
Parallelized Incomplete Poisson Preconditioner

in Cloth Simulation

Costas Sideris1, Mubbasir Kapadia1,2, Petros Faloutsos1,3

1University of California Los Angeles
2University of Pennsylvania

3York University.

Abstract. Efficient cloth simulation is an important problem for inter-
active applications that involve virtual humans, such as computer games.
A common aspect of many methods that have been developed to simulate
cloth is a linear system of equations, which is commonly solved using con-
jugate gradient or multi-grid approaches. In this paper, we introduce to
the computer gaming community a recently proposed preconditioner, the
incomplete Poisson preconditioner (IPP), for conjugate gradient solvers.
We show that IPP performs as well as the current state-of-the-art pre-
conditioners, while being much more amenable to standard thread-level
parallelism. We demonstrate our results on an 8-core Mac Pro and a
32-core Emerald Rigde system.

1 Introduction

Simulating flexible materials, such as cloth, is an important task for applica-
tions involving virtual humans such as computer games and visual effects. High
quality offline simulations are achieved by using implicit methods for simulating
cloth [20–22]. Real-time applications on the other hand use explicit or semi-
explicit methods for cloth simulation in order to meet time constraints [5, 17].
Despite the decades of research on simulating flexible materials, the efficient
simulation of cloth remains an important challenge for computer animation.

There exists a large amount of research that addresses algorithmic optimiza-
tions for speeding up implicit integration methods for simulating cloth. The use
of preconditioners [4, 9, 13] have been shown to greatly reduce the number of
iterations of the conjugate gradient method in an effort to achieve convergence.
In this paper, we explore the use of a novel preconditioning scheme – the in-

complete poisson preconditioner – that has not been used before in clothing
simulation. Using a variety of standard benchmarks, we first demonstrate that
this preconditioner is just as good, if not better than currently used methods.
A major advantage of this method is that it is extremely easy to parallelize and
can take advantage of the processing power available in current and next genera-
tion multi-core hardware. Current state of the art preconditioners [13] are not as
suitable for parallelization and do not scale well with increase in computational
resources. This paper makes the following contributions:

2

1. To our knowledge, we propose for the first time the use of the incomplete
poisson preconditioner (IPP) for clothing simulation.

2. We compare the IPP to the most commonly used preconditioning methods
in terms of efficiency, quality and ease of parallelization.

3. We demonstrate that a parallel implementation of the IPP achieves signifi-
cant performance improvement on multi-core computers.

4. We demonstrate the scalability of the IPP on a state of the art 32-core
compute server and show that it is ready for the next generation of hardware
resources.

The rest of this document is organized as follows. Section 2 reviews related
work. Section 3 presents an overview of the method we use for simulating cloth.
We describe the Jacobi preconditioner, the Symmetric Successive over Relax-
ation, and the incomplete Cholesky preconditioner which are commonly used to
accelerate convergence. In addition, we propose the use of the incomplete poisson
preconditioner for cloth simulation. Section 4 compares the four preconditioning
methods on four standard benchmarks and also demonstrates the effectiveness of
parallelizing the incomplete poisson preconditioning scheme. Finally, Section 5
concludes with a discussion of future work.

2 Related Work

Early work by [20–22] has applied techniques from mechanical engineering and
finite element communities to cloth simulation. Since then, there has been an
extensive amount of work by different research groups [5, 7, 10, 23] that have
addressed several aspects of simulating cloth. An extensive overview of cloth
simulation techniques can be found in two survey papers [8, 16].

Preconditioners play a very important part in implicit cloth simulation as
they can greatly speed up convergence of numerical methods. The work in [3]
used a simple diagonal preconditioner for the modified preconditioned conjugate
gradient method (MPCG). The work in [9] demonstrated 20% speedup by using
a 3×3 block diagonal preconditioner. This work was extended in [4] by proposing
an approximation of the filter matrix A of the MPCG. The work in [13] demon-
strates the effectiveness of the incomplete Cholesky and Successive Symmetric
over Relaxation (SSOR) preconditioning schemes by reducing the number of it-
erations by 20%.

