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Figure 1: Complex scenarios from a representative scenario set Rexp (a)–(d) and example scenarios from over 8, 000 movingAI bench-
marks (e)–(h), with their corresponding scenario complexity values. The computed complexity of these scenarios exhibit a strong inverse
correlation with coverage, quality, and performance of three state-of-the-art steering algorithms.

Abstract

The complexity of interactive virtual worlds has increased dramat-
ically in recent years, with a rise in mature solutions for design-
ing large-scale environments and populating them with hundreds
and thousands of autonomous characters. The tremendous surge
in the development of crowd simulation techniques has paved the
way for a new research direction that aims to analyze and evaluate
these algorithms. An interesting problem that arises in this con-
text, and that has received little attention to date, is whether we
can predict the complexity of a steering scenario by analyzing the
configuration of the environment and the agents involved. This is
the problem we address in this paper. First, we statically analyze
an input scenario and compute a set of novel salient features which
characterize the expected interactions between agents and obstacles
during simulation. Using a statistical approach, we automatically
derive the relative influence of each feature on the complexity of a
scenario in order to derive a single numerical quantity of expected
scenario complexity. We validate our proposed metric by proving
a strong negative correlation between the statically computed ex-
pected complexity and the dynamic performance of three published
crowd simulation techniques on a large number of representative
scenarios including movingAI benchmarks.
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1 Introduction

Simulating groups of autonomous virtual humans (agents) in urban
environments is an important issue for many practical applications.
In the context of animation, a key aspect of virtual agents is their
ability to navigate (steer) from one location to another in their en-
vironment. Steering has been studied extensively in animation re-
search. However, there is no definitive solution that can efficiently
solve the space of all possible challenging situations that agents en-
counter in practice.
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The diverse landscape of steering algorithms that are actively devel-
oped and used have sparked a significant body of recent work that
aims to analyze, evaluate and compare different approaches. To
evaluate and analyze steering algorithms we use benchmarks with
particular sets of test cases (scenarios) that the algorithms need to
solve. In this context, we often find ourselves asking the question,
“how challenging (complex) is a particular test case?”. This is the
main question that this paper aims to answer. We propose a frame-
work that can automatically estimate the relative complexity of a
given scenario in an algorithm-independent fashion.

First, we statically analyze an input scenario and compute a set
of novel salient features which characterize its complexity for any
steering algorithm, such as the number of expected interactions be-
tween agents along their static optimal paths, and the relative diffi-
culty of each interaction due to the presence of obstacles or spatially
co-located interactions. Using a statistical approach, we derive a set
of weights to combine these features into a single metric which we
call scenario complexity. We validate our proposed metric by prov-
ing a negative correlation between the statically computed expected
complexity and the coverage, quality, and computational perfor-
mance of three published crowd simulation techniques on a repre-
sentative sampling of scenarios including movingAI benchmarks.

Our method can be used to compare scenario complexity in an
algorithm-independent fashion, which provides the foundation for
developing challenging benchmarks to test and evaluate steering al-
gorithms. It can also serve as an automated tool for level designers
to evaluate the efficacy of their levels to either minimize or maxi-
mize scenario complexity. Additionally, the proposed feature anal-
ysis provides a more general understanding of scenario characteris-
tics that make them more challenging to solve, which can be used
to identify shortcomings in steering algorithms.

This papers makes the following contributions:

1. A set of salient features that characterize key aspects of a sce-
nario’s complexity.

2. A statistical analysis of these features and their effect on the
performance of three published steering algorithms.

3. The combination of these features into a single estimate of
relative scenario complexity.

2 Related Work

Crowd research is very mature, with many proposed approaches for
simulating the microscopic and macroscopic phenomena of crowds,
analyzing and evaluating crowd behaviour, detecting anomalies,
and comparing simulations to real-world data. We refer the readers
to comprehensive surveys [Pelechano et al. 2008; Thalmann 2008;
Kapadia and Badler 2013] and describe some of the relevant work
below.

