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Abstract 

The ever-increasing applicability of interactive virtual worlds in industry and academia has given rise 

to the need for robust, versatile autonomous virtual humans to inject life into these environments. 

There are two fundamental problems that must be addressed to produce functional, purposeful 

autonomous populaces: (1) Navigation: finding a collision-free global path from an agent’s start 

position to its target in large complex environments, and (2) Steering: moving an agent along the 

path while avoiding static and dynamic threats such as other agents.  

In this review, we survey the large body of contributions in steering and navigation for autonomous 

agents in dynamic virtual worlds. We describe the benefits and limitations of different proposed 

solutions and identify potential future research directions to meet the needs for the next generation 

of interactive virtual world applications. 

 Introduction 

Immersive virtual worlds have quickly come to the forefront in both industry and academia with 

their applicability being realized in a wide variety of areas from education, security, urban design, 

cinematic content creation, and interactive entertainment. A key aspect of immersion in virtual 

environments is the use of autonomous virtual humans to inject life into these worlds. This has led 

to a strong emphasis on improving the believability and intelligence of these agents. The ultimate 

far-reaching goal that is still a considerable challenge: to simulate functional, purposeful 

autonomous virtual humans in complex, dynamic environments for hundreds, even thousands of 

agents in real-time.  

Research in virtual human simulation addresses challenges in one or more of the following areas:  

1. Navigation: Navigation is the process of finding a collision-free global path from the start 

position of an agent to its target. Navigation in arbitrarily large, complex environments 



requires an agent to be equipped with a mental model that provides some semantically 

meaningful geometric representation of the world around it.  

2. Steering: The steering layer interfaces with navigation to move an agent along the planned 

path, while avoiding both static and dynamic threats such as other agents.  

3. Locomotion: A locomotion module (e.g., (1)) animates a virtual human to follow the 

trajectory output by steering, taking into account the locomotion capabilities of the agent.  

4. Scenario Authoring: An authoring framework (2), (3) provides an appropriate interface for 

users to specify and automatically generate complex multi-agent interactions which satisfy 

global narrative constraints.  

5. Visualization: The animated virtual humans along with the rich virtual environments are 

visualized at an appropriate level of detail depending upon the needs of the application. 

We refer the readers to comprehensive reviews (4), (5), (6) that address the different facets of 

virtual human research. In this book chapter, we focus on autonomous agents: entities that perform 

-- on their own -- navigation and steering behaviors in complex, dynamic virtual environments for 

interactive applications. First, we review the different approaches proposed for efficiently 

computing global paths in large virtual worlds. Second, we present a taxonomy of steering research 

used to move agents along the computed paths while performing local collision-avoidance. Third, we 

present an abstraction of the different steering and navigation techniques in an effort to understand 

the benefits and limitations of each.  Finally, we conclude with a brief discussion on future work.  

 

NAVIGATION 

The efficient computation of free movement paths is an important requirement in the simulation of 

interactive virtual worlds populated with autonomous virtual humans. The computed paths should 

take into account different optimality criteria such as path length, time, and energy expended in 

traversing the path. Efficiency of computation is also of paramount importance since environments 

may be extremely large and arbitrarily complex. Depending upon application requirements, a variety 

of path planning approaches have been proposed, some of which are described below.  

Potential Fields  

Potential Fields (7), (8), (9)  generate a global field for the entire landscape where the potential 

gradient is contingent upon the presence of obstacles and distance to goal. The method has some 

problems, such as local minima where the agents could get stuck and never reach the goal. Dynamic 

potential fields (10) have been used to integrate global navigation with moving obstacles and 

people, efficiently solving the motion of large crowds without the need for explicit collision 

avoidance. 

Uniform Grid Representation of the Environment 

Discrete search methods such as A* (11) applied to grid representations (12), (13) are robust and 

simple to implement, with strict guarantees on optimality and completeness of solution. Hence, they 

represent a popular and widely used method for path planning in commercial systems such as 

games. However, the performance and quality of the obtained paths greatly depend on the 

resolution of the discretization with coarse resolution producing low-quality paths and fine 



resolution grids proving to be prohibitive for real-time applications. The remainder of this section 

describes the use of roadmaps, connectivity graphs, and other pre-computed data structures that 

facilitate efficient pathfinding in arbitrarily complex environments.  

Probabilistic Roadmaps  

Probabilistic Roadmaps (PRMs) (14) compute a simplified representation of free space by sampling 

configurations at random. PRMs have been used to generate paths for large groups of agents (15) to 

simulate group behaviors such as homing and flocking. 

