An Event-Centric Planning Approach for Dynamic Real-Time Narrative

Alexander Shoulson* Max L. Gilbert"

Mubbasir Kapadia? Norman I. Badler$

University of Pennsylvania
Philadelphia, PA, USA

(a) (b)

% !
(©) (d

Figure 1: Characters exhibiting two cooperative behaviors. Two actors hide while a third lures a guard away (a), then sneak past once the
guard is distracted (b). An actor lures the guards towards him (c), while a second presses a button to activate a trap (d).

Abstract

In this paper, we propose an event-centric planning framework for
directing interactive narratives in complex 3D environments popu-
lated by virtual humans. Events facilitate precise authorial control
over complex interactions involving groups of actors and objects,
while planning allows the simulation of causally consistent charac-
ter actions that conform to an overarching global narrative. Events
are defined by preconditions, postconditions, costs, and a central-
ized behavior structure that simultaneously manages multiple par-
ticipating actors and objects. By planning in the space of events
rather than in the space of individual character capabilities, we al-
low virtual actors to exhibit a rich repertoire of individual actions
without causing combinatorial growth in the planning branching
factor. Our system produces long, cohesive narratives at interactive
rates, allowing a user to take part in a dynamic story that, despite
intervention, conforms to an authored structure and accomplishes a
predetermined goal.

CR Categories: 1.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation;

Keywords: interactive narrative, behavior authoring, automated
planning, events, behavior trees

*ashoulson@gmail.com

T gilbert.l. max @ gmail.com

fmubbasir kapadia@gmail.com

$badler @seas.upenn.edu
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions @acm.org.
MIG ’13, November 06 - 08 2013, Dublin 2, Ireland
Copyright 2013 ACM 978-1-4503-2546-2/13/11?$15.00.
http://dx.doi.org/10.1145/2522628.2522629

1 Introduction

Complex virtual worlds with sophisticated, autonomous virtual
populaces are an essential tool in developing simulations for secu-
rity, disaster prevention, and interactive entertainment. Directed in-
teractions between virtual characters help tell rich narratives within
the virtual world and personify the characters in the mind of the
user. However, creating and coordinating fully-fledged virtual ac-
tors to behave realistically and act according to believable goals is a
significant undertaking. This difficulty is amplified when we design
these characters to cooperate or compete according to their personal
motivations and needs. In order to steer the trajectory of the narra-
tive in a meaningful fashion, we need a virtual director capable of
making narrative decisions based on an understanding of the world
and its characters, including those characters’ abilities and individ-
ual goals. This volume of information is too large to be managed in
real-time, requiring a level of abstraction to temper the complexity
of a rich world and the emergent nature of its characters’ behavior.

Traditional stories are usually written in a form that emphasizes par-
simony. Even the most prosaic description of characters engaging
in a conversation is not likely to concern itself with details like the
characters approaching and orienting towards one another, or lis-
teners changing their posture to affect attention towards the speaker,
unless these details deviate from the reader’s expectation in a mean-
ingful way. Similarly, a planning controller in a virtual world de-
signed for narrative impact should not be concerned with details
more significant to the execution of an animation than with the story
being presented. Still, these mechanical elements cannot simply be
excluded — as minor as the action may be, two actors in a conversa-
tion must still visibly approach and orient towards one another. To
collapse a very large, mechanically-focused character action space
into a series of tools available to a narrative planner, we define and
use a domain of events: dynamic and reusable behaviors for groups
of actors and objects that carry well-defined narrative ramifications.

Events temporarily preempt the autonomy of their participating ac-
tors with pre-authored, coordinated behaviors. For example, a con-
versation event would suspend the behavior of two participating ac-
tors, and dispatch commands for them to approach one another and
play representational gesture animations. Using events as an encap-
sulation of the traditional atomic action planning domain affords an
author several advantages:

Authoring Fidelity. Events are designed to carry out specific se-

quences of actions with some variability, and generally act with a
single narrative intent. This allows an author to create emergence in
the overarching narrative structure of a simulation between events
while still ensuring that when an event occurs, it will proceed as in-
tended. Since the results of a planner are difficult to verify in prac-
tice for large domains, being able to verify the behavior of each
event prior to release reduces the tendency of the system to produce
undesired effects.

Synchronization. Events can be used to coordinate very sophisti-
cated multi-actor behaviors like conversation or dance that require
precisely timed animations or procedural character controllers.
Rather than depending on a planner to organize the subtasks of a
compound character interaction, a pre-authored event can be writ-
ten to properly time each action’s execution between any number
of actors involved.

Efficiency. An event takes full control of its participants and treats
them as if they were limbs of the same entity. This allows multiple
events to control numerous diverse sets of characters in parallel, and
decouples the complexity of the planning domain from the number
of agents in the world. Rather than searching through all possible
actions a character can perform on all other objects and characters
in the world, the search is limited to the set of possible events, which
is a smaller and more tractable domain.

Events are more sophisticated than macro-
operators [Botea et al. 2005] or task networks [Erol et al. 1994]
that decompose into atomic actions when invoked. An event
is a self-contained autonomous coroutine capable of making
dynamic decisions during execution based on its own state, the
state of its participants, and stochastic processes. Events have
an arbitrary, variable, and finite runtime, and may ultimately fail
during their execution. We author these events using Parameterized
Behavior Trees (PBTs) [Shoulson etal. 2011] with additional
meta-information that is used by the planner. Their graphical na-
ture, expressiveness, synchronization constructs, and capability to
make decisions make PBT-based events more suited for authoring
behavior than macro-operators and task networks.

Contributions. This paper contributes a real-time planning frame-
work that operates in the space of complex pre-authored character
interactions. Narratives produced by our planner can react to the
actions of a user and adapt to intervention that both helps and hin-
ders the story objectives. We introduce a scheduler that converts
a sequential narrative into a highly parallel simulation of simulta-
neous cooperative and competitive behaviors that all contribute to
the overarching story. This produces dynamic virtual worlds with
inhabitants that interact in intricate, meaningful ways beyond just
the sequence produced by a plan. Our ideal application for this sys-
tem is in building virtual worlds for games or simulations where a
virtual populace is expected to interact with one another and a hu-
man user, carrying out narrative sequences with goals and causal
relationships.

