
1

ADAPT: The Agent Development and
Prototyping Testbed

Alexander Shoulson, Nathan Marshak, Mubbasir Kapadia, and Norman I. Badler

Abstract—We present ADAPT, a flexible platform for designing and authoring functional, purposeful human characters in a rich

virtual environment. Our framework incorporates character animation, navigation, and behavior with modular interchangeable

components to produce narrative scenes. The animation system provides locomotion, reaching, gaze tracking, gesturing,

sitting, and reactions to external physical forces, and can easily be extended with more functionality due to a decoupled,

modular structure. The navigation component allows characters to maneuver through a complex environment with predictive

steering for dynamic obstacle avoidance. Finally, our behavior framework allows a user to fully leverage a character’s animation

and navigation capabilities when authoring both individual decision-making and complex interactions between actors using a

centralized, event-driven model.

✦

1 INTRODUCTION

Animating interacting virtual humans in real-time is a
complex undertaking, requiring the solution to tightly
coupled problems such as steering, path-finding, full-
body character animation (e.g. locomotion, gaze track-
ing, and reaching), and behavior authoring. This com-
plexity is amplified as we increase the number and
sophistication of characters in the environment. Nu-
merous solutions for character animation, navigation,
and behavior design exist, but these solutions are
often tailored to specific applications, making integra-
tion between systems arduous. Integrating multiple
controllers requires a deep understanding of each
controller’s design and combinatorial communication
between each other to avoid conflicts that lead to
motion artifacts. This is further exacerbated when us-
ing hybrid control architectures (e.g., motion capture
data, inverse kinematics, physically based animation)
in a single system. Monolithic, feature-rich character
animation systems do not commonly support modu-
lar access to only a subset of their capabilities, while
simpler systems lack control fidelity. Realistically, no
sub-task of character control has a “perfect” solution.
An ideal character animation system would allow
a designer to choose between preferable techniques,
leveraging the wealth of established systems already
produced by the character animation research com-
munity and interface with robust frameworks for
behavior and navigation.

We present a modular system that allows for the
seamless integration of multiple character animation

• All authors are with the Department of Computer and Information
Science, University of Pennsylvania, Philadelphia, PA, 19104.

• A. Shoulson: ashoulson@gmail.com
• N. Marshak: nmarshak@seas.upenn.edu
• M. Kapadia: mubbasir.kapadia@gmail.com
• N. Badler: badler@seas.upenn.edu

controllers on the same model without requiring any
controller to drastically change or accommodate any
other. Rather than tightly coupling a fixed set of char-
acter controllers, ADAPT uses a system for blending
arbitrary poses in a user-authorable dataflow pipeline.
Our system combines these animation controllers with
an interface for path-finding and steering, as well
as a comprehensive behavior authoring structure for
authoring both individual decision-making and com-
plex interactions between groups of characters. Our
platform generalizes to allow the addition of new
character controllers and behavior routines with mini-
mal integration effort. New control capabilities can be
easily integrated into ADAPT without being aware of,
or requiring any changes in exisiting controllers. Our
system provides a platform for experimentation in
character animation, navigation, and behavior author-
ing. We allow researchers to rapidly iterate on charac-
ter controller designs with visual feedback, compare
their results with other established systems on the
same model, and use features from other packages to
provide the functionality they lack without the need
to deeply integrate or reinvent known techniques.

This paper makes the following contributions:

• An extensible, scalable platform for animating
crowds of autonomous virtual characters in so-
phisticated 3D virtual worlds.

• Automatic integration of diverse controllers, facil-
itating data-driven, physically based, or IK based
solutions to simultaneously operate on overlap-
ping subsets of the character’s body without the
need for any conflict resolution.

• A graphical, hierarchical behavior authoring sys-
tem empowering authors to design and orches-
trate fine-grained character movements, as well
as complex, coordinated, and dynamic multi-
character interactions.

2

Deliverable. We provide ADAPT: an open-source li-
brary that comines a suite of modular character con-
trollers including data-driven locomotion, procedural
reaching, gesturing, and physical reactions, with inte-
grated navigation, and event-centric behavior author-
ing for multi-actor interactions to create an extensible
end-to-end crowd authoring tool for research.

2 RELATED WORK

There exists a wealth of research [1], [2], [3] that
separately addresses the problems of character
animation, steering and path-finding, and behavior
authoring, with many open challenges [4] that need
to be addressed in an effort to arrive at a common
standard for simulating autonomous virtual humans
for the next generation of interactive virtual world
applications.

Character Animation. Data-driven approaches [5],
[6] use motion-capture data to animate a virtual
character. Motion clips can be manipulated and
concatenated by using warping [7], blending [8],
[9], layering [10], or planning [11], [12] to enforce
parametric constraints on recorded actions. Interactive
control of virtual characters can be achieved by
searching through motion clip samples for desired
motion as an unsupervised process [13], or by
extracting descriptive parameters from motion
data [14]. Procedural methods are used to solve
specific tasks such as reaching, and can leverage
empirical data [15], example motions [16], or
hierarchical inverse kinematics [17] for more natural
movement. Physically-based approaches [18], [19]
derive controllers to simulate character movement in
a dynamic environment. We refer to Pettré et. al. [20]
for a more extensive summary of work in these areas.

Steering and Path-finding. For navigation, the en-
vironment itself is often described and annotated
as a reduction of the displayed geometry to be
used in path planning. Probabilistic roadmaps super-
impose a stochastic connectivity structure between
nodes placed in the maneuverable space [21]. Nav-
igation meshes [22] provide a triangulated surface
upon which agents can freely maneuver. Potential
Fields [23] generate a global field for the entire land-
scape where the potential gradient is contingent upon
the presence of obstacles and distance to goal, but is
prone to local minima. Dynamic potential fields [24]
have been used to integrate global navigation with
moving obstacles and people, efficiently solving the
motion of large crowds without the need for explicit
collision avoidance.

Steering techniques use reactive behaviors [25] or
social force models [26], [27] to perform goal-directed
collision avoidance in dynamic environments.
Predictive approaches [28], [29] and local perception

fields [30], [31] enable an agent to avoid others by
anticipating their movements, while more complex
scenarios such as group interactions and deadlocks
are solved using hybrid techniques [32], space-
time planning [33], or by externalizing steering
logic [34]. Data-driven steering [35], [36] focuses on
generating local-space samples from observations of
real people which are used to create databases, or
serve as training data to learn computational models
which are queried to emulate real-human behavior.
Recast [37] provides an open-source solution to
generating navigation meshes from arbitrary world
geometry by voxelizing the space, and the associated
Detour library provides path planning and predictive
steering on the produced mesh. Pelechano et. al. [1]
provide a detailed review of additional work in this
field.

Behavior Authoring. Animating behaviors in
virtual agents has been addressed using multiple
diverse approaches, particularly with respect
to how behaviors are designed and animated.
Early work focuses on imbuing characters with
distinct, recognizable personalities using goals and
priorities [38] along with scripted actions [39]. Our
system makes use of parameterized behavior
trees [40] to coordinate interactions between
multiple characters. The problem of managing a
character’s behavior can be represented with decision
networks [41], cognitive models [42], goal-oriented
action planning [43], [44], or via learning [45]. Very
simple agents can also be simulated on a massive
scale using GPU processing [46]. Recent work [47],
[48], [49] proposes an event-centric authoring
paradigm to facilitate multi-actor interactions with
contextual awareness based on agent type and event
location.

