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Figure 1: Demonstrating the capabilities of ADAPT. Visualizing multiple choreographers that blend to produce a pose for the display model;
an agent reacting to the impact force of a ball; a crowd of 100 agents resolving a bottleneck; three characters engaged in a conversation.

Abstract

We present ADAPT, a flexible platform for designing and author-
ing functional, purposeful human characters in a rich virtual envi-
ronment. Our framework incorporates character animation, nav-
igation, and behavior with modular interchangeable components
to produce narrative scenes. Our animation system provides lo-
comotion, reaching, gaze tracking, gesturing, sitting, and reactions
to external physical forces, and can easily be extended with more
functionality due to a decoupled, modular structure. Additionally,
our navigation component allows characters to maneuver through
a complex environment with predictive steering for dynamic obsta-
cle avoidance. Finally, our behavior framework allows a user to
fully leverage a character’s animation and navigation capabilities
when authoring both individual decision-making and complex in-
teractions between actors using a centralized, event-driven model.
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1 Introduction

Animating interacting virtual humans in real-time is a complex un-
dertaking, requiring the solution to numerous tightly coupled prob-
lems such as steering, path-finding, full-body character animation
(e.g. locomotion, gaze tracking, and reaching), and behavior au-
thoring. This complexity is greatly amplified as we increase the
number and degree of sophistication of characters in the environ-
ment. Numerous solutions for character animation, navigation, and
behavior design exist, but these solutions are often tailored to spe-
cific applications, making integration between systems arduous. In-
tegrating multiple character control architectures requires a deep
understanding of each controller’s design so that they may commu-
nicate with one another; otherwise character controllers will con-
flict at overlapping parts of the body and produce visual artifacts by
naı̈vely overwriting one another. Directly modifying arbitrary char-
acter controllers to cooperate with one another and respond to exter-
nal behavior commands can be costly and time-consuming. Mono-
lithic, feature-rich character animation systems do not commonly
support modular access to only a subset of their capabilities, while
simpler systems lack control fidelity. Realistically, no sub-task of
character control has a “perfect” solution. An ideal character ani-
mation system would allow a designer to choose between preferable
techniques for producing a particular action or animation, lever-
aging the wealth of established systems already produced by the
character animation research community and interfacing with ro-
bust frameworks for behavior and navigation.

We present a modular system that allows for the seamless integra-
tion of multiple character animation controllers on the same model,
without requiring any controller to drastically change or accom-
modate any other. Rather than requiring a tightly-coupled set of
character controllers, ADAPT uses a system for blending arbitrary
poses in a user-authorable dataflow pipeline. Our system couples
these animation controllers with an interface for path-finding and
steering, as well as a comprehensive behavior authoring structure
for authoring both individual decision-making and complex inter-
actions between groups of characters. Our platform generalizes to
allow the addition of new character controllers and behavior rou-
tines with minimal integration effort. Since controllers do not need
to be fundamentally redesigned to work with one another, we avoid
the combinatorial effect of having to modify each pre-existing con-
troller to adjust for the change. Our system for character control
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contributes to our core goal of providing a platform for experi-
mentation in character animation, navigation, and behavior author-
ing. We allow researchers to rapidly iterate on character controller
designs with visual feedback, compare their results with other es-
tablished systems on the same model, and use features from other
packages to provide the functionality they lack without the need to
deeply integrate or reinvent known techniques.

2 Related Work

There exists a wealth of research [Pelechano et al. 2008] in virtual
human simulation that separately addresses the problems of char-
acter animation, steering and path-finding, and behavior authoring.

Character Animation. Data-driven approaches [Kovar et al. 2002]
use motion-capture data to animate a virtual character. Motion
data can be manipulated by warping [Witkin and Popovic 1995] or
blending [Menardais et al. 2004] to enforce parametric constraints
on a recorded action. Interactive control of virtual characters can be
achieved by searching through motion clip samples for desired mo-
tion as an unsupervised process [Lee et al. 2002], or by extracting
descriptive parameters from motion data [Johansen 2009]. Proce-
dural methods are used to solve specific tasks such as reaching, and
can leverage empirical data [Liu and Badler 2003], example mo-
tions [Feng et al. 2012b], or hierarchical inverse kinematics [Baer-
locher and Boulic 2004] for more natural movement. Physically-
based approaches [Faloutsos 2002; Yin et al. 2007] derive con-
trollers to simulate character movement in a dynamic environment.
We refer to Pettré et. al. [2008] for a more extensive summary of
work in these areas.

Steering and Path-finding. For navigation, the environment itself
is often described and annotated as a reduction of the displayed
geometry to be used in path planning. Probabilistic roadmaps su-
perimpose a stochastic connectivity structure between nodes placed
in the maneuverable space [Kavraki et al. 1996]. Navigation
meshes [Kallmann 2010] provide a triangulated surface upon which
agents can freely maneuver. Steering techniques use reactive be-
haviors [Reynolds 1999] or social force models [Helbing and Mol-
nar 1995] to perform goal-directed collision avoidance in dynamic
environments. Predictive approaches [Paris et al. 2007; van den
Berg et al. 2008; Kapadia et al. 2009; Singh et al. 2011a] enable
an agent to avoid others by anticipating their movements. Re-
cast [Mononen 2009] provides an open-source solution to gener-
ating navigation meshes from arbitrary world geometry by voxeliz-
ing the space, and the associated Detour library provides path plan-
ning and predictive steering on the produced mesh. Pelechano et.
al. [2008] provide a detailed review of additional work in this field.

