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Abstract

This paper presents a real-time animation system for fully-embodied virtual humans that satisfies accurate foot placement con-
straints for different human walking and running styles. Our method offers a fine balance between motion fidelity and character
control, and can efficiently animate over sixty agents in real time (25 FPS) and over a hundred characters at 13 FPS. Given a
point cloud of reachable support foot configurations extracted from the set of available animation clips, we compute the Delaunay
triangulation. At runtime, the triangulation is queried to obtain the simplex containing the next footstep, which is used to compute
the barycentric blending weights of the animation clips. Our method synthesizes animations to accurately follow footsteps, and
a simple IK solver adjusts small offsets, foot orientation, and handles uneven terrain. To incorporate root velocity fidelity, the
method is further extended to include the parametric space of root movement and combine it with footstep based interpolation. The
presented method is evaluated on a variety of test cases and error measurements are calculated to offer a quantitative analysis of the
results achieved.
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1. Introduction

Crowd simulation research has matured in recent years with
important applications in training, building design, psycholog-
ical studies, and video-games. All these applications benefit
from having fully-embodied virtual human characters animated
in real-time while accurately satisfying control objectives with-
out any noticeable artifacts.

Algorithms that generate center of mass (COM) trajecto-
ries [1, 2, 3, 4] lead to ambiguities when trying to superimpose
a fully articulated virtual human to follow them, thus produc-
ing foot-sliding artifacts when no suitable animation is found,
or when the root orientation and the displacement vector of the
animation do not match. Different animations can be blended
by tweaking some of the upper body joints [5] to minimize ar-
tifacts, at the expense of constant updates to account for the de-
coupling between the crowd simulation and the animation sys-
tem.

Footstep-based control systems [6, 7] output a list of space-
time foot-plants to define a fine-grained trajectory with fewer
ambiguities that can solve more complex scenarios (e.g., com-
plex manipulation tasks requiring careful control of the lower
body, or collaborative tasks, such as careful sidestepping to
make way for another agent in a narrow corridor). To realis-
tically represent such simulations, we need a method to synthe-
size animations that accurately follow the output trajectory, i.e.,
accurate placement of feet with space-time constraints. This
problem is traditionally known as the stepping stone problem.

Moreover, the output trajectory can be modified by external per-
turbations such as uneven terrain.

We present an online animation synthesis technique for fully
embodied virtual humans that satisfies foot placement constraints
for a large variety of locomotion speeds and styles (see Fig.
1). Given a database of motion clips, we precompute multiple
parametric spaces based on the motion of the root and the feet.
A root parametric space is used to compute a weight for each
available animation based on root velocity. Two foot paramet-
ric spaces are based on a Delaunay triangulation of the graph of
possible foot landing positions. For each foot parametric space,
blending weights are calculated as the barycentric coordinates
of the next footstep position for the triangle in the graph that
contains it. These weights are used for synthesizing animations
that accurately follow the footstep trajectory while respecting
the singularities of the different walking styles captured.

Blending weights calculated as barycentric coordinates are
used to reach the desired foot landing by interpolating between
several proximal animations, and IK is used to adjust the final
position of the support foot to correct for minor offsets, foot
step orientation and the angle of the underlying floor.

Since foot parametric space only considers final landing po-
sitions of the feet without taking into account root velocity, this
may lead to the selection of animations that satisfy position
constraints but introduce discontinuities in root velocity. To in-
corporate root velocity fidelity we present a method that can
integrate both foot positioning and root velocity fidelity. Our
method also allows the system to recover nicely when the input
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Figure 1: An autonomous virtual human navigating a challenging obstacle course (a), walking over a slope (b), exercising careful foot placement constraints
including side-stepping (c), speed variations (d), and stepping back (e). The system can handle multiple agents in real time (f).

foot trajectory contains steps that are not possible to perform
with the given set on animations (for example, due to extreme
distance between steps).

The presented method is evaluated on a variety of test cases
and error measurements are calculated to offer a quantitative
analysis of the results achieved. Our framework can efficiently
animate over sixty agents in real time (25 FPS) and over a hun-
dred characters at 13 FPS, without compromising motion fi-
delity or character control, and can be easily integrated into ex-
isting crowd simulation packages. We also provide the user
with control over the trade-off between footstep accuracy and
root velocity.