Multi-Solution Platforms. End-to-end commercial
solutions [50], [51] combine multiple diverse character
control modules to accomplish simultaneous tasks
on the same character, incorporting navigation,
behavior, and/or robust character animation.
SteerSuite [52] is an open-source platform for
developing and evaluating steering algorithms.
SmartBody [53] is an open-source system that
combines steering, locomotion, gaze tracking,
and reaching. These tasks are accomplished with 15
controllers working in unison to share control of parts
of the body. SmartBody’s controllers are hierarchically
managed [54] where multiple animations, such as
gestures, are displayed on a virtual character using
a scheduler that divides actions into phases and
blends those phases by interpolation. The controllers
must either directly communicate and coordinate,
or fix cases where their controlled regions of the
body overlap and overwrite one another, making
the addition of a new controller a process that

3

affects several other software components. Our
platform shares some qualities with SmartBody, but
also differs in several fundamental ways. While
we do provide a number of character controllers
for animating a virtual human, our work focuses
more on enabling high-level behavioral control of
multiple interacting characters, the modularity of
these character controllers, and the ease with which
a user can introduce a new animation repertoire to
the system without disturbing the other controllers
already in place.

3 FRAMEWORK

������� ��	
�������

��������

���������
���	�����

�

���������	
��

��
�� �������
��

����������	

�������

����

��������

�������	
�
�����������

�����������

Fig. 1. Overview of ADAPT framework.

ADAPT operates at multiple layers with inter-
changeable, lightweight components, and minimal
communication between modules. The animation
system performs control tasks such as locomotion,
gaze tracking, and reaching as independent modules,
called choreographers, that can share parts of the
same character’s body without explicitly communi-
cating or negotiating with one another. These mod-
ules are managed by a coordinator, which acts as a
central point of contact for manipulating the virtual
character’s pose in real-time. The navigation system
performs path-finding with predictive steering and
we provide a common interface to allow users to
replace the underlying navigation library without af-
fecting the functionality of the rest of the framework.
The behavior level is split into two tiers. Individual
behaviors are attached to each character and ma-
nipulate that character using the behavior interface,
while a centralized control structure orchestrates the
behavior of multiple interacting characters in real-
time. The ultimate product of our system is a pose

for each character at an appropriate position in the
environment, produced by the animation coordinator
and applied to a rendered virtual character in the
scene each frame. Figure 1 provides an illustration
of the framework from an architectural integration
perspective (the framework appears more hierarchical
from a behavior control perspective, as illustrated in
Figure 6).

3.1 Full-Body Character Control

We divide the problem of character animation into a
series of isolated, modular components called choreog-
raphers attached to each character. Each choreographer
operates on a shadow, which is an invisible clone of
the character skeleton, and has unmitigated control
to manipulate the skeletal joints of its shadow. Each
frame, a choreographer produces an output pose con-
sisting of a snapshot of the position and orientation of
each of the joints in its private shadow. A coordinator
receives the shadow poses from each choreographer
and performs a weighted blend to produce a final
pose that is applied to the display model for that
frame. Since each choreographer has its own model to
manipulate without interruption, choreographers do
not need to communicate with one another in order
to share control of the body or prevent overwriting
one another. This allows a single structure, the coor-
dinator, to manage the indirect interactions between
choreographers using a simple, straightforward, and
highly authorable process centered around blending
the shadows produced by each choreographer. This
system is discussed in more detail in Section 4.

3.2 Steering and Path-finding

We use a navigation mesh approach for steering and
path-finding with dynamic obstacle avoidance. Each
display model is controlled by a point-mass system,
which sets the root positions (usually the hips) of the
display model and each shadow every frame. Char-
acter choreographers do not directly communicate
with the navigation layer. Instead, choreographers are
made aware of the position and velocity of the charac-
ter’s root, and will react to that movement on a frame-
by-frame basis. A character’s orientation can follow
several different rules, such as facing forward while
walking, or facing in an arbitrary direction, and we
handle this functionality outside of the navigation sys-
tem itself. ADAPT supports both the Unity3D built-in
navigation system and the Recast/Detour library [37]
for path-finding and predictive goal-directed collision
avoidance, and users can supplement their own pre-
ferred solution.

3.3 Behavior

ADAPT accommodates varying degrees of behavior
control for its virtual characters by providing a di-
verse set of choreographers and navigation capabili-
ties. Each character has capabilities like ReachFor(),

4

GoTo(), and GazeAt() that take straightforward
parameters like positions in space and send messages
to that character’s navigation and animation compo-
nents. To invoke these capabilities, we use Parame-
terized Behavior Trees (PBTs) [40], which present a
method for authoring character behaviors that em-
phasizes simplicity without sacrificing expressiveness.
Having a single, flat interface for a character’s action
repertoire simplifies the task of behavior authoring,
with well-described and defined tasks that a character
can perform. One advantage of the PBT formalism is
that they accommodate authoring behavior for multi-
ple actors in one centralized structure. For example, a
conversation between two characters can be designed
in a single data structure that dispatches commands
to both characters to take turns playing sounds or
gestural animations. For very specific coordination of
characters, this approach can be preferable over tradi-
tional behavior models where characters are authored
in isolation and interactions between characters are
designed in terms of stimuli and responses to triggers.
The behavior system is discussed in more detail in
section 5.

4 SHADOWS IN FULL-BODY CHARACTER

ANIMATION

General character controllers animate a virtual charac-
ter using pre-recorded motions, or procedurally with
physical models or inverse kinematics. We address
the problem of coordination between these controllers
by allocating each character controller its own private
character model, a replica of the skeleton or a subset
of the skeleton of the character being controlled. Our
modular controllers, called choreographers, act ex-
actly the same way as traditional character controllers,
but do so on private copies of the actual rendered
character model. These skeleton clones (shadows),
match the skeletal hierarchy, bone lengths, and initial
orientations of the final rendered character (display
model), but have no visual component in the scene.
Figure 2 illustrates a two-step blend process. First we
combine the pose of the locomotion choreographer
(green, full-body) during a walk cycle with the gesture
choreographer (blue, upper-body) playing a waving
animation, and then we apply the arm of the reaching
choreographer (red, upper-body) full blend weight,
safely overwriting the previous step for the joints of
the left arm. The partial blend is represented with
a mix of colors in the RGB space. Blend ordering is
discussed in greater detail in Section 4.2.

Character animation has two interleaving steps.
First, each choreographer manipulates its personal
shadow and outputs a snapshot (called a shadow
pose) describing the position and orientation of that
shadow’s joints at that time step. Then, we use a
centralized controller to blend the shadow pose snap-
shots into a final pose for the rendered character.

For clarity, note that “shadow” refers to the invisible
skeleton allocated to each choreographer to manipu-
late, while a “shadow pose” is a serialized snapshot
containing the joint positions and orientations for a
shadow at a particular point in time.

������� ���	
����	�������

���������	
������������

����������
��

�����������
���
��

Fig. 2. Blending multiple character shadows to pro-

duce a final output skeleton pose.

4.1 Choreographers

The shadow pose of a character at time t is given by
Pt ∈ R

4×|J|. where Pj
t where is the configuration of

the jth joint at time t. A choreographer is a function
C(Pt) −→ Pt+1 which produces the next pose by
changing the configuration of the shadow joints for
that time step. Using these definitions, we define two
classes of choreographers:

Generators. Generating choreographers produce their
own shadow pose each frame, requiring no external
pose data to do so. Each frame, the input shadow
pose Pt for a generator C is the pose Pt−1 generated
by that same choreographer in the previous frame.
For example, a sitting choreographer requires no
external input or data from other choreographers
in order to play the animations for a character
sitting and standing, and so its shadow’s pose is
left untouched between frames. This is the default
configuration for a choreographer.

