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Abstract
Animating multiple interacting characters in real-time dynamic scenarios is a challenging task that requires not
only positioning the root of the character, but also placing the feet in the right spatio-temporal state. Prior work
either controls agents as cylinders by ignoring feet constraints, thus introducing visual artifacts, or use a small
set of animations which limits the granularity of agent control. In this work we present a planner that given any
set of animation clips outputs a sequence of footsteps to follow from an initial position to a goal such that it
guarantees obstacle avoidance and correct spatio-temporal foot placement. We use a best-first search technique
that dynamically repairs the output footstep trajectory based on changes in the environment. We show results of
how the planner works in different dynamic scenarios with trade-offs between accuracy of the resulting paths and
computational speed, which can be used to adjust the search parameters accordingly.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation

1. Introduction

Animating groups of human characters in real time is a dif-
ficult but necessary task in many computer graphics appli-
cations, such as video games, training and immersive virtual
environments. There is a large amount of work in the crowd
simulation and pedestrian dynamics literature, but most ap-
plications still lack convincing character animation that offer
a variety of animation styles without noticeable artifacts.

Humans walking in the real world have a cognitive map
of the environment which they use for calculating their path
through waypoints (doors, corners, etc), Then, we navigate
along the path by choosing footsteps to avoid collisions with
nearby humans and obstacles. Likewise, a virtual character
can be simulated within an environment by first deciding a
high level path (sequence of waypoints) using a navigation
mesh [Mon09] [OP13] and then calculating the exact trajec-
tory to walk from one waypoint to the next one. That trajec-
tory is going to be defined by the chosen steering behavior
algorithm, the output of which is going to encode the state of
the agent over time. An agent state can be modeled by differ-
ent granularities going from a simple point and radius with
a velocity vector in a low level representation, to a complete
high resolution mesh with joint velocity vectors, rotational
angles, torques and any other elements that might improve

the simulation on a higher level representation. Intermediate
representations [SKRF11] can perform simulations in real-
time by using an inverted pendulum model of the lower body
of a biped which can be controlled to generate biomechani-
cally plausible footstep trajectories.

This paper focuses on the computation of natural footsteps
trajectories for groups of agents. Most work in the litera-
ture uses crowd simulation approaches (rules based models,
social forces, cellular automata models, continuum forces)
to calculate the root displacement between two consecutive
waypoints. This leads to smooth root trajectories, but with
many artifacts due to lack of constraints between the feet and
the floor. There are some approaches that do focus on correct
foot placement, but in most cases they are quite limited in
the range of animations available or else can only deal with
a small number of agents. Our work enforces foot placement
constraints and uses motion capture data to produce natu-
ral animations, while still meeting real-time constraints for
many interacting characters.

Figure 1 illustrates an example of four agents planning
their footstep trajectory towards their goal while avoiding
collision with other agents, and re-planning when necessary.
The resulting trajectories not only respect ground contact
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Figure 1: Footstep trajectories planning for four agents reaching goals in opposite directions

constraints, but also create more natural paths than tradi-
tional multi agent simulation methods.

This paper is organized as follows. We first examine pre-
vious approaches in crowd simulations and their methods.
Next we give an overview of our framework and explain in
detail our pre-process step, planning algorithm and anima-
tion system. Finally we show some of our results and present
a discussion about the strength of our method and its limita-
tions along with conclusions and future work.

2. Related Work

Crowd simulation approaches can be classified into two
main sets based on whether they only focus on calculating
the position of the root ignoring the animations, or whether
they plan respecting the underlying animations. The first set
focuses on simulating realistic behaviors regarding overall
character navigation and do not worry about animations. In
fact sometimes their goal is to simply model agents as cylin-
ders that move around a virtual environment avoiding colli-
sions. The second set, which carries out planning while be-
ing aware of the animation clips available, need to perform
some pre-process to analyze the set of animation clips avail-
able to plan paths respecting constraints between the feet and
the floor. In some cases, if the animation set is handmade,
then the analysis is not necessary because the animations
have already been built with specific parameters (such as
speed, angle of movement and distance between feet) which
are taken into consideration when planning.