2. Related Work

Locomotion synthesis can be tackled from different points
of view depending on how the character is being controlled.
If a user controls the character with a 3rd person controller, it
is common to work on a root velocity basis, because the user
wants to move the character around in an agile way. In such
cases, like video-games, real-time response is critical and arti-
facts such as foot skating can be ignored. Optimization based
approaches [8] are able to synthesize animations that conform
to velocity and orientation constraints. However, they need a
very large database and their computational time does not al-
low many characters in real-time. Semi-procedural animation
systems [9] work with a small set of animations and use inverse
kinematics only over the legs to ensure ground contact and to
adapt the feet to possible slopes of the terrain, but they are un-
able to follow footstep trajectories.

Animation systems for autonomous agents must be com-
putationally efficient to animate a multitude of characters in
real-time, and need to follow different control trajectories, de-
pending on the controller used. Controllers that account for an-
imation constraints while computing control decisions such as
motion graphs [10, 11, 12, 13] or precomputed search trees [14]
can simply playback the animation sequence. These approaches
try to reach the goal by connecting series of motion[15], which
sometimes limits the movements of the agents. The main issues
with motion graphs are that they require a very large amount
of animation clips (over 400) and have a high computational
cost which makes them not suitable for large groups of agents
in real-time. Precomputed search trees can handle groups, but

work with a few animation clips and are unable to synthesize
new animations.

Approaches that ignore animation constraints produce cen-
ter of mass trajectories for the animation system to follow. Dif-
ferent models include social forces [2], rule-based approaches [1],
flow tiles [16], roadmaps [17], continuum dynamics [3], and
force models parametrized by psychological and geometrical
rules [4]. These techniques can easily simulate hundreds and
thousands of characters in real-time, but do not account for
locomotion constraints, thus producing artifacts such as foot-
sliding which require correction and simulation updates [5].

Considering the root velocity as the input parameter for
character control, numerous approaches can synthesize smooth,
versatile and more plausible locomotion animations [18, 9]. Some
approaches have also used the idea of selecting animations from
a Delaunay triangulation of all the available animation clips
[19, 20]. But all of these approaches are restricted to the root
for performing character control.

There has been a recent surge in approaches that produce
footstep trajectories for character control. They can be phys-
ically based but generated off-line [21], be generated online
from an input path computed by a path planner [6], or use sim-
plified control dynamics to produce bio-mechanically plausi-
ble footstep trajectories for crowds [7]. These approaches of-
ten show their animation results off-line using tools such as 3D
Max [22].

Footstep-driven animation systems [23] produce unnatural
results using procedural methods. The work in [24] uses a sta-
tistical dynamic model learned from motion capture data in ad-
dition to user-defined space-time constraints (such as footsteps)
to solve a trajectory optimization problem. In [25] random
samples of footsteps make a roadmap going from one point
to another which is used to find a minimum-cost sequence of
motions matching it and then retarget to the exact foot place-
ments. The work in [26, 27] performs a global optimization
over an extracted center of mass trajectory to maximize the
physical plausibility and perceived comfort of the motion, in
order to satisfy the footprint constraints. Recent solutions [6,
28, 29] adopt a greedy nearest-neighbor approach over larger
motion databases. To ensure spatial constraints, the character
is properly aligned with the footsteps and reinforced with in-
verse kinematics, while temporal constraints are satisfied us-
ing time warping. These techniques achieve highly accurate re-
sults in terms of foot positioning, but their computational cost
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makes them unsuitable for real-time animation of large groups
of agents.

Comparison to Prior Work. Our method produces visually
appealing results with foot placement constraints, using only a
handful of motion clips, and can seamlessly follow footstep-
based control trajectories while preserving the global appear-
ance of the motion. Compared to [9], we exploit the combi-
nation of multiple parameter spaces for footstep-precision con-
trol. This reduces the dimensionality of the problem, compared
to [29]. Unlike previous work in the literature, our method can
synthesize animations for a large number of characters in real
time, following footstep trajectories for different walking styles
and even running motions with a small flying phase.

