crowd consists of subgroups with different per-
sonalities. Variations in the subgroups’ character-
istics influence emergent crowd behavior. The user
can add any number of groups with shared per-

sonality traits and can edit these characteristics
throughout an animation.

To model an agent’s personality «, we use a five-
dimensional vector, in which a personality factor
¥; represents each dimension. To model the fac-
tors’ distribution in a group of people, we use a
Gaussian distribution function N with mean
and standard deviation o;:

™= <‘1107 \I,Cr \I/Er \IlAv \IIN>v
Wi = N(u,0f), fori € {O, C, E, A, N},
where i € [0, 1], 0 € [-0.1, 0.1].

A person’s overall behavior 3 is a combination
of different behaviors. Each behavior is a function
of personality:

/8 = (/811 /32’ ey /Gn)
G =f(m), forj=1, .. n

Because each factor is bipolar, ¥ can have posi-
tive and negative values. For instance, a value of
1 for extroversion means that the person is highly
extroverted, whereas -1 means that the person is
highly introverted.

Personality-to-Behavior Mapping

We map agents’ personality factors (adjectives)
onto low-level parameters and onto the built-
in behaviors in the HiDAC model (see Table 1).
A positive factor takes values in the range [0.5,
1]; a negative factor takes values in the range [O,
0.5). A factor with no sign indicates that both
poles apply to that behavior. For instance, E+ for

IEEE Computer Graphics and Applications

23

Feature Article

24

a behavior means that only extroversion is related
to that behavior; introversion isn’t applicable. As
Table 1 shows, more than one personality dimen-
sion can define a behavior. The more adjectives of
a certain factor that are defined for a behavior, the
stronger that factor’s impact on that behavior. We
assign a weight to the factor’s impact on a specific
behavior. For instance, wg; is the weight of extro-
version on leadership; it takes a value in the range
[0, 1]. The sum of the weights for a specific type
of behavior is 1.

Now, we show how our approach maps a per-
sonality dimension to a specific type of behavior.
We define the behavior parameters for an agent i
as follows.

Leadership. Leaders tend to have more confidence
in themselves. They remain calm during emergen-
cies. Each agent has a leadership percentage deter-
mined by extroversion and stability. We compute
leadership behavior as

ﬁiLeadership _ WEL\IJ? + N (1 _ \I’{\]),
where
ﬂiLeadership x E, ﬂiLeadership 0(71 N, and /GI'Leadership c [0,1} .

Trained. Trained agents have complete knowledge
about the environment. Because being trained re-
quires curiosity and because trained people are in-
formed, we associate this parameter with openness.

Being trained is a Boolean parameter, so we use
a probability function to represent it. As openness
increases, the probability that the agent is trained
increases:

P, (Trained) = ¥
1 if P(Trained)>0.5

ﬂj‘rained _
' 0 otherwise

where
P; (Trained) « O and g™ ¢ {0, 1}.

Communication. This parameter determines whether
agents communicate. Similar to being trained, com-
munication depends on the probability of agent
behavior. As extroversion increases, the probability
that the agent communicates increases:

P, (Communication) = F
1 if P;(Communication) > 0.5

ﬂ_Communication _
' 0 otherwise

’

May/June 2011

where
P;(Communication)oc E and gFommunicaton ¢ {0, 1},

Panic. In emergency situations, agents display
panic behavior depending on their stability and
conscientiousness. When they panic, their walk-
ing speed increases and they don’t wait. We com-
pute panic as

g = anp B} + e (0F)
=205 42 ifUF>0
0 otherwise

f(of) =

where
pranic o N, gFanic o= C+, and gFanic ¢ [O,l].

Impatience. We implement this parameter by modi-
fying the route selection dynamically on the basis
of environmental changes. This parameter de-
pends on an agent’s politeness and assertiveness.
We compute impatience as

ﬂilmpatience _ wEIf<\IJ$> + war (1 _ \I/;A) +war (»1 _ \I,IC)

FluF) - 20E-1 ifUE>0

0 otherwise ’

where

ﬂilmpatlence O(E+, ﬁilmpatlence O(—‘l A,C, and ﬁilmpanence c
0,1].

Pushing. HiDAC can realistically simulate a per-
son’s respect for others. Agents can try to force
their way through a crowd by pushing others,
exhibit more respectful behavior when desired,
make decisions about letting others walk first, and
queue when necessary. Disagreeable agents tend to
push others more because they're harsh and im-
polite. Similarly, extroverted agents display push-
ing behavior because they tend to be assertive. We
compute pushing as

P (Pushing) = pr\Iff —+ wap (1 — ‘IIIA)
1 if P (Pushing)>0.5

ﬁ}’ushing _
0 otherwise

i)

where

Pi(Pushing) o E, P;j(Pushing) o
ﬂ'[’ushing c {0'1}

A, and

Right preference. People prefer to move toward the
right side of the obstacle that they're about to en-
counter. This behavior shows the person’s level
of conformity to the rules. The right-preference
behavior is a probability function. If an agent is
disagreeable or nonconscientious, that agent can
make a right or left preference with equal proba-
bility. On the other hand, an agent that prefers the
right side increases the probability proportionally
to the agent’s agreeableness and conscientiousness
values, if these values are positive. We compute
right preference as

, 0.5 if U2 <0or ¥F <0
P(Right) =
warPA +werUS otherwise
e _ |11 Pi(Right) > 0.5
' 0 otherwise

where
Pi(Right) x A, C, and " € {0,1}.

Personal space. Personal space determines the ter-
ritory in which a person feels comfortable. Agents
try to preserve their personal space when they
approach other agents and when other agents
approach from behind. However, the values for
these two situations aren’t the same. According
to research, the average personal space in West-
ern cultures is 0.7 meters in front and 0.4 meters
behind.’ The personal space of an agent i with re-
spect to an agent j is

0.8+ f(i,]) if UF ¢ 0%

ﬂil";zrsonalSpace —10.7% f(l,]) if \pf c 1%

, 33
. ear (2

0.5+ f (i,]) if Ut e §l

f(i)= 1 if iis behind j
7)=10.4/0.7 otherwise

where

plgenalseace o1 E and gf5onde € {0.5,0.7,0.8}.
Waiting radius. In an organized situation, people
tend to wait for available space before moving. We
call this space the waiting radius; it depends on a
person’s kindness and consideration—that is, the
agreeableness dimension. We compute the waiting
radius as

0.25 if ¥4 e|0=

W=
—_—

’

/GiWaitingRadius =10.45 if \IjiA c

15}
33

[\

0.65 if U4 €

4

w

where
ﬁiWaitingRadius ~ A and ﬂiWaitingRadius c {02 5, 045' 065}

Waiting timer. If two people are heading in the same
direction, each waits for the other to move first. The
time they wait—that is, the duration during which
they display patience toward each other—depends on
their agreeableness. We compute the waiting time as

1 ifute|ol
3

Wamnngmer =15 if \I/A cl==,
o [33
50 if WA e %1

where
WaitingTimer WaitingTimer
B, x A and 3] € {1,5,50}.

Exploring the environment. HiDAC assigns people
specific behaviors. The number of actions they
complete depends on their curiosity. Open people
will more likely explore different experiences and
perform more actions. The openness factor deter-
mines the time during which a person explores the
environment. The number of actions that a person
completes increases by the degree of openness. We
compute the exploring parameter as

Explori o
ﬁi Xploring — 10\111 ,
where
Explori Explori
BEPE o O and 7P €]0,10].
Walking speed. A person’s energy level determines
that person’s maximum walking speed. Because
extroverts tend to be more energetic and introverts
more lethargic, the extroversion trait controls this
parameter. We compute the walking speed as
WalkingSpeed E
ﬁi alkingSpee :\I/i _~_1'

where

ﬁiWalkingSpeed ~E and ﬁiWalkingSpeed c [»1'2]

IEEE Computer Graphics and Applications

25

Feature Article

e

S

Figure 1. Openness tested in a museum. The most open people (red hair)
stayed the longest. The least open people (blue hair) left the earliest.

Figure 2. A ring formation example. Extroverts (blue suits) are inside
and introverts are outside.

26

Gesturing. The amount of gesturing during a con-
versation indicates a person’s sociability. Outgoing
people use more gestures than shy people, which
indicates extroversion. We compute the gesturing
parameter as

ﬂi(}esturing — 10\1155 ,
where
ﬂi(}esturing xE and ﬁiGesturing c [0,10] .

Evaluation

To evaluate whether users will correctly perceive
our suggested mappings, we conducted user studies.
We created several animations to study how mod-
ifying subgroups’ personality parameters affects
global crowd behavior.

The Experiment’s Design

We created 15 videos presenting the emergent be-
haviors of people in scenarios in which the set-

May/June 2011

tings assigned in the Ocean model drive crowds’
behavior. The scenarios ranged from evacuation
drills to cocktail parties or museum galleries.

We performed the mapping from HiDAC param-
eters to Ocean factors by using trait-descriptive
adjectives. To validate our system, we determined
the correspondence between our mapping and the
users’ perception of these trait terms in the vid-
eos. Our studies involved 70 participants (21 fe-
males and 49 males, ages 18 to 30). We showed the
videos to them on a projected display and asked
them to complete a questionnaire containing 123
questions—about eight questions per video. After
each video, participants had time to answer the
related questions. The participants had no previ-
ous knowledge of the experiment.

Questions assessed how much a person agreed
with statements such as, “I think the people in
this video are kind” or “I think the people with
green suits are calm.” We asked questions that in-
cluded the adjectives describing each Ocean fac-
tor instead of asking directly about the factors.
We used descriptive questions because the general
public, being unfamiliar with the Ocean model,
might have difficulty answering questions such
as, “Do the people exhibit openness?” Although
the participants were proficient in English, to pre-
vent any misconceptions, we attached dictionary
definitions of the adjectives to the questionnaires.
Participants chose answers on a scale from O to
10, where O = totally disagree, 5 = neither agree
nor disagree, and 10 = totally agree. We omitted
the antonyms from the list of adjectives, for con-
ciseness. The remaining adjectives were assertive,
calm, changeable, contrary, cooperative, curious, dis-
tant, energetic, harsh, ignorant, kind, orderly, patient,
predictable, rude, shy, social, stubborn, and tolerant.

Sample Scenarios
In the scenarios, novel, emergent formations and
different behavior timings occurred.

The museum scenario tested the impact of
openness. A key factor determining openness is
the belief in the importance of art. Figure 1 shows
a screenshot from the sample animation. This sce-
nario tested the adjectives curiosity and ignorance.
There were three groups of people, with openness
values of 0, 0.5, and 1. We mapped the number of
tasks that each agent must perform to openness,
with each task requiring looking at a painting. The
least open agents (with blue hair) left the museum
first, followed by the agents with openness values
of 0.5 (with black hair). The most open agents
(with red hair) stayed the longest. We asked the
participants how they perceived each group.

Another video assessed how the participants
perceived extroverts and introverts according
to their distribution around a point of attrac-
tion. Figure 2 shows a screenshot in which the
agents in blue suits are extroverted (x = 0.9 and
o = 0.1) and those in grey suits are introverted
(= 0.1 and o = 0.1). The ratio of introverts
to extroverts in a society is 25 percent;® we as-
signed the initial number of agents according
to this ratio. At the animation’s end, introverts
were outside the ring structure around the object
of attraction. Because extroverts are faster, they
approached the attraction point in less time. In
addition, when other agents blocked their way,
they tended to push them to reach their goal.
The figure also shows the difference between the
personal spaces of introverts and extroverts. This
animation tested the adjectives social, distant, as-
sertive, energetic, and shy.

