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ABSTRACT

Pedestrian steering algorithms range from completely procedural to entirely data-driven, but the former grossly generalize
across possible human behaviors and suffer computationally, whereas the latter are limited by the burden of ever-increasing
data samples. Our approach seeks the balanced middle ground by deriving a collection of machine-learned policies based
on the behavior of a procedural steering algorithm through the decomposition of the space of possible steering scenarios
into steering contexts. The resulting algorithm scales well in the number of contexts, the use of new data sets to create
new policies, and in the number of controlled agents as the policies become a simple evaluation of the rules asserted by
the machine-learning process. We also explore the use of synthetic data from an “oracle algorithm” that serves as an
as-needed source of samples, which can be stochastically polled for effective coverage. We observe that our approach
produces pedestrian steering similar to that of the oracle steering algorithm, but with a significant performance boost.
Runtime was reduced from hours under the oracle algorithm with 10 agents to on the order of 10 frames per second
(FPS) with 3000 agents. We also analyze the nature of collisions in such a framework with no explicit collision avoidance.
Copyright © 2014 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Crowd simulations are increasingly called upon for real-
time virtual experiences. This push also includes a com-
ponent of dynamic interaction with a user, which adds
additional unpredictability to the agents’ decision-making
process. Assumptions such as the reciprocity of steering
algorithm are not sound in the presence of human input,
suggesting the need to rethink how to handle this diversity.
The problem of predicting a priori the possible situations
an agent will encounter is rapidly becoming intractable as
users are given more freedom in their virtual worlds, and
thus, we need algorithms that are scalable not only in agent
count but also circumstance as well.

Data-driven steering algorithms are a natural fit for
expanding virtual pedestrians’ capability to handle new
problems, but current approaches use a single policy as

*Research performed while all four authors were at the Univer-
sity of Pennsylvania.

a “one size fits all” approach and are data-bound in their
ability to handle general steering. A leading problem for
machine learning in crowd steering is the feature space
itself, especially for a single-policy system. For behav-
ior as complex and diverse as human steering, increasing
amounts of samples can lead to contradictory data, which
can require an increase in features to try to accommodate
the new factor causing the difference. Furthermore, the
source of data is often observations of the real world, which
poses logistical challenges for gathering samples from an
inability to control the observed environment. This ulti-
mately leads to a lack of scenario coverage in the training
data itself. Poor semantic understanding of particular steer-
ing choices also inhibits fully robust usage of this data,
which can manifest as what appear to be poor steering
decisions.

In this paper, we define the concept of steering contexts,
which are collections of situations selected for their qual-
itative similarity. By identifying such contexts, we divide
the problem space, which limits the necessary scope of the
data-driven solution and avoids the single-model problem
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Figure 1. Our pipeline for using steering contexts to develop a machine-learned model for use at runtime. The majority of the pipeline
is offline processing. A collection of models is trained on data extracted from an oracle algorithm’s solution to steering situations,
which are stochastically generated. Each model is a boosted decision tree with its own specialization. The action space consists of

footsteps as an advantageous discretization, which permits direct control and modeling of human locomotion.

described previously. We propose a pipeline that lever-
ages these contexts through the use of a collection of
machine-learned models trained on synthetic data from a
space-time planner. This development pipeline is visual-
ized in Figure 1.

This paper makes the following contributions:

� We introduce and use the concept of steering contexts
to separate data for easier machine learning and allow
for scalability of circumstance as well as help mitigate
contradictory training samples.

� We demonstrate the efficacy of synthetic training data
from stochastically generated samples for better con-
trol over data collection resulting in more universal
coverage of possible situations.

� Our pipeline produces a fast runtime algorithm with
similar steering characteristics to a slower, more opti-
mal algorithm.

� We analyze the performance of an “implicit”
approach to collision avoidance with a data-driven
technique.

2. RELATED WORK

Following seminal work [1] on flocking behaviors using
particle systems, the field of crowd simulation has grown
into a well-developed, multi-faceted area of study. In this
section, we review other publications most applicable to
this work, and for a broader survey of the field, we refer
the reader to the reviews in [2,3].

Crowd simulation strives to replicate the pedestrian
behavior of a group of people as realistically as possi-
ble while remaining computationally tractable. Because of
this pull between two extremes—human complexity and
processing speed—algorithms have been formulated as an
abstraction to human behavior. These abstractions vary in
how they approach the problem of moving so many agents.