3. Framework Overview

Animating characters in real time animations has different
requirements depending on the application. In many applica-
tions, the user only wants to control the direction of movement
and speed of the root, but there are other situations where a
finer control of the foot positioning is required. For example,
the user may want to respect different walking gaits depending
on the terrain, to make the character step over stones to cross
a river, or walk through some space full of holes whilst avoid-
ing falling. For this purpose we have developed a framework to
animate virtual characters following footstep trajectories, while
still being able to follow trajectories based on the movement of
the COM when necessary.

Online locomotion systems [9] traditionally produce syn-
thesized motions that follow a COM trajectory, with procedural
corrections for uneven terrain. These methods can nicely fol-
low COM trajectories, but they lack control over the style of
walking and the kind of steps. For instance, we cannot control
whether in order to walk fast, the character will move with large
distances between steps or with a fast sequence of short steps.
This is the main issue we address in our work: to provide an
animation system that is able to accurately follow footstep tra-
jectories while meeting real-time constraints, and that can scale
to handle large groups of animated characters .

For this purpose, we introduce two parametric spaces based
on the position of each foot: Ω fL and Ω fR , and switch between
the two depending on the swing foot, as well as a parametric
space based on the root movement Ω fR . Our technique takes
into account both displacement (from Ω fL and Ω fR ) and speed
(from Ωr) to ensure the satisfaction of both spatial and temporal
constraints. Our system provides the user with the flexibility
to choose between different control granularities ranging from
exact foot positioning to exact root velocity trajectories. Fig. 2
shows our framework.

4. Footstep-based Locomotion

The main goal of the Footstep-based Locomotion Controller
is to accurately follow a footstep trajectory, i.e., to animate a
fully articulated virtual human to step over a series of foot-
plants with space and velocity constraints. The system must

meet real-time constraints for a group of characters, should be
robust enough to handle sparse motion clips, and needs to pro-
duce synthesized results that are void of artifacts such as foot
sliding and collisions.

4.1. Motion Clip Analysis

From a collection of cyclic motion clips1, we need to extract
individual footsteps. Each motion clip contains two steps, one
starting with the left foot on the floor, and one starting with
the right foot. A step is defined as the action where one foot
of the character starts to lift-off the ground, moves in the air
and finishes when it is again planted on the floor. We say that
a footstep corresponds to one foot when that foot is the one
performing the action previously described. The foot that stays
in contact with the floor for most of the duration of the footstep
is called the supporting foot, since it supports the weight of the
body. This applies even for running motions, where the support
foot goes into fly mode for a short phase of the footstep, but it is
still the one supporting the weight during most of the footstep.

During an offline analysis, each motion clip mi is annotated
with the following information: (1) vr

i : Root velocity vector. (2)
dL

i : Displacement vector of the left foot. (3) dR
i : Displacement

vector of the right foot.
Similar to [9], animations are analyzed in place, that is, we

ignore the original root forward displacement, but keep the ver-
tical and lateral deviations of the motion. This allows an auto-
matic detection of foot events, such as lifting, landing or plant-
ing, from which we can deduce the displacement vector of each
foot. For example, the displacement vector of the left foot dL

i
is obtained by subtracting the right foot position at the instant
of time when the left foot lands, from the right foot position
at the instant of time when the left foot is lifting off. These
displacements will be later used to move the whole character,
eliminating any foot sliding. By adding dL

i to dR
i and knowing

the time duration of the clip, we can calculate the average root
velocity vector vr

i of the clip mi.
This average velocity is used to classify and identify an-

imations, by providing an example point which is the input
for the polar gradient band interpolator ( where each example
point represents a velocity in a 2D parametric space). Gradi-
ent band interpolation specifies an influence function associ-
ated with each example, which creates gradient bands between
the example point and each of the other example points. These
influence functions are normalized to get the weight functions
associated with each example. However the standard gradient
band interpolation is not well suited for interpolation of exam-
ples based on velocities. The polar gradient band interpolation
method is based on reasoning that in order to get more desir-
able behavior for the weight functions of example points that
represent velocities, the space in which the interpolation takes
place should take on some of the properties of a polar coordi-
nate system. It allows for dealing with differences in direction

1Although cyclic animations are not strictly required by our method, they
help find smoother transitions between consecutive footsteps and are preferred
by most standard animation systems [9].
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Figure 2: Online selection of the blend weights to accurately follow a footstep trajectory. Ωr uses a gradient band polar based interpolator [9] to give a set of weights
w j, which are then used by the barycentric coordinates interpolator to tradeoff between footstep and COM accuracy.

and magnitude rather than differences in the Cartesian vector
coordinate components. For more details we refer the reader to
[9].