2 Related Work

Interactive narrative is quickly becoming a well-studied research
topic with numerous, diverse methods. As an interdisciplinary field,
interactive narrative builds upon techniques from crowd simulation,
cognitive modeling, and automated planning.

Crowd Simulation. Crowd simulation is a mature field of re-
search, concerned with the realistic simulation of large groups
of lifelike characters in a virtual space. One primary focus is
on navigation for virtual characters, which can be accomplished
with social force models [Helbing and Molnar 1995], reactive be-
haviors [Reynolds 1999], synthetic vision [Ondfej et al. 2010], and

predictive models [van den Berg et al. 2008]. Characters in vir-
tual crowds often exhibit simple, scalable behavior with basic
individual goals [Shao and Terzopoulos 2007] driven by heavy
scripting or fuzzy logic [Massive Software Inc. 2010], where
character interactions emerge as artifacts of collision avoid-
ance [Pelechano et al. 2007]. Pelechano et al. [2008] give a more
detailed survey of additional work in crowd simulation.

Cognitive Models. Numerous techniques have been studied for
simulating the cognitive process of an autonomous agent. The
decision-making process of a virtual character can be represented
using scripts [Perlin and Goldberg 1996; Vilhjdlmsson et al. 2007;
Loyall 1997], neural networks [Blumberg 1997], hierar-
chical state machines [Menou?2001], partially-observable
markov decision problems [Sietal.2005], or decision net-
works [Yu and Terzopoulos 2007]. These represent methods
for simulating an individual character, where cooperative
behavior emerges as a requirement for accomplishing spe-
cific goals. In contrast, event-centric behavior using Smart
Events [Stocker et al. 2010] or parameterized behavior trees
[Shoulson et al. 2011] focuses on centralizing the logic for compli-
cated multi-character interactions in order to simplify the authoring
process.

Planning. One of the earliest planning systems, the STRIPS
planner [Fikes and Nilsson 1971], lays down the framework of
a described world state with operators, preconditions, and
effects manipulating that state. Subsequent developments to
the pervasive STRIPS archetype include the planning domain
definition language [Mcdermottetal. 1998], cognitive-oriented
planning [Funge et al. 1999; Porteous et al. 2010], hierarchical
task networks [Eroletal. 1994], and planning with smart ob-
jects [Abaci and Thalmann 2005]. Our work can be seen as fur-
ther exploration of the ideas presented by Kapadia et. al. [2011] in
domain-independent planning for multi-actor behavior authoring.
We share a similar focus on cooperative and competitive character
interactions while simplifying the process to enable real-time per-
formance and more direct author control.

Interactive Narrative. Interactive narrative systems draw on these
techniques and others to create virtual worlds with a narrative
focus. Fagcade [Mateas and Stern 2003], the first fully-realized in-
teractive narrative system, uses natural language understanding
and pre-authored narrative beats to create a story that adheres
to an aristotelian narrative arc. Mimesis [Riedl et al. 2003] uses
narrative planning [Li and Riedl 2011] with atomic agent actions,
Thespian [Si et al. 2005] uses decision-theoretic agents, and PaS-
SAGE [Thue et al. 2007] guides a player through pre-scripted “en-
counters” based on the system’s estimation of the player’s ideal ex-
perience. Most of these systems employ some form of drama man-
ager or director [Magerko et al. 2004], a virtual agent responsible
for monitoring the state of the story and intervening according to
narrative goals. Riedl and Bulitko [2013] also provide a more de-
tailed survey of the current state of the art in interactive narrative.

Comparison to Prior Work. Our system creates a balance between
two schools of interactive narrative techniques. Heavily scripted
scenarios allow for computational efficiency and authorial control
at the expense of flexibility and with a great deal of effort in content
creation. In contrast, narrative planners that operate in the action
space of each agent’s individual capabilities quickly suffer from
combinatorial explosion with large groups of agents. Additionally,
like all highly emergent systems, they may produce unexpected and
undesirable narrative plans. Our event-centric planner allows a vir-
tual director to decide which events occur at which locations and
with which participants, while still leaving the details of the under-
lying behavior in the hands of an author. This alleviates the back-
and-forth planning complexity of multi-actor interactions, and al-

lows characters to exhibit a rich repertoire of actions suitable for a
rich 3D environment (gestures, reaching, gazing, and so on) without
affecting the branching factor of the simulation.

For example, the Automated Story Director
(ASD) [Riedl etal. 2008] is an interactive narrative planner
that uses traditional operators to execute the individual capabilities
of actors in a world to create a story. An author designs an
overarching narrative graph and the system attempts to adhere
to the authored structure by producing planned strategies for the
virtual actors and falling back on generated contingencies. Unlike
the agent-centric ASD, which takes in an exemplar narrative and
sets of character actions, our system event-centric uses a library of
invokable events with narrative significance expressed by their pre-
and postconditions. Our system uses events as global operators
across the entire world population to achieve authored narrative
goals, as opposed to each actor’s local action set. Additionally,
where the ASD would produce an interaction by producing the
individual turn-taking actions for each character involved, our
system invokes a single pre-authored event and lets the behavior of
that event conduct the interaction, including carefully coordinated
synchronous behavior. This trades some low-level emergence
for more precise authorial control over sensitive operations like
coordinated character animation.

3 Problem Domain and Formulation

For planning in the space of narrative, we use a generalized best-
first planner operating on a problem domain defined as > =
(S, A) where S is the combined state of all objects and actors
in the environment, and A is the space of authored events. A
particular problem instance is defined as P = (X, Sstart, Sgoal)
where Sgiart, Sgoal € S are the initial and desired world con-
figurations. The planner generates a sequence of event transitions
TI(Sstart, Sgoal) that leads the simulation from Ssgart t0 Sgoal.

3.1 State Space

Each object in the world W is described as 0 = (¢,s) € W
where c is a controller and s is the object’s state. We define s as
s = {r,p,d) where r is a role index number, p is a 3-vector for
world position, and d is a high-level description of an object as an
unsigned bitmask. For example, a door will have a state description
where “opened” and “locked” correspond to O or 1. The role index
number defines an object’s archetype, so that a character is different
from a chair, and thus fills a different role in the narrative.