Transformers. Transforming choreographers expect
an input shadow pose, to which they apply an offset.
Each frame, the input shadow pose Pt to a transformer
C is an external shadow pose P′

t+1 from another
choreographer C ′, computed for that frame. The co-
ordinator sets its shadow’s pose to P′

t+1 and applies
an offset to the given pose during its execution,
to produce a new pose Pt+1. For example, before
executing, the reach choreographer’s shadow is set
to the output pose of a previously-updated choreog-
rapher’s shadow (say, the locomotion choreographer
with swinging arms and torso movement). The reach
choreographer then solves the reach position from
the base of the arm based on the torso position it

5

was given, and overwrites its shadow’s arm and
wrist joints to produce a new pose. This allows the
reach choreographer to accommodate multiple torso
configurations without the choreographers directly
communicating or even being fully aware of one
another. A transforming choreographer can receive an
input pose, or blend of input poses, from any other
choreographer(s).

4.2 The Coordinator

During runtime, our system produces a pose for the
display model each frame, given the character chore-
ographers available. This is a task overseen by the
coordinator. The coordinator is responsible for main-
taining each choreographer, organizing the sequence
in which each choreographer performs its computa-
tion each frame, and reconciling the shadow poses
that each choreographer produces. The coordinator’s
final product each frame is a sequence of weighted
blends of each active choreographer’s shadow pose.
We compute this product using the pose dataflow graph,
which dictates the order of updates and the flow of
shadow poses between choreographers. Generators
pass data to transformers, which can then pass their
data to other transformers, until a final shadow pose
is produced, blended with others, and applied to the
display model.

Blending is accomplished at certain points in the
pose dataflow graph denoted by blend nodes, which
take two or more input shadows and produce a
weighted blend of their transforms. If the weights
sum to a value greater than 1, they are automatically
normalized.

B({(Pi, wi) : i = 1..n)}) −→ P′ (1)

Designing a dataflow graph is a straightforward
process of dictating which nodes pass their output to
which other nodes in the pipeline, and the graph can
be modified with minimal effort. The dataflow graph
for a character is specified by the user during the
authoring process. The weights involved in blending
are bound to edges in the graph and then controlled
at runtime by commands from the behavior system.
The order of the pose dataflow graph roughly dic-
tates the priority of choreographers over one another.
Choreographers closer to the final output node in the
graph have the authority to overwrite poses produced
earlier in the graph, unless bypassed by the blending
system. We generally design the graph so that chore-
ographers controlling more parts of the body precede
those controlling fewer.

Blended poses are calculated on a per-joint basis us-
ing each joint’s position vector and orientation quater-
nion. The blend function produces a new shadow
pose that can be passed to other transformers, or
applied to the display model’s skeleton. Taking a lin-
ear weighted average of vectors is a solved problem,
but such is not the case with the problem of quickly

averaging n > 2 weighted quaternions. We discuss the
techniques with which we experimented, and the final
calculation method we decided to use in Appendix A
(supplemental). In addition, Feng et. al. [55] provide a
detailed review of more sophisticated motion blend-
ing techniques than our linear approach.

Figure 3 illustrates a sample dataflow graph. Three
generating choreographers (blue) begin the pipeline.
The gesture choreographer affects only the upper
body, with no skeleton information for the lower body.
Increasing the value of the gesture weight wg places
this choreographer in control of the torso, head, and
arms. The sitting and locomotion choreographers can
affect the entire body, and the user controls them
by raising and lowering the sitting weight ws. If wg

is set to 1 − ǫ, the upper body will be overridden
by the gesture choreographer, but since the gesture
choreographer’s shadow has no legs, the lower body
will still be controlled by either the sitting or loco-
motion choreographer as determined by the value
of ws. The first red blend node combines the three
produced poses and sends the weighted average pose
to the gaze tracker. The gaze tracking choreographer
receives an input shadow pose, and applies an offset
to the upper body to achieve a desired gaze target and
produce a new shadow pose. The second blend node
can bypass the gaze tracker if the gaze weight wz is
set to a low value (ǫ). The reach and physical reaction
choreographers receive input and can be bypassed in
a similar way. The final result is sent and applied to
joints of the display model, and rendered on screen.

4.3 Using Choreographers and the Coordinator

The dataflow graph, once designed, does not need to
be changed during runtime or to accommodate ad-
ditional characters. Instead, the coordinator provides
a simple interface comprising messages and exposed
blend weights for character animation. Messages are
commands (e.g., SitDown()) relayed by the coordi-
nator to its choreographers, making the coordinator
a single point of contact for character control, as
illustrated in Figure 1. In addition to messages, the
weights used for blending the choreographers at each
blend node in the dataflow graph are exposed, allow-
ing external systems to dictate which choreographer
is active and in control of the body (or a segment of
the body) at a given point of time.

As an example, when the coordinator receives a
gesture command, it raises wg (in Figure 3), which
takes control of the arms and torso away from
both the locomotion and sitting choreographers and
stops the walking animation’s arm swing. Given
sole control, the gesture choreographer plays an
animation on the upper body, and then is faded back
out to allow the walking arm-swing to resume. Since
the gesture choreographer’s shadow skeleton has no
leg bones, it never overrides the sitting or locomotion

6

��������	
���

������

�
�
�
��
�

�������

������������� ��������

��

����� 1���

��

1���

��

�1�������

�������

1���

��

Fig. 3. A sample dataflow graph we designed for evaluating ADAPT. Generating choreographers appear in blue,

transmuting choreographers appear in green, and blend nodes appear as red crosses. The final display model

node is highlighted in orange. The sitting weight ws, gesture weight wg, gaze weight wz, reach weight wr, and

physical reaction weight wp are all values between some very small positive ǫ and 1 − ǫ.

choreographer, so the lower body will still be sitting
or walking while the upper body gesture plays. All
weight changes are smoothed over several frames to
prevent jitter and transition artifacts. The division of
roles between the coordinator and choreographers
centralizes character control to a single externally-
facing character interface, while leaving the details
of character animation distributed across modular
components are isolated from one another and can
be easily updated or replaced.

Shadow Pose Post-Processing. Since shadow poses
are serializations of a character’s joints, additional
nodes can be added to the pose dataflow graph to
manipulate shadows as they are transferred between
choreographer nodes or blend nodes. For instance,
special filter nodes can be added to constrain the
body position of a shadow pose, preventing joints
from reaching beyond a comfortable range by
clamping angles, or preventing self-collisions by
using bounding volumes. Nodes can be designed to
broadcast messages based on a shadow’s pose, such
as notifying the behavior system when a shadow is
in an unbalanced position, or has extended its reach
to a certain distance. The interface for adding new
kinds of nodes to a pose dataflow graph is highly
extensible. This affords the user another opportunity
to quickly add functionality to a coordinator without
directly modifying any choreographers.

Cross-Choreographer Functionality. Conflicts be-
tween choreographers are resolved using the inherent
priority of the pose dataflow graph – every trans-
former has the option of overwriting any joint it
receives as input. Choreographers are unaware of
whether or not their output poses are overwritten
later or blended out of the final pose. Unless a particu-
lar choreographer is the last dataflow node to affect all
of the joints it requires, it cannot make any guarantees
about the resulting pose it produces. For example,
the reach choreographer cannot guarantee a successful
reach if its arm joints are partially overwitten by
the gesture choreographer. This is why the reach
controller appears towards the end of the sample

dataflow graph in Figure 3, giving it high overwrite
priority. There are two additional ways to address
priority and guarantees at runtime. First, the message
passing system can be used to tell a choreographer
when it is in full control of a part of the body,
allowing that choreographer to give accurate feedback
or request more control. Second, the pose dataflow
graph can be rearranged dynamically to adjust which
choreographers have priority over one another when
needed. In practice, priority is handled by a few
special cases in the behavior system, but the technique
could be developed further.