Each motion clip is then split into two animation steps AL
i

for the left foot and AR
i for the right foot. For each foot, we need

to calculate all the possible positions that can be reached based
on the set of animation steps available. Since the same analysis
is performed for both feet separately, from now on we will not
differentiate between left and right for the ease of exposition.
For each individual step animation Ai and given an initial root
position, we want to extract the foot landing position pi, if the
corresponding section of its original clip was played. This is
calculated by summing the root displacement during the sec-
tion of the animation with the distance vector between the root
projection over the floor and the foot position in the last frame.

The set {pi|∀i ∈ [1, n]} where n is the number of step an-
imations, provides a point cloud. Fig. 3 shows the Delaunay
triangulation that is calculated for the point cloud of landing
positions. This triangulation is queried in real time to deter-
mine the simplex that contains the next footstep in the input
trajectory. Once the triangle is selected, we will use its three
vertices p1, p2 and p3 to compute the blending weights for each
of the corresponding animations A1, A2 and A3.

4.2. Footstep and Root Trajectories
Our system can work with both footstep trajectories and

COM trajectories. A footstep trajectory will be given as an or-
dered list of space-time positions with orientations, whether it
is precomputed or generated on-the-fly.

The input footstep trajectory may be accompanied by its as-
sociated root trajectory (a space-time curve, rather than a list of
points, and an orientation curve), or else we can automatically
compute it from the input footsteps by interpolation. This is

Figure 3: Delaunay triangulation for the vertices representing the landing posi-
tions (pi, pi+1, pi+2,...) of the left foot when the root, R is kept in place.

achieved by computing the projection of the root on the ground
plane, as the midpoint of the line segment joining two consec-
utive footsteps. The root orientation is then computed as the
average between the orientation vectors of each set of consec-
utive steps. This provides us with a sequence of root positions
and orientations which can be interpolated to approximate the
motion of the root over the course of the footstep trajectory.

4.3. Online Selection

During run time, the system animates the character towards
the current target footstep. If the target is reached, the next foot-
step along the trajectory is chosen as the next target. For each
footstep q j in the input trajectory {q1, q2, q3, ..., qm} we need to
align the Delaunay triangulation graph with the current root po-
sition and orientation. Then the triangle containing the next foot
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position is selected as the best match to calculate the weights re-
quired to nicely blend between the three animations in order to
achieve a footstep that will land as close as possible to the de-
sired destination position q j (Fig. 4). Notice that these weights
are applied equally to all the joints in the skeleton, which means
that at this stage we cannot accurately adjust the specific foot
orientation required by each footstep in the input trajectory.

Figure 4: By matching root position and orientation, we can determine the
triangle containing the destination position for the landing position q j.

4.4. Interpolation

Footstep parameters change between successive footplants,
remaining constant during the course of a single footstep (sev-
eral frames of motion). Therefore we need to compute the best
interpolation for each footstep, blend smoothly between con-
secutive steps, and apply the right transformation to the root in
order to avoid foot-sliding or intersections with the ground.

To meet these requirements, we use a barycentric coordi-
nates based interpolator in Ω fL and Ω fR , and constrain the so-
lution based on the weights computed in Ωr. This allows us to
animate a character at the granularity of footsteps, while simul-
taneously accounting for the global motion of the full body.