The overall state of the world is defined as the compound state of all
of the objects in that world, S = {s1, s2,..., s, } where s; is the
state of 0;. Objects can be actors, which have their own autonomy,
or props, which cannot act unless involved in an event that directs
their behavior. States are defined and hashed by name. For overar-
ching world information describing the global state of the simula-
tion, a special world control object with no physical representation
can be read and written to as if it were a prop in the world. This is
useful for maintaining narrative trajectories and story arcs.

The composite state presented to the planner is an encapsulation
of each object’s complete low-level state. Props and actors contain
a great deal of information concerning their animation and proce-
dural pose controllers, such as where in the world they should be
gazing or reaching, or how near their current gesture animation is
to completion, but this information is managed at the event level
rather than at the planning level. A behavior author is responsible
for placing in the proper connections so that when a door plays its
closing animation, the corresponding state in its high-level descrip-
tion is also set to Closed. Additionally, entire objects may not be

accounted for in the composite state space of the planner. Indepen-
dent actors out of the planner’s control may serve as confounding
agents by interacting with objects tracked by the planner and alter-
ing their state in unforseen ways. The most obvious example of such
an agent would be a human user, but virtual actors acting with their
own autonomy may also fill this role for various purposes. Because
these confounding agents may alter states critical to the progress of
a plan, the planner is capable of monitoring required conditions and
replanning when necessary.

Some example high-level states for objects in the world are as fol-
lows:

e Door: [Open, Locked, Guarded |
e Character: [HasKey |
e Guard (extends from Character): [Trapped, Dazed]

3.2 Action Space

Our planner does not operate in the space of each actor’s individ-
ual capabilities. Rather, our system’s set of actions is taken from a
dictionary of events, authored parameterizable interactions between
groups of characters and props. Because events encapsulate me-
chanical details related to animation, actors can have a rich reper-
toire of possible actions without making an impact on the planner’s
computational demands. Two characters involved in an interaction
could have dozens of possible actions for displaying diverse, nu-
anced sets of gesticulations. Where a traditional planner would need
to expand all of these possibilities at each step in the search, our
planner only needs to invoke the conversation event between the
two characters and let the authored intelligence of the event itself
dictate which gestures the characters should display and when.

3.2.1 Formulating Narrative Events

Events are pre-authored dynamic behaviors that take as parame-
ters a number of actors or props as participants. When launched,
an event suspends the autonomy of any involved object and guides
those objects through a series of arbitrarily complex actions and in-
teractions. Events are well-suited for interpersonal activities such as
conversations, or larger-scale behaviors such as a crowd gathering
in protest. Each event is temporary, possessing a clear beginning
and at least one end condition. When an event terminates, auton-
omy is restored to its participants until they are needed for any other
event. Each event is defined as

e={t,c,R=(r1,...,"m),¢: RxW™ — {0,1},6 : S — §')
where the PBT ¢ contains event behavior, c is the event’s cost, the
role list R defines the number of objects that can participate in the
event and each participant’s required role index number, the precon-
dition function ¢ transforms the list of m roles and a selection of m
objects from the world into a true or false value, and the postcon-
dition function § transforms the world state as a result of the event.
The precondition function will return true if and only if the given
selection of objects satisfies both the roles and authored precondi-
tions of the event. Mechanical details that are encapsulated within
an event (such as walking animations, or body pose configuration),
also cannot be used as pre- or postconditions.

Roles for an event are based on an object’s narrative value. A con-
versation may take two human actors, whereas an event for an
orator giving a speech with an audience might take a speaker, a
pedestal object, and numerous audience members. Preconditions
and postconditions define the rules of the world. For example, a
character can pull a lever only if the lever can be reached from the
character’s position. Figure 2 illustrates the pre- and postconditions

Event UnlockDoor(Prisoner : a, Door: d):
Precondition ¢:
Closed(d) A —"Guarded(d)
A Locked(d) A CanReach(a,d);
Postcondition §:
—Locked (d)

Figure 2: Event definition for UnlockDoor.

for an UnlockDoor event. This event metadata would be accom-
panied with a PBT that instructs the character to approach the door
and play a series of animations illustrating the door being unlocked.

An event’s cost is partially authored and partially generated. An au-
thor designing an event where a prisoner obtains a key from a guard
may specify that sneaking up to the guard and stealing the key may
be less costly than assaulting the guard outright to obtain the key.
Other costs, such as the distance to a navigation goal where an event
takes place, are more mechanical and can be automatically deter-
mined by the system at runtime. Since we are planning in a narra-
tive space, it is important to author costs so that the planner picks
events that are not necessarily the most efficient, but rather are the
most consistent to the story. A more appropriate way to think of an
event’s cost would be to consider the risk to a viewer’s suspension
of disbelief, rather than to consider the theoretical energy expended
by the participants to accomplish the goal. Currently, there is no sin-
gle algorithm to determine cost, and so this is left as an authoring
task.

3.3 Goal Specification

Goals can be specified as: (1) the desired state of a specific object,
(2) the desired state of some object, or (3) a certain event that must
be executed during the simulation. These individual primitives can
be combined to form narrative structures suited for the unfolding
dynamic story. When searching through A for an event sequence
that satisfies the narrative, the planner uses preconditions to deter-
mine possible events, and postconditions to generate future world
states after the execution of one or more events. Requirements on
the desired state of some object are translated into the composite
world space by adding multiple satisfiable conditions to detect an
end state. The goal stipulating that an event must occur places a
hard constraint on any generated plan, rejecting branches even if
they have achieved every other goal with minimal cost.

Goals are a manner of specifying the narrative structure of the vir-
tual world. Much of the emergent story using this system will occur
when the planner attempts to achieve a narrative objective despite
the efforts of confounding agents in the world (including but not
limited to the player). It is important to view goals not as means to
solve a task, but as the desired climax or conclusion of a story arc.
Sequences of goals could be achieved in order to enforce structure
on a story that can deviate from expectation due to user interaction.
The selection of goals is currently author-specified, though intel-
ligent dynamic selection of goals would allow more user freedom
and is a topic we intend to explore in future work.