Centralized Techniques. This category of approaches
looks at the agents as pieces, either discrete or part of a
continuous entity, on a board and moves each agent in
accordance with a desired global outcome. Because a cen-
tralized process is planning their actions, agents appear to
have an omniscient knowledge of their environment. Parti-
cle system approaches [1,4] replace the Newtonian physics
of a typical n-body simulation with social forces. These
particle approaches are further refined in the social force
models of [5,6].

Centralized techniques rely on a broad conformity
amongst the population for best efficiency as seen in the
fluid-like approach of [7]. This is an acceptable premise for
group-dynamic simulations as used in the study of crowd
flows in religious pilgrimages [8] and emergency evacua-
tions [9], but such an approach does not handle low-level
micro-management well, which is expected when a user
is an active participant in the virtual world rather than a
passive observer.

Agent-based Techniques. To introduce more individ-
uality in a simulation’s agents, we can make steering an
integral part of the agents’ abilities.

Geometric algorithms such as [10,11] determine their
next action based on which velocities may avoid a collision
with another agent. This is similar to the approach used
by [12], which uses a synthetic sense of vision to determine
information about other agents’ trajectories and adjust
accordingly. Agents have also used affordance fields [16]
to try to find safe passage to a goal. A cognitive system
was used in the seminal work [13], which included utility
functions for desires, an attentional system to limit percep-
tion of the environment, and a motor system to carry out
actions. Recently, a rule-based adaptive system [14] was
proposed that switched between other steering algorithms
to best suit an agent’s needs. The environment has been
used to provide hints to agents as to the behavior needed
for better navigation, as seen in [17].
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Machine learning has been used [15], which takes
designer suggestions for how agents should steer in their
world and fits a model. Additionally, samples of real-life
steering behavior can be used with the machine learning
to fit better models. Information theory [18] has been used
to analytically manipulate characteristics of agent behavior
based on global trends to better tune overall behavior rather
than relying on low-level agent-to-agent interactions.

Data-driven Techniques. Work in data-driven steering
has focused primarily on generating local-space samples
from observations of real people. In [19], video samples
were compiled into a database which was queried at run-
time, and trajectories were copied and used by the agents
based solely on the similarity of the agents’ surround-
ings to the video examples. The work of [20] used a
more constrained state space of discretized slices around
an agent and focused more on recreating group dynam-
ics than individual steering. A similar state space is used
by [21] as one of two state spaces. A separate state space
consisting of a discretized view frustum was used for envi-
ronmental navigation. In common to all these techniques
is using one collection of samples for all navigation under
a single model. Recent work [22] uses discretized pieces
of real-world trajectories as the basis for navigation and
manipulates these trajectories based on the possibility of
future collisions.

Comparison to Related Work. Our work builds on the
adaptive use of algorithms in [14]. Although the adaptive
algorithm swapped between policies based on hand-coded
rules, we employ machine learning to fit a model that deter-
mines which policy to use for a given decision. We also
expand on the idea of failure sets from [23] by taking
the concept further with the use of their inverse to cre-
ate contexts for steering. Our use of “contexts” is different
from that found in [24] as our contexts are egocentric,
not scenario-wide. Furthermore, the egocentric nature of a
context is different from that seen in [17] where contexts
would be embedded in the environment itself. Another
data-driven method seen in [25] focuses on capturing the
dynamics of the overall crowd, whereas we focus on the
individual agents. The closest data-driven system com-
pared with our pipeline is that of [21], which not only
uses interchangeable state spaces but also uses clustering
to try to separate data after the fact where we separate
the data from the beginning of the process. Our exclu-
sive use of an oracle algorithm in lieu of real data is also
unique to this paper. Like [22], our current algorithm is not
collision-proof; however, our collision heuristic is implicit
in the training data itself.

3. STEERING CONTEXTS

A scenario in scenario space [23] S is the global config-
uration of obstacles, agents, and their goals in a virtual
environment. The high dimensionality of scenario space
makes it inherently intractable to exhaustively cache, so
a more general model of steering behavior is needed.
Each agent in a frame of simulation encounters its own

situation S from its perspective. Situations that are similar,
on the basis of some feature space F�, are grouped together
to form a context, C. The similarity-based grouping is
performed to give a high-level perspective on the current
situation, and to properly steer the agents that require a pol-
icy for each context. Although these could be handwritten
rulesets, identifying contexts and creating policies for each
one quickly becomes work-bound. We use machine learn-
ing to offset this burden and automatically generate models
to serve as a policy for each context.