Relation to Prior Work. In this paper, we first examine the fitness of three
commonly used preconditioning schemes [3, 13] in comparison to the proposed
incomplete poisson preconditioner. Our simulation method is similar to the im-
plicit simulation method described in [2,3]. We perform collision detection using
distance fields [11]. Collision resolution is performed using the techniques de-
scribed in [6] and [18].

3

3 Cloth Simulation Overview

There are many aspects to cloth simulation. A cloth simulator is required to solve
a linear system of equations which is used to step the simulator forward by one
time step. This system of equations is derived taking into account the specifics of
the internal forces and their derivatives. Different soft and hard constraints are
imposed on the simulation which must be met. Collision detection and resolution
is another area of research that has many contributions. We refer the reader to
excellent works in cloth simulation research [3,12,14,15] for more information. In
this paper, we focus on the methods of preconditioning that are used to accelerate
the preconditioned conjugate gradient solver. Section 3.1 presents an overview
of the preconditioned conjugate gradient solver and Section 3.2 describes the
different methods of preconditioning for cloth simulation.

3.1 Preconditioned Conjugate Gradient Solver

An overview of the preconditioned conjugate gradient solver is shown in Algo-
rithm 1. A detailed description of the algorithm can be found here [19]. The
preconditioned conjugate gradient method takes as input the following: (a) a
symmetric positive semi-definite matrix A, (b) a symmetric positive definite
preconditioning matrix P of the same dimension as A, and (c) a vector b. The
algorithm iteratively solves the linear system of equations, Ax = b and the iter-
ations stop when |b−Ax| < ǫ|b|, where ǫ is a user-defined tolerance value. The
preconditioning matrix P, which must be easily invertible, speeds convergence
to the extent that P−1 approximates A.

3.2 Preconditioning Methods

We examine the performance of three commonly used preconditioning meth-
ods: (1) diagonal, (2) symmetric successive over relaxation (SSOR), and
(3) incomplete cholesky against the unconditioned conjugate gradient method.
We also examine a new preconditioning scheme, the incomplete Poisson precon-
ditioner, proposed by Ament et al. [1]for the Poisson problem. Their motivation
was to find an easily parallelizable preconditioner for simulations on multi-gpu
systems. To the best of our knowledge, this is the first time this preconditioning
scheme has been applied to cloth simulation. The mathematical formulation of
these preconditioners is as follows.

Diagonal (Jacobi) Preconditioner :

P = diag{A}−1 or Pi,i =
1

Ai,i

(1)

This simple preconditioning scheme approximates the inverse of a diagonal ma-
trix. Although lacking in quality, it can be computed quickly and provides in-
crease in performance in many cases. The computation of P−1 is relatively simple
and this preconditioner can be subsequently applied using SpMV.

4

Procedure Preconditioned Conjugate Gradient Solver(A, x, b, P, ǫ)
Input: A: Left hand side of linear system of equations Ax = b.
Input: x: Input constraint.
Input: b: Right hand side of linear system of equations Ax = b.
Input: P: Preconditioner
Input: ǫ: Maximum tolerance
Output: x: Result.
// Initialization
r = b − Ax; // residual

d = P−1
· r;

dnew = r · d;
while i < MAX ∧ dnew > ǫ2 do

q = A · d;
c = d · q; // curvature
if c < 0 then

return FAIL;
else if c == 0 then

break;
end

α = dnew

c
;

x = x + α · d;
r = r − α · q;
s = P−1

· r;
dold = dnew;
dnew = r · s;
if dnew < 0 then

break;
end

β =
dold

dnew
;

d = s + β · d;
i = i + 1;

end

if dnew < 0 ∨ i == MAX then
return FAIL;

else
return SUCCESS;

end

Algorithm 1: Preconditioned Conjugate Gradient Solver

Incomplete Cholesky Preconditioner :

P =
(

LLT
)−1

, (2)

where L is the Choleshy factorization defined as follows:

Li,i =

√

√

√

√Ai,i −
i−1
∑

k=1

L2
i,k, (3)

Li,j =
1

Li,i

(Ai,j −

i−1
∑

k=1

Li,kLj,k), i > j, (4)

with the additional constraint to keep the original sparsity pattern of A. The
Incomplete Cholesky is derived from the Cholesky decomposition method. A
symmetric positive-definite matrix can be decomposed into the product of a
lower triangular matrix and its conjugate transpose. These triangular matrices
can quickly be inverted in order to solve linear systems. In that sense , the In-
complete Cholesky preconditioner approximates the full inverse of A without

5

incurring the cost of actually inverting it. It should be noted that P−1 is calcu-
lated using expensive forward and backward substitutions, which are inherent
serial processes because of the triangular structures of L and LT .