4 Planning in Event Space

Currently, it is challenging to automatically compute a cost estimate
between arbitrary states in our state space, and a manual definition
would significantly add to the authorial burden. As a result, our sys-
tem uses a generic best-first planner to produce sequences of events
that satisfy a given narrative. The core of our planner serves as a
baseline for future work in which we can explore different methods

of automatically computing heuristics [Kapadia et al. 2011] and
subsequently exploit the benefits of state-of-the-art real-time plan-
ners [Likhacheyv et al. 2005].

The set of permissible events at each search node I € I determines
the transitions in the search graph. A valid instance of an event e is
defined as I. = (e, 0 € WIRel) with ¢.(R.,0) = 1. This im-
plies that the event’s preconditions have been satisfied for a valid set
of participants O, mapped to their designated roles R... Algorithm 1
describes the procedure for computing the transitions I from a given
state S. Planning terminates when either a goal has been reached,
or the process exceeds a timeout period (a few seconds).

Data: world object list W

Data: authored event library E

Result: I

foreach e = (t.,cc,Re, ¢c,dc) € E do
foreach » € R. do

create list £, ;
foreach o = (Co, <7’07Po: do>> € Wdo

if r, == r then
L. = £, U{o};
end
end
end
letn = |Rel;

let P ={g1 X lgz X ... X lrp;
foreach p = (01,02,...,0,) € P do
if ¢ (Re,p) == 1 then
I=Tu{(e;p)};
end

end
end

Algorithm 1: Populating the set of possible event instances I to
build the action space for each world state. Note that the role lists
£, are reusable and do not need to be rebuilt for each event iteration
once constructed.

The transitions I are used to produce a set of new states: {S’|Se =
0(S, I.)VI. € 1} by applying the effects of each candidate event
to the current state in the search. Cost is calculated based on
the event’s authored and generated cost, and stored alongside the
transition. The planner generates a sequence of event transitions
TI(Sstart, Sgoal) from the Sstart 10 Sgoar that minimizes the aggre-
gate cost:

i<n
H(Sstart7 Sgoa,l) = argmin C(Si, Iz)
{I;|0<i<n} i=0

If all of the characters and objects could participate equally in an
event, then the branching factor in planning would be |E|(“‘g“),
and grow prohibitively large. In order to curb the combinato-
rial cost of this search process, we divide actors and objects into
role groups. Though there may be many objects in the world,
very few of them will fill any particular role, which greatly re-
duces the size of the event instance list. Checking an object’s role
is a fast operation which we use for filtering before the more
costly operation to validate the event’s preconditions on its can-
didates. The maximum branching factor of this technique will be
|E|(mazcer|Re|)™*@rerlér| and the effective branching factor
can be calculated by taking average instead of maximal values.
In other words, the branching factor is bounded by the number of
events, the maximum number of participants in any event, and the
size of the role group with the most members.

Role groups mitigate the effect of the total number of objects in the
world from on the growth of the branching factor as long as new
objects are evenly divided into small groups. This increases effi-
ciency and allows the system to scale to large groups of actors and
objects at the cost of flexibility (all of the objects in a role group
may be busy when needed) and authoring burden (the author must
ensure that objects are divided properly). Note that the branching
factor also grows independently of an actor or object’s individual
capabilities, allowing characters to exhibit rich and varied behav-
iors without affecting the planner’s overhead. Reducing the branch-
ing factor is the subject of future work, including a metric called
Salience that filters participants based on their history of involve-
ment in past events [Shoulson et al. 2013].

5 Runtime and Simulation

While the planner is responsible for generating sequences of events
to produce a narrative, a second component is needed to instantiate
those events in a proper order and manage their execution. To do so,
we use an event scheduler that monitors a queue of pending events
and a list of currently running event behavior trees. The scheduler
is responsible for selecting which events to instantiate in order, and
for monitoring the world state to detect when preconditions of an
event in the plan have been invalidated, necessitating a replan.

5.1 Event Loading and Dispatch

Unlike a contained sequence of actions in a single problem domain,
our system presents a fully-fledged simulation with many indepen-
dent actors and moving components. While the story plan itself is a
strict sequence, we use a specialized event scheduler that enables us
to dispatch multiple events simultaneously if they are not in compe-
tition for resources. This makes the simulation appear more lifelike
by maximizing actor activity and preventing long periods of time
where characters idly wait for the next step in the plan. Multiple
discrete “threads” of a story can progress simultaneously in differ-
ent areas of the world to present a compelling narrative that is driven
by the démarches of its characters.

The product of a generated plan is a sequence of events and lists of
objects from the world that fill the parameters of those events. De-
spite the planner’s ordering, events using disjoint sets of resources
can be safely executed in parallel. Upon receiving a plan, our sched-
uler queues the plan’s event sequence and prepares to dispatch those
events to the planner’s selected participants. At each scheduler up-
date, the scheduler updates all of the currently running events, and
then iterates through the list of queued events to launch those events
for which their participants are all available and their preconditions
are satisfied. Multiple events can be run in parallel if their lists of
participating objects do not overlap. Scheduler updates occur at a
fixed frequency and also handle tasks such as cleaning up com-
pleted events and restoring autonomy to their participating actors.

In order to maximize the amount of synchronization that can oc-
cur, authors of events can wrap complex sequences of actions into
compound events. Compound events appear to the planner as one
large event that takes a group of participating objects. However,
when placed on the scheduler’s event queue, the compound struc-
ture is broken down into a number of component sub-events that
each take fewer parameters than the whole. As an example, in a
simplified version of our scenario in which three characters escape
from a prison, we illustrate a room with a simple puzzle in Figure
3. The three main characters enter the room from the left and must
exit on the right. Buttons B1 and B2 open the door at the bottom of
the diagram, and must be pushed simultaneously, while button B3
opens the door at the top of the diagram. The pathway to the room
with buttons B1 and B2 are blocked by a guard G. The event(s) to

solve this could be authored in a number of ways, including one
large event that takes all seven parameters and walks the characters
through the problem.

Bl B2
e
(B3)

A, B, C_

escape
> >
enter

(B1, B2)

] T
B3

Figure 3: Map of the environment for the distract-and-escape sce-
nario.