The first group works with root velocities and forces
or rules working on a continuous space, or displace-
ments within a grid. Different models include social forces
[HFV00], rule-based models [Rey87], cellular automata
[TLCDC01], flow tiles [Che04], roadmaps [SAC∗07], con-
tinuum dynamics [TCP06], local fields [KSHF09], hybrid
methods [SKH∗11], and forces models parameterized by
psychological and geometrical rules [PAB07]. They can eas-
ily represent agents by discs or cylinders to illustrate their
steering behavior, but do not care about a final representa-
tion using 3D animated characters, so the output trajectory
needs to be used to synthesize an animation following it.
Synthesizing the animation from a small database can cause

artifacts such as foot-sliding that need additional work to be
removed [PSB11].

The second group works directly with the set of avail-
able animations to construct motion graphs [KGP08, ZS09,
RZS10, MC12], or precomputed search trees [LK06]. These
approaches try to reach the goal by connecting motions to
each other [WP95], sometimes limiting the movements of
the agents. Other methods try to use motion graphs in the
first group combining it with path planners [vBEG11]. Hav-
ing a large animation database reduces the limitations in
terms of freedom of movement, but also makes the planning
more time consuming. The ideal solution would be one that
could find a good trade-off between these two goals: free-
dom of movement and fast planning.

Some approaches have tried to change the simulation
paradigm by using more complex agent representations,
such as footsteps. They can be physically based but gener-
ated off-line [FM12]. Or they can be generated online from
an input path computed by a path planner [EvB10], or plan-
ning them using an inverse pendulum model instead of root
positions [SKRF11]. Recent work [KBG∗13] proposes the
use of multiple domains of control focusing searches in more
complex domains, only when necessary. The resulting be-
havior offers better results giving characters a better interac-
tivity with the environment and other agents, but they fall in
the first group of our classification since they do not take an-
imation into account and need another process to synthesize
it.

Some locomotion controllers are able to synthesize in
real-time animations according to velocity and orientation
parameters [TLP07]. Other locomotion controllers can accu-
rately follow a footstep trajectory by extracting and param-
eterizing the steps of a motion capture database [vBPE10].
However they all need a very large database and their com-
putational time does not allow to have many characters in
real-time.

Our work belongs to the second group of the classifica-
tion, since it uses an animation-based path planner. However
instead of pre-computing a search tree with a few handmade
animation clips, we pre-process motion capture data (which
allows us to have more natural looking animations and larger
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Figure 2: Diagram showing the process required for the dynamic footstep planning algorithm

variety), and extract actions from the input animations to
compute a graph on the fly with an intelligent pruning based
on logical transitions and a collision prediction system. Col-
lisions are predicted and avoided for both static and deter-
ministic dynamic obstacles, as well as for other agents since
we expose all known trajectories.

3. Overview

Figure 2 illustrates the process of dynamic footstep planning
for each character in real-time. The framework iterates over
all characters in the simulation to calculate each individual
foot step trajectory considering obstacles in the environment
as well as other agents’ calculated trajectories.

The Preprocess phase is responsible for extracting anno-
tated animation clips from a motion capture database. The
real-time Planner uses the annotated animations as transi-
tions between state nodes in order to perform a path plan-
ning task to go from an input Start State to a Goal State.
The output of the planner is a Plan consisting of a sequence
of actions A0,A1, ...,An, which are clips that the Animation

Engine must play in order to move the Character along
the computed path. Both state and plan of the Character
are then input to the World State and thus exposed to other
agents’ planners, together with the nearby static or dynamic
obstacles. The World State is used to prune and accelerate
the search in order to predict and avoid potential collisions.
The Time Manager is responsible for checking the elapsed
time between frames to keep track of the expiration time of
the current plan. Finally the Events Monitor is in charge of
detecting events that will force the planner to recompute a
new path. The Events Monitor receives information from the
World State, the Time Manager, Goal State and the charac-
ter’s current Plan. Events include: a possible invalid plan or
the detection of a new dynamic obstacle or the goal position
changing.

