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Abstract

Detecting anomalies in crowd movement is an area of1

considerable interest for surveillance and security appli-2

cations. The question we address is: What constitutes an3

anomalous steering choice for an individual in the group?4

Deviation from “normal” behavior may be defined as a5

subject making a steering decision the observer would6

not, provided the same circumstances. Since the number7

of possible spatial and movement configurations is huge8

and human steering behavior is adaptive in nature, we9

adopt a context-sensitive approach to assess individu-10

als rather than assume population-wide homogeneity.11

When presented with spatial trajectories from processed12

surveillance data, our system creates a shadow simula-13

tion. The simulation then establishes the current, local14

context for each agent and computes a predicted steering15

behavior against which the person’s actual motion can16

be statistically compared. We demonstrate the efficacy of17

our technique with preliminary results using real-world18

tracking data from the Edinburgh Pedestrian Dataset.19

1. Introduction20

Anomaly detection is increasingly important in mod-21

ern security operations, which must observe increasing22

numbers of people for suspicious behavior. By automat-23

ing the detection of such behavior, we can lift the bur-24

den on personnel and help focus their limited resources.25

Anomaly detection remains an open research problem26

because of the challenge in finding a model to serve as27

the basis of normality while accommodating the diverse28

range of human behavior. Previous efforts have used29

such techniques as Gaussian Mixture Models and Hid-30

denMarkovModels to define how an average person may31

act in a particular location with outliers being declared32

anomalous. A more robust model of “normal” that prop-33

erly reflects the qualitatively different situations a person34

may experience is still needed.35

Modeling human behavior is precisely the aim of36

crowd simulation, making these two research endeavors37

complementary. Data-driven approaches to simulation38

in particular try to generalize the relationship between39

environmental stimuli and a corresponding action, mak-40

ing them a strong fit to this application. Training such41

models on real-world data has presented problems with42

the unpredictability of what will be observed, and subse-43

quent disagreement of model and human is blamed on the44

steering algorithm. However, with a high-quality model45

it is reasonable to question which is truly abnormal. For46

instance, an intoxicated person’s behavior would show47

that the simulation model is not always at fault. With48

an adequate simulation, we can analyze the behavior of49

real people without artificially restricting expectations to50

averages and other statistical figures.51

We propose an anomaly detection system which uses52

a simulation of “shadow agents” to represent real pedes-53

trians. The system maintains a score for each person54

according to deviations from their shadow agent’s nav-55

igation. Our simulation uses a data-driven, compound56

model of steering which dynamically adjusts each agent’s57

decisions as its environment evolves from its own per-58

spective. The idea of contexts for a crowd are not new,59

but we extend this idea by allowing each individual to60

determine its own context rather than setting a crowd-61

wide context. This model of anomaly detection has sev-62

eral advantages over other techniques. First, the system63

permits a variety of appropriate behaviors co-existing to-64

gether rather than assuming the agents are homogeneous.65

Second, the system guards against the problem where66

a small, early difference has unnecessarily large influ-67

ence on the anomaly score by accumulating short-term68

deviations. This metric depends on the validity of the69

steering model used, be it our context-sensitive model70

or any other algorithm. This framework simultaneously71

checks both the population and the model’s accuracy,72

as an overabundance of anomaly detections are strong73

evidence of an inaccurate steering algorithm.74

This paper makes the following contributions:75
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Figure 1. Our compound steering model dynamically chooses between classifiers based on the agent’s
environment.