Regardless of how the solution appears to the planner, however,
the events can be broken down for parallel execution. Figure 4 il-
lustrates the resources used for the various sub-events to solve the
puzzle. While the events in the sequence may still be predicated
on state transitions, they may still partially overlap. As character
A distracts the guard, characters B and C can press the buttons to
open the bottom door. Then A can escape from the guard, press
B3, and all three characters can escape simultaneously. Compound
events are another tool available to authors to control the branch-
ing factor of the planning process, allowing the planner to only see
a very coarse-grained event such as “escape from room”, without
sacrificing qualities like synchronized cooperative behaviors.

A B C G Bl B2 B3
Distract - - Pl
Press B1 & B2 _ _
Press B3 - R |
Escape _

Figure 4: Synchronization breakdown of the distract-and-escape
scenario.

5.2 Handling Dynamic World Changes

The scheduler receives a notification when any external object in
the world, including a user’s avatar, has unexpectedly changed the
state of the environment. If the change affects an entry in the world
state used by any currently-running events’ pre- or postconditions,
then those events are immediately terminated, the event queue is
cleared, and the planner is instructed to replan from the current
affected world state. If the change does not alter any of the cur-
rent events’ preconditions or postconditions, then the scheduler
forward-simulates the events in the queue and ensures that given

each sequential world state, the next event in the queue can be
reached. Note that we check postconditions to see whether user in-
tervention has achieved the effect of an event before the event itself
could terminate (for example, if the user moves an item that an actor
in an event was supposed to move). If any event in the queue is de-
tected as unreachable due to the unexpected change, then the queue
is emptied and the planner generates a new sequence of events. This
allows the planner to respond to changes from either a user or ad-
versarial virtual characters acting in opposition to the goals of the
story. Further work on plan and story repair [Likhachev et al. 2005;
Paul et al. 2011] may be suitable for our planning environment, but
would be the subject of future work.

5.3 Intelligent Ambient Character Behavior

In virtual environments with many actors, we do not expect every
actor to constantly be involved in events as the story progresses.
At times, characters will be waiting for others to perform tasks and
advance the narrative sequence. This can produce periods of down-
time where actors are not explicitly given a task to perform by the
story planner. Fortunately, the event-centric behavior paradigm al-
lows for characters to maintain their own autonomy when not in-
volved in an event. We extend this functionality so that characters
not only maintain a level of activity when waiting for their next
story action, but act with an awareness of their current role in the
narrative.'

Objects in our world are annotated with special observation points,
which serve as placeholder geometry where a character can safely
stand and watch that particular object while it is in use. When a
character is idle, we determine which event from the scheduler that
character will be involved in next. Given the event, we pick one of
the non-actor objects scheduled to be involved in that event, and di-
rect the character to stand in one of that object’s observation points
as long as the character can safely do so. This produces realistic
ancitipatory behavior such as a character standing by a door while
waiting for another character to unlock and open it. The characters
can then be co-opted at any time once their event starts to continue
advancing the narrative.

6 Results

We author a narrative-driven “prison break” scenario, where pris-
oner characters need to overcome a number of hurdles including
locked doors, traps, alarms, and adversarial guards in order to exit
their cells. This simulation runs at or above 30 frames per second,
with near-instaneous replanning to react to user interaction. Sec-
tion 6.1 discusses the virtual environment we designed for the sce-
nario, Section 6.2 describes the objects within the virtual world and
their state descriptions, Section 6.3 describes the process of author-
ing multi-actor events, Section 6.4 describes the generated narra-
tives, and Section 6.5 discusses our system’s ability to react in real-
time to both helpful and confounding user intervention.

6.1 Environment Design

Figure 5 displays a map of the test environment we designed for
demonstrating our system. The goal is for all of the prisoners to
safely escape their cells and flee the prison. In order to accomplish
this goal, the prisoners must evade guards and open doors either
using keys (for locked doors) or buttons (for their controlled doors,
indicated by matching color).

IThis can also strongly influence camera control, as described by
Markowitz et al. [2011].

The map is annotated with the following points of interest (red cir-
cles): (1) the north cellblock contains three prisoners in cells, one
guard with a key, and a button that opens two doors in the south
cellblock (orange doors), (2) the south cellblock contains a sleep-
ing guard with a key and four locked prisoners, (3) the exit to the
cellblock is controlled by two buttons on the interior that must be
pressed simultaneously to open (dark blue) or one button on the ex-
terior, (4) the exit from the north cellblock is blocked by another
guard, and requires three doors to be opened in sequence using a
key and then two buttons (light blue, purple), (5) a hiding spot for
prisoners to evade the guards in the north cellblock, (6) a cage that
rises from the floor and can trap prisoners or guards caught inside,
(7) a control room with buttons controlling the cage (red) or the
alarm at the exit (green) that will attract guards to it when activated,
and (8) the goal zone, representing the exit from the prison.

6.2 Object State Description

Our world state comprises instances of eight object types, each with
their own individual state.

Object State Fields

Door Closed, Locked, Guarded, Rooml, Room2
Prisoner HasKey, CurrentRoom, Position

Room Guarded, AdjacentRooms

CageTrap | Active

Button Active, ControlledObject

Guard HasKey, Trapped, Dazed, Position
Alarm Active

Key (no state information)

The state of an object determines the conditions for its use. For ex-
ample, a door with a guard standing near it is considered guarded,
and cannot be safely opened or unlocked without first removing or
disabling the guard. The same applies for guarded rooms, which
cannot be safely entered. Buttons are linked to the objects they ac-
tivate, controlling doors, the cage trap, or the alarm. Guards are un-
able to move or react when dazed or trapped, and locked doors can
only be opened by characters that have a key. For special cases like
a door that can only be opened by two simultaneous button presses,
we use proxy objects that comprise the state of two or more objects
in the world.

6.3 Authored Events

Table 1 illustrates the major events used in our planning scenario,
with their parameters, preconditions, postconditions, and a sum-
mary of their behavior trees. Pre- and postconditions involving
character positions are omitted for clarity, but are handled, in gen-
eral, with a system of room adjacency and world annotations in the
form of waypoints. These events were authored as generic reusable
structures and placed in a library available to the planner. The pro-
cess of introducing new behavior is straightforward, and can simply
be accomplished by adding a new event that manipulates the objects
in the world. By using events, we were able to add a rich variety of
behavior to the world with a minimal degree of authorial burden.
These events, such as the six-actor event to trap four guards in a
cage, allow for rich multi-character interactions without causing a
combinatorial growth in the planning branching factor.