We can now give a formal definition of context space
and of contexts themselves. For a given feature space F�,
context space C is a projection of S onto the coordinate
system of F� and may consist of many overlapping con-
texts each with boundaries defined by various values of
the features. An individual context Ci � C is defined in
Equation 1 with respect to the success of steering policy i in
handling situations. A policy is successful if it can produce
a valid action from action space A for the situation, which
is one where a collision does not occur, and the overall sce-
nario does not deadlock. A scenario then can be considered
a sequence of situations and actions with some transition
function ı .S, a/.

Ci D
˚
S 2 C

ˇ
ˇ 9a : hf, ai , f 2 Fi, a 2 A, S ¤ ı .S, a/

�

(1)

A situation is guaranteed membership in at least one
context because in the worst case, it could have a
special-case policy defined for it. This lets us redefine
scenario space as S D

S
i Ci. This redefinition yields

interesting insight into the pursuit of generalized steering.
Although it would be convenient to know if a set of poli-
cies exists that provide optimal behavior for all scenarios
in S, this requires the corresponding contexts partition S
based on the “best” context and is thus a direct application
of the exact cover problem. Furthermore, it is intractable to
know if a set of contexts is sufficient to cover S as it is an
example of the set cover problem. Both of these are known
to be NP-complete [26]. This important fact necessitates
approximating contexts rather than strictly defining them.

These contexts express how different situations require
different policies and improve scenario space by better
characterizing regions of success and failure. By approxi-
mating contexts, we can also identify a more constrained
domain for data-driven techniques. This allows for a more
modular and thus extensible approach to building a model
for general steering. Examples of contexts we defined by
intuition are provided in Figure 2 with a full index in
Table I.

4. INITIAL IMPLEMENTATION

We now explain our pipeline for the integration of various
contexts into a unified steering algorithm. First, training
data must be collected, which we generate by means of an
oracle algorithm. Next, the various machine-learned mod-
els must be fit to the data. Finally, these models are used
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Figure 2. Examples from our set of contexts. Net flow is represented by the arrow in each region; density of the region is depicted
by darker shades of red, and obstacles are gray boxes. Each of these contexts was stochastically generated with overlap in the
permissible values for density. Chaos was generated randomly without regard to any structure as seen in the other contexts. We

used a total of 24 contexts.

at runtime to decide where an agent’s next footstep should
be placed.

4.1. Training Data Generation

We define two orthogonal features for the area in each car-
dinal direction about the agent for a total of eight features,
with a ninth feature special to the region ahead of the agent.
The components of each area are agent density, and the net
flow of agents in that area, with the area directly in front of
the agent detecting the presence or lack of obstacles. Agent
density is a rough approximation of overall crowding in
the cardinal directions and includes obstacles. Net flow is
the average velocity direction of agents in a particular area.
This helps determine whether or not the general crowd is
moving with or against the agent, which requires different
care for such things as collision avoidance.

Our feature space for learning specialized policies are
based on a circular neighborhood about the agent with dis-
cretized wedges that track the nearest agent or obstacle in
that region. Our feature spaces can be seen in Figure 3 and
are in part inspired by the state spaces of [20,21]. In par-

ticular, the context classifier’s state space is built on two
values for each of the four regions and an additional value
denoting the presence of obstacles in front of the agent for
a nine-dimensional vector. The specialized feature space is
a 29-dimensional vector broken down into three values for
each slice: the distance, speed, and orientation of the near-
est entity. The distance to the goal and its orientation are
the final two values.

A data-driven approach relies on the quality and cover-
age of its training samples. Real-world data is often used as
a source because humans empirically solve any presented
steering challenges, and we wish to create virtual rep-
resentations of humans. However, we cannot completely
control the steering scenarios or know all the variables
in the decision-making process of the people observed.
To enforce artificial limitations on the scenarios would
impact the integrity of the data through the influences of
the observer effect. Second, we have no way of know-
ing a priori whether the data set collected has adequate
sample coverage for the situations the agents will need to
handle. The problem of this potential incompleteness is
compounded by the overhead—or impracticality—of col-
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Table I. Parameters that define the 24 contexts we use to prototype our pipeline.