To test whether the participants could distinguish
the personalities of people who create congestion,
we showed them two videos of the same duration
and asked them to compare the characteristics of
the agents in each video. Each video consisted of
two groups of people moving through each other.
The first video showed people with high agreeable-
ness and conscientiousness values (1 = 0.9 and
o = 0.1 for both traits). The second video showed
people with low agreeableness and conscientious-
ness values (= 0.1 and o = 0.1 for both traits).
In the first video, groups managed to cross each
other, whereas in the second, congestion occurred
after a fixed time period. Such behaviors emerged
because people who are agreeable and conscien-
tious are more patient; they don’t push each other
and are always predictable, because they prefer to
move on the right side. Figure 3 shows how con-
gestion occurred because of low conscientiousness
and agreeableness. People were stuck at the center
and refused to let other people move. They also
were stubborn, negative, and uncooperative.

Figure 4 shows a screenshot from the anima-
tion demonstrating how neuroticism, nonconsci-
entiousness, and disagreeableness affect panic. We
simulated 13 agents. Five of them had neuroticism
values of = 0.9 and o = 0.1, conscientiousness val-
ues of u=0.1 and o = 0.1, and agreeableness values
of 1 = 0.1 and o = 0.1. The other agents, which
were psychologically stable, had neuroticism val-
ues of 1 =0.1 and o = 0.1, conscientiousness values
of 1 =0.9 and o = 0.1, and agreeableness values of
w=0.9 and o = 0.1. The agents in green suits are
neurotic, less conscientious, and disagreeable. As
the figure shows, they tend to panic more, push
other agents, force their way through the crowd,

'3 dbO
=
-

Figure 3. People with low conscientiousness and agreeableness cause

congestion.

Figure 4. Neurotic, nonconscientious, and disagreeable agents (in green
suits) display panic behavior.

and rush to the door. They aren’t predictable, co-
operative, patient, or calm; they're rude, change-
able, negative, and stubborn.

Analysis

After collecting the participants’ answers for all
the videos, we organized the data for the adjec-
tives. We classified each adjective by its question
number, the simulation parameter, and the par-
ticipants’ answers to the corresponding question.
We calculated the Pearson correlation (r) between
the simulation parameters and the average of the
subjects’ answers for each question. For instance,

IEEE Computer Graphics and Applications

27

Feature Article

—&— Correlation

0.2 —— Significance
0.1
0 T T T _ T T T T _T T T T T T T T T 1
T B F S LS S 65 T N
PFFLOTEAE T 2P LLERLE
ST IS S ¥ SIS e
\(\'b @ < S QO
©] &

Figure 5. The correlation coefficients between the parameters and
the subjects’ answers for the descriptive adjectives (blue), and the
significance values for the corresponding correlation coefficients
(violet). Significance is low (<0.95) for changeable, orderly, ignorant,
predictable, social, and cooperative.

28

eight questions included the adjective assertive,
indicating a sample size of 8. We calculated the
correlation coefficient between the parameters
and the means of the participants’ answers be-
tween these 16 values, eight for each group.

Table 2. Correlation coefficients and significance
values for the 12 adjectives.

Adjective Correlation Significance
Changeable 0.199 0.288
Orderly 0.674 0.903
Ignorant 0.853 0.936
Predictable 0.870 0.938
Social 0.872 0.869
Energetic 0.882 0.992
Rude 0.897 0.997
Tolerant 0.912 0.998
Kind 0.943 1.000
Shy 0.945 1.000
Patient 0.948 1.000
Stubborn 0.950 1.000
Harsh 0.956 0.997
Cooperative 0.967 0.834
Curious 0.971 0.994
Assertive 0.971 1.000
Calm 0.988 0.999
Distant 0.998 1.000
Contrary 0.999 0.969

May/June 2011

We grouped the relevant adjectives for each
Ocean factor to assess the perception of person-
ality traits. This evaluation was similar to the
evaluation of adjectives, this time considering the
questions for all the adjectives that corresponded
to an Ocean factor. For instance, because open-
ness is related to curiosity and ignorance, we took
into account the answers for curious and ignorant.
Again, we averaged the subjects’ answers for each
question. Then, we computed the correlation with
the parameters and the mean throughout all the
questions involving curious and ignorant.

To estimate the probability of having obtained
the correlation coefficients by chance, we computed
the correlation coefficients’ significance. The signif-
icance is 1 - p, where p is the two-tailed probability,
taking into account the sample size and the cor-
relation value. Higher correlation and significance
values suggest more accurate user perception.

Results and Discussion

Figure 5 shows the correlation coefficients and
significance values for the adjectives; Table 2
shows the exact results. As the table shows, the
significance is low (<0.95) for changeable, orderly,
ignorant, predictable, social, and cooperative. For
changeable and orderly, this is because of low cor-
relation values. For predictable, ignorant, social, and
cooperative, the correlation coefficients are high,
but their significance is low because of the small
sample size.

From the participants’ comments, we deter-
mined that changeable is especially confusing. To
understand why, consider the setting in which
two groups of agents crossed each other. The par-
ticipants identified the nonconscientious agents
as rude but perceived them as persistent in their
rudeness. This perception caused the partici-
pants to mark lower values for the question about
changeability. The same problem held for predict-
able agents. One participant’s comments suggested
that if a person is in a rush, that person can be
predicted to push others. However, a predictable
agent has a higher correlation despite these com-
ments, even though predictable implies the oppo-
site of changeable. This meaning might be because
of the relatively low significance for predictable.
Participants perceived nonconscientious agents
that cause congestion as less predictable, which
indicates that changing right-preference and rude
behavior decreases the perceived predictability.

Orderly is another weakly correlated adjective.
Analyzing the results for each video, we found
that agents in the evacuation drill scenario were
orderly although they displayed panic behavior.

1.1

1.0
In these videos, even if the agents pushed each 0.9
other and moved fast, some kind of order could 0.8
be observed. This order was because of the crowd’s 0.7
smooth flow during evacuation. The crowd dis- 0'6

played collective synchrony, in which individual-
ity was lost. Although people were impatient and 0.5

rude, the overall crowd behavior appeared orderly. 0.4
We assigned the same goal to the entire crowd 0.3
: : . : : : —&— Correlation
in the evacuation simulations because we aimed to o
. . . . 0.2 —m— Significance
observe disorganization locally. For instance, dis- o1

orderly agents looked rushed; they pushed other
agents and they didn’t have solid preferences for 0 T T T T

. . . . > o & 5 &
selecting a direction when crossing another agent. «¥ QQJ & \Q/& &\(',\"
However, they moved toward the same goal, which X Q S 2 ©

N S S & &
was to exit the building. The crowd would have ap- é}e <! ?~°§ <
Q

peared more disorderly if everyone ran in different (°
directions and changed direction for no apparent
reason.

Participants’ answers suggest that they didn't
recognize orderliness when the goal was the same

Figure 6. The correlation coefficients between actual parameters and
subjects’ answers for the Ocean factors (blue), and the two-tailed
probability values for the corresponding correlation coefficients (violet).

for the whole crowd. On the other hand, in a sce-
nario showing queuing behavior in front of a water
dispenser, the participants could easily distinguish
orderly versus disorderly people. Orderly agents
waited at the end of the queue; disorderly agents
rushed to the front. In this scenario, although the
main goal was the same for all the agents (drink
water), there were two distinguishable groups that
acted differently.

Figure 6 and Table 3 show the correlation coeffi-
cients and their significance for the Ocean param-
eters. We computed these values by taking into
account all the relevant adjectives for each Ocean
factor. As the figure and table show, all the coef-
ficients have high significance, with a probability
of less than 0.5 percent of occurring by chance
(p < 0.005). The significance is high because we
took into account all the adjectives describing a
personality factor, thereby achieving a sufficiently
large sample.

The correlation coefficient for conscientiousness
is comparatively low, showing that the participants
correctly perceived only approximately 44 percent
of the traits (r> ~ 0.44). To understand why, con-
sider the relevant adjectives: orderly, predictable,
rude, and changeable. Low correlation values for or-
derly and changeable reduce the overall correlation.
If we consider only rude and predictable, the cor-
relation increases by 18.6 percent. The results sug-
gest that people can observe the politeness aspect
in short-term crowd behavior settings more easily
than the organizational aspects. This observation
also explains why the perception of agreeableness
correlates highly with the actual parameters.

Figure 6 and Table 3 also show that the partici-

All the coefficients have high significance.

Table 3. The correlation coefficients and the
significance values for the Ocean factors.

Factor Correlation Significance
Conscientiousness 0.665 1.000
Openness 0.859 0.999
Extroversion 0.860 1.000
Agreeableness 0.922 1.000
Neuroticism 0.990 0.999

pants perceived neuroticism the best. In this study,
we've considered only neuroticism’s calmness as-
pect, which is tested in emergency settings and
building evacuation scenarios.

Our results are promising; they indicate a
high correlation between our parameters

and the participants’ perception of them. The low
correlation for some adjectives is due to the terms’
ambiguity.

Unlike the low-level parameter tuning process
in previous research (see the sidebar), we let our
users select from higher-level concepts related
to human psychology. Our approach frees users
from understanding the underlying methodologies
used in HiDAC. Our mapping also decreases the
number of parameters to set, from 13 to 5. Us-
ing a personality model let us move the user’s fo-
cus to the agents’ character instead of behavioral
parameters, while providing us with a somewhat
widely accepted structure for describing character.
Certainly, you could create an interface that lets

IEEE Computer Graphics and Applications

Feature Article

Crowd simulation research has evolved from creating
reactive techniques to implementing crowds consist-
ing of more complex agents. Reactive methods are limited;
they don’t present any knowledge representation, learning
ability, reasoning, or individual differences in the agents. For
instance, flocking systems are rule-based and specify an ani-
mation as a distributed global motion with a local tendency.

On the other hand, systems with cognitive control
involve reasoning and planning to accomplish long-term
tasks, and they concentrate on achieving full autonomy. A
notable step toward creating more intelligent agents was
Xiaoyuan Tu and Demetri Terzopoulos’s artificial-life simu-
lation, which equipped artificial fishes with synthetic vision
and perception of the environment, as well as behavior
and learning centers.? Soraia Musse and Daniel Thalmann
proposed a crowd behavior model that implemented group
interrelationships and introduced a multiresolution col-
lision method specific to crowd modeling.> Wei Shao and
Terzopoulos introduced a complex pedestrian animation
system that combined rule-based and cognitive models; it
incorporated perceptual, behavioral, and cognitive control
components.*

Several studies have integrated emotion and personal-
ity models and roles into the simulation of autonomous
agents, representing the individual differences through
psychological states. Arjan Egges and his colleagues studied
the simulation of the personality, emotions, and moods for
conversational virtual humans.® Taihua Li and colleagues
proposed a framework that, like ours, uses the Ocean (open-
ness, conscientiousness, extroversion, agreeableness, and
neuroticism) model of personality to define and formulate
a pedagogical agent in a social learning environment.®
However, these studies focused on individual agents, not
crowds.