Cell and Portal Graphs  

Cell and Portal Graphs represent a method of abstracting the geometry of virtual environments. The 

nodes in the graph map to navigable regions in the environment such as rooms while the portals 

represent entry points such as doors. The problem of navigation in a CPG is reduced to getting from 

one node to another using a sequence of nodes and portals (16), (17).  

Topological Representation of the Environment 

Corridor maps (18), (19) use a medial axis based method to represent free space by a graph where 

edges correspond to collision-free corridors. Each edge of the graph encodes a local path along with 

the maximum clearance radius which can be used to find paths with arbitrary clearance. Visibility 

graphs (20), (21) are used for computing shortest paths among polygonal obstacles with a search 

time of O(n2) for n segments (22). The work in (23) pre-computes a Voronoi representation of the 

static environment for path planning. The pre-computation phase has a computational complexity of 

O(n2 log n) but the query phase is very efficiency with O(n log n) running time. The work in (24) 

computes a convex cell sub-division of free space while preserving local bottleneck information to 

represent the topological connectivity of 3D environments. Other approaches including elastic 

roadmaps (25) and multi-agent navigation graphs (26) have been proposed to efficiently compute 

near-optimal paths in virtual environments.  

Navigation meshes (27) are widely used in the gaming industry to pre-compute an approximation of 

the free area, represented as a triangulation, which is queried for efficient pathfinding. The work in 

(28) proposes a method of finding optimal paths of arbitrary clearance directly from the 

triangulation. The proposed method introduces a new local clearance property which facilitates the 

efficient computation of path clearance in a triangulated mesh. This allows locally shortest paths of 

arbitrarily clearance to be computed in O(n log n) optimal time, and an extended search algorithm is 

also presented for determining global optimality.  

Space-Time Planning 

Space-time models (29), (30) combine space and time into a single construct by representing space 

as three dimensions and time as the fourth dimension.  Space time planning exploits the inherent 

advantage of having information in time to predict collisions in the future.  These models improve 

the fidelity of agent behavior at the cost of an additional dimension which greatly increases the 

search space, incurring a considerable overhead. 



Shapiro et al. (31) demonstrate planning-based control in the extremely high dimensional space of a 

fully articulated virtual human to demonstrate complex object manipulation and dynamic 

interactions. Randomized sampling-based search reduces the computational overhead of a planner 

by sacrificing optimality; however, this approach is still offline. The work in (32) demonstrates the 

use of space-time planning for global agent navigation in deterministically changing virtual 

environments. Lopez et al. (33) represents moving obstacles as interaction volumes to find temporal 

paths in dynamically changing environments with unknown evolution. The ability to accurately query 

the space-time position of dynamic objects mitigates the need for constant re-planning. However, 

these approaches can only handle a very small number of agents at interactive rates.  

Real-Time Planning in Dynamic Environments 

Traditional planners (11) provide optimality and completeness guarantees but are computationally 

intensive and need to re-plan from scratch when the search space changes. Here, we refer to search 

techniques in artificial intelligence which focus on real-time path planning in dynamically changing 

environments. 

Anytime planning algorithms (34) try to find the best plan they can within the amount of time 

available to them. They quickly find a sub-optimal path and then improve the path while time is 

available. This helps interleave planning and execution.  Incremental approaches (35) compute a 

shortest path from the current position to the goal given the current perceived world state. As the 

agent moves along the current path, the plan is efficiently updated to incorporate new information 

and dynamic changes in the environment. Anytime D* (36) is an anytime incremental algorithm with 

provable bounds on sub-optimality. This algorithm provides anytime solution guarantees and can 

incrementally repair its solution to accommodate dynamic events.  

STEERING 

Steering is the layer of intelligence that interfaces with navigation to move an agent along its 

planned path by performing a series of successive local searches, taking into consideration 

locomotion constraints such as turning capabilities and limits on movement velocity, as well as 

dynamic objects in the environment such as other agents. We broadly classify steering approaches 

into the following overlapping categories:   

Centralized Approaches 

These techniques focus on the system as a whole, modelling the characteristics of the flow of the 

crowd rather than the local interactions between individual agents. Regression models (37) use 

statistically established relations to predict crowd flows under specific circumstances such as stairs 

or corridors. Route choice models (38) describe pedestrian way-finding to maximize the utility of 

their trip which is described as a function of parameters such as travel time, etc. Queuing 

approaches (39) use Markov chain models to describe how pedestrians move from one node of the 

network to another. Henderson models crowds as fluids (40) and uses fluid dynamics to describe 

crowd flow. The work in (10)  uses dynamic potential fields to efficiently simulate crowd flow 

without explicit collision avoidance. Narain et al. (41) presents a hybrid approach using a dual 

representation of discrete agents as well as a monolithic continuous system to capture aggregate 

crowd dynamics.  



