
Multi-Domain Real-time Planning in Dynamic Environments
Supplementary Document

Mubbasir Kapadia∗1, Alejandro Beacco†2, Francisco Garcia‡3, Vivek Reddy§1, Nuria Pelechano¶2, and Norman I. Badler‖1

1University of Pennsylvania
2Universitat Politècnica de Catalunya

3University of Massachusetts Amherst

1 Events

Tasks monitor the following events:

START CHANGED: A task receives this event when the start state
changes. This event may be triggered when the agent moves, chang-
ing its current position – or by the propagation of changes through
the task dependency chain. This event triggers an update to account
for the change in start state, requiring plan refinement, and poten-
tially invalidating the current solution if the new start position does
not lie along the path.

GOAL CHANGED: A task receives this event when the desired goal
state changes. This event triggers an update to account for change
in goal and invalidates the current plan. When waypoints along
Π(Σ2) change, it triggers start and goal updates for tasks in Σ3

which are responsible for generating a path between the waypoints.

WORLD CHANGED: Different domains account for world changes
at different levels. The global navigation mesh domain Σ1 which
considers only static immovable geometry does not monitor this
event. The dynamic navigation mesh domain Σ2 keeps track of
the number of dynamic objects in each polygon of its triangulation
which contributes to the cost of the traversal. The grid domain Σ3

accounts for the current position of obstacles and agents in its plan
vicinity. The space-time domain Σ4 monitors for deviation in the
plans of neighboring agents which it accounts for while planning.
Note that event registration for WORLD CHANGED is based on spa-
tial and temporal locality. Tasks monitor this event only for aspects
of the environment that may change the current plan or are con-
tained in the visibility frustum of the agent. This ensures that plan-
ners only consider changes in the environment of interest which
require an update.

TUNNEL CHANGED: Planners can exploit plans in one domain in
order to accelerate searches in another domain. For example, the
path computed in Σ3 can be used to focus and accelerate the search
in Σ4. Tasks with this dependency must monitor other tasks and
repair its own solution when the plan changes. Section ?? describes
the use of tunnel search.

PLAN STATUS CHANGED: The status of the plan is monitored by
the task itself (requiring a change in task priority) and by the task
that it is dependent on. An invalid or sub-optimal solution gives the
task a higher priority while an optimal solution does not require any
further processing. If a task is unable to come up with a solution,
it requires a change in task parameters (e.g. increasing the tunnel
width to increase the search focus) or it means that current prob-
lem definition cannot be solved, requiring a new problem definition
from the task higher up in the task dependency chain.

∗mubbasir@seas.upenn.edu
†abeacco@lsi.upc.edu
‡fmaxgarcia@gmail.com
§vivreddy@seas.upenn.edu
¶npelechano@lsi.upc.edu
‖badler@seas.upenn.edu

2 Algorithmic Details for Planning Task

key(s)1
if g(s) > rhs(s) then2

return [rhs(s) + ε · h(s, sstart); rhs(s)]3
else4

return [g(s) + ·h(s, sstart); g(s)]5

UpdateState(s)6
if (s 6= sgoal) then7

s′ = args′∈pred(s) min(c(s, s′) + g(s′))8
rhs(s) = c(s, s′) + g(s′)9
prev(s) = s′10

if (s ∈ OPEN) remove s from OPEN11
if g(s) 6= rhs(s) then12

if (s /∈ CLOSED) insert s in OPEN with key(s)13
else insert s in INCONS14

Insert s in VISITED15

ComputeOrImprovePath (tmax)16
while (mins∈OPEN(key(s) < key(sstart) ∨ rhs(sstart) 6=17
g(sstart) ∨Π(sstart, sgoal) = NULL) ∧ t < tmax do

s = args∈OPEN min(key(s))18
if (g(s) > rhs(s)) then19

g(s) = rhs(s)20
CLOSED = CLOSED ∪ s21

else22
g(s) =∞23
UpdateState(s)24

foreach s′ ∈ succ(s) do25
UpdateState(s′)26

ExecutePlanTask (tmax)27
Move states from INCONS to OPEN28
CLOSED = NULL29
if START CHANGED then StartChangeUpdate (sc)30
if GOAL CHANGED then GoalChangeUpdate (snew)31
if WORLD CHANGED then32

foreach (obstacle change s→ s′) ObstacleChangeUpdate (s,s′)33
if TUNNEL CHANGED then34

TunnelChangeUpdate (Π
′
(Σld, sstart, sgoal))35

ComputeOrImprovePath (tmax)36
trigger PLAN STATUS CHANGED37

Algorithm 1: AD* Planner used to compute and update paths for
planning tasks T (Σ) in each of the 4 domains.