North South East West

Context ID Obstacles Flow Density Flow Density Flow Density Flow Density

0 Yes Neutral Light Neutral Light Neutral Light Neutral Light
1 Yes Towards Light Neutral Light Neutral Light Neutral Light
2 Yes Towards Medium Neutral Light Neutral Light Neutral Light
3 Yes Towards High Neutral Light Neutral Light Neutral Light
4 Yes Towards Medium Towards Medium Neutral Light Neutral Light
5 Yes Towards Light Towards High Neutral Light Neutral Light
6 Yes Neutral Light Neutral Light Towards|Away Light Away|Towards Light
7 Yes Neutral Light Neutral Light Towards|Away Medium Away|Towards Medium
8 Yes Neutral Light Neutral Light Away|Towards High Away|Towards High
9 Yes Neutral Light Towards Medium Away|Towards Medium Away|Towards Medium
10 Yes Neutral Light Towards High Away|Towards Light Away|Towards Light
11 Yes Towards High Towards High Towards High Towards High
12 No Neutral Light Neutral Light Neutral Light Neutral Light
13 No Towards Light Neutral Light Neutral Light Neutral Light
14 No Towards Medium Neutral Light Neutral Light Neutral Light
15 No Towards High Neutral Light Neutral Light Neutral Light
16 No Towards Medium Towards Medium Neutral Light Neutral Light
17 No Towards Light Towards High Neutral Light Neutral Light
18 No Neutral Light Neutral Light Towards|Away Light Away|Towards Light
19 No Neutral Light Neutral Light Towards|Away Medium Away|Towards Medium
20 No Neutral Light Neutral Light Away|Towards High Away|Towards High
21 No Neutral Light Towards Medium Away|Towards Medium Away|Towards Medium
22 No Neutral Light Towards High Away|Towards Light Away|Towards Light
23 No Towards High Towards High Towards High Towards High

Figure 3. The feature sets used in our pipeline, where other agents are circles and static obstacles are depicted as boxes. F� is used
by the context classifier to dynamically choose the best model based on high-level features, whereas F is used to choose the agent’s

next step based on the local neighborhood.

lecting additional data. For these reasons, our pipeline uses
synthetic data from which we can be conveniently gather
additional samples and know all the influences in advance.

4.2. Oracle Algorithm

Our oracle algorithm is based on a memory-bounded A?

planner with a discrete footstep action space similar to

the action space in [14]. We choose a footstep action
space because our machine learning can use classifiers
instead of being constrained to regression. When the ora-
cle is run on the generated scenarios, each agent uses the
memory-bounded A? planner to calculate the optimal path
from its current location to the goal. The bound on the
memory is raised if a path is not found; as a last resort, iter-
ative deepening A?

�
IDA?

�
is used. The oracle planner’s
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overall algorithm is given in Algorithm 1, and the heuristic
used is in Equation 2 and is based on the distance to the
goal and average expected energy cost to reach that goal.

h .p, g/ D
kp � gk � energyavg

strideavg
(2)

Each agent has full knowledge only of the obstacles and
agents within the horizon of its field of view. Because other
agents may enter or leave this field of view, each agent must
monitor its path for new collisions and invoke the planner
again if such a problem is found. We chose this limitation
on the oracle because of the radius of the feature spaces
used to sample the data, and the human-factors nature of
the feature space designs.

The simulations using the oracle are recorded for later
extraction of training samples. As the oracle does not use
any feature spaces, the same oracle recordings can be
used to extract data with different feature spaces, allow-
ing for future exploration of such possibilities. We extract
a state-action pair hf, ai where f is a vector from feature
space F and a is the parameters of the agent’s current step,
and use it as a sample for training.

4.3. Decision Trees

Avoiding the requirement that the learned policy be a
monolithic, universal solution has several key benefits.
First, the policies can be simpler and thus executed faster
at runtime. Second, we avoid the catastrophically high
dimensionality common to such approaches, which are
held back by all the factors that can influence every poten-
tial action. Finally, we do not need to relearn the entire
system to assimilate new data. By using one model to
select more specialized models, new data requires only the
specialized model it belongs to be relearned. Even the cre-
ation of a new context only requires the top-level model
be recomputed while the other models are still valid and
will not be harmed by potentially contradictory data. Our
multilevel model is illustrated in Figure 4.