Crowd Simulation. Since the seminal work of [Reynolds 1987;
Reynolds 1999], crowd simulation has been studied from many
different perspectives. These include social forces [Helbing et al.
2005; Pelechano et al. 2007], rule-based models [Reynolds 1999;
Lamarche and Donikian 2004], cellular automata [Chenney 2004],
continuum dynamics [Treuille et al. 2006], local fields [Kapadia
et al. 2009b; Kapadia et al. 2012], vision-based approaches [Ondřej
et al. 2010], predictive solutions [van den Berg et al. 2011; Singh
et al. 2011a], and planning-based methods [Singh et al. 2011b;
Kapadia et al. 2013]. The work in [Schuerman et al. 2010; Yeh
et al. 2008] embeds additional steering logic into the environment
or proxy-agents to simulate complex group interactions. Commer-
cial and open-source software [Regelous 2002; Mononen 2009;

Axel Buendia 2002; Singh et al. 2009a] provide complete steer-
ing and navigation solutions using variations of the aforementioned
techniques.

Crowd Evaluation. The increase in published crowd simula-
tion techniques has introduced a growing recent trend to use sta-
tistical analysis in the evaluation and analysis of crowd simula-
tions. Detecting patterns [Kapadia et al. 2009a; Boatright et al.
2012] in simulation trajectories facilitate the automatic detection
of anomalies or irregular behavior. [Musse et al. 2012] presents a
histogram-based technique to quantify the global flow characteris-
tics of crowds. Data-driven techniques compare simulated results
with real-world data [Lerner et al. 2010], using a range of statisti-
cal similarity measures such as the one based on the concept of en-
tropy [Guy et al. 2012]. SteerBench [Singh et al. 2009b; Singh et al.
2009a] proposes a compact suite of manually defined test cases that
represent different steering challenges and a rich set of derived met-
rics that provide an empirical measure of the performance of an al-
gorithm. Recent extensions [Kapadia et al. 2011a; Kapadia et al.
2011b] present a method for rigorously sampling a representative
space of challenging scenarios, and propose quantitative metrics
that capture both the coverage of an algorithm in this space, and
the quality of the algorithm’s results. These methods provide in-
valuable insight into the performance of a steering algorithm in an
environment-independent fashion.

Environment Analysis. In contrast to evaluating crowd simula-
tion algorithms, environment verification [Bauer and Popovic 2012;
Darken 2007] is crucial for game-level analysis, urban-design, and
procedural environment generation. The work in [Perkins 2010]
uses graph analysis to discover potential choke points and discon-
nected regions in game levels. Penn [Penn 2001] analyzes space
layouts for visibility and accessibility. Recent work [Heckel et al.
2009; Martin 2011] performs game-level analysis for tactical rea-
soning. These approaches focus on game-level validation to en-
hance player experience.

Comparison to Prior Work. Crowd evaluation techniques char-
acterize the ability of a steering algorithm to match real-world
data [Guy et al. 2012], or solve a set of challenging environ-
ment benchmarks [Kapadia et al. 2011a]. Environment verifica-
tion [Perkins 2010; Penn 2001] focuses on the validation of a lay-
out using metrics such as connectivity and visibility. In comparison,
our method focuses on the static analysis of environment configura-
tions to extract meaningful features which quantify the complexity
of dynamic crowd motion.

3 Scenario Definition

We define a scenario as a particular static configuration of obstacles
and agents in the environment (Figure 2(a)). A scenario may refer
to the starting layout of obstacles and agents, or to an intermediate
snapshot of a dynamic simulation. More formally, we define a sce-
nario s = 〈O,A〉, where O, A are the set of static obstacles and
agents in the scenario. An obstacle o ∈ O is defined as a rectan-
gular bounding box at a particular position in the environment. An
agent a ∈ A is defined using its current position ~s, facing direction
~d, collision radius r, desired speed vdes, and goal position ~g.

3.1 Scenario Annotation

Before we can compute features that estimate the dynamic com-
plexity of a scenario, we need to annotate the scenario with two
additional additional pieces of information.