4.4 Example Choreographers

ADAPT provides a number of diverse choreographers
for animating a fully articulated, expressive virtual
character. Some of these choreographers were
developed specifically for ADAPT, while others were
off-the-shelf solutions used to highlight the ease of
integration with the shadow framework. ADAPT is
designed to “trick” a well-behaved character control
system into operating on a dedicated shadow model
rather than the display model of the character, and
so the process of converting an off-the-shelf character
control library into a character choreographer
is straightforward. Since shadows replicate the
structure and functionality of a regular character
model, no additional considerations are required once
the choreographer has been allocated a shadow. Note
that the choreographers presented here are largely
baseline examples. The focus of ADAPT is to allow
a user to add additional choreographers, experiment
with new techniques, and easily exchange generic
choreographers with more specialized alternatives.

Locomotion. ADAPT uses a semi-procedural motion-
blending locomotion system for walking and running
released as a C# library with the Unity3D engine [14].
The system takes in animation data, analyzes those
animations, and procedurally blends them according
to the velocity and orientation of the virtual character.
We produced satisfactory results on our test model
using five motion capture animation clips. The

7

user annotates the character model to indicate the
character’s legs and feet, which allows the locomotion
library to use inverse kinematics for foot placement
on uneven surfaces. We extended this library to work
with the ADAPT shadow system, with some small
improvements.

Gaze Tracking. We use a simple IK-based system
for attention control. The user defines a subset of
the upper body joint hierarchy which is controlled
by the gaze tracker, and can additionally specify
joint rotation constraints and delayed reaction speeds
for more realistic results. These parameters can be
defined as functions of the characters velocity or
pose, to produce more varied results. For instance, a
running character may not be permitted to rotate its
torso as far as a character standing still.

Upper Body Gesture Animations. We dedicate a
shadow with just the upper body skeleton to playing
animations such as hand gestures. We can play
motion clips on various parts of the body to blend
animations with other procedural components.

Sitting and Standing. The sitting choreographer
maintains a simple state machine for whether the
character is sitting and standing, and plays the
appropriate transition animations when it receives a
command to change state. This choreographer acts as
an alternative to the locomotion choreographer when
operating on the lower body, but can be smoothly
overridden by choreographers acting on the upper
body, such as the gaze tracker.

Reaching. We implemented a simple reaching control
system based on Cyclic Coordinate Descent (CCD).
We extended the algorithm to dampen the maximum
angular velocity per frame, include rotational
constraints on the joints, and apply relaxation
forces in the iteration step. During each iteration
of CCD (100 per frame), we clamp the rotation
angles to lie within the maximum extension range,
and gently push the joints back towards a desired
“comfortable” angle for the character’s physiology.
These limitations and relaxation forces are based
on an empirical model for reach control based on
human muscle strength [56]. This produces more
realistic reach poses than naı̈ve CCD, and requires
no input data animations. The character can reach
for an arbitrary point in space, or will try to do so if
the point is out of range.

Physical Reaction. By allocating an upper-body
choreographer with a simple ragdoll, we can display
physical reactions to external forces. Once an impact
is detected, we apply the character’s last pose to the
shadow skeleton, and then release the ragdoll and
allow it to buckle in response to the applied force.

By quickly fading in and out of the reeling ragdoll,
we can display a physically plausible response and
create the illusion of recovery without requiring any
springs or actuators on the ragdoll’s joints.

SmartBody Integration. To access its locomotion and
procedural reaching capabilities, we integrated the
ICT SmartBody framework into our platform, using
SmartBody’s Unity interface and some modifications.
Since our model’s skeleton hierarchy differed from
that of the default SmartBody characters, sample an-
imations had to be retargeted to use on our model.
Additionally, our animation interface needed to inter-
act with SmartBody using BML. Since our coordina-
tor is already designed to relay messages from the
behavior system, changing those messages to a BML
format was a straightforward conversion. Overall, the
SmartBody choreographer blends naturally with other
choreographers we have in the ADAPT framework,
though SmartBody has other features that we do
not currently exploit. This process demonstrates the
efficacy of integrating other available libraries and/or
commercial solutions.

4.5 Automatic Coordinator Derivation

Since a coordinator may be responsible for any num-
ber of choreographers, each affecting an arbitrary
number of contiguous joints, it is important for a
generation system to understand the relationships
between joints and the layering nature of ADAPT
choreographers. We have designed a simple heuristic
by which the hierarchical order of choreographer
updates can be automatically generated. The result
of our analysis is an ordering of choreographers to
use in conjunction with two-input blend nodes for
generating a pose dataflow graph. This is achieved
by starting the graph with choreographers that affect
broader parts of the body, and placing narrower, more
focused choreographers later in the sequence. Since
choreographers deeper in the pose dataflow graph
have higher priority over the parts of the body for
which they’re responsible, we assume that choreog-
raphers that control fewer parts of the body have
a more specialized purpose requiring more explicit
control in the final generated pose. A choreographer
for locomotion might swing the character’s arms as
the model walks, but the target constraints of a reach
choreographer are priortized by placing it later in the
dataflow graph.

For a choreographer C, we compute: (1) its max-
imum depth Cd, defined as the maximal distance
between any joint affected and the root (hips) of the
model and, (2) its coverage Cv which is the number
of joints affected. The specificity of a choreographer
SC = Cd

Cv

is lower for choreographers that affect a high
number of joints close to the hips (torso), and higher
for choreographers that affect a small number of joints

8

farther away from the root, such as by controlling the
extremities. Sorting the choreographers by ascending
order of specificity prioritizes more specialized chore-
ographers, giving them more exclusive access to the
joints they focus on controlling. Figure 4 illustrates the
depth and coverage of four choregraphers, with the
automatically generated pose dataflow graph shown
in Figure 5 (arranging the choreographers left-to-right
by ascending specificity).

Fig. 4. Coverage analysis of four choreographers on a

model with 32 total joints.

����������

�	
���	����� ��	������������

Fig. 5. The automatically generated pose dataflow

graph from a four-choreographer coverage analysis.

This is a simple approach that may not apply to
every combination of choreographers, but provides a
useful first-pass analysis to offer a suggestion to an
author designing a new coordinator for a set of unfa-
miliar choreographers. By design, choreographers are
already aware of the joints they affect on the body,
making computing Cd and Cv possible without any
modification to the ADAPT system. However, other
heuristics with additional information from the chore-
ographers could be designed to capture specificity or
other elements of good dataflow graph design. This
automated technique accelerates the dataflow graph
authoring process, which occurs infrequently enough
to be tweaked by a human author without consuming
prohibitive amounts of time.

5 CHARACTER BEHAVIOR

One of the most fundamental problems in interactive
character animation is converting simple commands
like “reach for that object”, or cooperative directives
like “engage in a conversation” into a series of com-
plicated joint actuations on one or more articulated
bodies. ADAPT accomplishes this task with a hier-
archy of abstractions known as the ADAPT Character

Stack, illustrated in Figure 6. The stack is split into
four main tiers: Behavior, Actor, Body, and Animation.
The higher two levels (“Behavior” and “Actor”) of the
stack are designed for use by comparitively untrained
authors, while lower levels levels offer more fine-grain
control fidelity at the expense of simplicity, and can
be accessed by expert authors to ensure very specific
constraints on the character’s movements.

��������

	
���

���

�����������

�
�
�
��
�
�
�

�
�
�
��
�
�
�

�
�
�
��
�
�
�

�

��������
����������

�����������
���

��
����������

�������

Fig. 6. The ADAPT Character Stack.

Commands from each layer of the stack are filtered,
converted, and distributed to subcomponents, starting
as behavior invocations, translating to messages sent
to the navigation or animation system, and finally
converting into joint angles and blend weights
used for posing the character on a frame-by-frame
basis. Each layer in the character stack provides a
different entry point for technical control over the
character. The “Behavioral” layers offer interfaces for
controlling the character at a high level, suitable for
invocation by behavior trees and Smart Objects [57].