If we only consider the footstep parametric space, then the
vertices of the selected triangle are those that can provide the
best match for the desired foot position. The barycentric co-
ordinates of the desired footstep are calculated for the selected
triangle as the coordinates that satisfy:

q j = λ1 · p1 + λ2 · p2 + λ3 · p3, (1)
λ1 + λ2 + λ3 = 1

where p1, p2 and p3 are the positions of the foot landing if we
run animation steps A1, A2 and A3 respectively. The calculated
barycentric coordinates are then used as weights for the blend-
ing between animations. A nice property of the barycentric co-
ordinates is that the sum equals 1, which is a requirement for
our blending. Finally in order to move the character towards
the next position, we need to displace the root of the character
adequately to avoid foot sliding. The final root displacement

Figure 5: Offsets for different landing positions in a triangle, between barycen-
tric coordinates interpolation (black dots) and blending the whole skeleton us-
ing SLERP (blue dots).

vector, dr
j is calculated as the weighed sum of the root’s dis-

placement of the three selected animation steps (Eq. 2), and
changes in orientation of the input root trajectory are applied as
rotations over the ball of the supporting foot.

dr
j = λ1 · dr

1 + λ2 · dr
2 + λ3 · dr

3 (2)

This provides a final root displacement that is the result of
interpolating between the three root displacements in order to
avoid any foot sliding. It is important to notice that the barycen-
tric coordinates provide the linear interpolation required be-
tween three points in 2D space to obtain the position q j. This
is an approximation of the real landing position that our char-
acter will reach, as the result of blending the different poses of
the three animation clips, using spherical linear interpolation
(SLERP) with a simple iterative approach as described in [30].

Therefore there will be an offset between the desired posi-
tion q j and the position reached after interpolating the three an-
imations. To illustrate this offset, Fig. 5 shows the points sam-
pled to compute barycentric coordinates in black, and in blue
the real landing positions achieved after applying the barycen-
tric weights to the animation engine and performing blending
using SLERP. In order to correct this small offset at the same
time that we adjust the feet to the elevation of the terrain and
orient the footstep correctly, we incorporate a fast and simple
IK solver.

4.5. Inverse Kinematics
An analytical IK solver modifies the leg joints in order to

reach the desired position at the right time with a pose as close
as possible to the original motion capture data. For footstep-
based control, the desired foot position is already encoded in the
footstep trajectory, and for COM trajectories the final position is
calculated by projecting the current position of the foot over the
terrain. The controller feeds the IK system with the end position
and orientation for each footstep. This allows the system to
handle footsteps on uneven terrain.

5. Incorporating Root Movement Fidelity

In some scenarios the user may be more interested in fol-
lowing root velocities than in placing the feet at exact footsteps

5



or with specific walking styles. We present a solution to include
root movement based interpolation in our current barycentric
coordinates based interpolator through a user controlled param-
eter λ4.

For this purpose, we incorporate the locomotion system pre-
sented by Johansen [9] to produce synthesized motions that
follow a COM trajectory with correction for uneven terrain.
During offline analysis, a parametric space is defined using all
the root velocity vectors extracted from the clips in the motion
database. For example, a walk forward clip at 1.5 m/s, and a
left step clip at 0.5 m/s produces a parametric space using the
root velocity vectors going from the forward direction to the
90o direction, and with speeds from 0.5 m/s to 1.5 m/s.

Given a desired root velocity we define a parametric space
Ωr, and a gradient band interpolator in polar space [9] is created
to compute the weights for each animation clip to produce the
final blended result. The gradient band interpolator does not en-
sure accuracy of the produced parameter values but it does en-
sure smooth interpolation under dynamically and continuously
changing parameter values, as with a player-controlled char-
acter. Once the different clips are blended with the computed
weights, the system predicts the support foot position at the end
of the cycle and projects it on the ground to find the exact posi-
tion where it should land.

The root movement based interpolator will select a set of k
animations Ar

1 to Ar
k with their corresponding weights: w1, ...,wk.

Each of those animations provides a landing position pr
1, ..., pr

k,
and if we only interpolated these animations we would obtain
the landing point r.

In order to incorporate the output of the polar gradient band
interpolator in the barycentric coordinates based interpolator
we proceed as indicated in Algorithm 1.

The algorithm first checks whether a vertex of the current
triangle 〈p1, p2, p3〉 can be replaced by any of the three vertices
with highest weights selected by the polar band interpolator, pr

j,
j ∈ [1, k] (lines 1-13 in the algorithm). This replacement takes
place if the distance between the two landing positions pi and
pr

j is within a user input threshold ε (line 7), and the resulting
triangle still contains the desired landing position q j (function
IsInTriangle returns true if q j is inside the new triangle). This
means that there is another animation that also provides a valid
triangle and has a root velocity that is closer to the input root
velocity.