The pipeline proposed by this paper is agnostic to the
specific learning algorithms used at the different levels of
the hierarchy, and different algorithms can even coexist on
different levels of the hierarchy if particular contexts are
better handled by different models. We have chosen to use
two levels of boosted decision trees [27] for our instantia-
tion of the pipeline based on the similar problem domain
of [28] that showed success for learning different policies
that both classified different types of soccer behavior and
could be used to decide the actual action itself.

Each of our policies consists of two boosted decision
trees, one for each foot. We use a Windows port of the

Figure 4. The multilevel decision trees used by our models. At runtime, the agent gives the model information about its current goal
and environment in local-space. This data is used to calculate f for each model used. First, the context classifier informs the agent of

its current context, and the corresponding policy is used to determine the next footstep.
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GNU General Public License (GPL) release of the C5.0
decision tree system (rulequest.com). We chose 10
trees as the amount of boosting empirically based on
cross-validation. In total, 2500 scenarios were sampled
from each context, and each scenario was generated with
respect to a central agent, which provided a variable num-
ber of steps per scenario. These steps then became the
situations representative of the context for the specialized
classifier. A context classification sample was only gener-
ated for the first five steps of each recording due to the
total number of scenarios that were sampled, all of which
supplied data to the context classifier.

4.4. Steering At Runtime

At runtime the agent generates feature vectors correspond-
ing to both the context classifier’s feature space and the cor-
responding specialized model’s feature space and receives
parameters used to derive its next footstep. These param-
eters include a relative offset and rotational angle to the
next step’s location, while specifics such as stride length
are calculated on the fly based on the agent’s inherent char-
acteristics. This step is validated and if found to be unfit, a
default “emergency action” takes place, wherein the agent
immediately stops. This allows the agent to try again after
a short cool-down period. This safety net was implemented
to account for the worst-case where a returned action is
outside of the parameters permitted by the agents’ walking
such as two steps in a row from the same foot or too wide a
turn. The models cannot be expected to be 100% accurate,
which is the source of these potential errors. Pseudocode
for the agents’ runtime is listed in Algorithm 2.

As shown earlier in the paper, it is NP-complete to know
if our contexts cover all possible scenarios. Furthermore,
decision trees are susceptible to high variance depending
on the dataset we generate through our stochastic sam-
pling. This causes uncertainty in the decisions our agents
will make. We account for this uncertainty through the use
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Figure 5. Classifier error rates for both context classifier (blue)
and an average over the specialized classifiers (red). Although
the context classifier has a high error rate, a 96% error
rate is random chance given the large number of classes to

choose from.

of a confidence threshold defined by the C5.0 algorithm.
This rating is roughly defined as the number of correct
classifications made by the leaf nodes divided by the total
number of classifications made by the same node, making
it a static quantity once the tree is learned. If the confidence
threshold is not met by the classification the agent stops
with the ability to resume as conditions change. This confi-
dence value is not a direct reflection on the technique itself,
but is instead heavily affected by pruning the decision trees
to yield a more general model.

Note in Algorithm 2 that there is no explicit collision
detection or avoidance. In our system, runtime collision
detection and avoidance is handled implicitly through the
training data itself. This is different from other techniques
such as [19] where training samples are used, but thorough
handling of collisions is required. As will be shown, the
training data itself is sufficient to prevent many significant
collisions from occurring with dense scenarios experienc-
ing relatively few collisions per capita when all factors
are considered.

5. RESULTS

We generated approximately 2,500 samples for each of
our initial 24 contexts. The oracle algorithm required two
weeks of continuous computation to return paths for all of
the sample scenarios. Those scenarios which were shown
to require IDA? were culled in the interest of time. All
results were generated on a desktop with 16.0GB of RAM,
Intel Core i7 860 CPU at 2.8GHz, and an NVIDIA GeForce
GTX 680.
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Table II. Total time for step planning for all contexts in seconds to calculate steps over short scenarios.