3.1. Events Monitor

The events monitor is the module of the system in charge of
deciding when a new path needs to be recomputed. Elements
that will trigger an event are:
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• Goal state changed: when the goal changes its position or
a new goal is assigned for the current character.
• New agent or deterministic dynamic obstacle nearby:

other agents or dynamic obstacles enter the surrounding
area of our character. A new path needs to be calculated
to take into account the potential collision.
• Collision against non-deterministic obstacle: sometimes

an unpredictable dynamic obstacle could lead to a colli-
sion (for example: a dynamic obstacle moved by the user),
so when the events monitor detects such situation it trig-
gers an event in order to react to it.
• Plan expiration: a way to ensure that each agent is tak-

ing into account the latest plans of every other agent is to
give every plan an expiration time and force re-planning
if this is reached. A time manager helps monitoring this
task, but instead of a time parameter this event can also be
measured and launched by a maximum number of actions
that we want to perform (play) before re-planning.

4. Preprocess

During an offline stage, we analyze a set or a database of an-
imation clips in order to extract the actions that our planner
will then use as transitions between states. Each action con-
sists of a sequence of skeleton configurations that perform
a single animation step at a time, i.e., starting with one foot
on the floor, until the other foot (swing foot) is completely
resting on the floor. Our preprocess should work with any an-
imation clip, since we tried both handmade and motion cap-
ture clips (from the CMU database [CMU13]). After analyz-
ing each animation clip, we calculate mirrored animations.
Mirroring animations is done in order to have each analyzed
animation clip with either feet starting on the floor. The out-
put of this stage is a set of annotated animations that can be
used by the planner and the animation engine. This set can be
easily serialized and stored to be reused for all instances of
the same character type (same skeleton and the same scale,
otherwise even if they share animations these could produce
displacements of different magnitudes), reducing both pre-
process time and the global memory consumption.

4.1. Locomotion Modes

In order to give our characters a wider variety and agility of
movements we define different locomotion modes that need
to be treated differently. Each animation clip will be tagged
with its locomotion mode. We thus have the following set of
locomotion modes:

• Walking: these are the main actions that will be used by
the planner and the agents since they represent the most
common way to move. We therefore have a wide variety
of walks going from very slow to fast and in different an-
gles (not just forward and backwards).
• Running: these are going to be treated in the same way as

the walking actions with an additional cost penalty (since

running consumes more energy than walking). We have
also noticed empirically that for running actions it is not
necessary to have as many different displacement angles
as for walking actions.

• Turns: turns are going to be clips of animation where the
agent turns in place or with a very small root displace-
ment. They are going to be defined by their turning angle
and velocity.

• Platform Actions: in this group we will find actions like
jumping or crouching in order to avoid some obstacles.
Such actions should have a high energy cost and should
only be used in case of an imminent danger of collision.

While turns and platform actions need to be performed
completely from start to end, and they do not have any intrin-
sic pattern we can easily detect, walking and running anima-
tions can be segmented by clips containing a single step. So
animations of both walking and running locomotion modes
will have a special treatment as we will need to extract the
footsteps and keep only the frames of the animation covering
a single step.

4.2. Footsteps Extraction

As previously mentioned in the paper, an action starts with
one foot on the floor and ends when the other foot is planted
on the floor. But animation clips, especially motion capture
animations, do not always start and end in this very specific
way. Therefore we need a foot plant extraction process to
determine the beginning and end ending of each animation
clip that will be used as an action.

Simply checking for the height of the feet in the motion
capture data is not enough, since it usually contains noise
and artifacts due to targeting. In most cases, when swing-
ing the foot forwards while walking, the foot can come very
close to the ground, or even traverse it.

Other techniques also incorporate the velocity of the foot
during foot plant, which should be small. However this so-
lution can also fail, since foot skating can introduce a large
velocity. We detect foot plants using a height and velocity
based detector similar to the method described in [vBE09],
where foot plant detection is based on both height and time.
First, the height-based test provides a set of foot plants, but
only those where the foot plant occurs in a group of adjacent
frames, are kept.