Obstacle Groups. The rectangular obstacles O are combined to
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Figure 2: (a) A scenario s with obstacles and agents (reference agent is highlighted in blue). (b) Adjacent obstacles clustered to form
obstacle groups Og . (c) Static optimal paths Π computed for all agents. (d) and (e) Predicted interactions between agents i ∈ I. Blue stars
highlight interactions between all agents, while orange stars indicate interactions with the reference agent. Light blue circle illustrates the
area of the expected interaction, defined by εd. (f) Obstacles and interactions that are located within εd of each other. Obstacles highlighted
in green are expected to add to the complexity of an interaction. (g) Spatially co-located obstacles and interactions with respect to reference
agent. (h) Free space in area of interaction.

form a set of disjoint obstacle groups (islands) Og = {ogi}:

Og =
⋃
∀i

ogi (1)

where each obstacle group og ∈ Og constitutes a set of adjacent
or overlapping obstacles, seen as one larger obstacle collectively
influencing the behaviour of an agent as it steers towards its tar-
get. Figure 2(b) illustrates the grouping of obstacles for a sample
scenario configuration.

Static Optimal Paths. We assume a grid-based discretization of
a scenario’s space, where the size of the grid cell is twice the
radius of the agent. This allows us to define a discrete search
graph, to compute the static optimal paths Πa(~s,~g) of all agents
a ∈ A from their initial position ~s to their goal position ~g,
where Π = {~s, ~p1, ...~pn−1, ~g}. The paths are computed us-
ing A* [Hart et al. 1968] and other agents are ignored during
path planning. For each waypoint along the path Π, we com-
pute the expected time at which the agent will reach the way-
point, assuming the agent travels with its desired speed vdes. Thus
we compute a path with estimated space-time waypoints: Π =
{(~s, t0), (~p1, t1)...(~pn−1, tn−1), (~g, tn)}. These space-time opti-
mal paths allows us to estimate the situations an agent may face on
its to its goal without simulating the scenario. Figure 2(c) shows
the static optimal paths for all agents in the scenario.

4 Complexity Features

Given an annotated scenario as defined in Section 3.1 we can com-
pute a set of salient features that characterize its complexity, such
as the number of interactions an agent may face with other agents
and obstacles, the spatial arrangement of these interactions, and the
amount of free space around them. The following subsections de-
scribe our complexity features in detail.

4.1 Expected Interactions

This feature characterizes the likelihood of interaction between two
agents a1, a2 by computing the intersection points between their
static optimal paths Πa1 , Πa2 . An expected interaction occurs
between two agents at (~pi, ti) ∈ Πa1 and (~pj , tj) ∈ Πa2 if
|~pi − ~pj | < εd ∧ |ti − tj | < εt. The routine expectedInterac-
tions(Πa1 ,Πa2) computes the set of interacting waypoints between
a1 and a2 as the midpoint between ~pi and ~pj and the average time
( ti+tj

2
). For our experiments, we set εt = 1, rinf = 1.12 and

εd = 2. These values were chosen based on agent parameters such
as desired speed, collision and comfort radius, and to prevent the
recording of duplicate interactions. The set of all possible interac-
tions I between all agents in the scenario s = 〈O,A〉 is computed
as follows:

I =
⋃

∀(ai,aj)∈A×A

expectedInteractions(Πai ,Πaj ) (2)

The expected interactions Iref with respect to the reference agent
aref (see Section 5.1) are calculated as follows:

Iref =
⋃
∀ai∈A

expectedInteractions(Πaref ,Πai) (3)

Figure 2(d) illustrates the expected interactions for a specific sce-
nario. The blue stars represent all interactions in I. In Figure 2(e),
the orange stars represent the interactions Iref with the reference
agent. We use the cardinality of these two sets,

fi = |I|, (4)

f ref
i = |Iref |, (5)

as complexity features.



4.2 Static Obstacles

The arrangement of static obstacles in the environment has a mod-
erate impact on the performance of crowd simulation techniques.
The cardinality of O is not meaningful on its own, as these obsta-
cles may be uniformly distributed or may be cluttered together in
a small region of the scenario. For this reason, we group spatially
co-located obstacles together to define Og (Section 3.1) and use the
number of obstacle groups fog = |Og| as a complexity feature.