Context 0 1 2 3 4 5 6 7 8 9 10 11

Oracle 0.73 13.84 5.11 15.53 12.35 9.26 1.68 67.27 101.56 19.90 14.71 1.20
Models 0.07 0.07 0.06 0.06 0.06 0.06 0.07 0.06 0.06 0.06 0.06 0.06

Context 12 13 14 15 16 17 18 19 20 21 22 23

Oracle 123.95 785.0 1945.24 365.25 565.43 574.52 916.30 462.53 3384.10 577.54 396.79 64.78
Models 0.15 0.15 0.17 0.18 0.17 0.18 0.13 0.13 0.15 0.16 0.17 0.16

The first 12 contexts are without obstacles and are based on oncoming and cross traffic patterns with varying levels of agent density. Contexts 12 and

above have obstacles and agent patterns matching the upper 12.

Figure 6. Multiple views of a 3000 agent simulation with high quality rendering.

5.1. Classifier Accuracy

Figure 5 plots the error rate for the classifiers used in our
experiments. Simulations were run using models trained
on amounts of data ranging from 100 to 2000 scenarios
per context. A separate validation set of 200 scenarios per
context were kept back to calculate the error rate of the
resulting trees.

Error rates were high but did decrease as data size
increased, showing improvement in generalization and not
simply noise. Additionally, the average number of steps
used for each context was approximately 12, which sets
random guess accuracy at 8%, which we clearly exceeded.
Furthermore, random guess accuracy of 24 contexts is 4%
which we also surpassed. The error rate seen in the con-
text classifier is likely a result of how the training data was
generated in a noisy manner, for instance some overlap in
density between a high density scenario and a medium den-
sity scenario exists. A large burden is also placed on the
decision trees to distinguish the Chaos context from other
contexts but this by its nature adds a lot of noise and has
no structure, making it difficult to define hyperplanes to
separate such scenarios.

5.2. Runtime

Our initial instantiation of a context-sensitive pipeline is
much faster at runtime than the oracle. As seen in Table II,
all contexts experienced speedup, especially significant for
the most challenging scenarios involving obstacles. The
Chaos context, both with and without obstacles, was the
most challenging for the oracle and resulted in skewed per-
formance data due to the number of scenarios which were

culled. Our method showed an extremely constant amount
of time across the different contexts owing to its dynamic
model-swapping.

To test the robustness of our collection of models, we
created a large-scale simulation consisting of randomly
generated obstacles, agents, and goals, as seen in Figure 6.
We measured the time to generate the paths for varying
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Figure 7. Total time taken for computing the steps of a simula-
tion 1200 frames long for varying numbers of agents with ran-
domly generated obstacles and an overall small area. Overhead
was mostly incurred from a naïve implementation of agent
density measurement that is O

�
n2
�

where n is the number
of agents.
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numbers of agents to simulate 1200 frames, with the results
given in Figure 7. All tests were run using a single-threaded
implementation and realtime framerates were experienced
at 1,500 agents and interactive framerates of about 10
frames per second (FPS) were experienced with as many
as 3000 agents.

5.3. Collisions

Recall our virtual agents navigate without an explicit col-
lision avoidance stage to their navigation. Generally, the
agents do not collide on the basis that their training sam-
ples contain no collisions, and thus they inherently steer
around one another. However, as the models are not 100%
accurate, collisions are to be expected.

We have run several medium-scale scenarios that are
beyond the type of scenarios used for training the models.
These scenarios were as follows:

Hallway Two opposing groups of 100 agents cross
a hallway.

Random 500 randomly placed agents with 696 ran-
domly placed obstacles throughout the environment.

Urban 2500 randomly placed agents in an environment
simulating an urban area with obstacles as city blocks.

These tests were run for varying numbers of training
scenarios, from 100 to 2000 in increments of 100, and
each test was run for 3600 frames. Afterwards, we tabu-
lated the number of collisions and created the graphs in
Figure 8. The collisions were recorded by severity. Type
A collisions have occlusions in the range .0%, 10%� at the
worst point. These collisions could be registered because
of the circular profile of the agents’ bounding volume and
thus may not be visible when the simulation is rendered.
Type B collisions have occlusion in the range .10%, 35%�
and while more severe than before, could be alleviated
with a better anthropomorphic model with torso-rotation.
This type of collision is often dealt with in real pedes-
trians by turning the shoulders to more easily pass one
another in cramped conditions. Type C collisions occlude
on the range .35%, 75%� and are major collisions that
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Figure 8. Counts for collisions in 3-minute simulations in different test scenarios. Type A collisions are blue, type B collisions are red,
type C are yellow, and type D are green. Once collisions occurred, there was little pressure for agents to move apart as the training
data was collision-free; thus, no samples existed for overlapping agents. Note that while high, per capita an agent in each of these
simulations is only likely to encounter around 1–3 collisions with approximately one third of them minor in nature in spite of the lack

of any explicit collision avoidance.