Incomplete Poisson Preconditioner :

P = HHT (5)

where

H = I − Ldiag{A}−1. (6)

and L is the strictly lower triangular matrix of A. This novel preconditioner
has a simple structure and is kind of an approximate inverse. As a result, no
substitutions are required and this preconditioner can be applied efficiently with
SpMV and thread-level parallelism.

Symmetric Successive Over Relaxation :

P = (M1 ∗ M2)
−1

, (7)

where

M1 =
1

ω
∗ D + L, (8)

M2 =
1

(2 − ω)
∗ (I + ω ∗ D−1 ∗ U) (9)

and L,U ,D are the strictly lower triangular,the strictly upper triangular and
the diagonal matrix of A respectively. Symmetric successive over-relaxation is a
variant of the Gauss-Seidel method but with improved convergence speed. As
with Incomplete Cholesky, a relatively expensive forward and backward substi-
tution step occurs to calculate P−1. It should also be noted that the choice of ω

influences convergence. We use the following ω:

ω =
1

max([1,max(L),max(U)])
. (10)

4 Evaluation Results

In this section we compare the proposed incomplete poisson preconditioner to
the most commonly used preconditioners. Section 4.1 describes the test cases
we use for the comparison. Section 4.2 evaluates the fitness of each of the pre-
conditioning methods and Section 4.3 provides the results of parallelizing the
incomplete poisson preconditioner on next generation multi-core hardware. A
visual comparison of using each of the preconditioners on the benchmarks can
be seen in the accompanying video. All preconditioners seem to produce results
of similar quality.

6

4.1 Benchmarks

We use four benchmarks for the purpose of exercising the preconditioners on
a variety of challenging scenarios that are frequently encountered in simulating
cloth. The three benchmarks are described below.

1. Free Fall. This is more of baseline case, where a piece of cloth falls under
gravity and come to rest on a static sphere with no tangling (Figure 2(a)).

2. Curtain. This case extends the previous benchmark by including fixed point
constraints (Figure 2(b)).

3. Moving Collider. Further extending the previous case, a cloth patch hung
as a curtain interacts with a moving spherical collider (Figure 2(c)). This
benchmark is used to test the behavior of the simulator in a dynamic envi-
ronment.

4. Tangling. Tangling is one of the toughest cases for cloth simulators to han-
dle because of the complexities introduced by the multiple self-collisions (Fig-
ure 2(d)). As far as the conjugate gradient solver is concerned, for tangled
states the number of nonzeros (thus the stiffness) of the matrix A(Ax = b)
increases significantly. The increased matrix density can significantly affect
performance.

4.2 Preconditioner Evaluation

We test the performance of the preconditioners by simulating 200 frames for
each of the benchmarks described above. The parameters used for the cloth
simulator are described in Table 1. The inter-particle forces were shear, bend
and stretch. The evaluation results are illustrated in Figure 3. From the results,
it is apparent that the Incomplete Poisson preconditioner performs on par with
Incomplete Cholesky for cloth simulation. Table 2 demonstrates the performance
results of all preconditioning schemes with increase in number of nodes on cloth
patch. Here, we see that IPP scales well with increase in resolution of cloth patch,
but the incomplete Chokesly preconditioner does not. The main advantage of
this novel preconditioner is that it can be easily parallelized whereas Incomplete
Cholesky is inherently a serial algorithm.

Simulation Parameter Value

Grid resolution 50× 50
Spring Constant 1000

Inter-particle distance 0.005
Damping Factor 2

Time step 0.01
Error Threshold 10−15

Mass of particle 1

Table 1: Simulation Parameters.