Behavior Authoring. Animating behaviors in virtual agents has
been addressed using multiple diverse approaches, particularly with
respect to how behaviors are designed and animated. Early work
focuses on imbuing characters with distinct, recognizable person-
alities using goals and priorities [Loyall 1997] along with scripted
actions [Perlin and Goldberg 1996]. Our system makes use of pa-
rameterized behavior trees [Shoulson et al. 2011] to coordinate in-
teractions between multiple characters. The problem of managing a
character’s behavior can be represented with decision networks [Yu
and Terzopoulos 2007], cognitive models [Fleischman and Roy
2007], and goal-oriented action planning [Young and Laird 2005;
Kapadia et al. 2011]. Very simple agents can also be simulated on
a massive scale using GPU processing [Erra et al. 2010].

Multi-Solution Platforms. End-to-end commercial solu-
tions [Massive Software Inc. 2010; Autodesk, Inc. 2012] combine
multiple diverse character control modules to accomplish simul-
taneous tasks on the same character, incorporting navigation, be-
havior, and/or robust character animation. SteerSuite [Singh et al.

2009] is an open-source platform for developing and evaluating
steering algorithms. SmartBody [Shapiro 2011] is an open-source
system that combines steering, locomotion, gaze tracking, and
reaching. These tasks are accomplished with 15 controllers work-
ing in unison to share control of parts of the body. SmartBody’s
controllers are hierarchically managed [Kallmann and Marsella
2005] where multiple animations, such as gestures, are displayed on
a virtual character using a scheduler that divides actions into phases
and blends those phases by interpolation. The controllers must ei-
ther directly communicate and coordinate, or fix cases where their
controlled regions of the body overlap and overwrite one another,
making the addition of a new controller a process that affects sev-
eral other software components. SmartBody also provides a naviga-
tion system with dynamic obstacle avoidance. Our platform shares
some qualities with SmartBody, but also differs in several funda-
mental ways. While we do provide a number of character con-
trollers for animating a virtual human, our work focuses more on
enabling high-level behavioral control of multiple interacting char-
acters, the modularity of these character controllers, and the ease
with which a user can introduce a new animation repertoire to the
system without disturbing the other controllers already in place.

3 Framework
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Figure 2: Overview of ADAPT, illustrating the structure for con-
trolling an individual character and all of the characters in an envi-
ronment. Every character has a core interface for behavior, naviga-
tion, and animation, each of which connects to more specific mod-
ular components. Top-level narrative control communicates with
each character through the behavior interface.

ADAPT operates at multiple layers with interchangeable,
lightweight components, and we focus on minimizing the amount
of communication and interdependency between modules (Fig-
ure 2). The animation system performs control tasks such as loco-
motion, gaze tracking, and reaching as independent modules, called



choreographers, that can share parts of the same character’s body
without explicitly communicating or negotiating with one another.
These modules are managed by a coordinator, which acts as a cen-
tral point of contact for manipulating the virtual character’s pose in
real-time. The navigation system performs path-finding with pre-
dictive steering and we provide a common interface to allow users
to interchange the underlying navigation library without affecting
the functionality of the rest of the framework. The behavior level
is split into two tiers. Individual behaviors are attached to each
character and manipulate that character using the behavior inter-
face, while a centralized control structure orchestrates the behavior
of multiple interacting characters in real-time. The ultimate product
of our system is a pose for each character at an appropriate position
in the environment, produced by the animation coordinator and ap-
plied to a rendered virtual character in the scene each frame.

3.1 Full-Body Character Control

Controlling a fully-articulated character is traditionally accom-
plished using a series of interwoven subcomponents responsible
for various parts of the body. Without prior knowledge of other
systems, a designer creating a character controller will generally
do so with the assumption that no other systems are acting on the
rigged model at the same time. If a controller sets the orientation
or position of a character’s joint, it does so expecting no other con-
troller to overwrite that orientation or position in the current frame.
If two controllers conflict and overwrite one another, the constant
changes cause visual artifacts such as jitter as the character rapidly
shifts between the two settings for its joints. Controllers can be
made to share control of a single body either by negotiating with
one another, or by dividing the body into sections and controlling
those sections alone. However, this requires that the controllers be
specifically designed to coordinate, which requires additional effort
on either the designer or the user of the control system. The addi-
tion of new functionality also becomes more difficult as all of the
previous body controllers must be modified to communicate with
any new components and share control of the body’s joints.

To address this issue, we divide the problem of character anima-
tion into a series of isolated, modular components called choreog-
raphers attached to each character. Each choreographer operates
on a shadow, which is an invisible clone of the character skele-
ton, and has unmitigated control to manipulate the skeletal joints of
its shadow. Each frame, a choreographer produces an output pose
consisting of a snapshot of the position and orientation of each of
the joints in its private shadow. A coordinator receives the shadow
poses from each choreographer and performs a weighted blend to
produce a final pose that is applied to the display model for that
frame. Since each choreographer has its own model to manipulate
without interruption, choreographers do not need to communicate
with one another in order to share control of the body or prevent
overwriting one another. This allows a single structure, the coordi-
nator, to manage the indirect interactions between choreographers
using a simple, straightforward, and highly authorable process cen-
tered around blending the shadows produced by each choreogra-
pher. This system is discussed in more detail in Section 4.