Next, function CalculateRootLanding computes the landing
position reached after blending the animations given by the root
movement interpolator (Eq. 3).

r =

k∑
i=1

wi · pr
i (3)

Finally, ComputeWeights calculates the three λi for the next
footstep q j by incorporating a user provided λ4 and the result of
the polar band interpolator r (Eq. 4).

q j = λ1 · p1 + λ2 · p2 + λ3 · p3 + λ4 · r (4)

Algorithm 1 Incorporating root movement fidelity
Input:

- The target position q j,
- The current triangle 〈p1, p2, p3〉,
- Root landing positions

〈
pr

1, ..., pr
k

〉
,

- Animation weights 〈w1, ...,wk〉 |w1 ≥ ... ≥ wk,
- A user input threshold ε,
- A user input weight parameter λ4

Output: λ1, λ2, λ3
1: for i = 1to 3 do
2: u← (i + 1) mod 3
3: v← (i + 2) mod 3
4: j← 1
5: replaced ← false
6: while j ≤ 3 ∧ ¬replaced do
7: if

∥∥∥∥pi − pr
j

∥∥∥∥ ≤ ε ∧ IsInTriangle
(
q j,

〈
pr

j, pu, pv

〉)
then

8: pi ← pr
j

9: replaced ← true
10: end if
11: j← j + 1
12: end while
13: end for
14: r ← CalculateRootLanding

(〈
pr

1, ..., pr
k

〉
, 〈w1, ...,wk〉

)
15: 〈λ1, λ2, λ3〉 ← ComputeWeights (〈p1, p2, p3〉 , λ4, r)

and λi are defined using the following relationship:

λ1 + λ2 + λ3 + λ4 = 1 (5)

Since wi and pr
i are known ∀i ∈ {1, ..., k}, and λ4 is a user in-

put, we have a linear system, where λ4 determines the trade-off

between following footsteps accurately (if λ4 = 0), and simply
following root movement (if λ4 = 1).

As the user increases λ4 there will be a value β ∈ [0, 1] for
which λ1, λ2 or λ3 will be negative, when solving the system
of equations formed by eq.4 and eq.5. In order to avoid anima-
tion artifacts it is necessary to deal only with positive weights,
therefore we guarantee that the system will only reproduce q j

accurately as long as λ4 < β. If we further increase λ4 beyond
the value β then the algorithm will provide the blending values
that correspond to a new point q′ which is the result of a linear
interpolation between q j and point r. When λ4 = 1 the result-
ing blending will be exclusively the one provided by the root
movement trajectory since λ1 = λ2 = λ3 = 0. Fig. 6 illustrates
this situation.

Time Warping. Incorporating root velocity in the interpola-
tion, does not always guarantee that the time constraints as-
signed per footstep will be satisfied. Therefore once we have
the final set of animations to interpolate between, with their
corresponding weights λi, i ∈ {1, 2, 3} and w j, j ∈ [1, k], we
need to apply time warping. Each input footstep fm has a time
stamp τm indicating the time at which position qm should be
reached (where m ∈ [1,M] and M is the number of footsteps in
the input trajectory). The total time of the current motion, T can
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Figure 6: When solving the system of equations given by eq.4 and eq.5, the
value of either λ1, λ2 or λ3 will be negative when λ4 ≥ β. Therefore we need
to calculate the barycentric coordinates for a new point q′which moves linearly
from q j to r as the user increases the value of λ4 from β to 1. This means
solving the system of equations for q′ instead of q j, as it is the closest point to
the desired landing position which guarantees that all weights in eq. 5 will be
positive.

be calculated as the weighted sum of the time of the animation
steps being interpolated: T =

∑3
i=1(λi · t(Ai)) +

∑k
j=1(w j · t(A j)).

Therefore the time warping factor that needs to be applied can
be calculated as: warpm = (τm − τm−1)/T .