ExecutePlanTask (Algorithm ?? [28–37]) is invoked each time
the planning task is executed. This function monitors events and
calls the appropriate event handlers, described in Algorithm ??.
Given a maximum amount to deliberate tmax, it refines the plan
and publishes the ε-suboptimal solution using the AD* planning
algorithm [?]. We briefly describe our implementation of the AD*
algorithm and how we handle changes in start, goal, obstacle move-
ment, and tunnel updates, and refer the readers to [?] for more
details.

AD* performs a backward search and maintains a least cost path

StartChangeUpdate (sc)1
if sc /∈ Π(sstart, sgoal) ∧ d(sc,Π(sstart, sgoal)) > tmax then2

ClearPlanData()3
ε = ε04

else5
sstart = sc6
foreach s ∈ OPEN do7

Update key(s)8

GoalChangeUpdate (snew)9
ClearPlanData()10
ε = ε011
sgoal = snew12

ObstacleChangeUpdate (s,s′)13
if s′ ∈ Π(sstart, sgoal) then14

Π(sstart, sgoal) = Π(sstart, sgoal) - s′15
ε = ε016

if pred(s)
⋂
VISITED 6= NULL then UpdateState(s)17

g(s′) =∞18
if s′ ∈ CLOSED then19

foreach s′′ ∈ succ(s′) do20
if s′′ ∈ VISITED then UpdateState(s′′)21

TunnelChangeUpdate (Π(sstart, sgoal))22
foreach s ∈ VISITED do23

if |d(s,Π(sstart, sgoal))| > tw then24
g(s) =∞25
if s ∈ CLOSED then26

foreach s′ ∈ succ(s) do27
if s′ ∈ VISITED then UpdateState(s′)28

else29
ht(s, sstart) = h(s, sstart) + |d(s,Π(sstart, sgoal))|30

Algorithm 2: Event handlers for change in start state, goal state,
environment, and tunnel.

from the goal sgoal to the start sstart by storing the cost esti-
mate g(s) from s to sgoal. However, in dynamic environments,
edge costs in the search graph may constantly change and expanded
nodes may become inconsistent. Hence, a one-step look ahead cost
estimate rhs(s) is introduced [?] to determine node consistency.

rhs(s) =

{
0 if s = sgoal
arg min(c(s, s′) + g(s′)) else

(1)

The priority queue OPEN contains the states that need to be ex-
panded for every plan iteration, with the priority defined using a
lexicographic ordering of a two-tuple key(s), defined for each state.
OPEN contains only the inconsistent states (g(s) 6= rhs(s)) which
need to be updated to become consistent. Nodes are expanded in
increasing priority until there is no state with a key value less than
the start state. A heuristic function h(s, s′) computes an estimate of
the optimal cost between two states, and is used to focus the search
towards sstart.

Instead of processing all inconsistent nodes, only those nodes
whose costs may be inconsistent beyond a certain bound, defined by
the inflation factor ε are expanded. It performs an initial search with
an inflation factor ε0 and is guaranteed to expand each state only
once. An INCONS list keeps track of already expanded nodes that
become inconsistent due to cost changes in neighboring nodes. As-
suming no world changes, ε is decreased iteratively and plan quality
is improved until an optimal solution is reached (ε = 1). Each time
ε is decreased, all states made inconsistent due to change in ε are
moved from INCONS to OPEN with key(s) based on the reduced
inflation factor, and CLOSED is made empty. This improves effi-
ciency since it only expands a state at most once in a given search

and reconsidering the states from the previous search that were in-
consistent allows much of the previous search effort to be reused,
requiring only a minor amount of computation to refine the solu-
tion. ComputeOrImprovePath (Algorithm ?? [16–26]) gives the
routine for computing or refining a path from sstart to sgoal.