Only recently have researchers studied the perception
of crowd variety. Christopher Peters and his colleagues
evaluated pedestrians’ perception.” They determined how
the orientation and context rules for characters in static
scenes affect perceived plausibility. Rachel McDonnell and
her colleagues analyzed the perceptual impact of the clon-
ing of virtual characters for simulating large crowds.®

References

1. C. Reynolds, “Flocks, Herds, and Schools: A Distributed
Behavior Model,” Proc. Siggraph, ACM Press, 1987, pp.
25-34.

2. X. Tu and D. Terzopoulos, “Artificial Fishes: Physics, Locomo-
tion, Perception, Behavior,” Proc. Siggraph, ACM Press, 1994,
pp. 43-50.

3. S.R. Musse and D. Thalmann, “A Model of Human Crowd
Behavior,” Proc. Eurographics Workshop Computer Animation
and Simulation, Springer, 1997, pp. 39-51.

4. W. Shao and D. Terzopoulos, “Autonomous Pedestrians,”
Graphical Models, vol. 69, nos. 5-6, 2007, pp. 246-274.

5. A. Egges, S. Kshirsagar, and N. Magnenat-Thalmann, “A
Model for Personality and Emotion Simulation,” Proc.
Knowledge-Based Intelligence Information and Eng. Systems,
LNCS 2773, Springer, 2003, pp. 453-461.

6. T. Li et al., “Modelling Personality, Emotion, and Mood for a
Pedagogical Agent,” Proc. 25th IASTED Int’| Multiconference:
Artificial Intelligence and Applications (AIAP 07), ACTA Press,
2007, pp. 272-277.

7. C. Peters et al., “Crowds in Context: Evaluating the Percep-
tual Plausibility of Pedestrian Orientations,” Proc. Eurographics,
Short Papers, Eurographics Assoc., 2008, pp. 33-36.

8. R. McDonnell et al., “Clone Attack! Perception of Crowd
Variety,” ACM Trans. Graphics, vol. 27, no, 3, 2008, article 26.

30

users create subgroups based on a set of adjectives
instead of personality traits, but it would increase
the number of parameters to set. Also, psychology
and research on autonomous agents has linked
personality models to other psychological, socio-
logical, and cognitive models. Integrating a per-
sonality model into a crowd simulator will let us
expand our simulator and explore how these other
models affect crowd simulations.

We certainly could have used other psycho-
logical models. Autonomous-agent research has
investigated emotion models. Future research
might include adding emotion to the agents, but
whereas personality is a behavior pattern (ex-
tended through time), emotions change accord-
ing to the agent state and the situation. Emotions
must evolve through the simulation and not be
set by the animator. Certainly, personality af-

May/June 2011

fects emotional tendency and provides a founda-
tion. Because personality is a behavior pattern, it
might help a character’s observers develop a sense
of knowing that character. Thus, characters might
become individuals instead of just another collec-
tion of anonymous computer characters. "

Acknowledgments

The research described in this article was initiated
while Funda Durupinar was visiting the University
of Pennsylvania’s Center for Human Modeling and
Simulation. The Scientific and Technological Research
Council of Turkey supported this research under Inter-
national PhD Research Fellowship Programme 2214
and projects EEE-AG 104E029 and 105E065. The
Spanish Government partially funded this research
under grant TIN2010-20590-C01-01.

References

1. J.S. Wiggins, The Five-Factor Model of Personality:
Theoretical Perspectives, Guilford Press, 1996.

2. L.R. Goldberg,
Personality’: The Big-Five Factor Structure,” J.

“An Alternative ‘Description of
Personality and Social Psychology, vol. 59, no. 6, 1992,
pp. 1216-1229.

3. N. Pelechano, J.M. Allbeck, and N.I. Badler,
“Controlling Individual Agents in High-Density
Crowd Simulation,” Proc. ACM Siggraph/Eurographics
Symp. Computer Animation (SCA 07), ACM Press,
2007, pp. 99-108.

4. F. Durupinar et al.,, “Creating Crowd Variation

7th
Int’l Joint Conf. Autonomous Agents and Multiagent
Systems (AAMAS 08), Int’l Foundation for Autono-
mous Agents and Multiagent Systems, 2008, pp.
1217-1220.

5. ET. Hall, The Hidden Dimension, Anchor Books,
1966.

6. K.C. McLean and M. Pasupathi, “Collaborative
Narration of the Past and Extroversion,” J. Research
in Personality, vol. 40, no. 6, 2006, pp. 1219-1231.

with the Ocean Personality Model,” Proc.

Funda Durupinar received her PhD from the Department
of Computer Engineering at Bilkent University. Her research
interests include crowd simulation with heterogeneous be-
haviors that incorporate psychological aspects of agents.
Durupinar has an MS in computer engineering from Bilkent
University. Contact her at fundad@cs.bilkent.edu.tr.

Nuria Pelechano is an associate professor of Llenguatges i
Sistemes Informatics at the Universitat Politécnica de Cata-

lunya, where she’s a member of the Moving and Event-Lab
groups. Her research interests include simulation of crowds
with heterogeneous behaviors, real-time 3D graphics, and
human-avatar interaction in virtual environments. Pele-
chano has a PhD in computer and information science from
the University of Pennsylvania. Contact her at npelechano@
Isi.upc.edu.

Jan M. Allbeck is an assistant professor of computer sci-
ence at George Mason University. Her research interests are
at the crossroads of animation, artificial intelligence, and
psychology in the pursuit of simulating humans, including
functional, heterogeneous crowds. Allbeck has a PhD in
computer and information science from the University of
Pennsylvania. Contact her at jallbeck@gmu.edu.

Ugur Giidiikbay is an associate professor in Bilkent Uni-
versity’s Department of Computer Engineering. His research
interests include human modeling and animation, crowd
simulation and visualization, and physically based mod-
eling. Giidiikbay has a PhD in computer engineering and
information science from Bilkent University. He's a senior
member of IEEE and the ACM. Contact him at gudukbay@
cs.bilkent.edu.tr.

Norman 1. Badler is a professor of computer and informa-
tion science at the University of Pennsylvania. He also di-
rects the university’s SIG Center for Computer Graphics and
Center for Human Modeling and Simulation. His research
interests center on computational connections between lan-
guage and action. Badler has a PhD in computer science
from the University of Toronto. Contact him at badler@seas.
upenn.edu.

Silver
Bullet
Security

Security @

Podeass
-

wish Gary Mebraw

"
sponsored by (TR PRIAGY ‘o

Podcast

miw @ \www.computer.org/security/podcasts
*Also available at iTunes

In-depth interviews
with security gurus.
Hosted by Gary McGraw.

IEEE Computer Graphics and Applications

Populations with Purpose

Weizi Li and Jan M. Allbeck

Laboratory for Games and Intelligent Animation
George Mason University
4400 University Drive, MSN 4A5
Fairfax, VA 22030
http://cs.gmu.edu/~gaia/

Abstract. There are currently a number of animation researchers that
focus on simulating virtual crowds, but few are attempting to simulate
virtual populations. Virtual crowd simulations tend to depict a large
number of agents walking from one location to another as realistically as
possible. The virtual humans in these crowds lack higher purpose. They
have a virtual existence, but not a virtual life and as such do not reason-
ably depict a human population. In this paper, we present an agent-based
simulation framework for creating virtual populations endowed with so-
cial roles. These roles help establish reasons for the existence of each
of the virtual humans. They can be used to create a virtual population
embodied with purpose.

Keywords: Crowd Simulation, Social Roles

1 Introduction

Military training and other applications desire simulations that establish nor-
mal human behavior for an area. Once normalcy is established, observers can be
trained to recognize abnormal and possibly dangerous behaviors. This requires
the simulation of longer periods of time including different times of day. The
problem is how to select reasonable, purposeful behaviors for a population for
such periods of time. Roles are, in part, expected patterns of behavior and there-
fore seem like an intuitive feature for authoring these scenarios. Furthermore,
role switching would enable plausible variations in behaviors throughout a day,
but requires mechanisms to initiate the switching. While admittedly not com-
prehensive, role switching based on schedules, reactions, and needs, seems like a
good starting point.

This paper describes an agent-based simulation framework for creating vir-
tual populations endowed with various social-psychological factors including so-
cial roles. These roles help establish reasons for the existence of the virtual
humans and can be used to create a virtual population embodied with purpose.
Human decisions and the behaviors that result, stem from a complex interplay of
many factors. The aim of this work is not to try to replicate all of these factors.
We have focused on social roles because they are so heavily linked to meaning-
ful behaviors. From this starting point we have included other factors that are

2 Populations with Purpose

linked to role and that can add reasonable variability to behaviors while still
maintaining a framework where scenarios can be feasibly authored, modified,
and controlled.

In addition, our framework focuses on higher level control mechanisms as
opposed to lower level animation implementations. It also links roles and role
switching to different action types such as reactions, scheduled actions, and
need-based actions. As such the authoring of roles is largely just associating
a set of these actions with a role. The techniques and methodologies used are
adopted from a number of research disciplines including multi-agent systems,
social psychology, ontologies, and knowledge representations, as well as computer
animation.

2 Related Work

Crowd simulation research has been approached from several different perspec-
tives. Some research groups are addressing how to simulate large crowds mainly
through focusing on global path planning and local collision avoidance [18,17,
19]. The behaviors in these simulations are for the most part limited to locomo-
tion maneuvers.

Work has also been done on adding contextual behavioral variations through
spatial patches [26,11,23]. The common theme in these works is defining re-
gions in the virtual world and associating these regions with certain behaviors
and interactions. The computer game, The Sims, might also be considered to
incorporate spatially dependent behavior [25]. For example, if an agent is hun-
gry and near a refrigerator, even if not being explicitly directed by the player,
he would eat. While these certainly add richness to the virtual world, they still
fall short of embodying consistent reasonable behaviors with purpose.

Most of the works described so far included few or no social psychology fac-
tors. There have, however, been some that do. The work of Pelechano et al.
included the concept of role and other psychological factors, but the roles were
limited to leaders and followers which along with the other factors influence
only the navigation behavior of agents [20]. In [16], Musse and Thalmann de-
scribe a crowd simulation framework that includes sociological factors such as
relationships, groups, and emotion, but again the behaviors are centered around
locomotion actions.

In [21] Shao and Terzopoulos describe a virtual train station. Here they clas-
sified their autonomous pedestrians into a few categories, including commuters,
tourists, performers, and officers. Each type of character is then linked to hand
coded action selection mechanisms. Similarly in [27] the authors introduce a de-
cision network which addresses agent social interaction based on probabilities
and graph theory, however action selection is still manually coded.

Some research groups have worked directly on incorporating roles into virtual
humans. Hayes-Roth and her collaborators were one of the first research groups
to develop virtual roles [8]. Their interactive intelligent agent was instilled with
the role of bartender and a set of actions were defined such that the user’s

Populations with Purpose 3

expectations would be met. There was, however, no switching of roles for this
character and the behaviors were only related to communication acts.

Most recently work by Stocker et al. introduced the concept of priming for a
virtual agent [22]. Here agents are primed for certain actions based on the other
agents and events around them. While they do not address roles specifically, this
concept of priming is somewhat similar to the role switching behaviors we will
describe in this paper.

3 Approach Overview

In this section, we provide an overview of our approach and describe the so-
cial psychological models on which it is founded, including a definition of roles,
factors affecting role switching, and action types.