7

#Nodes
Cholesky Poisson SSOR Jacobi None

#Iter Time(s) #Iter Time(s) #Iter Time(s) #Iter Time (s) #Iter Time (s)

2500 10 0.079 11 0.032 11 0.035 18 0.062 13 0.028
3600 10 0.099 11 0.046 11 0.046 18 0.080 13 0.049
4900 10 0.160 11 0.054 11 0.064 18 0.090 13 0.058
6400 10 0.133 11 0.062 11 0.078 18 0.101 13 0.064
8100 9 0.150 11 0.076 11 0.096 18 0.121 13 0.083

10000 9 0.151 11 0.084 11 0.110 18 0.138 13 0.091
19600 9 0.241 11 0.157 11 0.217 18 0.241 13 0.182
30625 9 0.482 12 0.326 11 0.359 18 0.388 13 0.337
40000 9 1.649 12 0.396 11 0.490 18 0.567 14 0.542

Table 2: Performance results (number of iterations and simulation time in seconds)
for all preconditioning schemes with increase in number of nodes.

4.3 Parallelization Results

In order to evaluate parallelization options for the Incomplete Poisson precon-
ditioner, we implemented a parallel version using pthreads.This parallel ver-
sion assigns to each thread an equal number of columns of the matrix as a
workload. This number is calculated as No.Columns / No.threads. The in-
put of the parallelization function is A and the output P = HHT , where
H = I − Ldiag{A}−1. We tested for different numbers of threads and the times
we report include construction of the threads as well as thread synchroniza-
tion. Our tests were performed on an 8 core Mac Pro running OS X 10.6 with
12GBs of RAM(Figure 1(a)) and a 32 core Emerald Ridge server with Intel
Xeon X7560 processors and 32GMBs of RAM running OpenSuse Linux 11.3
(Figure 1(b)). Both systems are hyper-threaded. To compute execution time we
used system specific high resolution timers: mach absolute time() on OS X
and clock gettime() on Linux. We further refer the reader to Ament et al [1]
for GPU parallel implementations of the Incomplete Poisson preconditioner.

Figure 1 shows that the parallel implementation of the IPP scales very well
with the number of available cores. For both systems the performance of the
IPP increases significantly and reaches saturation after the number of threads
equals the number of available hyper-cores. In the case of the 8-core system the
performance of a single thread is about 2 seconds while the performance of 16
threads is about 0.5 seconds. Similarly, in the case of the 32-core system a single
thread takes more than second while 64 threads run at about 0.06 seconds.

5 Conclusion and Future Work

We have presented a recently proposed preconditioner, the incomplete Poisson

preconditioner (IPP), for conjugate gradient solvers. We have analyzed the fit-
ness of the proposed preconditioning scheme on several benchmarks and com-
pared its performance to commonly used methods. We have showed that IPP
performs as well as the current state-of-the-art preconditioners, while being much

8

(a) (b)

Fig. 1: Parallelization results on multi-core hardware. (a) 8 core machine. (b) 32 core
machine.

more amenable to standard thread-level parallelism. Our experiments on two
multi-core systems show that a parallel implementation of IPP scales very well
with the number of available processing cores.

6 Acknowledgements

The work in this paper was partially supported by Intel through a Visual Com-
puting grant, and the donation of the 32-core Emerald Ridge system with Xeon
processors X7560. In particular we would like to thank Randi Rost, and Scott
Buck from Intel for their support. We would like to thank Rhythm&Hues Stu-
dios and in particular Peter Huang and Tae-Yong Kim for their their support
through grants and software donations. We would also like to extend our grati-
tude to Thanasis Vogiannou for providing an open source cloth simulation engine
which was used in part to generate the results for this paper.

References

1. Ament, M., Knittel, G., Weiskopf, D., Strasser, W.: A parallel preconditioned
conjugate gradient solver for the poisson problem on a multi-gpu platform. In:
Proceedings of the 2010 18th Euromicro Conference on Parallel, Distributed and
Network-based Processing. pp. 583–592. PDP ’10, IEEE Computer Society (2010)

2. Ascher, U., Boxerman, E.: On the modified conjugate gradient method in cloth
simulation. The Visual Computer 19, 526–531 (2003)

3. Baraff, D., Witkin, A.: Large steps in cloth simulation. In: Proceedings of ACM
SIGGRAPH. pp. 43–54 (1998)

4. Boxerman, E.: Speeding up cloth simulation. Ph.D. thesis, The University of British
Columbian, BC, Canada (2003)

5. Breen, D.E., House, D.H., Wozny, M.J., Breen, D.E.: Predicting the drape of woven
cloth using interacting particles (1994)