Our method combines this idea with changes on velocity
for more accurate results, so we detect a foot plant when for
a discretisized set of frames the foot is close to the ground for
a few adjacent frames and with a change in velocity (deceler-
ation, followed by being still for a few frames, and finishing
with an acceleration). Notice that this method works for any
kind of locomotion ranging from slow walking to running
including turns in any direction.
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4.3. Clip annotation

An analysis is performed by computing some variables over
the whole duration of the animation. Each analyzed anima-
tion clip is annotated with the following information:

Lmod Locomotion mode
Fsp Supporting Foot
Fsw Swing Foot
~vr Root velocity vector
~f Foot displacement
t Time duration
t0 Initial time

tend End time
α Movement angle
θ Rotation angle
P Set of Sampled positions

Table 1: Information stored in each annotated animation
clip.

Locomotion mode, indicates the type of animation (walk
short step, walk long step, run, walk jump, climb, turn, etc).
Supporting foot is the foot that is initially in contact with the
floor, and the swing foot corresponds to the foot that is mov-
ing in the air towards the next footstep. The supporting foot
is calculated automatically based on its height and velocity
vector from frame to frame.

The root velocity vector indicates, taking the starting
frame of the extracted clip as reference, the total local dis-
placement vector of the root during the whole step. We there-
fore know the magnitude, the speed in m/s and the angle of
its movement. Similarly, foot displacement tracks the move-
ment of the swing foot.

Movement angle in degrees indicates the angle between
the swing foot displacement vector and the initial root orien-
tation. Therefore an angle equal to 0 means an action moving
forward and 180 means it is a backward action. An Angle
equal to 90 means an action moving to the left if the swing
foot is the left one, or the right if the swing foot is the right
one. Finally the rotation angle is the angle between the root
orientation vector in the first and last frame of the clip.

t indicates the total time duration of the extracted clip,
with t0 and tend storing the start and end point of the original
animation that the extracted clip covers. These values will be
used by the animation engine to play the extracted clip.

P corresponds to a set of sampled positions for certain
joints of the character within an animation clip, and it is used
for collision detection (see section 5.5)

5. Planning Footstep Trajectories

In this section, we first present the high level path planning
on the navigation mesh. Then we define the problem domain

we are dealing with when planning footsteps trajectories.
Next we give details of the real-time search algorithm that
we use as well as the pruning carried out to accelerate the
search. Finally we explain how the collision detection and
prediction is performed.

Figure 3: High level path with local footstep trajectory be-
tween consecutive visible waypoints.

5.1. High Level Path Planning

Footstep trajectories are calculated between waypoints of
the high level path (see Figure 3). This path is calcu-
lated over the navigation mesh using Recast [Mon09]. An
A* algorithm is used to compute the high level path, and
then footstep trajectories are calculated between consecu-
tive visible waypoints. So given a sequence of waypoints
{wi,wi+1,wi+2, ...,wi+n}), if there is a collision-free straight
line between wi and wi+n, then the footstep trajectory is cal-
culated between those two waypoints, and any other inter-
mediate point is ignored. This provides more natural trajec-
tories as it avoids zig-zagging over unnecessary waypoints.
Waypoints are considered by the planner as goal states, and
each time that we change a waypoint the change of goal is
detected by the events monitor, thus forcing a new path to be
computed.

5.2. Problem Definition

The algorithm for planning footstep trajectories needs to cal-
culate the sequence of actions that each agent needs to fol-
low in order to go from their start position to their goal posi-
tion. This means solving the problem of moving in a footstep
domain between two given positions in a specific amount
of time. Therefore, characters calculate the best trajectory
based on their current state, the cost of moving to their des-
tination and a given heuristic. The cost associated with each
action is given by the bio-mechanical effort required to move
(i.e: walking has a smaller cost than running, stopping for a
few seconds may have a lower cost than wandering around a
moving obstacle). The problem domain that we are dealing
with is thus defined as:

Ω =
(
S,A,c

(
s,s′
)
,h(s,sgoal)

)
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Where S is the state space and is defined as the set of states
composed of the character’s own state self, the world com-
position environment, and the other agents state. The action
space A indicates the set of possible transitions in the state
space and thus will have an impact on the branching factor of
the planner. Each transition is an action, so we will have as
many transitions as extracted clips times the possible speed
variations we allow to introduce (we can for example repro-
duce a clip at half speed to obtain its displacement two times
slower). Actions are then going to be defined by their corre-
sponding annotated animation. c

(
s,s′
)

is the cost associated
with moving from state s to state s′. Finally h(s,sgoal) is the
heuristic function estimating the cost to go from s to sgoal .