Animation (Navigation and Coordinator). This
layer provides the lowest-level external access to
the character’s animation. A component accessing
this part of the character stack is concerned with
sending messages directly to choreographers (such
as to change the reaching target position), or
modifying blend weights to adjust the influence of a
choreographer.

Body. This layer converts abstract commands like
ReachFor() into a series of messages passed to the
reach choreographer and coordinator to set the reach
target and raise the blend weight for the reaching
pose. The Body layer is created to encapsulate the
pose dataflow graph for a particular character, and
assigns more semantic meaning to the blend weights
for each blend node in the graph. An ADAPT
character’s list of capabilities is discussed in more
detail in Section 5.1.

9

Actor. This layer abstracts commands in the Body
layer. However, unlike the Body layer, the commands
in the Actor layer will keep track of the duration
of a task, and report success or failure. A call to
ReachFor() in the Body layer will return instantly
and begin the reaching process, whereas a call to
ReachFor() in the Actor layer will begin the reach
process and then block until the reach has succeeded
or failed. Commands in the Actor layer are also
designed to respond to a termination signal for
scheduling, as described in Section 6.1.1. This layer of
abstraction is necessary for controlling a character’s
behavior with behavior trees.

Behavior. This layer contains more sophisticated,
contextual commands comprising multiple sequential
calls to the Actor layer, such as playing a series of
gestures to convey approval in a conversation. The
Behavior layer also contains the character’s personal
behavior tree, and a BehaviorProcess node responsi-
ble for scheduling multi-character actions using the
ADAPT behavior scheduler described in Section 6.1.1.
Unless involved in a multi-actor event, the Behavior
layer is responsible for directing the character’s goals,
and external calls to the Behavior layer are usually
concerned with suspending or re-activating a charac-
ter’s autonomy.

5.1 Body Capabilities

The navigation and shadow-based character anima-
tion system provides a number of capabilities, enu-
merated below. Passing an empty target position will
end that task, stopping the gaze, reach, or navigation.
The locomotion choreographer will automatically re-
act to the character’s velocity, and move the legs and
arms to compensate if the character should be turn-
ing, walking, side-stepping, backpedaling, or running.
Note that only sitting and navigating are mutually
exclusive. All other commands can be performed
simultaneously without visual artifacts.

Commands Description
ReachFor(target) Activates the reaching choreogra-

pher, and reaches towards a posi-
tion.

GazeAt(target) Activates the gaze choreographer,
and gazes at a position.

GoTo(target) Begins navigating the character to a
position.

Gesture(name) Activates the gesture choreographer
for the duration of an animation.

SitDown() Activates the sitting choreographer
and sits the character down.

StandUp() Stands the character up and then
disables the sitting choreographer.

Adding a New Body Capability. Adding a new
behavior capability with a motion component, such
as climbing or throwing an object, requires a chore-
ographer capable of producing that motion. Since

choreographers operate on their own private copies
of the character’s skeleton, they can be designed in
isolation and integrated into the system separately.
Once the choreographer is developed, the process
of adding a new behavior capability to take advan-
tage of the choreographer requires two steps. First,
the choreographer must be authored into the pose
dataflow graph, either as a generating or transforming
node, with appropriate connections to blend nodes
and other choreographers. Next, the behavior inter-
face can be extended with new functions that ei-
ther modify the blend weights relevant to the new
choreographer, and/or pass messages to that chore-
ographer by relaying them through the coordinator.
The sophistication of character choreographers varies,
but ADAPT is specifically designed for integrating
new choreographers into the character behavior and
animation pipeline.

6 CHARACTER INTERACTIONS

Using a character’s body capability repertoire, we
can produce more sophisticated actions as charac-
ters interact with one another and the environment.
Authoring complex behaviors requires an expressive
and flexible behavior authoring structure granting the
behavior designer reasonable control over the char-
acters in the environment. To accomplish this task,
we use parameterized behavior trees (PBTs). PBTs
are an extension of the behavior tree formalism that
allow behavior trees to manage and transmit data
within their hierarchical structure without the use of
a blackboard.

6.1 Characters Interacting with Each Other

A useful advantage of PBTs is the fact that they
can simultaneously control multiple characters in a
single reusable structure called an event. Events are
pre-authored behavior trees that sit uninitialized in a
library until invoked at runtime. When instantiated,
an event takes one or more actors as parameters, and
is temporarily granted exclusive control over those
participants. The event treats these characters as limbs
of the same entity, dispatching commands for agents
to navigate towards and interact with one another.
Once the event ends, control is yielded to the char-
acters’ own individual decision processes, which are
also designed using PBTs. A conversation event can
be authored as a simple sequential and/or stochastic
sequence of commands directing agents to face one
another and take turns playing gesture animations.

Figure 7 illustrates a sample behavior tree event
conducting two characters through a conversation
using our action repertoire. The characters, a1 and a2,
are passed as parameters to the tree, along with the
meeting position. Using our action interface, the tree
directs the two characters to approach one another

10

GoTo(MeetingPoint)

GoTo(MeetingPoint)

a2

a1

������

Gesture(“G1”)

a1

Gesture(“G2”)

a1

Gesture(“G1”)

a2

Gesture(“G2”)

a2

����

������	�
����

GazeAt(a1)

GazeAt(a2)

a1

����	���
����

Conversation(a1 : Actor, a2 : Actor, MeetingPoint : Position)

a2

������

Fig. 7. A simple conversation PBT controlling two char-

acters, a1 and a1, with a MeetingPoint parameter.

at the specified point, face each other, and alter-
natively play randomly selected gesture animations.
The gesturing phase lasts for an arbitrary duration
determined by the configuration of the loop node in
the tree. After the loop node terminates, the event
ends, reporting success, and the two characters return
to their autonomous behaviors. Note that this tree
can be reused at any time for any two characters
and any two locations in the environment in which
to stand. This framework can be exploited to create
highly sophisticated interactions involving crowds of
agents, and its graphical, hierarchical nature makes
subtrees easier to describe and encapsulate.

6.1.1 The ADAPT Behavior Scheduler

ADAPT provides a fully-featured scheduler
for managing and updating both the personal
behavior trees belonging to each character and
higher-level event behavior trees encompassing
multiple characters. Four basic principles in behavior
design enable the scheduler to work effectively for
orchestrating the behavior in an ADAPT environment.

PBT Clock. PBTs in ADAPT operate on periodic clock
ticks, where each tree refreshes itself, evaluates its
current state, sends messages through the character
stack, and transitions to its next node if necessary.
The ADAPT scheduler keeps track of all of the
active trees in the environment, both personal trees
for individual characters, and event trees for multi-
character interactions, and ticks them 30 times per
second.

Character Suspension. Each character in ADAPT
owns a “BehaviorProcess” object in its behavior layer,
which maintains that character’s state with regards
to autonomy. A character will not receive ticks to its
personal tree if it has been suspended and placed
under the control of a multi-character event tree.

Behavior Termination. PBTs in ADAPT are designed
to respond to a termination signal. Termination
signals can come at any time, and instruct a tree to
interrupt its current action and end. The result of a
termination signal can last multiple PBT clock ticks,
so that poses such as reaching can be smoothly faded
out before the tree reports that it has completed
termination.

Event Priority. Multi-character event trees are
assigned a priority value, where all character
personal trees have minimal priority. When a
character receives an event with a priority higher
than its current tree, the scheduler terminates the
current tree and suspends the character until all
involved characters are ready. The event then begins
ticking and dispatching commands to them. Once the
event terminates, the characters return from being
suspended.

These four concepts allow very direct control over
groups of characters in the environment, with smooth
transitions between drastically different tasks. Since
trees can be cleanly terminated at any point in their
execution, groups of characters involved in wander-
ing or conversing with one another in an environment
could very quickly activate a new, higher priority
event tree to respond quickly to an event such as a
loud noise or a fire. Each tree operates as its own
cooperatively multithreaded process with no direct
inter-communication. Since a character is only ever
controlled by one tree at a time, this presents an
opportunity for parallelization in future work.