4.3 Obstacle Interactions

The features fi and f ref
i provide a measure of the number of ex-

pected interactions between agents in a scenario. We can ad-
ditionally evaluate the complexity of each interaction due to the
presence of spatially co-located obstacles. We define obsColo-
cated(i,o,rinf ) = 1 if the distance between i and o is less than
rinf , otherwise it is 0. We then define

fo =
∑
(i)∈I

∑
(o)∈O

obsColocated(i, o, rinf ) (6)

which quantifies the number of obstacles that are spatially co-
located with expected interactions between agents in a scenario.
Similarly, we define f ref

o considering only Iref . Figure 2(f) and (g)
illustrate the influence of obstacles on interactions by highlighting
interacting obstacles in green.

4.4 Co-located Interactions

Two interactions i1 = (~p1, t1), i2 = (~p2, t2) are said to be spatially
and temporally co-located if |t1− t2| < εt and |~p1−~p2| < rinf . If
two interactions are spatially and temporally co-located then colo-
cated(i1, i2, rinf , εt) will evaluate to 1, else it will evaluate to 0.
The number of co-located interactions fci is computed as follows:

fci =

 ∑
(i1,i2)∈I×I

colocated(i1, i2, rinf , εt)

− |I| (7)

where |I| is subtracted to disregard interactions overlapping them-
selves. f ref

ci is computed similarly by considering Iref . Figure 2(f)
and (g) illustrate the computation of co-located interactions inside
each interaction rinf described by the blue circles.

4.5 Free Space in Area of Interactions

We define fopen as the amount of free space that exists in the area
enclosing the interaction points I:

fopen = area(box(I))−
∑
o∈O

area(box(I) ∩ o) (8)

where box(I) denotes the bounding box that encloses all the inter-
action points in I and box(I) ∩ o is the box intersection between
box(I) and o. An illustrative example can be found in Figure 2(h)
where the black rectangle describes box(I).

4.6 Our Complexity Feature Set

The eight features F = 〈fi, f ref
i , fo, f

ref
o , fci, f

ref
ci , fopen, fog〉

characterize various aspects of a scenario which contribute to its
complexity. Section 5 evaluates the correlation between these fea-
tures and the resulting quality of the dynamic simulation. Section 6
combines these features to provide a single numerical quantity that
characterizes expected scenario complexity.

5 Feature Evaluation

In order to understand the relationship between the features F and
the actual performance of a steering algorithm, we conducted an
experiment wherein we performed both static and dynamic analy-
sis of a representative set of scenarios. The goal of our study is
to identify a minimal, yet sufficient set of features that can charac-
terize scenario complexity in a scenario and algorithm-independent
fashion. Section 5.1 describes the method of generating a represen-
tative set of scenarios and evaluating the performance of a steering
algorithm for that set. Section 5.2 analyzes the proposed features to
identify trends between feature values and algorithm performance.

5.1 Representative Scenario Set

We generate a representative set of scenarios Rexp to evaluate the
scenario complexity features proposed in Section 4. The process of
generating scenarios is similar to the method described in [Kapa-
dia et al. 2011a]. We randomly sample 10, 000 scenarios with the
following constraints:

1. The reference agent aref is placed at the origin of the scenario
(position ~p = (0, 0)).

2. Each agent a ∈ A must have a valid static optimal Πa path
from its initial position to its goal.

3. The static path of each agent must intersect the reference
agent’s static path.

4. The scenario is limited to a minimum of 3 and a maximum
of 6 agents. Given the constraints described above, we find
that a small-scale scenario with 3 − 6 agents is sufficiently
challenging and exercises all possible local interactions that
agents typically encounter in crowded situations.