3.2 Steering and Path-finding

We use a navigation mesh approach for steering and path-finding
with dynamic obstacle avoidance. Each display model is controlled
by a point-mass system, which sets the root positions (usually the
hips) of the display model and each shadow every frame. We use a
common interface for navigation with basic commands such as set-
ting a goal position in the world. Character choreographers do not
directly communicate with the navigation layer. Instead, choreogra-

phers are made aware of the position and velocity of the character’s
root, and will react to that movement on a frame-by-frame basis.
A character’s orientation can follow several different rules, such as
facing forward while walking, or facing in an arbitrary direction,
and we handle this functionality outside of the navigation system
itself. ADAPT supports both the Unity3D built-in navigation sys-
tem and the Recast/Detour library [Mononen 2009] for path-finding
and predictive goal-directed collision avoidance, and users can eas-
ily experiment with alternate solutions, such as navigation graphs.

3.3 Behavior

ADAPT is designed to accommodate varying degrees of behavior
control for its virtual characters by providing a diverse set of chore-
ographers and navigation capabilities. Each character has a capa-
bility interface with commands like ReachFor(), GoTo(), and
GazeAt() that take straightforward parameters like positions in
space and send messages to that character’s navigation and anima-
tion components. To invoke these capabilities, we use Parameter-
ized Behavior Trees (PBTs) [Shoulson et al. 2011], which present a
method for authoring character behaviors that emphasizes simplic-
ity without sacrificing expressiveness. Having a single, flat inter-
face for a character’s action repertoire simplifies the task of behav-
ior authoring, with well-described and defined tasks that a charac-
ter can perform. One advantage of the PBT formalism is that they
accommodate authoring behavior for multiple actors in one central-
ized structure. For example, a conversation between two characters
can be designed in a single data structure that dispatches commands
to both characters to take turns playing sounds or gestural anima-
tions. For very specific coordination of characters, this approach
can be preferable over traditional behavior models where characters
are authored in isolation and interactions between characters are de-
signed in terms of stimuli and responses to triggers. ADAPT also
generalizes across traditional or experimental new ways of model-
ing behavior to cover cases where PBTs are not the most appro-
priate. The behavior system is discussed in more detail in section
5.

4 Shadows in Full-Body Character Animation

Model rendering systems describe a virtual human as a skinned
mesh with a hierarchical skeletal structure underneath. The move-
ment of the body is determined by altering the position and ori-
entation of each joint in the skeleton “rig”, which in turn affects
the position and orientation of that joint’s children in the hierarchy.
General character controllers are systems designed to manipulate
the character by setting the positions and orientations of that char-
acter’s joints, either via animations or procedurally with physical
models or inverse kinematics. We address the problem of coordi-
nation between these controllers by allocating each character con-
troller its own private character model, a replica of the skeleton or a
subset of the skeleton of the character being controlled. Our modu-
lar controllers, called choreographers, act exactly the same way as
traditional character controllers, but do so on private copies of the
actual rendered character model. These skeleton clones (shadows),
match the skeletal hierarchy, bone lengths, and initial orientations
of the final rendered character (display model), but have no visual
component in the scene. This is illustrated and described in fig-
ure 3. The general process of our character animation system has
two interleaving steps. First, each choreographer manipulates its
personal shadow and outputs a snapshot (called a shadow pose) de-
scribing the position and orientation of that shadow’s joints at that
time step. Then, we use a centralized controller to blend the shadow
pose snapshots into a final pose for the rendered character. For clar-
ity, note that “shadow” refers to the invisible articulated skeleton
allocated to each choreographer to manipulate, while a “shadow



pose” is a serialized snapshot containing the joint positions and ori-
entations for a shadow at a particular point in time.
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Figure 3: Blending multiple character shadows to produce a fi-
nal output skeleton pose. As an example, we combine the pose of
the locomotion choreographer (green, full-body) during a walk cy-
cle with the reaching choreographer (red, upper-body) extending
the left arm towards a point above the character’s head, and the
gesture choreographer (blue, upper-body) playing a waving anima-
tion. The generated poses are projected, either wholly or partially,
on different sections of the displayed body during any particular
frame. The partial blend is represented with a mix of colors in the
RGB space.

4.1 Choreographers

The shadow pose of a character at time t is given by Pt ∈ R
4×|J|.

where P
j
t where is the configuration of the jth joint at time t. A

choreographer is a function C(Pt) −→ Pt+1 which produces the
next pose by changing the configuration of the shadow joints for
that time step. Using these definitions, we define two classes of
choreographers:

Generators. Generating choreographers produce their own
shadow pose each frame, requiring no external pose data to do so.
Each frame, the input shadow pose Pt for a generator C is the pose
Pt−1 generated by that same choreographer in the previous frame.
For example, a sitting choreographer requires no external input or
data from other choreographers in order to play the animations for
a character sitting and standing, and so its shadow’s pose is left
untouched between frames. This is the default configuration for a
choreographer.

Transformers. Transforming choreographers expect an input
shadow pose, to which they apply an offset each frame. Each
frame, the input shadow pose Pt to a transformer C is an external
shadow pose P′

t+1 from another choreographer C′, computed for
that frame. The coordinator sets its shadow’s pose to P′

t+1 and ap-
plies an offset to the given pose during its execution, to produces a
new pose Pt+1. For example, before executing, the reach choreog-
rapher’s shadow is set to the pose of a previously-updated choreog-
rapher’s shadow (say, the locomotion choreographer with swinging
arms and torso movement). The reach choreographer then solves
the reach position from the base of the arm based on the torso posi-
tion it was given, and overwrites its shadow’s arm and wrist joints to
produce a new pose. Without an input shadow, the reach choreogra-
pher would not be aware of other choreographers moving the torso,

and would not be able to accommodate different torso positions
when solving a reaching problem. Note that this is accomplished
without the choreographers directly communicating or even being
fully aware of one another. A transforming choreographer can re-
ceive an input pose, or blend of input poses, from any choreogra-
pher that has already been updated in the current frame.