6.2 Characters Interacting with the Environment

Using the same four principles for the behavior sched-
uler allows us to more easily implement smart objects
into ADAPT to allow characters to interact with the
environment. A smart object’s affordances can be
encoded sequentially in a manner similar to that of
a behavior tree. Smart objects receive ticks from the
scheduler clock, and will block until reporting either
success or failure. For example, when a character
wants to sit in a chair, the behavior tree invokes
the chair’s “sit” affordance with the character as a
parameter. From that point, the tree will divert any
ticks it receives from the scheduler clock to the smart
object, which temporarily takes control of the char-
acter and directs it to approach and sit properly on
the chair. Once the smart object chair determines that
the character has succeeded in sitting down, it will
report success to the behavior tree responsible for
the character’s behavior, so that the tree can move
on to other actions. Parallel nodes in the tree can be
used to synchronize actions, allowing a character to
gesture or gaze at a target while still approaching and
sitting. Smart objects represent the primary means of

11

interaction with the environment, and are useful for
a wide array of other interaction tasks.

Figure 8 illustrates a simple state machine example
for a chair smart object that instructs a character to
approach and sit on it in the proper orientation.

������������	��
������

�������

����		���
������	��

������� �������

����

�������

�������

�������	����	� ����	�����������	���� ��	������

����	��	�������������

�� �����	�������	�����	��!�"��

Fig. 8. The state machine for a chair smart object’s

“sit” affordance. The object transitions between states

after evaluating predicates on the state of the charac-

ter, periodically sending commands to the actor and

reporting a status (running, success, or failed) to the

behavior tree controlling the affordance.

7 RESULTS

We demonstrate the ADAPT features in isolation, as
well as a final scene showcasing animation, navi-
gation, and behavior working together to produce
a narrative sequence (Figure 1). We can create a
character that can simultaneously reach, gaze, walk,
and play gesture animations, as well as activate other
functionality like sitting and physically reacting to
external forces. ADAPT characters can intelligently
maneuver an environment avoiding both static and
dynamic obstacles. These features are used for author-
ing sequences like exchanging objects between actors,
wandering while talking on a phone, and multiple
characters holding a conversation.

7.1 Choreographer Extensibility

Adding a Kinect Choreographer. We created an
additional choreographer to interface with the
Microsoft Kinect and control a character with gesture
input. We allocated a choreographer to the input
of the Kinect, applying the captured skeleton from
the Kinect’s framework directly to the joints of
the dedicated shadow. This is demonstrated in
Figure 9(a). Blending this choreographer with others
allowed us to expand the character’s agency in the
world. When the character stands idle, we give full
upper and lower body control to the Kinect input.
When the user wishes to make the character move,
we blend the legs of the locomotion choreographer
on top of the Kinect input, displaying appropriate
walking or running animations and foot placement
while still giving the Kinect control of the upper body.
This allows a user to retain correct leg animation
when exploring a virtual environment larger than

the Kinect’s capture area. The process of interfacing
the Kinect skeleton input with a new choreographer
took minimal effort.

Jump Choreographer. Figure 9(b) illustrates the
integration of a simple jump choreographer which
uses a pre-recorded motion clip that is blended
onto the final display model when a jump is
triggered. Jump motion is applied to the whole body
and supersedes the locomotion choreographer when
active. The root motion during a jump is procedurally
computed to make the jump choreographer robust
to varied environment configurations with differing
jump distances.

Locomotion with Footstep Constraints. The previ-
ously described locomotion controller precomputes
parameters such as root displacement and speed for
motions in the database which is used for blending
between motions to follow a given velocity command.
In order to facilitate control policies with footstep-
level precision [33], we extend the parameter space to
include the relative transform of the current support
foot based on the work in [58]. To offset the problem of
insufficient coverage in the motion database, we use
IK on the legs to enforce foot constraints. This allows
our animated characters to naturally place their feet
to solve particularly challenging locomotion scenarios
as illustrated in Figure 9(d).

7.2 Computational Performance

�

��

��

��

���

���

���

����

����

��	�

��	�

� � �� �� �� ��� ��� ���

�
�
�
�
��
��
	�

�
�
�
�
��
�
��

��������	�
����

����������

	��
�����

��
������

Fig. 10. Update frequency for the character animation

and navigation components in ADAPT.

ADAPT supports approximately 150 agents with
full fidelity at interactive frame rates. Figure 10 dis-
plays the update frequency for the animation and
navigation system (for our scenes, the computational
cost of behavior was negligible). This varies with
the complexity of the choreographers active on each
character. The ADAPT animation interface and the
pose dataflow graph has little impact on performance,

12

Fig. 9. (a) Controlling a character in ADAPT and physically interacting with the environment using the Kinect. (b)

A time-lapse view of the jump choreographer avoiding a moving obstacle. (c) Solving a challenging locomotion

problem with footstep-level precision.

and the blend operation is linear in number of chore-
ographers. Each joint in a shadow is serialized with 7
4-byte float values, making each shadow 28 bytes per
joint. For 26 bones, the shadow of a full-body char-
acter choreographer has a memory footprint of 728
bytes. For 200 characters, the maximum memory over-
head due to shadows is less than 1 MB. In practice,
however, most choreographers use reduced skeletons
with only a limb or just the upper body, making the
actual footprint much lower for an average character.

Separating character animation into discrete mod-
ules and blending their produced poses as a post-
processing effect also affords the system unique
advantages with respect to dynamic level-of-detail
(LOD) control. Since no choreographer is architec-
turally dependent on any other, controllers can be
activated and deactivated arbitrarily. Deactivated con-
trollers can be smoothly faded out of control at any
time, and their nodes in the dataflow graph can be
bypassed using the already-available blend weights.
This drastically reduces the number of computed
poses, and conserves processing resources needed
for background characters that do not require a full
repertoire of actions. The system retains the ability
to re-activate those choreographers at any time if a
specific complex action is suddenly required. Since
choreographers are not tightly coupled, no choreogra-
pher needs to be made aware of the fact that any other
choreographer has been disabled for LOD purposes.

7.3 Multi-Actor Simulations

The concluding narrative sequence shown in the
video is simulated using several reusable authored
events, which are activated using spatial and tem-
poral triggers. Events once active, can be success-
fully executed or interrupted by other triggers due
to dynamic events or user input. This produces a
rich interactive simulation where virtual characters
can be directed with a high degree of fidelity, without
sacrificing autonomy or burdening the user with au-
thoring complexity. Trigger management is handled
by the ADAPT Behavior Scheduler described in Sec-
tion 6.1.1. For our demo, most triggers were scheduled
temporally, and can be replaced by a more dynamic

event dispatcher. In the beginning, an event ensues
where a character is given a phone and converses
while wandering through the scene, gazing at objects
of interest. The phone conversation event successfully
completes and the character hands back the phone.
Spotting nearby friends invokes a conversation, which
is an extension of the event illustrated in Figure 7.
The conversation is interrupted when a ball is thrown
at one of the characters. The culprit flees from the
characters, triggering a chasing event where the group
runs after the child. The chase fails as the child is
able to escape through a crossing crowd of characters,
which are participating in a group event to navigate
to the theater and find a free chair to sit. We illustrate
some of the trees used for this sequence in greater
detail in Appendix B (supplemental).

7.4 Open Source Framework

We have released the software framework as an open
source library. The platform has seen interest from
multiple academic and industrial institutions, and is
already being used for a wide variety of applica-
tions including development of narrative-driven in-
teractive virtual worlds, enabling sound perception
in virtual humans, the use of machine learning for
crowd simulation, high-fidelity character animation,
multi-character navigation, simulating culturally ac-
curate virtual populaces, and the development of
serious games for education and data collection. The
platform can be downloaded as a Unity package at
http://cg.cis.upenn.edu/ADAPT/.