6.4 Generated Narrative

In a supplemental video, we demonstrate four different generated
narrative plans. For each of these plans, the goal of the simulation
was for each prisoner to be able to reach the exit location of the
prison complex map. The initial configuration of the world matches

>
o>

=)

*
@ || ¥

(Sleeping)

8
| o oo

a

@®:=:=@ Door (Requires Key)
&:==4 Door (Requires Button)
------ Window
=== Cage

Button Prisoner Guard

Ggg =c
@

[8)

Figure 5: Problem definition map for the “prison break” scenario. Prisoners must escape from their cells and escape from the complex by

unlocking doors and evading guards.

Figure 6: Storyboard for the first generated narrative plan with no intervention.

that of Figure 5, with prisoners in their cells, and guards with keys
guarding the prison exits.

Figure 6 provides a storyboard of the first generated narrative plan
from the default environment. The plan begins with a prisoner in the
north cellblock (area (1) in Figure 5) luring the guard into his cell,

assaulting him, and stealing his key (a). Afterwards, that prisoner
frees the others in the north cellblock, and presses the button (b) to
release the south cellblock (orange button, Figure 5). Two prisoners
are released (c) in the south cellblock, and one steals a key from the
sleeping guard (d). Meanwhile, in the north cellblock, a prisoner
lures a guard away from the door (e, f) so that two other prisoners

Event DistractGuard(Guard : g; Door : d;
Prisoner : a, b, ¢c; Waypoint : u, v):
Precondition ¢:
Guarded(d) A CanReach(a,g)
A CanReach(b,u) A CanReach(c,v);
Postcondition &:
—Guarded (d);
Behavior Summmary:
b hides at u
c hides at v
a draws away g

Event StealKey(Guard : g; Prisoner : a):

Precondition ¢:

CanReach(a,g) A HasKey(g)

A IsDazed(g) A —HasKey(a);
Postcondition &:

HasKey(a) A —“HasKey(g);
Behavior Summmary:

a approaches g

a reaches g to take key

Event EscapeCell(Guard : g; Door : d;
Prisoner : a):

Precondition ¢:
CanReach(g,d) A HasKey(g)
A Closed(d) A Locked(d);

Postcondition ¢:

HasKey(a) A —"HasKey(g)
A Trapped(g) A Locked(d);

Behavior Summmary:
acalls g
OpenDoor(g,d)

a dazes g
StealKey(g,a)
a closes and locks d

Event OpenDoor(Agent : a; Door : d):
Precondition ¢:
CanReach(a,d) A Closed(d)
A —Locked(d);
Postcondition §:
—Closed(d);
Behavior Summmary:
a approaches d

Event SoundAlarm(Guard : g, h, i, j;

Alarm : a; Button : b; Prisoner : p):

Precondition ¢:
CanReach(p,b) A Controls(b,a)
A —Active(a);

Postcondition o:
Active(a);

Behavior Summmary:
p presses b
g, h, 1, j approach a

Event ExchangeKey(Prisoner : a, b):
Precondition ¢:
CanReach(a,b) A HasKey(a)
N —HasKey(b);
Postcondition §:
HasKey(b) A mHasKey(a);
Behavior Summmary:
a approaches b

a opens d

Event TrapGuards(Guard : g, h, i, j;
Prisoner : a, b; Button : u; CageTrap : t;
Waypoint : w):

Precondition ¢:
CanReach(a,w) A CanReach(b,u)
A OnPathTo((g..j),w,t) A mActive(t)
A Controls(u,t);
Postcondition §:
Trapped(g) A Trapped(h)
A Trapped(i) A Trapped(j)
A Active(t);
Behavior Summmary:
a approaches w
acallsoutto g, h,i,j
g, h, i, 7 approach a
b presses u
ttraps g, h, 1, j

a gives b the key

Event TrapGuardsAlarm(Guard : g, h, i, j;

Prisoner : a, b; Button : u, v;
CageTrap : t; Alarm : x):

Precondition ¢:
CanReach(a,u) A OnPathTo((g..j),x,t)
A —Active(t) A Controls(u,t)
A CanReach(b,v) A Controls(v,x)
N —Active(x);

Postcondition J:
Trapped(g) A Trapped(h)
A Trapped(i) A Trapped(j)
A Active(x) A Active(t)

Behavior Summmary:
SoundAlarm(g,h,i,j,x,v,a)
TrapGuards(g,h,i,j,a,b,t)

Table 1: Summary of major events used in our narrative scenarios. Note that events may invoke other events during their execution.

can escape by pressing the correct buttons (g) (area (4) in Figure 5).
The luring prisoners enter the guarded area (above (4) in Figure 5)
and shut the door, locking the guard behind them (h). In the south
cellblock, two prisoners simultaneously press the door buttons (i) to
open the door (dark blue, area (3) in Figure 5). A prisoner runs out
into the cage room (area (6) in Figure 5), and attracts the guards to
him (j). Another prisoner presses the button to trap the guards (k).
Afterwards, all seven prisoners escape (1). Figure 1 highlights some
of the cooperative behaviors performed during the scenario.

We altered the environment by disabling the button in the north cell-
block (near (1) in Figure 5, orange), which prevented the two doors
in the south cellblock (orange) from being opened by the north wing
prisoners. This one change to the world state produced a drastically
different narrative experience.

The second narrative began in the same way as the first, with the
north cellblock prisoner stealing a key from a guard and releasing
the other two prisoners (Figure 6(a)). However, with the button dis-
abled, the south cellblock prisoners could not be released, so the
events featured in Figure 6(c, d, i) do not occur. Instead, an alterna-
tive sequence of actions occurs, displayed in Figure 7. To lure the
guards away from the gate room exit, a prisoner from the north cell-
block activates the alarm (m). This attracts the guards to it so that
a prisoner can sneak past them (n) and enter the south cellblock.
After stealing a key from the sleeping guard (as in 6(d)), that pris-
oner releases the other south cellblock prisoners (o), and lures the
guards back into the trap after the alarm is deactivated (p). Once

again, all seven prisoners safely escape. This demonstrates our sys-
tem’s ability to react and adapt to static changes in the environment
by generating alternative narrative plans.