5.3. Real-Time Planning Algorithm

Planning footsteps trajectories in real time requires finding
a solution in the problem domain Ω described earlier. The
planner solution consists of a sequence A0,A1, ...,An of ac-
tions. Our planner interleaves planning with execution, be-
cause we want to be able to replan while consuming (play-
ing) the action. For this purpose, we use a best-first search
technique (e.g., A*) in the footstep problem domain, defined
as follows:

• S: the state space will be composed of the character’s
own state (defined by position, velocity, and the collision
model chosen), the state of the other agents plus their plan,
and the state and trajectory of the deterministic dynamic
obstacles. For more details about collision models and ob-
stacles avoidance see section 5.5.
• A: the action space will consist of every possible action

that can be concatenated with the current one without
leading to a collision, so before adding an action we will
perform all necessary collision checks.
• c

(
s,s′
)
: the cost of going from one state to another will

be given by the energy effort necessary to perform the an-
imation:

c
(
s,s′
)
= M

∫ t=T

t=0
es + ew |v|2 dt

where M is the agent mass, T is the total time of the ani-
mation or action being calculated, v the speed of the agent
in the animation, and es and ew are per agent constants (for
an average human, es = 2.23 J

Kg.s and ew = 1.26 J.s
Kg.m2 )

[KWRF11].
• h(s,sgoal): the heuristic to reach the goal comes from the

optimal effort formulation:

h(s,sgoal) = 2Mcopt(s,sgoal)
√

esew

where copt(s,sgoal) is the cost of the optimal path to go
from s to sgoal , in our case we chose the euclidian distance
between s and sgoal [KWRF11]. The optimal effort for an
agent in a scenario is defined as the energy consumed in
taking the optimal route to the target while traveling at the
average walking speed: vav =

√
es
ew

= 1.33m/s

Taking all these components into consideration the plan-
ner can search for the path with least cost and output the foot-
step position with their time marks that the animation engine
will follow by playing the sequence of actions planned (see
figure 4).

Figure 4: Footsteps trajectory with time constraints that
need to be followed by the animation controller.

5.4. Pruning Rules

In order to accelerate the search we can add simple rules
to help prune the tree and reduce the branching factor. A
straight forward way to halve the size of the tree consists of
considering only consecutive actions starting with the oppo-
site foot. So given a current node with a supporting foot, ex-
pand the node only for transitions that have that same foot
as the swing foot. Actions which are not possible due to
locomotion constraints on speed or rate of turning are also
pruned to ensure natural character motion (so after a stay-
ing still animation, we will not allow a fast running anima-
tion). The next pruning applied is based on collision pre-
diction as we will see in the following section. The idea is
that when a node is expanded and a collision is detected, the
whole graph that could be expanded from it gets automati-
cally pruned. The pruning process reduces the branching fac-
tor of the search, and also ensures natural footstep selection

5.5. Collision Prediction

While expanding nodes the planning algorithm must check
for each expanded node whether the future state is collision
free or not. If it is collision free, then it maintains that node
and continues expanding it. Otherwise, it will be discarded.
In order to have large simulations in complex environments
we need to perform this pruning process in a very fast man-
ner.

In order to predict collisions against other agents or obsta-
cles (both dynamic or static), we introduce a multi-resolution
collision detection scheme which performs collision checks
for two resolution levels. Our lowest resolution collision de-
tection model is a simple cylinder centered at the root of the
agent with a fixed radius. The higher resolution model con-
sists of five cylinders around the end joints (head, hands and
feet) that are used to make finer collision tests Figure 5.
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We could introduce more collision models, where high
resolution ones will be executed only in case of detecting
collisions using the coarser ones. At the highest complexity
mode we could have the full mesh collision check, but for
the purpose of our simulation the 5 cylinders model gives us
enough precision to avoid agents walking with their arms in-
tersecting against other agents as they swing back and forth.
Compared against simpler approaches that only consider ob-
stacle detection against a cylinder, our method gives better
results since it allows us to have closer interactions between
agents. All obstacles have simple colliders (boxes, spheres,
capsules) to accelerate the collision checks by using a fast
physics ray casting test.