8 CONCLUSIONS

ADAPT is a modular, flexible platform which
provides a comprehensive feature set for animation,
navigation, and behavior tools needed for end-to-
end simulation development. By allowing a user
to independently incorporate a new animation
choreographer or steering system, and make those
components immediately accessible to the behavior
level without modifying other existing systems,
characters can very easily be expanded with new
capabilities and functionality. Our framework

13

enables, for the first time, seamless integration of
diverse, modular, and easily extensible controllers for
animating autonomous virtual humans in complex
3D environments. This system can be used to
orchestrate sophisticated character movements as
well as complex multi-actor interactions for narrative-
driven interactive virtual worlds using a graphical
behavior authoring paradigm. All of this is enabled
by a simple, powerful, and accessible core platform.

Limitations and Complications. Choreographers may
sometimes need to be aware of major state changes in
the character’s pose caused by another choreographer.
For example, we may wish to restrict the degree to
which the character can rotate its torso for gaze track-
ing while the character is running. We accomplish this
using the message broadcast system integrated into
the coordinator. When a character reaches a certain
speed, the locomotion choreographer can broadcast
to all other choreographers that the character is in an
IsRunning state. The gaze tracking choreographer
can receive this message and restrict its maximum
torso rotation accordingly. This allows choreographers
to cooperate without being explicitly aware of one
another, and is a more extensible paradigm than deep
integration of controllers.

Interpolation between arbitrary poses generally
produces smooth results in our system, with the
exception of blends that linearly translate the
position of a character’s feet. This situation arises
with our sitting choreographer, where the placement
of a character’s feet while standing may not coincide
with the foot placement in the transition animation
between standing and sitting. A linear blend here
results in an unrealistic sliding of the foot despite
ground contact. This can be resolved by using
better blending schemes or by using a more robust
locomotion system, as described in Section 7.1.

Future Work. Moving forward, we will continue
to expand the animation and authoring capabilities
supported by ADAPT. In addition to choreographers
described here, we want our platform to provide an
array of options for different kinds of motor skills,
including climbing, and carrying objects with weight,
as well as provide multi-modal sensory capabilities
such as agent hearing. We are also interested in
improving the virtual environment and developing
extensible ways for characters to interact with the
environment on a behavioral level. To ease the author-
ing burden, we have developed an interface similar
to smart objects for annotating the environment and
describing the ways that characters can interact with
it. We are particularly interested in extending the
ADAPT platform to develop solutions for the auto-
mated scheduling of events to follow global narrative
arcs. All of these improvements will allow us to apply
our platform to other areas research, as ADAPT is

uniquely suited for producing the next generation of
narrative-driven simulations.

ACKNOWLEDGMENTS

We acknowledge Dr. Ari Shapiro and Dr. Ben
Sunshine-Hill for their discussions and contributions
to the ADAPT project. The research reported in this
document was performed in connection with Con-
tract Numbers W911NF-07-1-0216 and W911NF-10-2-
0016 with the U.S. Army Research Laboratory. The
views and conclusions contained in this document are
those of the authors and should not be interpreted
as presenting the official policies or position, either
expressed or implied, of the U.S. Army Research Lab-
oratory, or the U.S. Government unless so designated
by other authorized documents. Citation of manufac-
turers or trade names does not constitute an official
endorsement or approval of the use thereof. The U.S.
Government is authorized to reproduce and distribute
reprints for Government purposes notwithstanding
any copyright notation heron.

REFERENCES

[1] N. Pelechano, J. M. Allbeck, and N. I. Badler, Virtual Crowds:
Methods, Simulation, and Control, ser. Synthesis Lectures on
Computer Graphics and Animation, 2008.

[2] D. Thalmann and S. R. Musse, Crowd Simulation, Second Edition.
Springer, 2013.

[3] M. Kapadia and N. I. Badler, “Navigation and steering for
autonomous virtual humans,” Wiley Interdisciplinary Reviews:
Cognitive Science, 2013.

[4] M. Kapadia, A. Shoulson, C. D. Boatright, P. Huang, F. Du-
rupinar, and N. I. Badler, “What’s next? the new era of
autonomous virtual humans,” in MIG, 2012, pp. 170–181.

[5] L. Kovar, M. Gleicher, and F. Pighin, “Motion graphs,” ser.
SIGGRAPH, 2002, pp. 473–482.

[6] O. Arikan and D. A. Forsyth, “Interactive motion generation
from examples,” ACM TOG, vol. 21, no. 3, pp. 483–490, July
2002.

[7] A. Witkin and Z. Popovic, “Motion warping,” ser. SIGGRAPH,
1995, pp. 105–108.

[8] S. Menardais, F. Multon, R. Kulpa, and B. Arnaldi, “Motion
blending for real-time animation while accounting for the
environment,” ser. CGI, 2004, pp. 156–159.

[9] J. Min and J. Chai, “Motion graphs++: a compact generative
model for semantic motion analysis and synthesis,” ACM
Trans. Graph., vol. 31, no. 6, pp. 153:1–153:12, Nov. 2012.

[10] M. Dontcheva, G. Yngve, and Z. Popović, “Layered acting for
character animation,” ACM Trans. Graph., vol. 22, no. 3, pp.
409–416, July 2003.

[11] A. Shapiro, M. Kallmann, and P. Faloutsos, “Interactive motion
correction and object manipulation,” in Interactive 3D graphics
and games, ser. I3D ’07. ACM, 2007, pp. 137–144.

[12] Y. Huang, M. Mahmudi, and M. Kallmann, “Planning hu-
manlike actions in blending spaces,” in Intelligent Robots and
Systems (IROS), 2011.

[13] J. Lee, J. Chai, P. S. A. Reitsma, J. K. Hodgins, and N. S. Pollard,
“Interactive control of avatars animated with human motion
data,” ACM TOG, vol. 21, no. 3, pp. 491–500, 2002.

[14] R. S. Johansen, “Automated semi-procedural animation for
character locomotion,” Master’s thesis, Aarhus University,
2009.

[15] Y. Liu and N. I. Badler, “Real-time reach planning for animated
characters using hardware acceleration,” ser. CASA, 2003, pp.
86–93.

[16] A. W. Feng, Y. Xu, and A. Shapiro, “An example-based motion
synthesis technique for locomotion and object manipulation,”
ser. I3D, 2012, pp. 95–102.

14

[17] P. Baerlocher and R. Boulic, “An inverse kinematics architec-
ture enforcing an arbitrary number of strict priority levels,”
Vis. Comput., vol. 20, no. 6, pp. 402–417, Aug. 2004.

[18] P. Faloutsos, M. van de Panne, and D. Terzopoulos, “Compos-
able controllers for physics-based character animation,” ser.
ACM SIGGRAPH, 2001, pp. 251–260.

[19] K. Yin, K. Loken, and M. van de Panne, “Simbicon: simple
biped locomotion control,” ACM TOG, vol. 26, no. 3, 2007.

[20] J. Pettré, M. Kallmann, and M. C. Lin, “Motion planning and
autonomy for virtual humans,” in ACM SIGGRAPH classes,
2008, pp. 42:1–42:31.

[21] L. Kavraki, P. Svestka, J.-C. Latombe, and M. Overmars, “Prob-
abilistic roadmaps for path planning in high-dimensional con-
figuration spaces,” IEEE-RAS, vol. 12, pp. 566 –580, 1996.

[22] M. Kallmann, “Shortest paths with arbitrary clearance from
navigation meshes,” in Eurographics/SIGGRAPH SCA, 2010.

[23] C. Warren, “Global path planning using artificial potential
fields,” in IEEE-RAS, 1989, pp. 316–321 vol.1.