Such models are of value in computing macroscopic simulations involving thousands of agents (e.g. 

stadium evacuation scenarios, urban simulations, etc.). However, these approaches cannot simulate 

complex local agent interactions which are crucial in modelling functional, purposeful autonomous 

virtual humans for next-generation applications.  

The remainder of this section summarizes the large body of work in agent-based steering which 

model each agent as an independent being, having its own state and goal, which performs collision 

avoidance with static obstacles, reacts to dynamic threats in the environment and steers its way to 

its target. The interactions between agents and the environment result in the emergence of 

macroscopic crowd behavior such as lane formations and agents cooperating to evacuate through 

narrow egress points.   

Particle Dynamics 

The simplest approach is to model the agent as a particle and to simulate crowds by using basic 

particle dynamics (42) (43). This approach works extremely fast, but the heuristic reactions of this 

technique are not sufficient to create realistic pedestrian steering behaviors. 

Social Force Models 

The social force model (44), (45), (46) simulates hypothetical forces such as repulsion, attraction, 

friction and dissipation for each agent to simulate pedestrians. Recent extensions (47), (48), (49) 

apply evolutionary models to determine optimal parameter specifications for the social force model, 

introduce a self-stopping mechanism to prevent agents from continuously pushing each other and, 

include an elliptical volume exclusion of pedestrians which shows better agreement with empirical 

data. The work in (50) demonstrates the influence of social interactions between groups of 

individuals on crowd dynamics. While these models describe pedestrian behaviors more realistically, 

they are designed to be as simple and efficient as possible. 

Cellular Automata Models 

Cellular Automata (51), (52) discretize space and time to define a simple, yet elegant mathematical 

model for a physical simulation. A cellular automaton comprises a uniform lattice where each cell 

stores its own state. The automaton evolves by each cell changing its state as a function of the state 

of neighboring cells. The rules describing this evolution govern the behavior of the simulation. 

Cellular Automata models (53), (54), (55), although fast and simple to implement, do not allow for 

contact between agents, and can only model local homogeneous interactions between agents.  

Often the restriction to one agent per cell is too strong to produce realistic crowd behaviors. 

Rule-based Approaches 

Rule-based approaches (43), (42), (24), (56), (57) use various conditions and heuristics to identify the 

exact situation of an agent.  Once the situation is understood, then the rules compute what steering 

decision the agent should make. These approaches are limited by the situations that are modelled by 

the rule developer and cannot generalize to handle the intractable space of all possible steering 

challenges.  

Data-Driven Approaches 



Research in data-driven steering primarily focuses on generating local-space samples from 

observations of real people. These observations are used to create databases or serve as training 

data to learn computational models which are queried to emulate real human behavior. The work in 

(58) uses manually tracked trajectories from video data which are compiled into a database and 

queried at runtime. The agent’s surroundings are used as the index to retrieve trajectories which are 

used for simulation. The work in (59) uses a more constrained state space of discretized slices 

around an agent and focuses on recreating group dynamics. Torrens et al. (60) define a separate 

state space consisting of a discretized view frustum for environmental navigation. Data-driven 

solutions are a natural fit to expanding an algorithm to handle new situations, but suffer from two 

main limitations. Trained models (60), (61) sacrifice specificity to fit a single, monolithic model which 

generalizes over all the training data. The lossless alternative of database querying (58), (59) leads to 

an unwieldy amount of data which becomes impractical to store and search.  

Predictive Approaches 

The works of (62), (63) use predictions in the space-time domain to perform steering in 

environments populated with dynamic threats. The prediction and avoidance of potential collision 

threats results in more realistic steering behaviors. Reciprocal Velocity Obstacles (64) builds upon 

the concept of velocity obstacles to propose a new method for local reactive collision avoidance 

using the assumption that neighboring agents will adopt similar collision-avoidance behaviors. This 

facilitates the efficient simulation of dense crowds without the need for explicit inter-agent 

communication. Recent extensions use proxy agents (65) to model agent interactions, allowing an 

agent to exercise influence greater than its physical properties – facilitating richer and more complex 

group interactions. ClearPath (66) extends velocity obstacles to formulate collision-free navigation as 

a quadratic optimization problem which can be parallelized to achieve an order of magnitude 

performance gain.   