It is also important to mention that collision tests are not
only performed using the initial and end positions of the
expanded node, but also with sub-sampled positions inside
the animation (for the 5 cylinder positions). For example, an
agent facing a thin wall as a start position and the other side
of the wall as end position of its current walk forward step.
If we only check for possible collisions with those start and
end positions we would not detect that the agent is actually
going through the wall.

The sub-sample for each animation is performed off-line
and stored in the annotated animation. To save memory, this
sampling is performed at low frequencies and then in real
time intermediate positions can be estimated by linear inter-
polation.

Finally, we provide the characters with a surrounding
view area to maintain a list of obstacles and agents that are
potential threats to our path (see figure 6). For each agent, we
are only interested in those obstacles/agents that fall within
the view area in order to avoid running unnecessary collision
tests.

5.5.1. Static World

Static obstacles are part of the same static world that is used
to compute the navigation mesh with Recast [Mon09]. They

Figure 5: Collision model of 5 cylinders around the head,
the left and right hands, and the left and right foot.

Figure 6: When planning we only consider obstacles and
agents that are inside the view area. Obstacles A, B and
agent a are inside it and the agent will try to avoid them,
while it will ignore obstacles C, D and agents b and c .

do not need to have a special treatment since the high-level
path produces waypoints that avoid collisions with static ob-
stacles..

5.5.2. Deterministic Dynamic Obstacles and Other
Agents

Deterministic obstacles move with a predefined trajectory.
Other agents have precomputed paths which can be queried
to predict their future state. To avoid interfering with those
paths we allow access to their temporal trajectories. So, for
each expanded node with state time t we check for collisions
with every obstacle and agent that falls inside his view area
at their trajectory positions at time t. Figure 7 shows an ex-
ample of an agent avoiding two dynamic obstacles.

5.5.3. Unpredictable Dynamic Obstacles

Unlike deterministic dynamic obstacles and other agents,
unpredictable dynamic obstacles are impossible to be ac-
counted for while planning. Therefore they can be ignored
when expanding nodes, but we need a fast way to react to
them. This is the reason why we need the events monitor to
detect immediate collisions and force re-planning. Figure 8
shows an example where a wall is arbitrarily moved by the
user and the agent needs to continuously re-plan its trajec-
tory.

6. Animation Engine

The animation engine is in charge of playing the output se-
quence of actions given by the planner. These actions contain
all the data in the annotated animation. When a new action is
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Figure 7: An agent planning with two dynamic obstacles
in front of him (top). After executing some steps the path is
re-planned. The blue obstacle indicates that it is not in his
nearby area anymore, so that obstacle is not considered in
the collision check of this new plan. (bottom)

played it sets t0 as the initial time of the animation. When the
current animation reaches tend the animation engine blends
the current animation with the next one in the queue.

The Animation Engine also tracks the global root posi-
tion and orientation, and applied rotation corrections by ro-
tating the whole character using the rotation values of the
annotated animation (rotation angle θ). The blending time
between actions can be user defined within a short time (for
example 0.5s).

7. Results

The presented framework has been implemented using the
ADAPT simulation platform [SMKB13] which works with
Unity Game Engine [Uni13] and C# scripts. Our current
framework can simulate around 20 agents at approximately
59-164 frames per second (depends on the maximum plan-
ning time allowed), and 40 agents at 22-61 frames per
second (INtel Core i7-2600k CPU @ 3.40GHz and 16GB
RAM). Figure 9 shows the frame rates achieved on average
for an increasing number of agents. The black line corre-
sponds to a maximum planning time of 0.01s, and the red
line corresponds to 0.05s. Additionally, by setting planner

Figure 8: An agent reacting to a non-deterministic obstacle
by re-planning his path.

parameters such as the horizon of the search, we can achieve
significant speedup at the expense of solution fidelity. For
example, we can produce purely reactive simulations where
the character only plans one footstep ahead by reducing the
search horizon to 1.