Outside the Convex-Hull. The footstep parametric space de-
fines a convex-hull delimiting the area where our character can
land its feet. When our target footstep position falls inside this
area, clips can be interpolated to reach that desired position.
But if it falls outside this convex-hull we still want the system to
consider and try to reach it. Our solution to handle this problem
consists of projecting orthogonally the input landing position q
over the convex-hull to a new position qpro j. Our system then
gives the blending weights for qpro j and applies IK to adjust the
final position. We include a parameter to define a maximum
distance for the IK to set an upper limit on the correction of the
landing position. It is important to notice that even if the in-
put trajectory has some footsteps that are unreachable with the
current data base of animation clips, our system will provide
a synthesized animation that will follow the input trajectory as
closely as possible, until it recovers and catches up with future
steps in the input trajectory. This situation is similar to the sce-
narios where the user increases λ4 and then reduces it again.

6. Results

The animation system described in the paper is implemented
in C# using the Unity 3D Engine [31]. The footstep trajectories
used to animate the characters are generated using the method
described in [7] or are created by the user. Some difficult sce-
narios, exercising careful footstep selection, are shown in Fig.
1 and Fig. 7. Agents carefully plant their feet over pillars (Fig.
7-a) or use stepping stones to avoid falling into the water (Fig.
7-b). We show our ability to handle over a hundred agents at 13
FPS (Fig. 7-c and Fig. 9). The supplementary video demon-

strates additional results ( high resolution video2, low resolution
video3).
Obstacle Course. We exercise the locomotion dexterity of a
single animated character in an obstacle course. The character
follows a footstep trajectory with different walking gaits , alter-
nating running and walking phases (Fig. 1-a,b), and including
sidesteps (Fig. 1-c) and backward motion (Fig. 1-e).
Stepping Stone Problem. Stepping stone problems (Fig. 7-
b) require careful footstep level precision where constraints re-
quire the character to place their feet exactly on top of the stones
in order to successfully navigate the environment. Our frame-
work can be coupled with footstep-based controllers to solve
these challenging benchmarks.
Integration with Crowd Simulator. We integrate our ani-
mation system with footstep-based simulators [7]; our charac-
ter follows the simulated trajectories without compromising its
motion fidelity while scaling to handle large crowds of charac-
ters (Fig. 7-c).

It is important to mention that the quality of the results de-
pends strongly on the quality of the clips available from the
motion capture library. As can be seen in the video, the least
precise movements in our results are side steps and back steps.
This is due to two reasons: (1) we had a small number of an-
imations compared to other walking gaits, and thus triangles
covering that space have larger areas, and (2) interpolation ar-
tifacts appear when blending between animations that move in
opposite directions (for example a backwards step with a for-
ward step). We believe that having a better and denser sam-
pling in these areas will improve the results. For steps falling in
triangles of smaller areas, and with all the vertices in the same
quartile we have obtained results of high quality even for diffi-
cult animations such as running or performing small jumps.

6.1. Foot Placement Accuracy

The presented barycentric coordinates interpolator assumes
a small offset between the results of linearly interpolating land-
ing positions from the set of animations being blended, and the
actual landing position when calculating spherical linear inter-
polation over the set of quaternions. This small offset depends
on the area of the triangle, so as we incorporate more anima-
tions into our data base, we obtain a denser sampling of landing
positions and thus reduce both the area of the triangles and the
offset. We believe this is a convenient trade off since such a
small offset can be eliminated with a simple analytical solver
but the efficiency of computing barycentric coordinates offers
great performance. It is also important to notice that if exact
foot location is not necessary, and the user only needs to indi-
cate small areas for stepping as in the water scenario, then it is
not necessary to apply the IK correction. Fig. 8 shows the offset
between the landing position and the footstep. The magnitude
of the error is illustrated as the height of the red cylinders that
are located at the exact location where the foot first strikes.

2https://www.dropbox.com/s/o1b9w73qd45fmip/videoCAG.mp4?dl=0
3https://www.dropbox.com/s/ptdz788f2k9ad3g/videoCAGlowRes.mp4?dl=0
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(a) (b) (c)

Figure 7: (a) Agents accurately following a footstep trajectory and avoiding falls by carefully stepping over pillars. (b) The stepping stone problem is solved with
characters avoiding falls into the water. (c) A crowd of over 100 agents simulated at interactive rates.