4.2 The Coordinator

During runtime, our system produces a pose for the display model
each frame, given the character choreographers available. This is
a task overseen by the coordinator. The coordinator is responsi-
ble for maintaining each choreographer, organizing the sequence
in which each choreographer performs its computation each frame,
and reconciling the shadow poses that each choreographer produces
by sending them between choreographers and/or blending them to-
gether. The coordinator’s final product each frame is a sequence of
weighted blends of each active choreographer’s shadow pose. We
compute this product using the pose dataflow graph, which dictates
the order of updates and the flow of shadow poses between chore-
ographers. Generators pass data to transformers, which can then
pass their data to other transformers, until a final shadow pose is
produced, blended with others, and applied to the display model.

Blending is accomplished at certain points in the pose dataflow
graph denoted by blend nodes, which take two or more input shad-
ows and produce a weighted blend of their transforms. If the
weights sum to a value greater than 1, they are automatically nor-
malized.

B({(Pi, wi) : i = 1..n)}) −→ P
′

(1)

Designing a dataflow graph is a straightforward process of dictating
which nodes pass their output to which other nodes in the pipeline,
and the graph can be modified with minimal effort. The dataflow
graph for a character is specified by the user during the design and
authoring process, connecting choreographers with blend nodes and
one another. The weights involved in blending are bound to edges
in the graph and then controlled at runtime by commands from the
behavior system. The order of the pose dataflow graph roughly dic-
tates the priority of choreographers over one another. Choreogra-
phers closer to the final output node in the graph have the authority
to overwrite poses produced earlier in the graph, unless bypassed by
the blending system. Changing the order of nodes in the dataflow
graph will affect these priorites, and so we generally design the
graph so that choreographers controlling more parts of the body
precede those controlling fewer.

Blended poses are calculated on a per-joint basis using each joint’s
position vector and orientation quaternion. The weighted average
we produce accommodates cases where parts of a shadow’s skele-
ton have been pruned or filtered from the blend (such as an upper-
body shadow missing the character’s legs). The blend function pro-
duces a new shadow pose that can be passed to other transform-
ers, or be applied to the display model’s skeleton. Taking a linear
weighted average of vectors is a solved problem, but such is not the
case with the problem of quickly averaging n > 2 weighted quater-
nions. We discuss the techniques with which we experimented, and
the final calculation method we decided to use in Appendix A. In
addition, Feng et. al. [2012a] provide a detailed review of more so-
phisticated motion blending techniques than our linear approach.

Figure 4 illustrates a sample dataflow graph, incorporating generat-
ing and transmuting choreographers, as well as four blend nodes.
Three generating choreographers (blue) begin the pipeline. The
gesture choreographer affects only the upper body, with no skeleton
information for the lower body. Increasing the value of the gesture
weight wg places this choreographer in control of the torso, head,
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Figure 4: A sample dataflow graph we designed for evaluating ADAPT. Generating choreographers appear in blue, transmuting choreogra-
phers appear in green, and blend nodes appear as red crosses. The final display model node is highlighted in orange. The sitting weight ws,
gesture weight wg , gaze weight wz , reach weight wr , and physical reaction weight wp are all values between some very small positive ǫ and
1− ǫ.

and arms. The sitting and locomotion choreographers can affect
the entire body, and the user controls them by raising and lowering
the sitting weight ws. If wg is set to 1 − ǫ, the upper body will
be overridden by the gesture choreographer, but since the gesture
choreographer’s shadow has no legs, the lower body will still be
controlled by either the sitting or locomotion choreographer as de-
termined by the value of ws. The first red blend node combines
the three produced poses and sends the weighted average pose to
the gaze tracker. The gaze tracking choreographer receives an input
shadow pose, and applies an offset to the upper body to achieve a
desired gaze target and produce a new shadow pose. The second
blend node can bypass the gaze tracker if the gaze weight wz is set
to a low value (ǫ). The reach and physical reaction choreographers
receive input and can be bypassed in a similar way. The final re-
sult is sent and applied to joints of the display model, and rendered
on screen. The dataflow graph accommodates the addition of new
choreographers in a generalizable fashion, allowing a user to insert
new nodes and blend between the poses they create. Rather than
designing animation modules to explicitly negotiate, the coordina-
tor seamlessly fades control of parts of the body between arbitrary
choreographers in an authorable pipeline.

4.3 Using Choreographers and the Coordinator

The dataflow graph, once designed, does not need to be changed
during runtime or to accommodate additional characters. Instead,
the coordinator provides a simple interface comprising messages
and exposed blend weights for character animation. Messages are
commands (e.g., SitDown()) relayed by the coordinator to its
choreographers, making the coordinator a single point of contact
for character control, as illustrated in Figure 2. In addition to mes-
sages, the weights used for blending the choreographers at each
blend node in the dataflow graph are exposed, allowing external
systems to dictate which choreographer is active and in control of
the body (or a segment of the body) at a given point of time. For ex-
ample, in Figure 4, lowering ws will transfer control of the body to
the locomotion choreographer, while raising its value will give in-
fluence to the sitting choreographer. Both choreographers are still
manipulating their shadows each update, but only one choreogra-
pher’s shadow pose is displayed on the body at a given time, with
smooth fading transitions between the two where necessary.