3.1 Definition of Role

A role is the rights, obligations, and expected behavior patterns associated with
a particular social status [1]. Ellenson’s work [6] notes that each person plays a
number of roles. Taking into consideration these descriptions as well as discus-
sions from other social psychologists [13,4], we conclude that roles are patterns
of behaviors for given situations or circumstances. Roles can demand certain
physical, intellectual, or knowledge prerequisites, and many roles are associated
with social relationships.

3.2 Role Switching

People’s priorities are set by a number of interplaying factors, including emotions,
mood, personality, culture, roles, status, needs, perceptions, goals, relationships,
gender, intelligence, and history, just to name a few. In this work, we have chosen
a few factors that are related to roles and role switching that we believe will help
endow virtual humans with meaningful, purposeful behaviors.

Switching from one role to another can be linked to time, location, relation-
ships, mental status, and needs (See Figure 1). For example, one can imagine
someone switching to a businessman role as the start of the work day approaches
or as he enters his office or when he encounters his boss. Also, someone may need
to shop for groceries to provide for his family. The shopping behavior would stem
from a need and cause a switch in role to shopper. Elements of mental status,
such as personality traits, can impact the selection and performance of these
roles. For example, a non-conscientious person might not shop for groceries even
if the need exists.

Action and role selection is further affected by a filtration of proposed actions
according to an agent’s Conventional Practice and World Knowledge [10, 4, 3].
Conventional Practice is a set of regulations and norms that each individual
in the society should obey. World Knowledge indicates that certain physical,
intellectual, and knowledge elements are required for specific roles.

4 Populations with Purpose

Time }\ : Action Filter
| Scheduled

/" Actions \.
Location Conventional
Practice
i \ Reactive ;
Relationship Katlons > Roles and Actions

Mental Status :
- Need-based /' World Knowledge

/-' Actions

Maslow needs

Fig. 1. System Diagram

Another perspective from which to consider selection is to examine what
triggers various behaviors. Some actions are planned for such as going to work or
attending a meeting. These actions, called Scheduled actions, tend to establish
a person’s daily routine and are often heavily coupled with their roles. Other
actions are not so predetermined. Some actions arise to fulfill needs. Among these
needs might be those depicted in Maslow’s Hierarchy of Needs, including, food,
water, excretion, friendship, family, employment, and creativity [12]. These type
of actions, called Need-based actions, can also be linked to roles. For example, in
order to maintain employment safety, a businessman might need to contact his
clients are on regular basis. Still other actions, Reactive actions, are responses
to agents, objects, or events in the world. Who and what we react to is at least
partially determined by our roles. If we see a friend or co-worker as we are
walking to work, we are likely to stop and greet them.

While we cannot claim that these three types of actions make a complete
categorization of all behaviors, we believe that they can encompass a wide range
of behaviors and provide strong ties to roles and purposeful behaviors. Another
key factor is the ability to easily author or initiate these behaviors. Each requires
a finite, straightforward amount of data:

Scheduled actions: Sch = (P, A, L,T), where P is the performer (an indi-
vidual or group), A is the action to be performed (simple or complex), L is the
location where the action is to be performed (based on an object or a location),
and T is an indication of the time (i.e. start time and duration).

Reactive actions: Rea = (P, S, A), where P is the performer (an individual
or group), S is the stimulus (an object, type of object, person, location, event,
etc) and A is the action to be performed (simple or complex)

Need-based actions: Nee = (P, N, D,C), where P is the performer (an indi-
vidual or group), N is the name of the need, D is the decay rate, and C' is a set
of tuples (A4, O, F), where A is the action to be performed (simple or complex),
O is a set of object types, and F is the fulfillment rate.

Populations with Purpose 5

4 Implementation

The work presented here extends work previously reported [2]. Previous work
included an implementation of different action types and very rudimentary roles,
but was limited to a single role per character which is not realistic for day scale
simulations.

To continue to ensure scenario authoring is feasible, we have extended our
data-driven approach where all of the vital scenario data is stored in a database.
This includes information about each agent such as conventional practices, men-
tal status, world knowledge, and role sets. We also store a mapping of the rela-
tionships between agents. Information about the world, objects in the world, and
actions are also stored in the database. This includes the specification of sched-
ules, needs, and reactions. As such, scenarios can be authored entirely through
the database and without any coding. In addition, our framework is built on an
existing crowd simulator that provides navigation and collision avoidance for the
agents [19].

We have extend the previous implementation including now a much richer
definition of role. The most important component of a role is a set of actions [13].
This action set corresponds to the conventional practices associated with the role.
These actions may be scheduled, need-based, or reactive actions as mentioned in
the previous section. Furthermore, these actions may also be linked to parameters
such as location, object participants, start-times, and durations. Interpersonal
roles are also associated with relationships, which are a simple named linking of
agents. Among agent parameters is a set of capabilities corresponding to actions
that they can perform. These capabilities form the foundation of an agent’s world
knowledge.

As described in the previous section, factors influencing role selection include,
time, location, relationships, mental status, and needs. In this section, we will
describe the implementation of each of these factors and how they have been
incorporated into the three action types. We will also discuss how actions and
roles are further filtered by conventional practice and an agent’s world knowledge
(See Figure 1).

4.1 Action Types

A large part of the definition of a role includes a pattern of behaviors. Our
framework associates each role with a set of actions. These actions can be of
any of the three types of actions described earlier, namely Scheduled, Reactive,
or Need-based.

Scheduled Actions Scheduled actions include time and location parameters [2]
and can be used to establish an agenda for a day. Some roles are directly as-
sociated with scheduled actions. For example, a businessman may be scheduled
to work in his office from 9am to 5pm. As 9am approaches, the framework will
initiate processing of the scheduled work in office action and send the character
to his office and the businessman role.

6 Populations with Purpose

However, if an agent does not have a scheduled action to perform, they will
perform a default action that is associated with their current role. Generally
default actions are the actions most often performed by that role. For example,
a businessman or administrator might work in an office. A shopkeeper might
attend to the cash register. Just as in real life, scheduled actions can be suspended
by higher priority need-based and reactive actions.

Need-based Actions Need-based actions are merely database entries associ-
ating a decay rate, actions, objects, and a fulfillment quotient. The examples
described in this paper are based on Maslow’s Hierarchy of Needs [12]. Concep-
tually, there is a reservoir that corresponds to each need for each agent. Currently
the initial level of each reservoir is set randomly at the beginning of the simu-
lation. At regular intervals, the reservoirs are decreased by the specified decay
rates. When the level of a reservoir hits a predetermined threshold, the fulfilling
action is added to the agent’s queue of actions. Its priority will increase as the
reservoir continue decreases eventually its priority will greater than all actions
on the queue. Then the agent will perform the action, raising the level of the
reservoir.

We have chosen to use Mental Status as an influence on needs (and reactions),
because social scientists have linked it to roles and we feel it adds plausible vari-
ability. It includes several factors, but we focus on personality as it addresses an
individual’s long-term behavior. There are several psychological models of per-
sonality. One of the most popular is the Five-Factor or OCEAN model [24]. The
five factors are: Openness (i.e. curious, alert, informed, perceptive), Conscien-
tiousness (i.e. persistent, orderly, predictable, dependable, prompt), Fztroversion
(i.e. social adventurous, active, assertive, dominant, energetic), Agreeableness
(i.e. cooperative, tolerant, patient, kind), and Neuroticism (i.e. oversensitive,
fearful, unadventurous, dependent, submissive, unconfident).

We have based our implementation of personality on the work of Durupinar
et al. [5]. An agent’s personality 7 is a five-dimension vector, where each is rep-
resented by a personalty factor ¥,;. The distribution of the personality factors
in a populations of individuals is modeled by a Gaussian distribution function
with mean p; and standard deviation o;:

= (WO, WO W pA wNy
W' = N(u;,02), fori€ O,C,E, A/ N
where p € [-10,10], 0 € [-2,2]

Since each factor is bipolar, ¥ can take both positive and negative values.
For instance, a positive for Eztroversion, E4+, means that the individual has
extroverted character; whereas a negative value means that the individual is
introverted. In Section 4.1, we will describe how personality dimensions affect
the decay rates of need reservoirs, creating reasonable variations in behaviors
from person to person.

Populations with Purpose 7

Needs and priorities differ from person to person. We represent this variation
by linking the personality traits just described with needs. This is, of course,
a massive oversimplification, but one that leads to plausible variations. Table
1 shows our mapping from Maslow needs to OCEAN personality dimensions.
It should be noted that just the personality dimension is represented, not the
valence of the dimension. For example, neuroticism is negatively correlated with
needs for security of employment and family. This mapping was formulated by
examining the adjectives associated with the personality dimensions and the
descriptions of the Maslow needs.

Reservoir Descriptions Personality Traits
problem solving, creativity,

- O, A
lack of prejudice
achievement, respect for others O, A
friendship, family E
security of employment, C. N

security of family
water, food, excretion
Table 1. Mapping between Maslow need reservoirs and personality dimensions.

In this work, we represent the decay rate as 3. For example, 377 endship indi-
cates the decay rate of the friendship reservoir. For Maslow based needs, we also
apply a correlation coefficient r which ranges from (0,1] to represent the rela-
tionship between decay rate and personality traits. More precisely, rg, friendship
represents how strongly the Extroversion trait and friendship’s decay rate cor-
related. The closer r gets to 1 the faster reservoir empties (i.e. the decay rate is
high indicating the agents strong need for friendship). Since a need can be af-
fected by more than one personality trait, for those needs marked with multiple
personality traits we assign weights to each one: Wg, friendship meaning the im-
pact of Extroversion on friendship. If a need has more than one trait’s influence,
its summation of w should be equal to one and for simplicity in this work we
assume each personality trait contributes the same weight.

Consequently, for ith agent the decay rates and their relationship with per-
sonality traits are shown below (here we list two examples):

security of employment (se):
B3¢ = (weselre,se X O + wi,selrn,se x TN]) x 0.1
where we se + Wy se = 1, f5¢ o< C, N and S5¢ € [0, 10]

friendship (fr):
ﬁifT = (W, fr|TE,fr ¥ WZED x 0.1
where wg s = 1, 8/" < E and /" € [0, 10]

8 Populations with Purpose

Reactive Actions As a simulation progresses, agents make their way through
the virtual world, attempting to adhere to their schedules and meet their needs.
In doing so, agents encounter many stimuli to which a reaction might be war-
ranted. Reactions play an important part in our implementation of roles. In [7],
Merton states that a person might switch roles as a response to those around
him. Relationships are a major impetus for reactive role switching. For exam-
ple, if two agents encounter each other and are linked by a relationship such as
friendship, they will switch to the friend role.

Since reactive actions must be performed soon after the stimulus is encoun-
tered, they are given a higher priority and generally result in the suspension of
whatever other action might be being performed, though this is not always the
case. For example, if an agent is fulfilling a high priority need, then they might
not react to the people and things around him.

The duration of responses can vary according to the activity and character-
istics of the agents. For example, an agent that is hurrying off to work or who
is introverted, may not linger as long on the street to greet a friend, as someone
strolling home from work or an extrovert would.

4.2 Action Filter

Once a set of actions and roles have been purposed, some may be eliminated
due to conventional practice constraints or an agent’s lack of necessary world
knowledge.