[24] A. Treuille, S. Cooper, and Z. Popović, “Continuum crowds,”
in ACM SIGGRAPH, ser. SIGGRAPH ’06, 2006, pp. 1160–1168.

[25] C. Reynolds, “Steering behaviors for autonomous characters,”
1999.

[26] D. Helbing and P. Molnar, “Social force model for pedestrian
dynamics,” PHYSICAL REVIEW E, vol. 51, pp. 42–82, 1995.

[27] N. Pelechano, J. M. Allbeck, and N. I. Badler, “Controlling
individual agents in high-density crowd simulation,” in ACM
SIGGRAPH/Eurographics SCA, 2007, pp. 99–108.

[28] S. Paris, J. Pettr, and S. Donikian, “Pedestrian reactive naviga-
tion for crowd simulation: a predictive approach,” Computer
Graphics Forum, vol. 26, no. 3, pp. 665–674, 2007.

[29] J. van den Berg, M. C. Lin, and D. Manocha, “Reciprocal
velocity obstacles for real-time multi-agent navigation,” in
ICRA. IEEE, 2008, pp. 1928–1935.

[30] M. Kapadia, S. Singh, W. Hewlett, and P. Faloutsos, “Egocen-
tric Affordance Fields in Pedestrian Steering,” in Interactive 3D
graphics and games, ser. I3D ’09. ACM, 2009, pp. 215–223.

[31] M. Kapadia, S. Singh, W. Hewlett, G. Reinman, and P. Falout-
sos, “Parallelized egocentric fields for autonomous naviga-
tion,” The Visual Computer, pp. 1–19.

[32] S. Singh, M. Kapadia, B. Hewlett, G. Reinman, and P. Falout-
sos, “A modular framework for adaptive agent-based steer-
ing,” in ACM I3D, 2011, pp. 141–150.

[33] S. Singh, M. Kapadia, G. Reinman, and P. Faloutsos, “Foot-
step navigation for dynamic crowds,” Computer Animation and
Virtual Worlds, vol. 22, no. 2-3, pp. 151–158, 2011.

[34] M. Schuerman, S. Singh, M. Kapadia, and P. Faloutsos, “Situa-
tion agents: agent-based externalized steering logic,” Comput.
Animat. Virtual Worlds, vol. 21, pp. 267–276, May 2010.

[35] A. Lerner, Y. Chrysanthou, and D. Lischinski, “Crowds by
example,” CGF, vol. 26, no. 3, pp. 655–664, 2007.

[36] K. H. Lee, M. G. Choi, Q. Hong, and J. Lee, “Group behavior
from video: a data-driven approach to crowd simulation,” in
ACM SIGGRAPH/Eurographics SCA, 2007, pp. 109–118.

[37] M. Mononen, “Recast/Detour navigation library,” 2009. [On-
line]. Available: http://code.google.com/p/recastnavigation/

[38] A. B. Loyall, “Believable agents: Building interactive person-
alities,” Ph.D. dissertation, Carnegie Mellon University, 1997.

[39] K. Perlin and A. Goldberg, “Improv: a system for scripting
interactive actors in virtual worlds,” ser. SIGGRAPH, 1996,
pp. 205–216.

[40] A. Shoulson, F. Garcia, M. Jones, R. Mead, and N. I.
Badler, “Parameterizing Behavior Trees,” in Motion in Games.
Springer, 2011, pp. 144–155.

[41] Q. Yu and D. Terzopoulos, “A decision network framework for
the behavioral animation of virtual humans,” ser. SCA, 2007,
pp. 119–128.

[42] M. Fleischman and D. Roy, “Representing intentions in a
cognitive model of language acquisition: Effects of phrase
structure on situated verb learning,” in AAAI ’07, pp. 7–12.

[43] J. Orkin, “Agent architecture considerations for real-time plan-
ning in games,” in Interactive Digital Entertainment Conference.
AAAI Press, 2005, pp. 105–110.

[44] M. Kapadia, S. Singh, G. Reinman, and P. Faloutsos, “A
Behavior-Authoring Framework for Multiactor Simulations,”
IEEE CGA, vol. 31, no. 6, pp. 45 –55, 2011.

[45] W. Li and J. M. Allbeck, “The virtual apprentice,” in IVA, 2012,
pp. 15–27.

[46] U. Erra, B. Frola, and V. Scarano, “BehaveRT: a GPU-based
library for autonomous characters,” in Motion in Games, ser.
MIG’10, 2010, pp. 194–205.

[47] C. Stocker, L. Sun, P. Huang, W. Qin, J. M. Allbeck, and N. I.
Badler, “Smart events and primed agents,” in Intelligent virtual
agents, ser. IVA’10. Springer-Verlag, 2010, pp. 15–27.

[48] A. Shoulson and N. I. Badler, “Event-centric control for back-
ground agents,” in International conference on Interactive Digital
Storytelling, ser. ICIDS, 2011, pp. 193–198.

[49] L. Sun, A. Shoulson, P. Huang, N. Nelson, W. Qin, A. Nenkova,
and N. I. Badler, “Animating synthetic dyadic conversations
with variations based on context and agent attributes,” Com-
put. Animat. Virtual Worlds, vol. 23, no. 1, pp. 17–32, Feb. 2012.

[50] Massive Software Inc., “Massive: Simulating life,” 2010,
www.massivesofware.com.

[51] Autodesk, Inc., “Autodesk gameware - artificial intelligence
middleware for games,” 2012. [Online]. Available:
http://gameware.autodesk.com/

[52] S. Singh, M. Kapadia, P. Faloutsos, and G. Reinman, “An open
framework for developing, evaluating, and sharing steering
algorithms,” in MIG, 2009, pp. 158–169.

[53] A. Shapiro, “Building a character animation system,” ser. MIG,
2011, pp. 98–109.

[54] M. Kallmann and S. Marsella, “Lncs ’05,” 2005, ch. Hierarchical
motion controllers for real-time autonomous virtual humans,
pp. 253–265.

[55] A. W. Feng, Y. Huang, M. Kallmann, and A. Shapiro, “An
analysis of motion blending techniques,” in MIG, 2012.

[56] D. Slonneger, M. Croop, J. Cytryn, J. T. K. Jr., R. Rabbitz,
E. Halpern, and N. I. Badler, “Human model reaching, grasp-
ing, looking and sitting using smart objects international sym-
posium on digital human modeling,” ser. Proc. International
Ergonomic Association Digital Human Modeling, 2011.

[57] M. Kallmann and D. Thalmann, “Direct 3d interaction with
smart objects,” in ACM symposium on Virtual reality software
and technology, ser. VRST ’99, 1999, pp. 124–130.

[58] B. J. H. van Basten, P. W. A. M. Peeters, and A. Egges, “The
step space: example-based footprint-driven motion synthesis,”
CAVW, vol. 21, no. 34, pp. 433–441, May 2010.

Alexander Shoulson is Ph.D. student at
the University of Pennsylvania, supervised
by Norman I. Badler. His research focuses
on interactive narrative, character animation,
and behavior authoring for virtual humans.

Nathan Marshak is a Master’s student in
Computer Graphics and Game Technology
at the University of Pennsylvania. He grad-
uated with a BSE in Computer Science from
the University of Pennsylvania in 2013. His
current interests include animation, control,
and shape deformation.

Mubbasir Kapadia is an Associate Re-
search Scientist at Disney Research Zurich.
His research focuses on the simulation of
functional, purposeful autonomous virtual
humans. Kapadia has a PhD in Computer
Science from the University of California, Los
Angeles.

Norman I. Badler is the Rachleff Professor
of Computer and Information Science at the
University of Pennsylvania. His research in-
volves developing software for human and
group behavior modeling and animation. He
is the founding Director of the SIG Center
for Computer Graphics and the Center for
Human