For gesturing, we raise wg , which takes control of the arms and
torso away from both the locomotion and sitting choreographers
and stops the walking animation’s arm swing. Given sole control,
the gesture choreographer plays an animation on the upper body,
and then is faded back out to allow the walking arm-swing to re-
sume. Since the gesture choreographer’s shadow skeleton has no
leg bones, it never overrides the sitting or locomotion choreogra-
pher, so the lower body will still be sitting or walking while the

upper body gesture plays. All weight changes are smoothed over
several frames to prevent jitter and transition artifacts. Note that
the controllers are never in direct communication to negotiate this
exchange of body control. The division of roles between the co-
ordinator and choreographers centralizes character control to a sin-
gle externally-facing character interface, while leaving the details
of character animation distributed across modular components are
isolated from one another and can be easily updated or replaced.

Shadow Pose Post-Processing. Since shadow poses are serializa-
tions of a character’s joints, additional nodes can be added to the
pose dataflow graph to manipulate shadows as they are transferred
between choreographer nodes or blend nodes. For instance, special
filter nodes can be added to constrain the body position of a shadow
pose, preventing joints from reaching beyond a comfortable range
by clamping angles, or preventing self-collisions by using bound-
ing volumes. Nodes can be designed to broadcast messages based
on a shadow’s pose, such as notifying the behavior system when a
shadow is in an unbalanced position, or has extended its reach to
a certain distance. The interface for adding new kinds of nodes to
a pose dataflow graph is highly extensible. This affords the user
another opportunity to quickly add functionality to a coordinator
without directly modifying any choreographers.

4.4 Example Choreographers

ADAPT provides a diverse array of character choreographers for
animating a fully articulated, expressive virtual character. Some
of these choreographers were developed specifically for ADAPT,
while others were off-the-shelf solutions used to highlight the ease
of integration with the shadow framework. ADAPT is designed to
“trick” a well-behaved character control system into operating on a
dedicated shadow model rather than the display model of the char-
acter, and so the process of modifying an off-the-shelf character
control library to a character choreographer often requires modify-
ing only a few lines of code. Since shadows replicate the structure
and functionality of a regular character model, no additional con-
siderations are required once the choreographer has been retargeted
to the shadow. Note that the choreographers presented here are
largely baseline examples. The focus of ADAPT is to allow a user
to add additional choreographers, experiment with new techniques,
and easily exchange generic choreographers with more specialized
alternatives.

Locomotion. ADAPT uses a semi-procedural motion-blending lo-
comotion system for walking and running released as a C# library
with the Unity3D engine [Johansen 2009]. The system takes in an-
imation data, analyzes those animations, and procedurally blends
them according to the velocity and orientation of the virtual char-
acter. We produced satisfactory results on our test model using five



motion capture animation clips. Additionally, the user can anno-
tate the character model to indicate the character’s legs and feet,
which allows the locomotion library to use inverse kinematics for
foot placement on uneven surfaces. We extended this library to
work with the ADAPT shadow system, with some minor improve-
ments.

Gaze Tracking. We use a simple IK-based system for attention
control. The user defines a subset of the upper body joint hierarchy
which is controlled by the gaze tracker, and can additionally spec-
ify joint rotation constraints and delayed reaction speeds for more
realistic results. These parameters can be defined as functions of
the characters velocity or pose, to produce more varied results. For
instance, a running character may not be permitted to rotate its torso
as far as a character standing still. Integrating the gaze tracker into
ADAPT required minimal changes to the existing library.

Upper Body Gesture Animations. We dedicate a shadow with
just the upper body skeleton to playing animations such as hand
gestures. We can play motion clips on various parts of the body to
blend animations with other procedural components.

Sitting and Standing. The sitting choreographer maintains a sim-
ple state machine for whether the character is sitting and standing,
and plays the appropriate transition animations when it receives a
command to change state. This choreographer acts as an alterna-
tive to the locomotion choreographer when operating on the lower
body, but can be smoothly overridden by choreographers acting on
the upper body, such as the gaze tracker.

Reaching. We implemented a simple reaching control system
based on Cyclic Coordinate Descent (CCD). We extended the algo-
rithm to dampen the maximum angular velocity per frame, include
rotational constraints on the joints, and apply relaxation forces in
the iteration step. During each iteration of CCD (100 per frame),
we clamp the rotation angles to lie within the maximum extension
range, and gently push the joints back towards a desired “comfort-
able” angle for the character’s physiology. These limitations and
relaxation forces are based on an empirical model for reach con-
trol based on human muscle strength [Slonneger et al. 2011]. This
produces more realistic reach poses than naı̈ve CCD, and requires
no input data animations. The character can reach for an arbitrary
point in space, or will try to do so if the point is out of range.

Physical Reaction. By allocating an upper-body choreographer
with a simple ragdoll, we can display physical reactions to external
forces. Once an impact is detected, we apply the character’s last
pose to the shadow skeleton, and then release the ragdoll and allow
it to buckle in response to the applied force. By quickly fading in
and out of the reeling ragdoll, we can display a physically plausible
response and create the illusion of recovery without requiring any
springs or actuators on the ragdoll’s joints.

SmartBody Integration. To access its locomotion and procedural
reaching capabilities, we integrated the ICT SmartBody framework
into our platform, using SmartBody’s Unity interface and some
modifications. Since our model’s skeleton hierarchy differed from
that of the default SmartBody characters, sample animations had
to be retargeted to use on our model. Additionally, our animation
interface needed to interact with SmartBody using BML. Since our
coordinator is already designed to relay messages from the behavior
system, changing those messages to a BML format was a straight-
forward conversion. Overall, the SmartBody choreographer blends
naturally with other choreographers we have in the ADAPT frame-
work, though SmartBody has other features that we do not currently
exploit. This process demonstrates the efficacy of integrating other
available libraries and/or commercial solutions.