For a scenario s ∈ Rexp to be considered solved by a steering algo-
rithm, the reference agent must successfully reach its target within
a maximum time limit without collisions with obstacles and other
agents, and the total number of collisions must be less than the
number of agents. The coverage of the steering algorithm c(A)
is defined as the ratio of scenarios that it can successfully solve in
Rexp. In addition to coverage, we also consider two other met-
rics that characterize simulation quality and computational perfor-
mance. Quality q(A) is the ratio of the distance travelled by aref
to the length of its static optimal path and it penalizes deviation
from the static optimal path. The computational performance of the
algorithm a is p(A) = 0.1

ndes·N
. Here, we assume an allotted max-

imum 10% of CPU time and a desired frame rate (ndes) of 30 fps.
We then scale this by N the number of agents in the simulation.
For more details on generating a representative scenario set and the
performance metrics see [Kapadia et al. 2011a; Berseth et al. 2013].

5.2 Feature Analysis

To evaluate how well our features capture the complexity of a sce-
nario, we performed the following statistical experiment.

Experiment outline. We generated a representative set of 10, 000
scenarios Rexp, as described in Section 5.1. For each scenario
s ∈ Rexp, we computed the features F and additionally simu-
lated the scenario using three published crowd simulation tech-
niques to compute algorithm coverage, quality, and performance,
as described in Section 5.1. The three algorithms are: (a) Aego, a
local-fields based approach [Kapadia et al. 2009b] for simulating
goal-directed field-based collision avoidance ; (b) Appr, a hybrid
approach [Singh et al. 2011a] that combines planning, predictions,



and reactive rules; and (c) Afoot, an approach that uses a short-
horizon space-time planner to compute footstep trajectories [Singh
et al. 2011b]. This provides a mapping of feature values and algo-
rithm performance for a large set of scenarios using multiple, di-
verse steering algorithms, facilitating the analysis of feature trends,
in a scenario and algorithm-independent fashion.

Data Analysis. We clustered the scenarios together based on the
values of each feature using the k-means clustering technique [Har-
tigan 1975]. Clustering across the complexity feature creates sets
of scenarios with similar complexity. Computing average values
of c(A), q(A) and p(A) for each set allows us to detect the nega-
tive correlation between the difficulty features and aggregate met-
rics across a small set of scenario clusters, instead of each of the
10, 000 scenarios. For our purposes we chose 20 clustering itera-
tions and k = 6 for the final analysis. However, other values for
k (5, 7, 8) were also used to ensure the same trends were preva-
lent. Figure 6 plots the computed metric values of the three algo-
rithms for the scenario clusters from Rexp and the average feature
value of that cluster. This is done for each of the eight complex-
ity features. An inverse trend between a metric and a complexity
feature indicates a direct correlation between that particular feature
and scenario complexity.

Conclusions. The correlation co-efficients of feature values with
respect to algorithm coverage, efficiency and quality, is shown in
Table 1. Almost all of the features have a negative correlation for
all three algorithms. This was particularly unusual in the case of
fopen, where an increase in the relative free space in the area of
an interaction produced more challenging scenarios. Features fi,
f ref
i and fci have visibly stronger trends in comparison to the other

metrics, as also illustrated in Figures 6(b), (c) and (d). However,
the maximum values of f ref

i and f ref
ci do not always correlate to

poor algorithm quality. This is due to the influence of path similar-
ity, which produces a high complexity measure for scenarios where
agents are travelling in a group. Such a scenario can be solved rel-
atively easily, usually at the cost of p(A) by the three algorithms.
This can result in a false positive.

fref
i fi fog fopen fref

o fo fref
ci fci

q(Appr) −0.0 −0.0 −0.1 0.0 −0.0 −0.0 −0.1 −0.1
p(Appr) −0.5 −0.7 0.0 −0.5 −0.2 −0.4 −0.4 −0.5
c(Appr) −0.1 −0.1 −0.0 −0.1 −0.1 −0.1 −0.1 −0.1
q(Aego) −0.0 −0.1 −0.1 −0.0 −0.1 −0.1 −0.1 −0.1
p(Aego) −0.5 −0.7 0.0 −0.5 −0.2 −0.4 −0.4 −0.5
c(Aego) −0.1 −0.1 −0.1 −0.1 −0.0 −0.1 −0.1 −0.1
q(Afoot) −0.1 −0.0 −0.0 0.0 −0.1 −0.1 −0.2 −0.1
p(Afoot) −0.2 −0.4 −0.0 −0.2 −0.1 −0.2 −0.2 −0.3
c(Afoot) −0.1 −0.2 −0.0 −0.1 −0.2 −0.2 −0.1 −0.2

Table 1: Correlations between scenario features F with the cov-
erage c(A), quality q(A), and performance p(A) for each steering
algorithm. We observe negative correlation between the features
and algorithm metrics, which indicates that the performance of the
steering algorithms reduce with increase in scenario complexity.