When change in edge costs are detected, new inconsistent nodes
are placed into OPEN and node expansion is repeated until a least
cost solution is achieved within the current ε bounds. When the
environment changes substantially, it may not be feasible to repair
the current solution and it is better to increase ε so that a less optimal
solution is reached more quickly.

An increase in edge cost may cause states to become under-
consistent (g(s) < rhs(s)) where states need to be inserted into
OPEN with a key value reflecting the minimum of their old cost and
their new cost. In order to guarantee that under-consistent states
propagate their new costs to their affected neigbhors, their key val-
ues must use uninflated heuristic values. This means that different
key values must be computed for under- and over-consistent states,
as shown in Algorithm ?? [1 – 5]. This key definition allows AD*
to efficiently handle changes in edge costs and changes to inflation
factor.

AD* uses a backward search to handle agent movement along the
plan by recalculating key values to automatically focus the search
repair near the updated agent state. It can handle changes in edge
costs due to obstacle and start movement, and needs to plan from
scratch each time the goal changes. The routines to handle change
in start, goal, and world changes are described below.

StartChangeUpdate. When the start moves along the current plan,
the key values of all states in OPEN are recomputed to re-prioritize
the nodes to be expanded. This focuses processing towards the up-
dated agent state allowing the agent to improve and update its so-
lution path while it is being traversed. When the new start state de-
viates substantially from the path, it is better to plan from scratch.
Alg ?? [1–8] provides the routine to handle start movement.

GoalChangeUpdate. Alg ?? [9–12] clears plan data and resets ε
whenever the goal changes and plans from scratch at the next step.

ObstacleChangeUpdate. Alg ?? [13–21] handles change in obsta-
cles. An obstacle movement from s to s′ results in a free state at
s and an invalidation of the previously valid state s′. Nodes in the
vicinity of the obstacle movement (i.e., successors of s and s′) be-
come inconsistent and may have invalid references to s′, which is
no longer free, requiring them to be updated. If the obstacle move-
ment invalidates the current plan, we reset ε to quickly produce a
valid path at the next step, which can be refined in subsequent iter-
ations.

TunnelChangeUpdate. This routine is used when the planning
task monitors the computed path of another planning task T (Σld)
in a lower-dimensional domain to focus and accelerate its own
searches, as described in Section ??.

3 Performance of Tunnel Search

We evaluate the performance of tunnel-based search on 100 ran-
domly sampled problem definitions (environment configuration,
start and goal state) in the Σ4 with a constraint enforcing the max-
imum Euclidean distance between sstart and sgoal to be 20 grid
units. This corresponds to comparable problem definitions for these
planners in our multi-domain framework. For a given problem in-
stance, we first execute T (Σ3) to generate a spatial path Π(Σ3)
which is used to focus the search in T (Σ4,Π(Σ3)). In addition, we
solve the problem instance without a tunnel constraint to provide a
basis for comparison.

Table ?? provides the number of nodes expanded and the total plan-
ning time for the three planning tasks. The aggregate performance
of using T (Σ3) and T (Σ4,Π(Σ3)) is provided for reference. We
notice that tunnel greatly expedites the search process by expanding
4X fewer nodes, and providing a 3X performance boost on aver-
age. Out of the 100 scenarios, 8 scenarios resulted in the tunnel
search not being able to initially find a solution and had to increase
its tunnel width and replan. Even in these cases, the tunnel search
outperformed T (Σ4). For 3 scenarios, T (Σ4) could not generate a
solution within the maximum time allotment of 100ms. These were
problem instances with a local minima where the search heuristic
alone falsely focused the search down a wrong path but the use of
the tunnel mitigated the need of the exploration of local minima in
the space-time domain.

Planning Task # of nodes Time (ms)

T (Σ3) 47 3.5

T (Σ4,Π(Σ3)) 246 7.3

T (Σ3) + T (Σ4,Π(Σ3)) 293 10.8

T (Σ4) 1041 21.2

Table 1: Performance evaluation of using tunnel based search.