5 Behavior

The navigation and shadow-based character animation system pro-
vides a number of capability functions, including:

Commands Description

ReachFor(target) Activates the reaching choreogra-
pher, and reaches towards a posi-
tion.

GazeAt(target) Activates the gaze choreographer,
and gazes at a position.

GoTo(target) Begins navigating the character to a
position.

Gesture(name) Activates the gesture choreographer
for the duration of an animation.

SitDown() Activates the sitting choreographer
and sits the character down.

StandUp() Stands the character up and then
disables the sitting choreographer.

Passing an empty target position will end that task, stopping the
gaze, reach, or navigation. The locomotion choreographer will au-
tomatically react to the character’s velocity, and move the legs and
arms to compensate if the character should be turning, walking,
side-stepping, backpedaling, or running. Note that only sitting and
navigating are mutually exclusive. All other commands can be per-
formed simultaneously without visual artifacts.

5.1 Adding a New Behavior Capability

Adding a new behavior capability with a motion component, such
as climbing or throwing an object, requires a choreographer capa-
ble of producing that motion. Choreographers can be designed to
perform animation tasks based on animation data, procedural tech-
niques, or physically-driven models. Since choreographers operate
on their own private copies of the character’s skeleton, they can
be designed in isolation and integrated into the system separately.
Once the choreographer is developed, the process of adding a new
behavior capability to take advantage of the choreographer requires
two steps. First, the choreographer must be authored into the pose
dataflow graph, either as a generating or transforming node, with
appropriate connections to blend nodes and other choreographers.
Next, the behavior interface can be extended with new functions
that either modify the blend weights relevant to the new choreog-
rapher, or pass messages to that choreographer by relaying them
through the coordinator. The sophistication of character choreogra-
phers varies, but the process of integrating a functioning choreog-
rapher into the behavior and animation pipeline for a character is
authorable and generalizable.

5.2 Multi-Character Interactions

Using this behavior repertoire, we can produce more sophisticated
actions as characters interact with one another and the environment.
Authoring complex behaviors requires an expressive and flexible
behavior authoring structure granting the behavior designer reason-
able control over the characters in the environment. To accomplish
this task, we use parameterized behavior trees (PBTs). PBTs are an
extension of the behavior tree formalism that allow behavior trees to
manage and transmit data within their hierarchical structure with-
out the use of a blackboard. A useful advantage of PBTs is the
fact that they can simultaneously control multiple characters in a
single reusable structure called an event. Events are pre-authored
behavior trees that sit uninitialized in a library until invoked at run-
time. When instantiated, an event takes one or more actors as pa-
rameters, and is temporarily granted exclusive control over those



characters’ actions. While in control, an event treats these charac-
ters as limbs of the same entity, dispatching commands for agents
to navigate towards and interact with one another. Once the event
ends, control is yielded to the characters’ own individual decision
processes, which can also be designed using PBTs or with some
other technique. Events are a convenient formalism to use for in-
teractions with a high degree of interchange and turn-taking, such
as conversations. A conversation event can be authored as a sim-
ple sequential and/or stochastic sequence of commands directing
agents to face one another and take turns playing gesture animations
or exchanging physical objects. ADAPT provides a fully-featured
scheduler for managing and updating both the personal behavior
trees belonging to each character and higher-level event behavior
trees encompassing multiple characters.

GoTo(MeetingPoint)

GoTo(MeetingPoint)

a2

a1

������

Gesture(“G1”)

a1

Gesture(“G2”)

a1

������

Gesture(“G1”)

a2

Gesture(“G2”)

a2

����

������	�
����

GazeAt(a1)

GazeAt(a2)

a1

����	���
����

Conversation(a1 : Actor, a2 : Actor, MeetingPoint : Position)

a2

Figure 5: A simple conversation PBT event controlling two charac-
ters, a1 and a1, with one additional MeetingPoint parameter.

Figure 5 illustrates a sample behavior tree event conducting two
characters through a conversation using our action repertoire. The
characters, a1 and a2, are passed as parameters to the tree, along
with the meeting position. Using our action interface, the tree di-
rects the two characters to approach one another at the specified
point, face each other, and alternatively play randomly selected ges-
ture animations. The gesturing phase lasts for an arbitrary duration
determined by the configuration of the loop node in the tree. After
the loop node terminates, the event ends, reporting success, and the
two characters return to their autonomous behaviors. Note that this
tree can be reused at any time for any two characters and any two
locations in the environment in which to stand. This framework
can be exploited to create highly sophisticated interactions involv-
ing crowds of agents, and its graphical, hierarchical nature makes
subtrees easier to describe and encapsulate.

6 Results

We demonstrate the features of ADAPT in isolation, as well as a
final scene showcasing animation, navigation, and behavior work-
ing together to produce a narrative sequence (Figure 1). Using
our system, we can create a character that can simultaneously
reach, gaze, walk, and play gesture animations, as well as activate
other functionality like sitting and physically reacting to external
forces. ADAPT characters can intelligently maneuver an environ-
ment avoiding both static obstacles and one another. These features
are used for authoring sequences like exchanging an object between
actors, wandering while talking on a phone, and multiple characters
holding a conversation.

Multi-Actor Simulation. The concluding narrative sequence
shown in the video is simulated using several reusable authored
events, which are activated using spatial and temporal triggers.
Events once active, can be successfully executed or interrupted by
other triggers due to dynamic events, or user input. This produces a
rich interactive simulation where virtual characters can be directed
with a high degree of fidelity, without sacrificing autonomy or bur-
dening the user with authoring complexity.