5.3 Feature Similarity

To determine redundancy in the ability of the features to character-
ize scenario complexity, we computed the confusion matrix of the 8
features, as shown in Table 2. We computed the correlation between
the features by taking the values for all of the features for each of
the scenarios in Rexp. From this data the correlation matrix was
calculated. From the table we can see that many of the features that
are derived from the static paths annotation Π are correlated. Addi-
tionally, because fopen is computed with respect to I, a correlation
is seen there as well.

fref
i fi fog fopen fref

o fo fref
ci fci

fref
i 1.0 0.8 −0.1 0.3 0.7 0.6 0.8 0.7
fi 0.8 1.0 −0.0 0.4 0.5 0.7 0.8 0.9
fog −0.1 −0.0 1.0 −0.0 0.0 0.0 −0.0 −0.0
fopen 0.3 0.4 −0.0 1.0 0.1 0.2 0.2 0.3

fref
o 0.7 0.5 0.0 0.1 1.0 0.8 0.6 0.5
fo 0.6 0.7 0.0 0.2 0.8 1.0 0.6 0.6

fref
ci 0.8 0.8 −0.0 0.2 0.6 0.6 1.0 0.8
fci 0.7 0.9 −0.0 0.3 0.5 0.6 0.8 1.0

Table 2: Confusion matrix for all features F. Features in F that
are computed with respect to agent paths I exhibit correlation.

6 Scenario Complexity

The scenario features individually characterize various aspects of
the scenario which contribute to its complexity. However, we need
a method to combine these individual features to derive a collective
measure of scenario complexity. We define scenario complexity
fcomp as a weighted combination of the individual features:

fcomp =
∑
∀fi∈F

wifi (9)

where the normalized weights {wi} are the relative influence of
each feature on the scenario complexity.

We perform Principal Component Analysis to calculate the weight
for each feature with respect to its variance. This is done by tak-
ing the unnormalized data for the feature values, which is used to
calculate the proportional contribution of each complexity feature
in the final weighted function. The data is a 10, 000 × 8 matrix.
Each row represents the feature values for a scenario s and each
column is a single feature in F. The relative influence of the fea-
tures F on the first 6 eigenvectors 〈u1...u6〉 from the PCA analysis
which account for at least 95% of the variance, is reported in Ta-
ble 3. We observe that fci accounts for most of the variance in the
first principal component.

calcWeightedContribution (Eigenvalues: {λi}, Eigenvectors: {ui})
i = j = 0
while i < len({λi}) do

while j < len({ui}) do
wi[j] = wi[j] + (λi[i] · |ui[j][i]|)
j = j + 1

end
j = 0
i = i+ 1

end
return wi

Algorithm 1: Calculates the relative contribution of each of the
complexity features with respect to a list of eigenvectors {ui} and
eigenvalues {λi}. The relative contribution is computed by scaling
each column in Table 3 by the value in the same column in Table 4.
Then the contribution of each feature is the sum across the feature’s
row.