Figure 8: The red columns show the small offset between landing position and
the footstep when the IK corrections are not being applied.

6.2. Performance

Fig. 9 shows the frame rate we obtain as we double the
number of agents. It is important to notice that increasing the
number of animations would enhance the quality and accuracy
of the results, with just a small overhead on the performance.

The average time of the locomotion controller is 0.43ms,
this process includes blending animations, IK, the polar band
interpolator and our barycentric coordinates based interpolator.
The computational cost of our footstep interpolator is 0.2 ms,
which is amortized over several frames as the interpolation in
Ω fL or Ω fR only need to be performed once per footstep. This
time is divided between computing the root movement polar
band interpolator which takes 0.155ms and our barycentric co-
ordinates interpolator which takes 0.045ms. Performance re-
sults were measured on an Intel Core i7-2600k CPU at 3.40GHz
with 16GB RAM.

Figure 9: Performance of the Footstep Locomotion System in frames per sec-
ond as the number of agents increases.

7. Conclusions and Future Work

We have presented a system that uses multiple parameter
spaces to animate fully embodied virtual humans to accurately
follow a footstep trajectory respecting root velocities, using a
relatively small number of animation clips (24 in our exam-
ples). Our method is fast enough to be used with tens of char-
acters in real time (25 FPS) and over a hundred characters at
13 FPS. The method can handle uneven terrain, and can be eas-
ily extended to introduce additional locomotion behaviors by
grouping new sets of animation clips and generating different
parametric spaces. For example, walking and running motions
can be blended together, but if we wanted to add crawling mo-
tions or jumping motions, it would be better to separate them in
different parametric spaces for each style. This will avoid un-
natural interpolations that can appear when blending between
very different styles. Having different parametric spaces re-
quires some sort of classification, which could initially be done
manually but it could also be based on the characteristics of the
motion, such as changes in acceleration, maximum heights of
the root, length of fly phase, etc. Assuming we can extract the
parametric spaces for different animation types, it would also
be necessary in some cases to have additional transition clips to
switch between very different locomotion types, i.e. crawling
and walking.

We do not run physical or biomechanical simulations, and
use interpolation and blending between motion capture anima-
tions. Our method accuracy depends on the variety of animation
clips, while its quality and efficiency depends on the number of
clips. A trade-off between efficiency and accuracy is therefore
necessary, for which we have found a good equilibrium.

Limitations. In order to reduce the dimensionality of the prob-
lem, we have not included in our parametric space the orienta-
tion of the previous footstep. Ignoring the final orientation of
the character at the end of the previous step can induce some
discontinuities between footsteps. We mitigate this effect by
blending between footsteps automatically for a small amount of
time (about 0.2 seconds) at the advantage of reducing the com-
putational time and thus making our method suitable for large
groups of agents in real time. Regarding the selection of ani-
mation at the end of each footstep, notice that in our database,
left and right animation steps are extracted from complete ani-
mation cycles that are usually consistent in parameters such as
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velocity, acceleration and walking gait. Therefore for a given
sequence of steps, the most likely animation steps to be chosen
will be those extracted from the same set of animation cycles,
thus resulting in smooth and natural transitions between very
similar steps. When the characteristics of the steps change dras-
tically, then our method needs to blend between steps from very
different animation cycles. So in general, alternating left/right
steps results in natural transitions with smooth continuity when
blending animations, and only when the input step trajectory
changes drastically between each pair of steps, we may observe
transitions between animations that feel unnatural. This can
happen if the step trajectory is done manually with artifacts due
to the user’s lack of experience creating footstep trajectories,
or for example when the input trajectory forces the character to
walk over artificially located steps, like crossing a river by step-
ping over stones. We would like to empathize that this situation
would also look awkward in the real world and thus the result
of our synthesized animation may be the desired one.

Future Work. For future work we would like to extend our
barycentric coordinates interpolator to 3D space with the third
coordinate being the root velocity. This will free our system
from the polar band interpolator which not only takes longer to
compute but also selects too many animations which results in
slower blending. One thing to explore could be to interleave the
execution of the Footstep-based Locomotion Controller from
different characters in different frames, ensuring we do not ex-
ecute it for all the agents in the crowd.
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