In the beginning, an event ensues where a character is given a phone
and converses while wandering through the scene, gazing at objects
of interest. The phone conversation event successfully completes
and the character hands back the phone. Spotting nearby friends
invokes a conversation, which is an extension of the event illustrated
in Figure 5. The conversation is interrupted when a ball is thrown at
one of the characters. The culprit flees from the scene of the crime,
triggering a chasing event where the group runs after the child. The
chase fails as the child is able to escape through a crossing crowd of
characters, which are participating in a group event to navigate to
the theater and find a free chair to sit. We illustrate some of the trees
used for this sequence in greater detail in a supplemental document.

Figure 6: Controlling a character in ADAPT and physically inter-
acting with the environment using the Kinect.

Adding a Kinect Choreographer. As an example of our system’s
extensibility, we created an additional choreographer to interface
with the Microsoft Kinect and control a character with gesture in-
put. To do so, we allocated a full-body choreographer to the in-
put of the Kinect, applying the captured skeleton from the Kinect’s
framework directly to the joints of the dedicated shadow. This is
demonstrated in Figure 6. Blending this choreographer with others
allowed us to expand the character’s agency in the world. When
the character stands idle, we give full upper and lower body control
to the Kinect input. When the user wishes to make the character
move, we blend the legs of the locomotion choreographer on top of
the Kinect input, displaying appropriate walking or running anima-
tions and foot placement while still giving the Kinect control of the
upper body. This is a feasible compromise for allowing a user to
retain correct leg animation when exploring a virtual environment
larger than the Kinect’s capture area. The process of interfacing
the Kinect skeleton input with a new choreographer and a blending
coordinator was very fast and straightforward.

Performance. ADAPT supports approximately 150 agents with
full fidelity at interactive frame rates. Figure 7 displays the update
frequency for the animation and navigation system (for our scenes,
the computational cost of behavior was negligible). This varies with
the complexity of the choreographers active on each character. The
ADAPT animation interface and the pose dataflow graph has little
impact on performance, and the blend operation is linear in num-
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Figure 7: Update frequency for the character animation and navi-
gation components in ADAPT.

ber of choreographers. Each joint in a shadow is serialized with 7
4-byte float values, making each shadow 28 bytes per joint. For
26 bones, the shadow of a full-body character choreographer has a
memory footprint of 728 bytes. For 200 characters, the maximum
memory overhead due to shadows is less than 1 MB. In practice,
however, most choreographers use reduced skeletons with only a
limb or just the upper body, making the actual footprint much lower
for an average character.

Separating character animation into discrete modules and blending
their produced poses as a post-processing effect also affords the
system unique advantages with respect to dynamic level-of-detail
(LOD) control. Since no choreographer is architecturally depen-
dent on any other, controllers can be activated and deactivated arbi-
trarily. Deactivated controllers can be smoothly faded out of control
at any time, and their nodes in the dataflow graph can be bypassed
using the already-available blend weights. This drastically reduces
the number of computed poses, and conserves processing resources
needed for background characters that do not require a full reper-
toire of actions. The system retains the ability to re-activate those
choreographers at any time if a specific complex action is suddenly
required. Since choreographers are not tightly coupled, no chore-
ographer needs to be made aware of the fact that any other chore-
ographer has been disabled for LOD purposes.

7 Conclusions

ADAPT is a modular, flexible platform which provides a compre-
hensive feature set for animation, navigation, and behavior tools
needed for end-to-end simulation development. By allowing a user
to independently incorporate a new animation choreographer or
steering system, and make those components immediately accessi-
ble to the behavior level without modifying other existing systems,
characters can very easily be expanded with new capabilities and
functionality. We are releasing ADAPT as an open-source project
not only to provide animation, steering, and behavior package to
community, but to provide a platform that is designed to allow users
to tailor the system to fit their own personal needs, to rapidly iterate
on experimental designs, and to compare their results against other
established techniques. The library, assets, and documentation are
available at http://cg.cis.upenn.edu/ADAPT

7.1 Limitations and Complications

The ADAPT platform has some surmountable issues that arise from
blending poses as a post-process. Solutions to these complications
either already exist in the system or could be introduced with future
work.

Cross-Choreographer State Awareness. At times, choreogra-
phers may need to be aware of major state changes in the character’s
pose caused by another choreographer. For example, we may wish
to restrict the degree to which the character can rotate its torso for
gaze tracking while the character is running. We accomplish this
using the message broadcast system integrated into the coordinator.
When a character reaches a certain speed, the locomotion choreog-
rapher can broadcast to all other choreographers that the character
is in an IsRunning state. The gaze tracking choreographer can
receive this message and restrict its maximum torso rotation ac-
cordingly. This allows choreographers to cooperate without being
explicitly aware of one another, and is a more extensible paradigm
than deep integration of controllers.

Foot-Placement Artifacts. Interpolation between arbitrary poses
generally produces smooth results in our system, with the excep-
tion of blends that linearly translate the position of a character’s
feet. This situation arises with our sitting choreographer, where
the placement of a character’s feet while standing may not coincide
with the foot placement in the transition animation between stand-
ing and sitting. A linear blend here results in an unrealistic slid-
ing of the foot despite ground contact. This issue could be easily
solved with a slightly more robust locomotion system that allowed
arbitrary foot placement, so that we could use a special case to ad-
just the feet to step to the proper position before blending from the
locomotion to the sitting choreographer. Since each choreographer
is aware of which parts of the body it uses, and how it wants to pose
each joint, this solution could be generalized for transitioning be-
tween any choreographers that use the lower body of the character.