• A framework for detecting anomalous pedestrian76

trajectories in real-time which uses crowd simula-77

tion as the basis for comparison and is sensitive to78

the context each individual is experiencing rather79

than enforcing a group norm.80

• A real-time, cumulative scoring model which is ro-81

bust against late-starting anomalous behavior, does82

not artificially weight early decisions higher than83

those occurring later, and reveals inaccurate models84

when used on real data.85

In Section 2 we frame this paper in the past work86

found in the literature. Section 3 gives more detail of87

our simulation, with the anomaly detection discussed88

in Section 4. Last, we give preliminary results of the89

technique in Section 5 with conclusions in Section 6.90

2. Related Work91

This paper proposes to bridge the gap between92

two areas of research: crowd simulation and anomaly93

detection in pedestrian movement. While we provide94

a review of the most applicable crowd literature, those95

interested in a more thorough survey of the field are96

directed to [17, 24]. Similarly we give a brief look at97

some of the common anomaly detection techniques,98

with further surveys of such work being [6, 4].99

100

Crowd Simulation and Evaluation. Early crowd sim-101

ulation [19] focused on agent throughput: getting many102

agents to move on screen and look like a group. In the103

quarter-century since that seminal work, the field has ex-104

panded and moved towards representing more complex105

dynamics. Emulation of the cognition behind human106

decision-making [26, 21, 1] has been an active area of107

research, and provides support for individual roles in the108

simulation.109

In contrast to cognitive approaches, data-driven tech-110

niques [15, 11, 13] use machine-learning to map agent111

stimuli to actions. These techniques seek to fit a sin-112

gle model to the full spectrum of scenarios an agent113

may encounter through best-match databases. Other114

works [10, 16, 25] use clustering of their databases to ac-115

count for the possible encounters which lead to different116

actions given the same stimuli.117

Evaluation of crowds has often been by subjective118

observation, but statistical techniques have been119

proposed [7, 22, 8, 12, 9]. We leverage the concept120

of quantitative crowd metrics for our own anomaly121

detection system.122

123

Anomaly Detection. In the interest of automated124

surveillance, computer vision has been interested in a125

variety of techniques and applications of anomaly detec-126

tion. The most common technique is to use observations127

of a real population to fit a model of normal behavior.128

By focusing on the general flow of the crowds [5], these129

statistical models can then be used to detect high-level130

anomalous behavior such as an emergency evacua-131

tion [3]. Other works have focused on specific behavior132

of an individual, but not steering within a crowd [27, 20].133

134

Comparison to the Literature. Both fields have ac-135

knowledged the problem of acquiring sufficient real-136

world data for training models and the potential for137

synthetic data in developing and training these sys-138

tems [3, 18, 2]. This work is the realization of such139

suggestions, as we use an active crowd simulation as the140

model for normal behavior.141

Furthermore, the model itself is egocentric, with each142

agent in the simulation capable of experiencing a dif-143

ferent steering context from its neighbors. This is an144

extension to [12], where an entire crowd must be con-145

sidered under the same context. Through the use of146

steering contexts and a hierarchical data-driven model,147

we avoid the single-model problem of defining a univer-148



sally normal behavior for qualitatively different dynamic149

environments.150

3. Hierarchical Steering Model151

(a) (b)

Figure 2. The environment is classified using
long-horizon density and average trajectory
tracked in each region, seen left. A shorter-
range, more precise feature set seen right is
used by the selected specialized model to de-
cide the agent’s next action.

We use a compound machine-learned model for agent152

steering, outlined in Figure (1). Thismodel is constructed153

by first identifying qualitatively different steering scenar-154

ios an agent may encounter during a simulation, whichwe155

call steering contexts. These contexts represent variation156

such as cross traffic, oncoming traffic, and varying pop-157

ulation densities. Each context has a specialized model158

trained for it, and a top-level classifier is fit to take an159

agent’s environment and decides which context model160

should be used.161

The action space for our model is discretized foot-162

steps [23] and we use synthetic training data from a163

short-horizon, space-time planner as a steering ora-164

cle algorithm. Scenarios representing each context are165

stochastically generated and the oracle’s decisions are166

recorded. We then use the GPL C5.0 decision tree library167

(www.rulequest.com) to train a model for each foot in168

each context.169

The features used in classifying a context focus on170

general regional information, particularly each region’s171

population and the average velocity of the agents present.172

A second feature set is used for more precise measure-173

ments of nearby agents. The area around the subject is174

divided into slices with a higher resolution to the front to175

simulate human vision. Each slice records the discretized176

distance to the nearest agent as well as the agent’s rela-177

tive velocity to the subject. Both sets are visualized in178

Figure (2).179

Figure 3. Shadow agents are forced to take
the route of the person. After the first step
above, the agent and person agree on the
subsequent steering choices, reducing the
likelihood of an anomaly.

4. Technique180

Our system first creates a “shadow” agent in the sim-181

ulation for each tracked person in the real world. Then182

we calculate when the divergence between the two is183

sufficient to merit flagging the behavior as anomalous.184

Section 4.1 explains how our data-driven model for steer-185

ing is converted into an observational tool applicable to186

real humans. The calculation details are given in Sec-187

tion 4.2.188

4.1. The Shadow Simulation189

Our system takes in tracked data of pedestrians and190

extracts the necessary information for running a shadow191

simulation. A shadow agent is created for each person,192

with the person’s first tracked position and last tracked193

position becoming the agent’s spawn and goal points,194

respectively. The tracking data is also used to force the195

shadow agent to follow the person’s path. Figure (3) il-196

lustrates a person’s choice to turn left rather than right197

having large consequences in the total trajectory as more198

obstacles and people must be avoided to reach the goal.199

Forcing the agent along the real path instead of simply200

simulating the scene and comparing the resulting trajec-201

tories nullifies inconsequential path diversity. With lim-202

ited knowledge of each pedestrian’s internal state, such203

singular differences are not sole indicators of anomalies.204

At the beginning of each simulated footstep, the agent205

uses the compoundmodel from Section 3 to project its fu-206

ture expected position. It also compares its current posi-207

tion, which is the end of the previous footstep, against the208

person’s real position. These measurements are used in209
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Figure 4. Regular comparison is made be-
tween the position of a person and that of
its corresponding shadow agent in the virtual
world.