Table 5 describes the process of calculating the normalized weights
{wi} with respect to the variance. First, we compute the relative
weight of each feature in F by computing its aggregate influence
across all 6 eigenvectors, as described in Algorithm 1 (first row).
The second row provides the normalized weights which add up to 1
and have a direct correlation to the algorithm metrics. We subtract
these values from 1.0 to compute {wi} (third row), which charac-
terizes the relative influence of each feature on the complexity of
the scenario.



u1 u2 u3 u4 u5 u6

f ref
i −0.1 −0.1 −0.5 0.1 0.1 −0.2
fi −0.2 0.1 −0.6 0.3 −0.0 0.6
fog −0.0 0.0 0.0 −0.2 0.9 0.3
fopen −0.3 0.9 −0.0 −0.0 0.0 −0.2

f ref
o −0.0 −0.0 −0.2 −0.5 0.3 −0.2
fo −0.0 −0.0 −0.3 −0.8 −0.4 0.1

f ref
ci −0.1 −0.2 −0.4 0.2 0.1 −0.7
fci −0.9 −0.3 0.2 −0.0 −0.0 0.1

Table 3: Relative influence of each feature in F to the principal
component eigenvectors 〈u1...u6〉.

λ1 λ2 λ3 λ4 λ5 λ6

λ 0.9631 0.0246 0.0095 0.0020 0.0004 0.0003

Table 4: The normalized eigenvalues λi for each of the principal
components for the PCA analysis.

6.1 Validation of Scenario Complexity

To validate the effectiveness fcomp, we perform another data clus-
tering analysis similar to the one described in Section 5.2. We clus-
ter the scenarios in Rexp based on the values of fcomp. This divides
the set of scenarios into clusters of similar complexity. From these
clusters, the average values of fcomp and c(A), q(A) and p(A) are
calculated for each steering algorithm. As can be seen in Figure 3,
c(A) is inversely correlated to fcomp for all three algorithms. A
similar trend is observed in p(A). The weighted combination of
features has also reduced the effects of path similarity mentioned in
Section 5.2.

Figure 1(a)-(d) illustrate 4 challenging scenarios from Rexp and
their corresponding fcomp values. Scenario (a) shows a bottleneck
and a crossing path with many expected interactions. Scenarios (b)
and (d) seem to involve travelling group behaviours, bottlenecks
and sparse obstacle groupings. Scenario (c) is interesting because it
predicts a challenging interaction between agents in a narrow area,
with high complexity.

MovingAI Benchmarks. To demonstrate our method, we evalu-
ated the complexity of a number of larger size environment bench-
marks [Sturtevant 2012] from popular games including Starcraft,
DragonAge, Warcraft, and Balders Gate. For each environment, a
set of initial and desired configurations for approximately 10 agents
are provided to generate scenarios for evaluation. For our experi-
ments, we considered environments whose dimensions were within
512 × 512, which produced a benchmark set of more than 8000
scenarios. Figure 1(e)-(h) illustrates some scenarios from this set
and their corresponding complexity score.

To provide a more conservative limit on the maximum time to simu-

f ref
i fi fog fopen f ref

o fo f ref
ci fci

wr
i 0.1 0.2 0.0 0.3 0.0 0.0 0.1 0.9

wn
i 0.0 0.1 0.0 0.2 0.0 0.0 0.1 0.6
wi 1.0 0.9 1.0 0.8 1.0 1.0 0.9 0.4

Table 5: Computing the relative influence of each feature in F on
scenario complexity fcomp. The first row is the weights computed
using Algorithm 1. The second row are those weights normalized
to add up to 1. The last row is the result of subtracting 1 from each
value in row 2, representing the relative influence of each feature
on scenario complexity.

fcomp c(Aego) p(Aego) q(Aego)
c(Afoot) p(Afoot) q(Afoot)
c(Appr) p(Appr) q(Appr)

Figure 3: Relationship between fcomp and coverage, quality, and
performance of all steering algorithms.

late a scenario before reporting failure, we give the agents sufficient
time to travel twice the diagonal length of the environment. Addi-
tionally, with the scenarios being orders of magnitude larger than
those in Rexp, it was prudent to enforce a timeout on the simulation
for algorithms that were consuming heavy resources. We set a time-
out of 10 minutes per scenario for each algorithm, which resulted
in ≤ 0.5% of scenarios being timed out.

The results with respect to the set of movingAI benchmarks can be
seen in Figure 4(a-c). Our feature analysis appears to work better
on these larger scale scenarios. For each of the experiments, the
inverse trends between the metrics and fcomp are stronger than the
trends in Figure 3. As c(A) can be more difficult to evaluate in
such large scale benchmarks, we also include number of collisions
to show the trend between the number of collisions and fcomp.