The work in (13), (67) uses a variable-resolution egocentric representation to model agent 

perception and affordance for crowd simulation. This approach provides the benefit of implicit 

space-time planning without the overhead of modelling time as an extra dimension. Pettre and 

colleagues (68) use experimental data to derive a predictive model of collision avoidance in virtual 

walkers. Ondrej et al. (69) demonstrate a vision-based approach which uses a synthetic sense of 

vision to predict the trajectories of neighboring agents while making steering decisions. Singh et al. 

(12) presents a hybrid framework that chooses the between reactive, predictive, and planning based 

steering policies depending on the current situation of the agent.  

Commercial and Open-Source Solutions  

Commercial and open-source software provide complete steering and navigation solutions using 

variations of the aforementioned techniques. Massive (70) is a popular commercial software that 

provides an end-to-end but off-line solution for authoring, simulating, and rendering large crowds of 

virtual humans and is geared towards cinematic content creation. Recast (71) is an open-source 

software framework that automatically computes navigation meshes for arbitrarily complex 3D 

virtual worlds and includes Detour, a predictive technique for local-collision avoidance. SpirOps (72) 

uses a drive-oriented approach to artificial intelligence, mimicking the decision-making process of 

real humans, while allowing users to incrementally create behaviors in their simulations. SteerSuite 



(73) is an open-source crowd simulator that provides developers with tools to create their own 

steering techniques. 

AN ABSTRACTION OF STEERING AND NAVIGATION TECHNIQUES  

The previous sections summarize a large variety of steering and navigation techniques that have 

been proposed to simulate autonomous agents. Navigation techniques perform global searches to 

produce a coarse trajectory from an agent’s start position to its target location, accounting for static 

geometry, and rely on offline pre-computations, efficient representations of free space, and bounds 

on sub-optimality to meet real-time constraints. Steering approaches perform successive local 

searches to smoothly follow the global path, while accounting for the most imminent dynamic 

threats. The simulation of multiple interacting agents in large-scale crowds requires the explicit or 

implicit modeling of navigation (global pathfinding) and steering (local collision-avoidance).  

Regardless of the underlying techniques used in these approaches, most steering and navigation 

frameworks fall under the umbrella of the following abstraction:  

1. Environment Representation. The environment representation in all steering approaches is 

either explicitly or implicitly modelled as a field. The field may be sparse, storing only 

information in relevant spatial regions, or dense, storing information at all points within the 

spatial region. The field maybe local to the agent or global, spanning the entire area of the 

environment. The data contained in the field represents a modeling of the environment 

(static and dynamic obstacles, other agents, etc.) and is queried by agents to acquire 

perceptual information. Finally, the environment may be computed on-demand or by lazy 

evaluation to represent the current configuration of the virtual world. 

2. Decision-Making. The decision making process in these approaches can be generalized to be 

a search. Some approaches may model different levels of search ranging from a long term, 

one-time search to the goal to a per time-step search that optimizes the velocity that steers 

the agent to the goal. This search process can be customized for the particular steering 

technique used or could be modeled as a generalized best-first search technique. 

3. Locomotion. Finally, the agent is usually modeled as a disc with locomotion constraints 

governing its maximum speed of movement, rate of turning etc. The steering decision is one 

of the following: 1) a velocity vector, 2) target direction and speed, or 3) a force which 

moves the disc along the path. A pedestrian model is then superimposed on top of the disc 

and the mapping from a point mass to an animated human is done as a post-processing 

step. 

Most field-based techniques (7), (8), (9) focus their complexity on the environment representation 

so that decision-making is usually a simple spatial query. The resolution of the field greatly impacts 

the simulation results with finer resolution providing high-fidelity control at a greater computational 

overhead.  

Grid-based representations don’t capture the topological connectivity of navigable regions in the 

environment and represent all regions of the environment at uniform resolution.  Approaches such 

as visibility graphs (22), corridor maps (19) , and navigation meshes (27) rely on offline pre-

computation to better represent free space, facilitating efficient navigation queries. The 



computational complexity of the search process can be greatly accelerated by relaxing the 

constraints on optimality, usually at a negligible compromise to path quality (28).  