Conventional Practice Social science researchers believe that when an agent
plays a role in a given organizational (or social) setting, he must obey Con-
ventional Practices, meaning behavioral constraints and social conventions (e.g.
the businessman must obey the regulations that his company stipulates) [15,
14]. To be more specific, behavioral constraints are associated with the following
factors: responsibilities, rights, duties, prohibitions and possibilities [15]. Role
hierarchies include conventional roles (e.g. citizen, businessman, mailman) and
interpersonal roles (e.g. friends, lovers, enemies). Figure 2 shows part of the con-
ventional role hierarchy that we designed according to the taxonomy presented
in [9]. We have linked each conventional practice norm with an impact factor
(range [0, 1]) which reflects how strongly these norms are imposed on certain
roles. Having 1 as an impact factor would indicate that it is the most powerful
norm. For convenience, we have set all impact factors in our current simulations
to be high enough to indicate that every agent would obey not only the conven-
tional practice of current professions but also those inherited from upper levels of
the hierarchy. However, users could choose whatever impact factors they would
like according to the behaviors that they desire.

World Knowledge Some roles have physical or intellectual requirements and
these requirements may be difficult to obtain. Also some people are just naturally
more physically or intellectually gifted or have more talent in an area than

Populations with Purpose 9

Roles with Conventional

i Citizen
Practice and Impact Factor

Norm_1I
Impact Factor: (L9

7 N

Businessman Mailman Cleaner

Norm_2 Norm_3 Norm_4
Impact Factor: 0.8 Impact Facior: 0.8 Impact Factor: 0.8

Fig. 2. Role Hierarchy with Conventional Practice and Impact Factor

others. These factors can put limitations on what roles a person can take on [4].
We represent world knowledge as capabilities. Agent capabilities are the set of
actions that the agent can perform. Actions are categorized and placed in a
hierarchy to lessen the work of assigning capabilities to agents and also checking
to ensure that agents meet the capability conditions before performing an action.

5 Examples

To explore the effects of roles and more precisely role switching on virtual hu-
man behaviors, we have authored a typical day in a neighborhood. As with real
humans, each virtual human is assigned a set of roles. Figure 3 demonstrates
one agent taking on the role of businessman as he enters his office building (i.e.
location-based role switching). Two other agents react to seeing each other by
switching to friend roles (i.e. relationship-based role switching). Another agent
reacts to trash in the street by starting her cleaner role (i.e. behavior selection-
based role switching). These first examples of agents going to work demonstrate
how time, location, and behavior selection impact role switching. They focus
on role transitions caused by scheduled and reactive actions. The following of-
fice examples concentrate more on need-based actions. The top image of Figure

Time: B310

Busipessman

sIinSeFRan
Parent Friend

Cleaner Eriend

Fig. 3. Locations, relationships and behavior selection affect role switching.

10 Populations with Purpose

Colluborator
.« @ollaborator

Fig. 4. (a) The businessman’s creativity need prompts him to speak to a co-worker,
causing both to switch to collaborator roles and replenish their creativity reservoirs.
(b) The businessman’s role remains while eating to refill his hunger reservoir..

4a shows that the businessman’s creativity reservoir is approaching the critical
threshold (i.e. 2). When it reaches the threshold, he suspends his current action
and starts a conversation with his co-worker. This exchange of ideas causes the
creativity reservoirs of both men to refill.

Figure 4b shows that not all need-based actions cause role switching. The
hunger need is associated with the role of being human, because businessman
is a descendant of this role in the role hierarchy there is no need to switch.
The final scene depicts a late afternoon in our neighborhood. Figure 5a shows
a businesswoman becoming a parent when playing with her children. In Figure
5b, a man was headed home from work, but before he could reach his door, the
security of family need prompted him to switch his role and instead he go to the
grocery store.

Teme: 70102

Fig. 5. (a) A businesswoman switches her role to parent when she spends time with her
children. (b) A businessman is heading home after work, when his security of family
need preempts this action and switches his role to shopper.

Populations with Purpose 11
6 Discussion

In this paper, we have presented a framework for instilling virtual humans with
roles and role switching to produce more typical virtual worlds where people’s
behaviors are purposeful. The methods presented are based on social psychology
models and focus on approaches that facilitate authoring and modifications. As
people’s complicated lives rarely allow them to embody just a single role during
the course of a day, role switching is important to creating reasonable virtual
human behaviors. The framework presented can also be used to include abnormal
behaviors. For example, one could author a subversive role for a character that
includes reacting to pedestrians by robbing them or includes a strong need for
drugs and alcohol.

There are numerous possible extensions to this work. First, we could illus-
trate the dynamics that stem from status hierarchies by experimenting with the
concepts of power scale and social distance. We might also address situations
where multiple roles could be adopted. For example, a man being approached
by both his boss and his child. Here, social power scales and social distance might
result in different social threats which would cause one role to be favored over
the other. Finally, we could focus on agents that learn role definitions by observ-
ing the behaviors of others, enabling each agent to have customized definitions
based on their own experiences.

Acknowledgments

Partial support for this effort is gratefully acknowledged from the U.S. Army
SUBTLE MURI W911NF-07-1-0216. We also appreciate donations from Au-
todesk.

References

1. Webster’s College Dictionary. Random House (1991)

2. Allbeck, J.M.: CAROSA: A tool for authoring NPCs. Motion in Games pp. 182-193
(2010)

3. Barker, R.G.: Ecological Psychology: Concepts and methods for studying the en-
vironment of human behavior. Stanford University Press (1968)

4. Biddle, B.J.: Role Theory: Concepts and Research. Krieger Pub Co (1979)

5. Durupinar, F., Pelechano, N., Allbeck, J.M., Gudukbay, U., Badler, N.I.: How
the OCEAN personality model affects the perception of crowds. IEEE Computer
Graphics and Applications 31(3), 22-31 (2011)

6. Ellenson, A.: Human Relations. Prentice Hall College Div; 2 edition (1982)

7. Fan, J., Barker, K., Porter, B., Clark, P.: Representing roles and purpose. In:
International Conference on Knowledge Capture (K-CAP). pp. 38-43. ACM (2001)

8. Hayes-Roth, B., Brownston, L., van Gent, R.: Readings in Agents, chap. Multi-
agent Collaboration in Directed Improvisation, pp. 141-147. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA (1998)

12

10.

11.

12.

13.

14.
15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.
26.

27.

Populations with Purpose

Hewitt, J.P.: Self and society: A symbolic interactionist social psychology. Oxford,
England (1976)

Ickes, W., Knowles, E.: Personality, Roles, and Social Behavior. Springer; 1 edition
(1982)

Lee, K.H., Choi, M.G., Lee, J.: Motion patches: Building blocks for virtual environ-
ments annotated with motion data. In: Proceedings of the 2006 ACM SIGGRAPH
Conference. pp. 898-906. ACM, New York, NY, USA (2006)

Maslow, A.: A theory of human motivation. Psychological Review 50, 370-396
(1943)

McGinnies, E.: Perspectives on Social Behavior. Gardner Press, Inc. (1994)
Merton, R.K.: Social Theory and Social Structure. Free Press (1998)

Moulin, B.: The social dimension of interactions in multiagent systems. Agents
and Multi-agent Systems, Formalisms, Methodologies, and Applications 1441/1998
(1998)

Musse, S.R., Thalmann, D.: A model of human crowd behavior: Group inter-
relationship and collision detection analysis. In: Workshop Computer Animation
and Simulation of Eurographics. pp. 39-52 (1997)

Narain, R., Golas, A., Curtis, S., Lin, M.C.: Aggregate dynamics for dense crowd
simulation. In: Proceedings of the 2009 ACM SIGGRAPH Asia Conference. pp.
122:1-122:8. ACM, New York, NY, USA (2009)

Ondfej, J., Pettré, J., Olivier, A.H., Donikian, S.: A synthetic-vision based steering
approach for crowd simulation. In: Proceedings of the 2010 ACM SIGGRAPH 2010
Conference. pp. 123:1-123:9. ACM, New York, NY, USA (2010)

Pelechano, N., Allbeck, J.M., Badler, N.I.: Controlling individual agents
in high-density crowd simulation. In: Proceedings of the 2007 ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation. pp. 99-108. Euro-
graphics Association (2007)

Pelechano, N., O’Brien, K., Silverman, B., Badler, N.I.: Crowd simulation incorpo-
rating agent psychological models, roles and communication. In: First International
Workshop on Crowd Simulation. pp. 21-30 (2005)

Shao, W., Terzopoulos, D.: Autonomous pedestrians. In: Proceedings of the 2005
ACM SIGGRAPH/Eurographics Symposium on Computer Animation. pp. 19-28.
ACM, New York, NY, USA (2005)

Stocker, C., Sun, L., Huang, P., Qin, W., Allbeck, J., Badler, N.: Smart events and
primed agents. Intelligent Virtual Agents 6356, 15-27 (2010)

Sung, M., Gleicher, M., Chenney, S.: Scalable behaviors for crowd simulation. Com-
puter Graphics Forum 23(3), 519-528 (2004)

Wiggins, J.: The Five-Factor Model of Personality: Theoretical Perspectives. The
Guilford Press, New York (1996)

Wright, W.: The Sims (2000)

Yersin, B., Maim, J., Pettré, J., Thalmann, D.: Crowd patches: Populating large-
scale virtual environments for real-time applications. In: Proceedings of the 2009
Symposium on Interactive 3D Graphics and Games. pp. 207-214. ACM, New York,
NY, USA (2009)

Yu, Q., Terzopoulos, D.: A decision network framework for the behav-
ioral animation of virtual humans. In: Proceedings of the 2007 ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation. pp. 119-128. Euro-
graphics Association (2007)

ADAPT: The Agent Development and Prototyping Testbed

Alexander Shoulson™ Nathan Marshak®

Mubbasir Kapadia® Norman I. Badler®

University of Pennsylvania, Philadelphia, PA, USA

Figure 1: Demonstrating the capabilities of ADAPT. Visualizing multiple choreographers that blend to produce a pose for the display model;
an agent reacting to the impact force of a ball; a crowd of 100 agents resolving a bottleneck; three characters engaged in a conversation.

Abstract

We present ADAPT, a flexible platform for designing and author-
ing functional, purposeful human characters in a rich virtual envi-
ronment. Our framework incorporates character animation, nav-
igation, and behavior with modular interchangeable components
to produce narrative scenes. Our animation system provides lo-
comotion, reaching, gaze tracking, gesturing, sitting, and reactions
to external physical forces, and can easily be extended with more
functionality due to a decoupled, modular structure. Additionally,
our navigation component allows characters to maneuver through
a complex environment with predictive steering for dynamic obsta-
cle avoidance. Finally, our behavior framework allows a user to
fully leverage a character’s animation and navigation capabilities
when authoring both individual decision-making and complex in-
teractions between actors using a centralized, event-driven model.

CR Categories: 1.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation

Keywords: Virtual Humans, Character Animation, Behavior Au-
thoring, Crowd Simulation

1 Introduction

Animating interacting virtual humans in real-time is a complex un-
dertaking, requiring the solution to numerous tightly coupled prob-

*e-mail:ashoulson @ gmail.com
fe-mail:nmarshak @seas.upenn.edu
fe-mail:mubbasir.kapadia@gmail.com
Se-mail:badler @seas.upenn.edu

Copyright © 2013 by the Association for Computing Machinery, Inc.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for commercial advantage and that copies bear this notice and the full citation on the
first page. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on
servers, or to redistribute to lists, requires prior specific permission and/or a fee.
Request permissions from Permissions Dept, ACM Inc., fax +1 (212) 869-0481 or e-mail
permissions@acm.org.