SteerBench Benchmarks. SteerBench [Singh et al. 2009b] pro-
vides a suite of challenging benchmarks for evaluating steering al-
gorithms. These include basic testcases that check algorithm valid-
ity, to large-scale scenarios that stress test the steering technique.
We evaluate the SteerBench benchmarks by computing their sce-
nario complexity and varying their initial configurations to observe
the resulting effect on the complexity of the scenarios. Figure 5 il-
lustrates three variations of the evacuation scenario. By iteratively
reducing the width of the exit and the number of exits, we observe
that scenario complexity increases due to the creation of bottlenecks
in the scenario.

Discussion. From our study we found that a greater number of ex-
pected interaction points between the agents paths is a good predic-
tor of expected scenario complexity. The exception with this fea-
ture is when the number of expected interactions grows too large
and it becomes an indicator of static path similarity. If the agent
paths are very similar, then it is possible that the agents will travel
in a group, which is simple to solve for some steering algorithms.
Algorithms with more robust reactive controllers like Apprhandle
travelling groups better because of their tendency to wait until their
preferred path is clear of dynamic obstacles.

An increase in the number of obstacle groups is indicative of more
challenging scenarios. This feature was a mild predictor of ex-
pected complexity, as the simulation is heavily contingent upon the
spatial arrangement of the obstacles, which is currently not captured
by our features. Even having a very low number of groupings with
complex shapes can be difficult, especially if the algorithm is using
reactive collision avoidance and does not anticipate the placement



fcomp c(A) p(A) q(A) number of collisions

Figure 4: Results from the data clustering analysis on 3 different steering algorithms over the movingAI benchmarks. The first column is
Appr, the second is Afoot, and the last column is Aego. These graphs represent the average value for c(A), p(A), q(A), number of collisions,
and fcomp after using the k-means clustering algorithm to make 6 clusters with respect to the fcomp function.

(a) fcomp = 44, 000 (b) fcomp = 110, 000 (c) fcomp = 460, 000

Figure 5: Evacuation benchmark with 200 agents. We vary the scenario by iteratively reducing the width and number of the exits to create
bottlenecks, thus producing scenarios with increasing complexity.

of obstacles farther along its trajectory.

It is interesting to find that the feature analysis works better with the
movingAI benchmarks. It is possible that these larger benchmarks
pose a greater number of combinations of situations that generate
multiple separate groups of interactions that fill the fcomp range
more evenly.

7 Conclusion

We have presented a framework that aims to estimate the complex-
ity of a steering situation given the configuration of the obstacles
and the agents involved. At the heart of our framework lies a novel
set of complexity-related features and their combination into a sin-
gle metric, the scenario complexity. Our statistical experiments
with three steering algorithms showed a strong negative correlation
between our metric and the dynamic performance of the algorithms.

Our work complements recent research in evaluating crowd tech-
niques and provides a strong foundation for developing a standard
suite of challenging benchmarks for testing and comparing crowd
simulation algorithms. Game level designers can quickly and auto-
matically analyze game environments to gain an understanding of
their expected complexity. The features proposed in this paper can
also be used to provide a general understanding of the shortcomings
of a given steering technique and help identify missed test cases, or
serve as a basis for procedural environment design.

The features described in this paper are not exhaustive and may
miss important aspects of a scenario. For example, the geomet-

ric shape of a group of obstacles can greatly contribute to scenario
complexity, which is not currently captured in our metric. In addi-
tion, our metric may produce false positives for certain scenarios.
From our experiments, we observed that scenarios where there are
many agents travelling in similar directions (e.g., group formations
or lane following) often produce a high complexity measure due
to the presence of many co-located interactions. However, these
scenarios can be easily solved using standard reactive collision-
avoidance strategies.
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Figure 6: Results from the data clustering analysis on all 8 difficulty features for each of the three steering algorithms. The values are
normalized between 0 and 1 to make the graphs easier to read.