6.5 Reacting to User Intervention

Our system can perform rapid replanning when faced with an in-
valided plan. We demonstrate two scenarios in which a user inter-
acts with the system while a plan is currently active. In the first sce-
nario, the user manually opens two doors in the north wing of the
complex (near (4) in Figure 5, light blue and purple). This prevents
the prisoners in the north wing from having to open those doors by
pressing their associated buttons. As soon as either door is opened,
the planner detects the change, invalidates the active plan, and im-
mediately produces a new plan from the current state of the world.
Where the original plan instructed the prisoners to open those doors
after distracting the guard blocking them, the new adapted plan al-
lows the north wing prisoners to bypass that step entirely.

In a second scenario, we demonstrate a situation where the user
acts in direct opposition to the goal, illustrated in Figure 8. While
the narrative is taking place, the user moves the four guards (q) from
the cage room (near (4) in Figure 5) closer to the door (r) at the exit
of the south cellblock (near (3), blue). This prevents the prisoners
from using the diversion tactic they employed in the original plans
to trap the guards in the cage. To adapt to this change, the planner
produces a new narrative where the prisoners use the alarm to lure
the guards back out of the cage room (s), and intercept them with the

(n)

(p)

Figure 7: Adaptations to the narrative plan resulting from an environment change.

(@ ()

Figure 8: The user selects and moves four guards (q, r), resulting in a real-time narrative plan adaptation (s, t).

cage as they pass over it (t). This showcases our system’s ability to
continue to progress the narrative towards an authored goal despite
confounding intervention, intentional or otherwise, by a user.

7 Conclusion and Future Work

This paper describes a framework for creating real-time interactive
narratives using the event-centric authoring paradigm. Our method
allows us to design complex and intricate multi-character interac-
tions with a high degree of control fidelity in order to synchronize
cooperative and competitive character behaviors. Planning in the
space of events rather than in individual character action spaces al-
lows characters to exhibit a large repertoire of individual capabili-
ties without causing combinatorial growth in the planner’s branch-
ing factor. This allows us to produce and simulate long, cohesive
narratives at interactive rates.

Our system has a number of limitations:

Required Roles. To contain the branching factor of populating
events with characters and props, we are required to divide the envi-
ronment’s populace into many different narrative roles. This limits
the number of objects that can be selected for an event, but comes
at the cost of reducing the flexibility of the system to adapt to con-
founding user input. To alleviate these restrictions, we are examin-
ing other ways to filter the populace according to suitability for a
particular event. This can include criteria such as agent priming, its
proximity to the event’s location, and previous events in which an
agent has participated [Shoulson et al. 2013].

Authoring Burden. Currently, events must be manually authored
with their behavior, preconditions, postconditions, and cost. While
feasible for a small number of events, this can quickly become pro-
hibitive for larger, more interesting virtual worlds. Complex events
can also grow unpredictable in nature, making it difficult to manu-
ally extrapolate their pre- and postconditions. Despite this burden,
however, the freedom and flexibility of an event-driven system al-
lows us to automatically generate extremely diverse narratives that
are free-form and responsive to user intervention. While authoring
events can be manually intensive, it alleviates the need for an author

to manually design the entire narrative, which severely limits user
agency. To counteract the authoring burden for event design, we are
actively exploring ways to partially automate the event authoring
process. This revolves around a system that understands the nature
of certain objects in the world, and the ramifications of interacting
with them [Shoulson et al. 2013].

Non-determinism. Our current event specification depends on
events acting deterministically within the world. This poses a sig-
nificant limitation for authors both in designing more interesting
events, and in handling errors that result from occasionally unreli-
able systems like procedural reaching and path-finding. Modeling
events as nondeterministic functions with multiple probable out-
comes would allow our planner to more robustly account for chaotic
environments, system error, and unexpected user input.

Acknowledgements

The research reported in this document/presentation was performed
in connection with Contract Number W911NF-10-2-0016 with the
U.S. Army Research Laboratory. The views and conclusions con-
tained in this document/presentation are those of the authors and
should not be interpreted as presenting the official policies or posi-
tion, either expressed or implied, of the U.S. Army Research Labo-
ratory, or the U.S. Government unless so designated by other autho-
rized documents. Citation of manufacturers or trade names does not
constitute an official endorsement or approval of the use thereof.
The U.S. Government is authorized to reproduce and distribute
reprints for Government purposes notwithstanding any copyright
notation heron.

References

ABACI, T., AND THALMANN, D. 2005. Planning with smart ob-
jects. In Computer Graphics, Visualization and Computer Vi-
sion: WSCG, University of West Bohemia, 25-28.

BLUMBERG, B. M. 1997. Old tricks, new dogs : ethology and in-
teractive creatures. PhD thesis, Massachusetts Institute of Tech-
nology.

BOTEA, A., ENZENBERGER, M., MLLER, M., AND SCHAEFFER,
J. 2005. Macro-ff: Improving ai planning with automatically
learned macro-operators. Journal of Artificial Intelligence Re-
search 24, 581-621.

EROL, K., HENDLER, J., AND NAU, D. S. 1994. Htn planning:
Complexity and expressivity. In AAAL, AAAI Press, 1123-1128.

FIKES, R. E., AND NILSSON, N. J. 1971. Strips: A new approach
to the application of theorem proving to problem solving. Mor-
gan Kaufmann, IJCAI, 608-620.

FUNGE, J., Tu, X., AND TERZOPOULOS, D. 1999. Cogni-
tive modeling: knowledge, reasoning and planning for intelligent
characters. In SSIGGRAPH, ACM Press/Addison-Wesley, 29-38.

HELBING, D., AND MOLNAR, P. 1995. Social force model for
pedestrian dynamics. Phys. Rev. E 51 (May), 4282-4286.

KAPADIA, M., SINGH, S., REINMAN, G., AND FALOUTSOS, P.
2011. A behavior-authoring framework for multiactor simula-
tions. Computer Graphics and Applications 31, 6, 45-55.