Adding time into the search domain (32), (33) produces global planning solutions that account for 

dynamic obstacles such as other moving agents, at a considerable computational overhead. The 

exploration of anytime and dynamic search techniques (34), (35), (36), widely used in robotics is a 

promising avenue of exploration for integrating global navigation and local collision-avoidance in a 

single search framework.  

Approaches such as regression models (38), route-choice models (39), and dynamic potential fields 

(10) use a unified representation of the virtual world, and centralized decision-making to simulate 

large crowds, but are unable to model local agent interactions and produce homogeneous behavior.  

Particle-dynamic approaches (43), (42) and social force models (44) have simplified grid-based 

environment representations and decision-making is governed using a simple set of rules that result 

in emergent behavior. The ad-hoc combination of atomic rules which are used to describe widely 

different steering challenges can lead to unexpected or erroneous behavior, and these approaches 

generally rely on the robustness of their locomotion interface (forces) and collision-avoidance 

technique to produce a plausible simulation. Artificial life techniques (74) model the environment as 

a hierarchical collection of discretized fields, which support fast perceptual queries for global as well 

as local navigation. The decision-making performs a search to compute a long-term plan for 

navigation and utilizes heuristics for reactive decisions to avoid dynamic threats. 

Data-driven approaches (59), (58), (60), (61) rely on real-world data to automatically identify the 

most optimal steering decision in different situations, and can potentially scale well to handle new 

situations. However, the availability of training data that covers a representative set of steering 

challenges remains a fundamental challenge.  

The approaches described above produce reactive behaviors where agents react to the presence of 

imminent threats, with an effective search horizon of one. Predictive approaches (63), (64) forecast 

the outcome of the simulation in the future to choose the next steering decision by assuming that 

agents travel along a straight path determined by their current velocity. The work in (13) uses dense, 

local fields with variable resolution to model the environment. The field is computed at each time 

step and the decision-making process is a recursive breadth-first search to plan a trajectory of high 

affordance from current position to goal. Planning-based approaches (75) account for the non-linear 

trajectories of neighboring agents in order to make an optimal steering decision, enabling the 

solution of complex agent interactions such as potential deadlocks, at an exponential increase in 

computational cost. The search depth is usually limited to a fixed horizon to meet real-time 

constraints. Hybrid approaches (12) combine reactive rules, linear prediction, and space-time 

planning to produce robust steering agents that can react to simple scenarios such as oncoming or 

crossing threats, predictively solve more complex situations involving multiple agents, and use 

space-time planning to solve challenging deadlock situations.  

A majority of crowd approaches models agents as simple particles with velocity or force-based 

control in an effort to simulate large crowds at interactive rates. However, this simplification 

produces artifacts such as oscillations or discrepancies in the mapping of the particle trajectories to 



animated virtual characters. The work in (75) introduces a bio-mechanically based footstep 

locomotion model for steering agents to provide a tighter coupling with character animation. 

Conclusion 

Virtual human research has seen a dramatic rise in recent years with growing applicability in a large 

number of areas ranging from interactive entertainment, to education and urban simulations. 

Navigation and steering are two fundamental problems that must be addressed in an effort to 

simulate functional, purposeful but autonomous populaces that inhabit large, complex virtual 

environments.  

Current approaches first compute a global path that only accounts for static geometry. The steering 

layer is then responsible for following the path while factoring in dynamic world events. The next 

generation of interactive applications require high-fidelity navigation in non-deterministic dynamic 

virtual worlds. The environments and agents may be constantly changing due to unpredictable 

events (e.g., other agents, dynamic obstacles, and human input), potentially invalidating computed 

navigation paths. Hence, future navigation systems must be able to efficiently repair any global 

solution by accounting for the current dynamic world state.  

Different steering approaches model different aspects of human steering and can each only handle a 

fraction of the entire space of challenging scenarios (76) that agents encounter in dynamic 

environments. In an effort to better understand the benefits and limitations of different approaches, 

and to identify scenarios that cannot be solved by any steering approach, we must develop tools 

(77), (78), (79) that facilitate the objective evaluation of steering and navigation techniques.  

The majority of steering algorithms output a force or velocity vector for the locomotion system to 

follow. This simplistic interface does not model the constraints and capabilities of human-like 

movement. Future approaches must investigate the use of bio-mechanically plausible models (75) 

that provide a tighter coupling between steering and human locomotion.  

The union of the subsets of scenarios that different steering algorithms can handle is far greater 

than what each algorithm can individually solve. A promising avenue of future work is the 

exploration of hybrid approaches that can choose the most appropriate steering and navigation 

policy based on an understanding of the agent’s current situation.  
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