13D 2013, Orlando, FL, March 21 — 23, 2013.

© 2013 ACM 978-1-4503-1956-0/13/0003 $15.00

lems such as steering, path-finding, full-body character animation
(e.g. locomotion, gaze tracking, and reaching), and behavior au-
thoring. This complexity is greatly amplified as we increase the
number and degree of sophistication of characters in the environ-
ment. Numerous solutions for character animation, navigation, and
behavior design exist, but these solutions are often tailored to spe-
cific applications, making integration between systems arduous. In-
tegrating multiple character control architectures requires a deep
understanding of each controller’s design so that they may commu-
nicate with one another; otherwise character controllers will con-
flict at overlapping parts of the body and produce visual artifacts by
naively overwriting one another. Directly modifying arbitrary char-
acter controllers to cooperate with one another and respond to exter-
nal behavior commands can be costly and time-consuming. Mono-
lithic, feature-rich character animation systems do not commonly
support modular access to only a subset of their capabilities, while
simpler systems lack control fidelity. Realistically, no sub-task of
character control has a “perfect” solution. An ideal character ani-
mation system would allow a designer to choose between preferable
techniques for producing a particular action or animation, lever-
aging the wealth of established systems already produced by the
character animation research community and interfacing with ro-
bust frameworks for behavior and navigation.

We present a modular system that allows for the seamless integra-
tion of multiple character animation controllers on the same model,
without requiring any controller to drastically change or accom-
modate any other. Rather than requiring a tightly-coupled set of
character controllers, ADAPT uses a system for blending arbitrary
poses in a user-authorable dataflow pipeline. Our system couples
these animation controllers with an interface for path-finding and
steering, as well as a comprehensive behavior authoring structure
for authoring both individual decision-making and complex inter-
actions between groups of characters. Our platform generalizes to
allow the addition of new character controllers and behavior rou-
tines with minimal integration effort. Since controllers do not need
to be fundamentally redesigned to work with one another, we avoid
the combinatorial effect of having to modify each pre-existing con-
troller to adjust for the change. Our system for character control
contributes to our core goal of providing a platform for experi-
mentation in character animation, navigation, and behavior author-
ing. We allow researchers to rapidly iterate on character controller
designs with visual feedback, compare their results with other es-

tablished systems on the same model, and use features from other
packages to provide the functionality they lack without the need to
deeply integrate or reinvent known techniques.

2 Related Work

There exists a wealth of research [Pelechano et al. 2008] in virtual
human simulation that separately addresses the problems of char-
acter animation, steering and path-finding, and behavior authoring.

Character Animation. Data-driven approaches [Kovar et al. 2002]
use motion-capture data to animate a virtual character. Motion
data can be manipulated by warping [Witkin and Popovic 1995]
or blending [Menardais et al. 2004] to enforce parametric con-
straints on a recorded action. Interactive control of virtual char-
acters can be achieved by searching through motion clip samples
for desired motion as an unsupervised process [Lee et al. 2002], or
by extracting descriptive parameters from motion data [Johansen
2009]. Procedural methods are used to solve specific tasks such as
reaching, and can leverage empirical data [Liu and Badler 2003],
example motions [Feng et al. 2012b], or hierarchical inverse kine-
matics [Baerlocher and Boulic 2004] for more natural movement.
Physically-based approaches [Faloutsos 2002; Yin et al. 2007] de-
rive controllers to simulate character movement in a dynamic en-
vironment. We refer to Pettré et. al. [2008] for a more extensive
summary of work in these areas.

Steering and Path-finding. For navigation, the environment itself
is often described and annotated as a reduction of the displayed
geometry to be used in path planning. Probabilistic roadmaps su-
perimpose a stochastic connectivity structure between nodes placed
in the maneuverable space [Kavraki et al. 1996]. Navigation
meshes [Kallmann 2010] provide a triangulated surface upon which
agents can freely maneuver. Steering techniques use reactive be-
haviors [Reynolds 1999] or social force models [Helbing and Mol-
nar 1995] to perform goal-directed collision avoidance in dynamic
environments. Predictive approaches [Paris et al. 2007; van den
Berg et al. 2008; Kapadia et al. 2009; Singh et al. 2011a] enable
an agent to avoid others by anticipating their movements. Re-
cast [Mononen 2009] provides an open-source solution to gener-
ating navigation meshes from arbitrary world geometry by voxeliz-
ing the space, and the associated Detour library provides path plan-
ning and predictive steering on the produced mesh. Pelechano et.
al. [2008] provide a detailed review of additional work in this field.

Behavior Authoring. Animating behaviors in virtual agents has
been addressed using multiple diverse approaches, particularly with
respect to how behaviors are designed and animated. Early work
focuses on imbuing characters with distinct, recognizable person-
alities using goals and priorities [Loyall 1997] along with scripted
actions [Perlin and Goldberg 1996]. Our system makes use of pa-
rameterized behavior trees [Shoulson et al. 2011] to coordinate in-
teractions between multiple characters. The problem of managing a
character’s behavior can be represented with decision networks [Yu
and Terzopoulos 2007], cognitive models [Fleischman and Roy
2007], and goal-oriented action planning [Young and Laird 2005;
Kapadia et al. 2011]. Very simple agents can also be simulated on
a massive scale using GPU processing [Erra et al. 2010].

Multi-Solution Platforms. End-to-end commercial solu-
tions [Massive Software Inc. 2010; Autodesk, Inc. 2012] combine
multiple diverse character control modules to accomplish simul-
taneous tasks on the same character, incorporting navigation, be-
havior, and/or robust character animation. SteerSuite [Singh et al.
2009] is an open-source platform for developing and evaluating
steering algorithms. SmartBody [Shapiro 2011] is an open-source
system that combines steering, locomotion, gaze tracking, and

10

reaching. These tasks are accomplished with 15 controllers work-
ing in unison to share control of parts of the body. SmartBody’s
controllers are hierarchically managed [Kallmann and Marsella
2005] where multiple animations, such as gestures, are displayed on
a virtual character using a scheduler that divides actions into phases
and blends those phases by interpolation. The controllers must ei-
ther directly communicate and coordinate, or fix cases where their
controlled regions of the body overlap and overwrite one another,
making the addition of a new controller a process that affects sev-
eral other software components. SmartBody also provides a naviga-
tion system with dynamic obstacle avoidance. Our platform shares
some qualities with SmartBody, but also differs in several funda-
mental ways. While we do provide a number of character con-
trollers for animating a virtual human, our work focuses more on
enabling high-level behavioral control of multiple interacting char-
acters, the modularity of these character controllers, and the ease
with which a user can introduce a new animation repertoire to the
system without disturbing the other controllers already in place.

3 Framework

Multi-Character Contfly]
Parameterized

Behavior 2] [

Trees 1]

Navmesh and Steering Animation Coordinator

Gaze Tracking

Choreographers

Figure 2: Overview of ADAPT, illustrating the structure for con-
trolling an individual character and all of the characters in an envi-
ronment. Every character has a core interface for behavior, naviga-
tion, and animation, each of which connects to more specific mod-
ular components. Top-level narrative control communicates with
each character through the behavior interface.

ADAPT operates at multiple layers with interchangeable,
lightweight components, and we focus on minimizing the amount
of communication and interdependency between modules (Fig-
ure 2). The animation system performs control tasks such as loco-
motion, gaze tracking, and reaching as independent modules, called
choreographers, that can share parts of the same character’s body
without explicitly communicating or negotiating with one another.
These modules are managed by a coordinator, which acts as a cen-

tral point of contact for manipulating the virtual character’s pose in
real-time. The navigation system performs path-finding with pre-
dictive steering and we provide a common interface to allow users
to interchange the underlying navigation library without affecting
the functionality of the rest of the framework. The behavior level
is split into two tiers. Individual behaviors are attached to each
character and manipulate that character using the behavior inter-
face, while a centralized control structure orchestrates the behavior
of multiple interacting characters in real-time. The ultimate product
of our system is a pose for each character at an appropriate position
in the environment, produced by the animation coordinator and ap-
plied to a rendered virtual character in the scene each frame.

3.1 Full-Body Character Control

Controlling a fully-articulated character is traditionally accom-
plished using a series of interwoven subcomponents responsible
for various parts of the body. Without prior knowledge of other
systems, a designer creating a character controller will generally
do so with the assumption that no other systems are acting on the
rigged model at the same time. If a controller sets the orientation
or position of a character’s joint, it does so expecting no other con-
troller to overwrite that orientation or position in the current frame.
If two controllers conflict and overwrite one another, the constant
changes cause visual artifacts such as jitter as the character rapidly
shifts between the two settings for its joints. Controllers can be
made to share control of a single body either by negotiating with
one another, or by dividing the body into sections and controlling
those sections alone. However, this requires that the controllers be
specifically designed to coordinate, which requires additional effort
on either the designer or the user of the control system. The addi-
tion of new functionality also becomes more difficult as all of the
previous body controllers must be modified to communicate with
any new components and share control of the body’s joints.

To address this issue, we divide the problem of character anima-
tion into a series of isolated, modular components called choreog-
raphers attached to each character. Each choreographer operates
on a shadow, which is an invisible clone of the character skele-
ton, and has unmitigated control to manipulate the skeletal joints of
its shadow. Each frame, a choreographer produces an output pose
consisting of a snapshot of the position and orientation of each of
the joints in its private shadow. A coordinator receives the shadow
poses from each choreographer and performs a weighted blend to
produce a final pose that is applied to the display model for that
frame. Since each choreographer has its own model to manipulate
without interruption, choreographers do not need to communicate
with one another in order to share control of the body or prevent
overwriting one another. This allows a single structure, the coordi-
nator, to manage the indirect interactions between choreographers
using a simple, straightforward, and highly authorable process cen-
tered around blending the shadows produced by each choreogra-
pher. This system is discussed in more detail in Section 4.

3.2 Steering and Path-finding

We use a navigation mesh approach for steering and path-finding
with dynamic obstacle avoidance. Each display model is controlled
by a point-mass system, which sets the root positions (usually the
hips) of the display model and each shadow every frame. We use a
common interface for navigation with basic commands such as set-
ting a goal position in the world. Character choreographers do not
directly communicate with the navigation layer. Instead, choreogra-
phers are made aware of the position and velocity of the character’s
root, and will react to that movement on a frame-by-frame basis.
A character’s orientation can follow several different rules, such as

11

facing forward while walking, or facing in an arbitrary direction,
and we handle this functionality outside of the navigation system
itself. ADAPT supports both the Unity3D built-in navigation sys-
tem and the Recast/Detour library [Mononen 2009] for path-finding
and predictive goal-directed collision avoidance, and users can eas-
ily experiment with alternate solutions, such as navigation graphs.

3.3 Behavior

ADAPT is designed to accommodate varying degrees of behavior
control for its virtual characters by providing a diverse set of chore-
ographers and navigation capabilities. Each character has a capa-
bility interface with commands like ReachFor (), GoTo (), and
GazeAt () that take straightforward parameters like positions in
space and send messages to that character’s navigation and anima-
tion components. To invoke these capabilities, we use Parameter-
ized Behavior Trees (PBTs) [Shoulson et al. 2011], which present a
method for authoring character behaviors that emphasizes simplic-
ity without sacrificing expressiveness. Having a single, flat inter-
face for a character’s action repertoire simplifies the task of behav-
ior authoring, with well-described and defined tasks that a charac-
ter can perform. One advantage of the PBT formalism is that they
accommodate authoring behavior for multiple actors in one central-
ized structure. For example, a conversation between two characters
can be designed in a single data structure that dispatches commands
to both characters to take turns playing sounds or gestural anima-
tions. For very specific coordination of characters, this approach
can be preferable over traditional behavior models where characters
are authored in isolation and interactions between characters are de-
signed in terms of stimuli and responses to triggers. ADAPT also
generalizes across traditional or experimental new ways of model-
ing behavior to cover cases where PBTs are not the most appro-
priate. The behavior system is discussed in more detail in section
5.