7.2 Future Work

Moving forward, we will continue to expand the animation and au-
thoring capabilities supported by ADAPT. For example, the design
of the pose dataflow graph is one possible avenue for improve-
ment. Currently, a designer manually organizes the choreographer
and blend nodes in the structure of the coordinator. While this is a
conceptually simple task because the dataflow graph is so easy to
visualize, we have yet to develop a scripting or graphical interface
to make the process more accessible to a completely untrained user.
More importantly, however, we believe the process of authoring a
dataflow graph can be completely automated based on which parts
of the body each choreographer uses.

Another main development effort is the production of more capa-
ble choreographers for use in the ADAPT framework. We would
like to develop or incorporate a better locomotion system with the
ability to control an autonomous character with footstep-level pre-
cision [Singh et al. 2011b]. One major advantage in this effort is
the ability to directly integrate other developed systems into the
ADAPT framework and seamlessly blend them with the rest of our
choreographers, as we have done with the SmartBody package. In
addition to choreographers described here, we want our platform
to provide an array of options for different kinds of motor skills,
including jumping, climbing, and carrying objects with weight.

Finally, we are also interested in improving the virtual environment
and developing extensible ways for characters to interact with the
environment on a behavioral level. To ease the authoring burden,
we are currently creating an interface similar to smart objects for
annotating the environment and describing the ways that characters



can interact with it. We are particularly interested in extending the
ADAPT platform to develop solutions for the automated schedul-
ing of events to follow global narrative arcs. All of these improve-
ments will allow us to apply our platform to other areas research,
as ADAPT is uniquely suited for producing the next generation of
narrative-driven simulations.
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Appendix A: On Quaternion Blending

While vectors can be easily averaged using addition and scalar
multiplication in R

3, interpolating between quaternions is not as
simple due to the spherical surface of the unit-quaternion space.
For our coordinator to be able to blend shadow poses between
choreographers, we require a fast method for blending the quater-
nions describing the rotations of the character’s joints in the unit-
quaternion manifold. Our ultimate goal is to develop a function
Blend((q1, w1), (q2, w2), . . . , (qn, wn)) = q taking n weighted
unit quaternions and producing an average quaternion q. To create
this function, we experimented with a number of different tech-
niques, and felt it valuable to document our efforts here.

Slerp. Spherical linear interpolation (Slerp) [Shoemake 1985] is a
constant-time operation for interpolating between two unit quater-
nions q1 and q2, using an interpolation weight w. Slerp is defined
equivalently as follows:

Slerp(q1, q2;w) = q1(q
−1

1 q2)
w

(2)

= q2(q
−1

2 q1)
1−w

(3)

= (q1q
−1

2 )1−w
q2 (4)

= (q2q
−1

1 )wq1 (5)

Slerp has the ideal properties of being a closed form solution, and
generally taking the shortest path between two quaternions. Be-
cause of this, we considered using a chain of Slerp operations.
For instance, with three quaternions q1, q2, and q3 and two blend
weights w0, w2, we could perform:

BlendSLERP (q1, q2, q3; , w1, w2)

= Slerp(Slerp(q1, q2;w1), q3;w2)
(6)

Ultimately, we abandoned the idea primarily because operation
would not be commutative in all cases, which could create unex-
pected and confusing results in the authoring process, especially as
the number of input quaternions grew.

Angular Velocities. Another alternative is to treat each of the char-
acter’s joint as a ball-and-socket joint with three rotational degrees

of freedom. This allows to compute the angular velocities applies
to each joint between frames, and to average those velocities when
blending between each choreographer’s produced motions. This
had two problems. First, the process did not properly handle blend-
ing into static poses from dynamic ones. Second, this essentially
converted each joint quaternion into a set of Euler angles, which
suffer from the problem of gimbal lock.

Iterative Solutions. Multiple iterative solutions exist for con-
strained interpolation. Pennec [1998], Johnson [2003], and Buss et.
al. [2001] all describe iterative techniques for finding the weighted
average of quaternions on the spherical surface. While these pro-
vide accurate results and generally blend over the shortest distance,
we looked for a solution with a closed form.

Because our blending is spread out over numerous frames, our
quaternion blending function is usually only interpolating between
very short distances. As a result, we experienced success with a
naı̈ve algorithm.

Data: Unit quaternions q1, . . . , qn
Data: Normalized weights w1, . . . , wn

Result: An average quaternion q
q = [0, 0, 0, 0];
for i = 1 → n do

if i > 1 and q1 · qi < 0 then
// negate every element of the quaternion;

qi = [−q0i ,−q1i ,−q2i ,−q3i ];
end
for j = 0 → 3 do

qj+ = q
j
i ∗ wi

end

end
return Normalize(q)
Algorithm 1: The computation of Blend((q1, w1), . . . , (qn, wn))

So long as the blend distances are short, we can naively treat the
quaternion space as R

4, and take a weighted average of each ele-
ment of the quaternion. This will work provided the quaternion is
normalized after the calculation. To ensure that we generally take
the shortest distance between angles, we pick an arbitrary quater-
nion qp and calculate the dot product of that quaternion with each
other quaternion qi 6=p. If the dot product is negative, we negate each
term in qi. Note that we negate each term rather than inverting the
quaternion. This, again, is a quick approximation for blending over
short distances. In practice, this quick method produces good vi-
sual results, and is computationally cheaper than multiple slerps or
an iterative solution. For blends across more significant distances,
we could opt for a more complicated solution, but so far have seen
no need to do so.
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