Figure 9: This graph shows the frames per second on av-
erage for different simulations with increasing number of
agents. We have used two values for the maximum planning
time: 0.01 resulting in higher frame rates, and 0.05 resulting
in lower frame rates but better quality paths

The results showed have been made with a database of 28
motion captured animations. This is a small number com-
pared to approaches based on motion graphs (generally hav-
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ing around 400 animation clips), but a large number com-
pared with techniques based on handmade animation (such
as pre-computed search trees). This decision allows us to
achieve results that look natural and yet can be used for real
time applications.

Our approach solves different scenarios where several
agents are simulated in real-time achieving natural looking
paths while avoiding other obstacles and characters (see ac-
companying videos). The quality of the results in terms of
natural paths and collision avoidance depends on the plan-
ner. The planner will be given a specific amount of time to
find a solution (which translates in how many nodes of the
graph are expanded). Obviously when we allow larger search
times (larger number of nodes to expand) the resulting tra-
jectory looks more natural and is collision free, but at the
expense of being more computationally expensive. Alterna-
tively, if we drastically reduce the search time (smaller num-
ber of nodes to expand) we may end up having collisions as
we can see in the resulting videos and in Figure 10.

Interleaving planning with execution provides smooth an-
imations, since not all the characters plan their paths simu-
lateneously. At any time, the new plan is calculated with the
start position being the end position of the current action.

We have also shown how the Events Monitor can suc-
cessfully plan routes when deterministic obstacle invalidate
a character’s plan, as well as efficiently react to non deter-
ministic obstacles (see Figures 7 and 8)

8. Conclusions and Future Work

We have presented a multi-agent simulation approach where
planning is done in the action space of available animations.
Animation clips are analyzed and actions are extracted and
annotated, in order to be used in real time to expand a search
tree. Nodes are only expanded if they are collision free. To
predict collisions we sample animations and use a new col-
lision model with colliders for each end joint (head, hands
and feet). This way we are able to simulate agents avoiding
more detailed collisions. The presented framework handles
both deterministic and non-deterministic obstacles, since the
former can be taken into consideration when planning, while
the later needs a completely reactive behavior.

Unlike pre-computed search trees our set of transitions is
composed of actions, and mainly footsteps, which allows us
to build online the search tree and to dynamically prune it,
considering not only start and goal positions, but also de-
parture and arrival times. An events monitor can help us to
decide when to re-plan the path, based on the environment
situation such as obstacle proximity or velocity.

We would like to further extend the hierarchical nature of
this work to add granularity (both in models and domains)
to adaptively switch between them [KCS10, Lac02, SG10].
Solutions from a coarser domain could also be reused to

accelerate the search into a finer domain, using techniques
such as tunneling [GCB∗11]. Another idea would be to have
a special class of actions constituting a reactive domain that
would only be used in case of an imminent threat. Since non-
deterministc obstacles invalidating the current plan force
to replan constantly, it would be interesting to carry out
a quantitative study on the impact of the number of non-
deterministic obstacles in the frame rate obtained for differ-
ent number of agents.

As Illustrated in 9, the computational complexity of our
framework scales linearly with number of agents. By re-
ducing the search depth and maximum planning time, we
can simulate a larger crowd of characters at interactive rates.
Choosing the optimal value of these parameters that balance
computational speed and agent behavior is an interesting re-
search direction, and the subject of future work. Our frame-
work is not memory bound, and is amenable to paralleliza-
tion with each agent planning on an independent thread.

Notice that memory is required per animation ( to store
sub-sampled animations) and not per agent in the simula-
tion, therefore increasing the size of the simulated group of
agents would not have an impact on the memory require-
ments of our system. If we wanted to simulate crowds of
characters we would need more CPU power, but not mem-
ory as long as we had more instances of characters sharing
the same skeleton and animations.

We would also like to improve our base search algorithm
with a faster one taking into account repairing capacities
such as ARA* [LGT03]. Having more characters and dif-
ferent sets of actions that can be used depending on the
situation, like a reaction domain, would also accelerate the
search and give better results to our simulations in constantly
changing dynamic virtual environments.
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