9

6. Bridson, R., Fedkiw, R., Anderson, J.: Robust treatment of collisions, contact and
friction for cloth animation. In: ACM SIGGRAPH 2005 Courses. SIGGRAPH ’05,
ACM, New York, NY, USA (2005)

7. Carignan, M., Yang, Y., Thalrnann, N.M., Thalrnanrp, D.: Dressing animated
synthetic actors with complex deformable clothes. In: Computer Graphics (Proc.
SIGGRAPH. pp. 99–104 (1992)

8. Choi, K., Ko, H.: Research problems in clothing simulation. Computer-Aided De-
sign 37(6), 585–592 (2005)

9. Choi, K.J., Ko, H.S.: Stable but responsive cloth. In: Proceedings of ACM SIG-
GRAPH. pp. 604–611 (2002)

10. Eberhardt, B., Weber, A., Strasser, W.: A fast, flexible, particle-system model for
cloth draping. IEEE Comput. Graph. Appl. 16, 52–59 (September 1996)

11. Fuhrmann, A., Sobottka, G., Grob, C.: Distance fields for rapid collision detection
in physically based modeling. In: GRAPHICON (2003)

12. Goldenthal, R., Harmon, D., Fattal, R., Bercovier, M., Grinspun, E.: Efficient
Simulation of Inextensible Cloth. SIGGRAPH (ACM Transactions on Graphics)
26(3) (2007)

13. Hauth, M., Etzmuss, O., Strasser, W.: Analysis of numerical methods for the sim-
ulation of deformable models. The Visual Computer 19, 581–600 (2003)

14. Müller, M.: Hierarchical position based dynamics. In: Proceedings of Virtual Re-
ality Interactions and Physical Simulations (VRIPhys2008). pp. 13–14 (2008)

15. Müller, M., Heidelberger, B., Hennix, M., Ratcliff, J.: Position based dynamics. J.
Vis. Comun. Image Represent. 18, 109–118 (April 2007)

16. Nealen, A., Müller, M., Keiser, R., Boxerman, E., Carlson, M.: Physically based
deformable models in computer graphics. Computer Graphics Forum 25, 809–836
(2006)

17. Okabe, H., Imaoka, H., Tomiha, T., Niwaya, H.: Three dimensional apparel cad
system. In: Proceedings of the 19th annual conference on Computer graphics and
interactive techniques. pp. 105–110. SIGGRAPH ’92, ACM, New York, NY, USA
(1992)

18. Selle, A., Su, J., Irving, G., Fedkiw, R.: Robust high-resolution cloth using paral-
lelism, history-based collisions, and accurate friction. IEEE Transactions on Visu-
alization and Computer Graphics 15, 339–350 (March 2009)

19. Shewchuk, J.R.: An introduction to the conjugate gradient method without the
agonizing pain. Tech. rep. (1994)

20. Terzopoulos, D., Fleischer, K.: Deformable models. The Visual Computer 4(6),
306–331 (1988)

21. Terzopoulos, D., Fleischer, K.: Modeling inelastic deformation: Viscoelasticity,
plasticity, fracture. Computer Graphics (Proc. SIGGRAPH’88) 22(4), 269–278
(1988)

22. Terzopoulos, D., Platt, J., Barr, A., Fleischer, K.: Elastically deformable models.
Computer Graphics (Proc. SIGGRAPH’87) 21(4), 205–214 (1987)

23. Volino, P., Courchesne, M., Magnenat Thalmann, N.: Versatile and efficient tech-
niques for simulating cloth and other deformable objects. In: Proceedings of ACM
SIGGRAPH. pp. 137–144 (1995)

10

(a)

(b)

(c)

(d)

Fig. 2: Benchmark Scenes. (a) Cloth falling on a sphere. (b) Cloth hanging as a
curtain colliding with sphere. (c) Cloth patch colliding with moving spherical object.
(d)Tangling cloth. In the middle frames the red color indicates edges under stress.

11

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 3: Performance results of different preconditioning schemes on all benchmarks.
(a),(b): Number of iterations and simulation time for Free fall benchmark. (c),(d):
Curtain benchmark. (e),(f) Tangling benchmark. (g),(h) Moving collider benchmark.