Comp. Anim. Virtual Worlds (2014) © 2014 John Wiley & Sons, Ltd.
DOI: 10.1002/cav



Multiplicity of steering policies C. D. Boatright et al.

require more tuning to the algorithm to avoid. Type D colli-
sions complete the possibilities at .75%, 100%� and would
most likely need a fully reactive collision avoidance system
to prevent.

The results were counterintuitive at first. As training
samples grew in quantity, so did collisions and even
the severity of the collisions. We hypothesize two main
factors behind this increase. First, the oracle algorithm
is collision-free. Thus a sort of “event horizon” was
established in the training data where no reaction to an
agent occurs once the agent is too close to another. This
means once two agents are too close, there is no force
to push them apart, which explains the increased amount
of more serious collisions compared to the more minor
offenses.

The second factor is that with increased sample counts,
the models better attempt the mimicry of the oracle algo-
rithm’s behavior. The oracle has the ability to steer agents
together in a very tight, close-call manner. While this is
good for the oracle and such nearby passing can be accom-
modated by it, as the training data increases in size and the
agents steer more like the oracle, a misstep is more likely
to cause a collision. In essence, more training data made
the agents attempt to steer in a more precise manner, but
the inherent inaccuracy of any machine learning algorithm
simultaneously leads to higher risk. Thus a collision avoid-
ance algorithm is necessary for a data-driven approach
to steering.

6. CONCLUSION AND
FUTURE WORK

In this paper, we have defined steering contexts, a new view
on the space of possible scenarios an agent may encounter
as it steers through its virtual world. These contexts provide
new insight into the task of creating a general steering con-
troller capable of handling anything it encounters. Unless
the controller can be independently proven to be general
and thus consist of a single context, the algorithm will shat-
ter scenario space into subsets which must each be handled
by a separate policy. This creates a coverage uncertainty
that is by nature NP-complete and to our knowledge no
realtime algorithm is unaffected by this discovery.

We have also proposed a pipeline for constructing a
steering algorithm that is both context-sensitive and scal-
able to circumstance. Through the use of a multiplicity
of models fit to steering contexts, machine learned can
be combined for better, and more structured, coverage of
the space of possible scenarios than would otherwise be
possible by a single-model approach generalizing to all
situations. We used an oracle algorithm to get high qual-
ity, on-demand training data which can be used for new
contexts without the overhead or uncertainty of real-world
data. This training data was then broken into contexts
based on intuition and policies fit for each context using
machine learning.

Our technique has shown a massive increase in effi-
ciency as realtime simulation was achieved with far higher

population counts than the oracle algorithm could han-
dle. Furthermore, training on this data resulted in relatively
small numbers of collisions, many of them minor. This sys-
tem would be ideal for populating a space with “extras”
which are not the focus of an end-user’s attention. In such
a background application, the infrequent collisions would
be more likely to go unnoticed.

Future Work. The decision tree models used to proto-
type our pipeline are too restricting if the chosen action is
incorrect. A naïve Bayesian approach would allow a better
“next best” progression of footstep selection rather than the
current all-or-nothing approach. Multiple algorithms can
coexist throughout the collection of policies allowing each
context to be fit as needed for better overall accuracy. Fur-
thermore the contexts themselves could be defined from
a collection of data using unsupervised clustering, further
removing the human element from the problem.

Currently we decide the next step an agent should take
and deciding multiple steps would require an exponential
increase in the size of the action space if done naïvely.
However, we postulate that analysis of step sequences
would reveal that not all step combinations need to be
learned, drastically decreasing the overhead. Maneuvers
such as overtaking other pedestrians or rounding corners
could then be encapsulated, rather than depending on each
step in the process being decided accurately. Even with
90% decision accuracy, a 5-step sequence has a probability
of being correct of only about 60%. Furthermore, we rather
than such a short horizon of a single step, this machine
learning approach could tackle navigation instead and plot
a waypoint, while a fast but reactive algorithm such as RVO
moves the agent through the waypoints.

Finally, this data-driven approach is highly amenable
to parallelization, and the results in this paper only for
single-threaded performance. Exploring scalability with
increased thread count would further show the strength of
our technique.
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