L1, B., AND RIEDL, M. 2011. Creating customized game ex-
periences by leveraging human creative effort: A planning ap-
proach. In Agents for Games and Simulations II, F. Dignum,
Ed., vol. 6525 of LNCS. Springer, 99-116.

LIKHACHEV, M., FERGUSON, D. I., GORDON, G. J., STENTZ,
A., AND THRUN, S. 2005. Anytime Dynamic A*: An Anytime,
Replanning Algorithm. In ICAPS, 262-271.

LoyALL, A. B. 1997. Believable Agents: Building Interactive
Personalities. Ph.d. thesis, Carnegie Mellon University.

MAGERKO, B., LAIRD, J. E., ASSANIE, M., KERFOOT, A., AND
STOKES, D. 2004. Ai characters and directors for interactive
computer games. In Innovative Applications of Artificial Intelli-
gence, AAAI Press, 877-883.

MARKOWITZ, D., KIDER, J., SHOULSON, A., AND BADLER, N.
2011. Intelligent camera control using behavior trees. In Motion
in Games. Springer, 156-167.

MASSIVE SOFTWARE INC., 2010.
www.massivesofware.com.

Massive: Simulating life.

MATEAS, M., AND STERN, A. 2003. Integrating Plot, Charac-
ter and Natural Language Processing in the Interactive Drama
Facade. In Technologies for Interactive Digital Storytelling and
Entertainment, Fraunhofer IRB Verlag, vol. 9, 139-151.

MCDERMOTT, D., GHALLAB, M., HOWE, A., KNOBLOCK, C.,
RAM, A., VELOSO, M., WELD, D., AND WILKINS, D. 1998.
Pddl - the planning domain definition language. Tech. Rep. TR-
98-003, Yale Center for Computational Vision and Control.

MENOU, E. 2001. Real-time character animation using multi-
layered scripts and spacetime optimization. In /CVS, Springer-
Verlag, 135-144.

ONDRE]J, J., PETTRE, J., OLIVIER, A.-H., AND DONIKIAN, S.
2010. A synthetic-vision based steering approach for crowd sim-
ulation. ACM Trans. Graph. 29, 4 (July), 123:1-123:9.

PAUL, R., CHARLES, D., MCNEILL, M., AND MCSHERRY, D.
2011. Adaptive storytelling and story repair in a dynamic envi-
ronment. In ICIDS, Springer-Verlag, 128-139.

PELECHANO, N., ALLBECK, J. M., AND BADLER, N. I. 2007.
Controlling individual agents in high-density crowd simulation.
In Symposium on Computer Animation (SCA), Eurographics,
99-108.

PELECHANO, N., ALLBECK, J. M., AND BADLER, N. I. 2008.
Virtual Crowds: Methods, Simulation, and Control. Synthe-
sis Lectures on Computer Graphics and Animation. Morgan &
Claypool Publishers.

PERLIN, K., AND GOLDBERG, A. 1996. Improv: a system for
scripting interactive actors in virtual worlds. In SIGGRAPH,
ACM Press, 205-216.

PORTEOUS, J., CAVAZZA, M., AND CHARLES, F. 2010. Applying
planning to interactive storytelling: Narrative control using state
constraints. ACM Trans. Intell. Syst. Technol. 1, 2 (Dec.), 10:1-
10:21.

REYNOLDS, C. 1999. Steering Behaviors for Autonomous Char-
acters. In Game Developers Conference.

RIEDL, M. O., AND BULITKO, V. 2013. Interactive narrative: An
intelligent systems approach. Al Magazine 34, 1, 67-77.

RIEDL, M., SARETTO, C. J., AND YOUNG, R. M. 2003. Manag-
ing interaction between users and agents in a multi-agent story-
telling environment. In AAMAS, ACM Press, 741-748.

RIEDL, M. O., STERN, A., DINI, D. M., ALDERMAN, J. M.,
AND REY, M. D. 2008. Dynamic Experience Management in
Virtual Worlds for Entertainment, Education, and Training. In-
ternational Transactions on Systems Science and Applications 3,

1 (Mar.), 23-42.

SHAO, W., AND TERZOPOULOS, D. 2007. Autonomous pedestri-
ans. Graph. Models 69 (September), 246-274.

SHOULSON, A., GARCIA, F., JONES, M., MEAD, R., AND
BADLER, N. I. 2011. Parameterizing Behavior Trees. In Motion
In Games, Springer, 144-155.

SHOULSON, A., KAPADIA, M., AND BADLER, N. I. 2013. Paste:
A platform for adaptive storytelling with events. In Intelligent
Narrative Technologies 6, To Appear.

SI, M., MARSELLA, S. C., AND PYNADATH, D. V. 2005. Thes-
pian: An architecture for interactive pedagogical drama. In Arti-
ficial Intelligence in Education, 10S Press, 595-602.

STOCKER, C., SUN, L., HUANG, P., QIN, W., ALLBECK, J. M.,
AND BADLER, N. I. 2010. Smart events and primed agents.
Intelligent Virtual Agents 6356, 15-27.

THUE, D., BULITKO, V., SPETCH, M., AND WASYLISHEN, E.
2007. Interactive storytelling: A player modelling approach. In
AIIDE, AAAI Press, 43-48.

VAN DEN BERG, J., LIN, M. C., AND MANOCHA, D. 2008. Re-
ciprocal velocity obstacles for real-time multi-agent navigation.
In ICRA, IEEE, 1928-1935.

VILHJIALMSSON, H., CANTELMO, N., CASSELL, J., E. CHAFAI,
N., Kipp, M., KOPP, S., MANCINI, M., MARSELLA, S., MAR-
SHALL, A. N., PELACHAUD, C., RUTTKAY, Z., THORISSON,
K. R., WELBERGEN, H., AND WERF, R. J. 2007. The behav-
ior markup language: Recent developments and challenges. In
Intelligent Virtual Agents, 99—-111.

YU, Q., AND TERZOPOULOS, D. 2007. A decision network frame-
work for the behavioral animation of virtual humans. In Sympo-
sium on Computer Animation (SCA), Eurographics, 119-128.