4 Shadows in Full-Body Character Animation

Model rendering systems describe a virtual human as a skinned
mesh with a hierarchical skeletal structure underneath. The move-
ment of the body is determined by altering the position and ori-
entation of each joint in the skeleton “rig”, which in turn affects
the position and orientation of that joint’s children in the hierarchy.
General character controllers are systems designed to manipulate
the character by setting the positions and orientations of that char-
acter’s joints, either via animations or procedurally with physical
models or inverse kinematics. We address the problem of coordi-
nation between these controllers by allocating each character con-
troller its own private character model, a replica of the skeleton or a
subset of the skeleton of the character being controlled. Our modu-
lar controllers, called choreographers, act exactly the same way as
traditional character controllers, but do so on private copies of the
actual rendered character model. These skeleton clones (shadows),
match the skeletal hierarchy, bone lengths, and initial orientations
of the final rendered character (display model), but have no visual
component in the scene. This is illustrated and described in fig-
ure 3. The general process of our character animation system has
two interleaving steps. First, each choreographer manipulates its
personal shadow and outputs a snapshot (called a shadow pose) de-
scribing the position and orientation of that shadow’s joints at that
time step. Then, we use a centralized controller to blend the shadow
pose snapshots into a final pose for the rendered character. For clar-
ity, note that “shadow” refers to the invisible articulated skeleton
allocated to each choreographer to manipulate, while a “shadow
pose” is a serialized snapshot containing the joint positions and ori-
entations for a shadow at a particular point in time.

/!

Locomotion

\

Gesture

N

70% Gesture
30% Arm Swing

Reaching

«~

100% Reaching

100% Leg Animation

Figure 3: Blending multiple character shadows to produce a fi-
nal output skeleton pose. As an example, we combine the pose of
the locomotion choreographer (green, full-body) during a walk cy-
cle with the reaching choreographer (red, upper-body) extending
the left arm towards a point above the character’s head, and the
gesture choreographer (blue, upper-body) playing a waving anima-
tion. The generated poses are projected, either wholly or partially,
on different sections of the displayed body during any particular
frame. The partial blend is represented with a mix of colors in the
RGB space.

4.1 Choreographers

The shadow pose of a character at time ¢ is given by P; € R** 11
where P{ where is the configuration of the j'" joint at time t. A
choreographer is a function C'(P;) — P;+1 which produces the
next pose by changing the configuration of the shadow joints for
that time step. Using these definitions, we define two classes of
choreographers:

Generators. Generating choreographers produce their own
shadow pose each frame, requiring no external pose data to do so.
Each frame, the input shadow pose P; for a generator C'is the pose
P._1 generated by that same choreographer in the previous frame.
For example, a sitting choreographer requires no external input or
data from other choreographers in order to play the animations for
a character sitting and standing, and so its shadow’s pose is left
untouched between frames. This is the default configuration for a
choreographer.

Transformers. Transforming choreographers expect an input
shadow pose, to which they apply an offset each frame. Each
frame, the input shadow pose P to a transformer C' is an external
shadow pose P, ; from another choreographer C”, computed for
that frame. The coordinator sets its shadow’s pose to Py, ; and ap-
plies an offset to the given pose during its execution, to produces a
new pose P;1 1. For example, before executing, the reach choreog-
rapher’s shadow is set to the pose of a previously-updated choreog-
rapher’s shadow (say, the locomotion choreographer with swinging
arms and torso movement). The reach choreographer then solves
the reach position from the base of the arm based on the torso posi-
tion it was given, and overwrites its shadow’s arm and wrist joints to
produce a new pose. Without an input shadow, the reach choreogra-
pher would not be aware of other choreographers moving the torso,
and would not be able to accommodate different torso positions
when solving a reaching problem. Note that this is accomplished

12

without the choreographers directly communicating or even being
fully aware of one another. A transforming choreographer can re-
ceive an input pose, or blend of input poses, from any choreogra-
pher that has already been updated in the current frame.

4.2 The Coordinator

During runtime, our system produces a pose for the display model
each frame, given the character choreographers available. This is
a task overseen by the coordinator. The coordinator is responsi-
ble for maintaining each choreographer, organizing the sequence
in which each choreographer performs its computation each frame,
and reconciling the shadow poses that each choreographer produces
by sending them between choreographers and/or blending them to-
gether. The coordinator’s final product each frame is a sequence of
weighted blends of each active choreographer’s shadow pose. We
compute this product using the pose dataflow graph, which dictates
the order of updates and the flow of shadow poses between chore-
ographers. Generators pass data to transformers, which can then
pass their data to other transformers, until a final shadow pose is
produced, blended with others, and applied to the display model.

Blending is accomplished at certain points in the pose dataflow
graph denoted by blend nodes, which take two or more input shad-
ows and produce a weighted blend of their transforms. If the
weights sum to a value greater than 1, they are automatically nor-
malized.

B{(P;,w;) :i=1.n)}) — P’ (1)
Designing a dataflow graph is a straightforward process of dictating
which nodes pass their output to which other nodes in the pipeline,
and the graph can be modified with minimal effort. The dataflow
graph for a character is specified by the user during the design and
authoring process, connecting choreographers with blend nodes and
one another. The weights involved in blending are bound to edges
in the graph and then controlled at runtime by commands from the
behavior system. The order of the pose dataflow graph roughly dic-
tates the priority of choreographers over one another. Choreogra-
phers closer to the final output node in the graph have the authority
to overwrite poses produced earlier in the graph, unless bypassed by
the blending system. Changing the order of nodes in the dataflow
graph will affect these priorites, and so we generally design the
graph so that choreographers controlling more parts of the body
precede those controlling fewer.

Blended poses are calculated on a per-joint basis using each joint’s
position vector and orientation quaternion. The weighted average
we produce accommodates cases where parts of a shadow’s skele-
ton have been pruned or filtered from the blend (such as an upper-
body shadow missing the character’s legs). The blend function pro-
duces a new shadow pose that can be passed to other transform-
ers, or be applied to the display model’s skeleton. Taking a linear
weighted average of vectors is a solved problem, but such is not the
case with the problem of quickly averaging n > 2 weighted quater-
nions. We discuss the techniques with which we experimented, and
the final calculation method we decided to use in Appendix A. In
addition, Feng et. al. [2012a] provide a detailed review of more so-
phisticated motion blending techniques than our linear approach.

Figure 4 illustrates a sample dataflow graph, incorporating generat-
ing and transmuting choreographers, as well as four blend nodes.
Three generating choreographers (blue) begin the pipeline. The
gesture choreographer affects only the upper body, with no skeleton
information for the lower body. Increasing the value of the gesture
weight wy places this choreographer in control of the torso, head,
and arms. The sitting and locomotion choreographers can affect
the entire body, and the user controls them by raising and lowering

| Gesture {"]Wig

T [
| Locomotion Q]mg

Gaze Tracking mjvi |—> Reaching
1-WZ"I_I'I

l —r:ivl: r Physics I’hi
1-w,r 1T-w, l
Display Model

Figure 4: A sample dataflow graph we designed for evaluating ADAPT. Generating choreographers appear in blue, transmuting choreogra-
phers appear in green, and blend nodes appear as red crosses. The final display model node is highlighted in orange. The sitting weight w,
gesture weight wg, gaze weight w., reach weight w,., and physical reaction weight wy, are all values between some very small positive € and

1—e

the sitting weight w,. If wy is set to 1 — ¢, the upper body will
be overridden by the gesture choreographer, but since the gesture
choreographer’s shadow has no legs, the lower body will still be
controlled by either the sitting or locomotion choreographer as de-
termined by the value of ws. The first red blend node combines
the three produced poses and sends the weighted average pose to
the gaze tracker. The gaze tracking choreographer receives an input
shadow pose, and applies an offset to the upper body to achieve a
desired gaze target and produce a new shadow pose. The second
blend node can bypass the gaze tracker if the gaze weight w. is set
to a low value (¢). The reach and physical reaction choreographers
receive input and can be bypassed in a similar way. The final re-
sult is sent and applied to joints of the display model, and rendered
on screen. The dataflow graph accommodates the addition of new
choreographers in a generalizable fashion, allowing a user to insert
new nodes and blend between the poses they create. Rather than
designing animation modules to explicitly negotiate, the coordina-
tor seamlessly fades control of parts of the body between arbitrary
choreographers in an authorable pipeline.

4.3 Using Choreographers and the Coordinator

The dataflow graph, once designed, does not need to be changed
during runtime or to accommodate additional characters. Instead,
the coordinator provides a simple interface comprising messages
and exposed blend weights for character animation. Messages are
commands (e.g., SitDown ()) relayed by the coordinator to its
choreographers, making the coordinator a single point of contact
for character control, as illustrated in Figure 2. In addition to mes-
sages, the weights used for blending the choreographers at each
blend node in the dataflow graph are exposed, allowing external
systems to dictate which choreographer is active and in control of
the body (or a segment of the body) at a given point of time. For ex-
ample, in Figure 4, lowering w, will transfer control of the body to
the locomotion choreographer, while raising its value will give in-
fluence to the sitting choreographer. Both choreographers are still
manipulating their shadows each update, but only one choreogra-
pher’s shadow pose is displayed on the body at a given time, with
smooth fading transitions between the two where necessary.

For gesturing, we raise wy, which takes control of the arms and
torso away from both the locomotion and sitting choreographers
and stops the walking animation’s arm swing. Given sole control,
the gesture choreographer plays an animation on the upper body,
and then is faded back out to allow the walking arm-swing to re-
sume. Since the gesture choreographer’s shadow skeleton has no
leg bones, it never overrides the sitting or locomotion choreogra-
pher, so the lower body will still be sitting or walking while the
upper body gesture plays. All weight changes are smoothed over
several frames to prevent jitter and transition artifacts. Note that

13

the controllers are never in direct communication to negotiate this
exchange of body control. The division of roles between the co-
ordinator and choreographers centralizes character control to a sin-
gle externally-facing character interface, while leaving the details
of character animation distributed across modular components are
isolated from one another and can be easily updated or replaced.

Shadow Pose Post-Processing. Since shadow poses are serializa-
tions of a character’s joints, additional nodes can be added to the
pose dataflow graph to manipulate shadows as they are transferred
between choreographer nodes or blend nodes. For instance, special
filter nodes can be added to constrain the body position of a shadow
pose, preventing joints from reaching beyond a comfortable range
by clamping angles, or preventing self-collisions by using bound-
ing volumes. Nodes can be designed to broadcast messages based
on a shadow’s pose, such as notifying the behavior system when a
shadow is in an unbalanced position, or has extended its reach to
a certain distance. The interface for adding new kinds of nodes to
a pose dataflow graph is highly extensible. This affords the user
another opportunity to quickly add functionality to a coordinator
without directly modifying any choreographers.