Equation (1) to initiate an update of the agent’s anomaly210

score.211

Once indicated by a sufficiently high cumulative score,212

the person is flagged as anomalous by the simulation.213

This anomaly flag can optionally be removedwith enough214

subsequent expected behavior.215

4.2. Flagging Anomalies216

At each measurement time t, every agent a has two217

positions, the real-world position pa(t) and the position218

indicated by the simulation ma(t). We use the indicator219

function in Equation (1) to decide whether or not the220

deviation from one step to another is significant based221

on difference kernelK. The tunable parameter d adjusts222

the sensitivity of the system’s detection to allow for such223

things as measurement error in the tracking data.224

1 (a, t) =

{
1 ifK (pa (t) ,ma (t)) ≥ d

0 else
(1)

We let the variable sa(t) be the score for agent a at225

time t. The value of sa(t) is defined according to Equa-226

tion (2) where ω is a constant decay amount subtracted227

from the score when normal behavior is observed, χ228

is the confidence value of the shadow agent’s decision229

from the compound model, and γ is set to reflect the230

expected accuracy of the specialized classifier used for231

this particular step. We constrain the value of sa(t) to232

be nonnegative.233

sa (t) =

t∑
i=0

χ (i) γ (i)1 (a, i)− ω (1− 1 (a, i)) (2)

Tuning ω adjusts the time window over which too234

many deviations result in higher scores, with larger values235

creating a more forgiving system. The benefit of this236

decay-based accumulation function is that an anomaly237

can start at any time and the score maintained as the238

shadow agent moves through various contexts. This is239

an improvement over using a finite time window, where240

enough early normal behavior can dilute the ability to241

detect late anomalies through an average score.242

We define τanom to be the score threshold which indi-243

cates anomalous behavior in a pedestrian. Additionally,244

let τnorm ≤ τanom be a score threshold which indicates245

a return to normality. The latter is chosen to introduce246

hysteresis in the detection system to prevent rapid tog-247

gling of the anomaly flag. τ parameters can be chosen248

together with ω to set a desired cooldown time.249

Each agent then has a Boolean flag fa which at time250

t has the value set by Equation (3).251

fa(t) =


1 if sa (t) ≥ τanom

fa (t− 1) if τnorm < sa (t) < τanom

0 if sa (t) ≤ τnorm

(3)

5. Results252

Figure 5. Histogram of score values from
running the system used to find values for
the anomaly and normality thresholds. The
red and green lines are anomaly and normal
thresholds, respectively.

To test our system, we used the Edinburgh Informatics253

Forum Pedestrian Database [14]. Our compound steering254

model consists of 12 contexts, with each context using255

5000 sample scenarios to generate training data. An256

additional 1000 sample scenarios were withheld for each257

context as a validation set. Themodels were evaluated for258

accuracy using this set to calculate our values for γ, seen259



Context Number 0 1 2 3 4 5 6 7 8 9 10 11
γ .79 .79 .80 .81 .80 .80 .80 .80 .81 .80 .79 .80

Table 1. The accuracy across the specialized classifiers is highly uniform, making no particular context
a strength or weakness for the anomaly detection scores.

(a) (b)

Figure 6. Statistical analyses of anomalies per capita for days of the week and months of the year.

in Table (1). A shadow simulation was created for each260

day of the database, and a histogram of anomaly scores261

generated using an ω value of 0.1. The distribution of262

scores can be seen in Figure (5) and strongly suggest the263

choice of 120 for τanom and 60 for τnorm, owing to the264

small value for ω.265

Figure (6) shows statistical analyses for the number266

of anomalies our system detected per capita for each267

day of the week and month of the year from the dataset.268

The population count varied greatly for each of the data269

points, ranging from 5 to 2804. However, the average270

anomalies per capita across the days and months re-271

mained consistent under our system, providing a val-272

idation of its robustness. We also note the weekend has273

a particularly high standard deviation for anomalies de-274

tected, indicative of the less uniform crowd flow during275

those days. Not all months were present in the dataset,276

andMay consisted of only 3 days of tracking information.277

Manual inspection of the simulation provided an inter-278

esting observation where we noticed anomalous agents279

under seemingly normal circumstances. On review of280

the dataset, we found that the floor can reflect the person,281

causing two agents to be spawned in the same location.282

In this case the agents continuously try to separate from283

each other but cannot, causing the high anomaly score.284

6. Conclusions and Future Work285

This paper presented an initial exploration into the286

use of a data-driven, context-sensitive crowd simulator287

for pedestrian anomaly detection. We used our prototype288

framework to examine the Edinburgh Dataset by report-289

ing the computed anomalies for the tracked pedestrian290

trajectories over 115 days.291

We are actively exploring several avenues of future292

work. Our framework is fast, operating on a day of293

tracked data in minutes, suggesting potential for use in294

live surveillance. Our system is currently constrained to295

pedestrian movement, but we would also like to expand296

the contexts we use to include such things as small groups297

walking together to increase the quality of our algorithm298

and the breadth of its impact. Correlation-based metrics299

are another set of scoring techniques we could explore.300

An important validation of our technique will be to com-301

pare it against existing anomaly detection frameworks,302

such as the model provided with the dataset [14].303
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