4.4 Example Choreographers

ADAPT provides a diverse array of character choreographers for
animating a fully articulated, expressive virtual character. Some
of these choreographers were developed specifically for ADAPT,
while others were off-the-shelf solutions used to highlight the ease
of integration with the shadow framework. ADAPT is designed to
“trick” a well-behaved character control system into operating on a
dedicated shadow model rather than the display model of the char-
acter, and so the process of modifying an off-the-shelf character
control library to a character choreographer often requires modify-
ing only a few lines of code. Since shadows replicate the structure
and functionality of a regular character model, no additional con-
siderations are required once the choreographer has been retargeted
to the shadow. Note that the choreographers presented here are
largely baseline examples. The focus of ADAPT is to allow a user
to add additional choreographers, experiment with new techniques,
and easily exchange generic choreographers with more specialized
alternatives.

Locomotion. ADAPT uses a semi-procedural motion-blending lo-
comotion system for walking and running released as a C# library
with the Unity3D engine [Johansen 2009]. The system takes in an-
imation data, analyzes those animations, and procedurally blends
them according to the velocity and orientation of the virtual char-
acter. We produced satisfactory results on our test model using five
motion capture animation clips. Additionally, the user can anno-
tate the character model to indicate the character’s legs and feet,

which allows the locomotion library to use inverse kinematics for
foot placement on uneven surfaces. We extended this library to
work with the ADAPT shadow system, with some minor improve-
ments.

Gaze Tracking. We use a simple IK-based system for attention
control. The user defines a subset of the upper body joint hierarchy
which is controlled by the gaze tracker, and can additionally spec-
ify joint rotation constraints and delayed reaction speeds for more
realistic results. These parameters can be defined as functions of
the characters velocity or pose, to produce more varied results. For
instance, a running character may not be permitted to rotate its torso
as far as a character standing still. Integrating the gaze tracker into
ADAPT required minimal changes to the existing library.

Upper Body Gesture Animations. We dedicate a shadow with
just the upper body skeleton to playing animations such as hand
gestures. We can play motion clips on various parts of the body to
blend animations with other procedural components.

Sitting and Standing. The sitting choreographer maintains a sim-
ple state machine for whether the character is sitting and standing,
and plays the appropriate transition animations when it receives a
command to change state. This choreographer acts as an alterna-
tive to the locomotion choreographer when operating on the lower
body, but can be smoothly overridden by choreographers acting on
the upper body, such as the gaze tracker.

Reaching. We implemented a simple reaching control system
based on Cyclic Coordinate Descent (CCD). We extended the algo-
rithm to dampen the maximum angular velocity per frame, include
rotational constraints on the joints, and apply relaxation forces in
the iteration step. During each iteration of CCD (100 per frame),
we clamp the rotation angles to lie within the maximum extension
range, and gently push the joints back towards a desired “comfort-
able” angle for the character’s physiology. These limitations and
relaxation forces are based on an empirical model for reach con-
trol based on human muscle strength [Slonneger et al. 2011]. This
produces more realistic reach poses than naive CCD, and requires
no input data animations. The character can reach for an arbitrary
point in space, or will try to do so if the point is out of range.

Physical Reaction. By allocating an upper-body choreographer
with a simple ragdoll, we can display physical reactions to external
forces. Once an impact is detected, we apply the character’s last
pose to the shadow skeleton, and then release the ragdoll and allow
it to buckle in response to the applied force. By quickly fading in
and out of the reeling ragdoll, we can display a physically plausible
response and create the illusion of recovery without requiring any
springs or actuators on the ragdoll’s joints.

SmartBody Integration. To access its locomotion and procedural
reaching capabilities, we integrated the ICT SmartBody framework
into our platform, using SmartBody’s Unity interface and some
modifications. Since our model’s skeleton hierarchy differed from
that of the default SmartBody characters, sample animations had
to be retargeted to use on our model. Additionally, our animation
interface needed to interact with SmartBody using BML. Since our
coordinator is already designed to relay messages from the behavior
system, changing those messages to a BML format was a straight-
forward conversion. Overall, the SmartBody choreographer blends
naturally with other choreographers we have in the ADAPT frame-
work, though SmartBody has other features that we do not currently
exploit. This process demonstrates the efficacy of integrating other
available libraries and/or commercial solutions.

14

5 Behavior

The navigation and shadow-based character animation system pro-
vides a number of capability functions, including:

Commands
ReachFor (target)

Description

Activates the reaching choreogra-
pher, and reaches towards a posi-
tion.

Activates the gaze choreographer,
and gazes at a position.

Begins navigating the character to a
position.

Activates the gesture choreographer
for the duration of an animation.

GazeAt (target)

GoTo (target)

Gesture (name)

SitDown () Activates the sitting choreographer
and sits the character down.
StandUp () Stands the character up and then

disables the sitting choreographer.

Passing an empty target position will end that task, stopping the
gaze, reach, or navigation. The locomotion choreographer will au-
tomatically react to the character’s velocity, and move the legs and
arms to compensate if the character should be turning, walking,
side-stepping, backpedaling, or running. Note that only sitting and
navigating are mutually exclusive. All other commands can be per-
formed simultaneously without visual artifacts.

5.1 Adding a New Behavior Capability

Adding a new behavior capability with a motion component, such
as climbing or throwing an object, requires a choreographer capa-
ble of producing that motion. Choreographers can be designed to
perform animation tasks based on animation data, procedural tech-
niques, or physically-driven models. Since choreographers operate
on their own private copies of the character’s skeleton, they can
be designed in isolation and integrated into the system separately.
Once the choreographer is developed, the process of adding a new
behavior capability to take advantage of the choreographer requires
two steps. First, the choreographer must be authored into the pose
dataflow graph, either as a generating or transforming node, with
appropriate connections to blend nodes and other choreographers.
Next, the behavior interface can be extended with new functions
that either modify the blend weights relevant to the new choreog-
rapher, or pass messages to that choreographer by relaying them
through the coordinator. The sophistication of character choreogra-
phers varies, but the process of integrating a functioning choreog-
rapher into the behavior and animation pipeline for a character is
authorable and generalizable.

5.2 Multi-Character Interactions

Using this behavior repertoire, we can produce more sophisticated
actions as characters interact with one another and the environment.
Authoring complex behaviors requires an expressive and flexible
behavior authoring structure granting the behavior designer reason-
able control over the characters in the environment. To accomplish
this task, we use parameterized behavior trees (PBTs). PBTs are an
extension of the behavior tree formalism that allow behavior trees to
manage and transmit data within their hierarchical structure with-
out the use of a blackboard. A useful advantage of PBTs is the
fact that they can simultaneously control multiple characters in a
single reusable structure called an event. Events are pre-authored
behavior trees that sit uninitialized in a library until invoked at run-
time. When instantiated, an event takes one or more actors as pa-
rameters, and is temporarily granted exclusive control over those

characters’ actions. While in control, an event treats these charac-
ters as limbs of the same entity, dispatching commands for agents
to navigate towards and interact with one another. Once the event
ends, control is yielded to the characters’ own individual decision
processes, which can also be designed using PBTs or with some
other technique. Events are a convenient formalism to use for in-
teractions with a high degree of interchange and turn-taking, such
as conversations. A conversation event can be authored as a sim-
ple sequential and/or stochastic sequence of commands directing
agents to face one another and take turns playing gesture animations
or exchanging physical objects. ADAPT provides a fully-featured
scheduler for managing and updating both the personal behavior
trees belonging to each character and higher-level event behavior
trees encompassing multiple characters.

I Conversation(al : Actor, a2 : Actor, MeetingPoint : Position) I

Sequence (AND)

GoTo(MeetingPoint) Loop

GoTo(MeetingPoint) —

A

GazeAt(al)

Selector (OR)

Gesture(“G1”)] fGesture(“G2")

Gesture(“G1”)] |Gesture(“G2”)

Figure 5: A simple conversation PBT event controlling two charac-
ters, al and al, with one additional Meet ingPoint parameter.

Figure 5 illustrates a sample behavior tree event conducting two
characters through a conversation using our action repertoire. The
characters, al and a2, are passed as parameters to the tree, along
with the meeting position. Using our action interface, the tree di-
rects the two characters to approach one another at the specified
point, face each other, and alternatively play randomly selected ges-
ture animations. The gesturing phase lasts for an arbitrary duration
determined by the configuration of the loop node in the tree. After
the loop node terminates, the event ends, reporting success, and the
two characters return to their autonomous behaviors. Note that this
tree can be reused at any time for any two characters and any two
locations in the environment in which to stand. This framework
can be exploited to create highly sophisticated interactions involv-
ing crowds of agents, and its graphical, hierarchical nature makes
subtrees easier to describe and encapsulate.

6 Results

We demonstrate the features of ADAPT in isolation, as well as a
final scene showcasing animation, navigation, and behavior work-
ing together to produce a narrative sequence (Figure 1). Using
our system, we can create a character that can simultaneously
reach, gaze, walk, and play gesture animations, as well as activate
other functionality like sitting and physically reacting to external
forces. ADAPT characters can intelligently maneuver an environ-
ment avoiding both static obstacles and one another. These features
are used for authoring sequences like exchanging an object between
actors, wandering while talking on a phone, and multiple characters
holding a conversation.

15

Multi-Actor Simulation. The concluding narrative sequence
shown in the video is simulated using several reusable authored
events, which are activated using spatial and temporal triggers.
Events once active, can be successfully executed or interrupted by
other triggers due to dynamic events, or user input. This produces a
rich interactive simulation where virtual characters can be directed
with a high degree of fidelity, without sacrificing autonomy or bur-
dening the user with authoring complexity.

In the beginning, an event ensues where a character is given a phone
and converses while wandering through the scene, gazing at objects
of interest. The phone conversation event successfully completes
and the character hands back the phone. Spotting nearby friends
invokes a conversation, which is an extension of the event illustrated
in Figure 5. The conversation is interrupted when a ball is thrown at
one of the characters. The culprit flees from the scene of the crime,
triggering a chasing event where the group runs after the child. The
chase fails as the child is able to escape through a crossing crowd of
characters, which are participating in a group event to navigate to
the theater and find a free chair to sit. We illustrate some of the trees
used for this sequence in greater detail in a supplemental document.

Figure 6: Controlling a character in ADAPT and physically inter-
acting with the environment using the Kinect.

Adding a Kinect Choreographer. As an example of our system’s
extensibility, we created an additional choreographer to interface
with the Microsoft Kinect and control a character with gesture in-
put. To do so, we allocated a full-body choreographer to the in-
put of the Kinect, applying the captured skeleton from the Kinect’s
framework directly to the joints of the dedicated shadow. This is
demonstrated in Figure 6. Blending this choreographer with others
allowed us to expand the character’s agency in the world. When
the character stands idle, we give full upper and lower body control
to the Kinect input. When the user wishes to make the character
move, we blend the legs of the locomotion choreographer on top of
the Kinect input, displaying appropriate walking or running anima-
tions and foot placement while still giving the Kinect control of the
upper body. This is a feasible compromise for allowing a user to
retain correct leg animation when exploring a virtual environment
larger than the Kinect’s capture area. The process of interfacing
the Kinect skeleton input with a new choreographer and a blending
coordinator was very fast and straightforward.

Performance. ADAPT supports approximately 150 agents with
full fidelity at interactive frame rates. Figure 7 displays the