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Abstract. The statistical analysis of multi-agent simulations requires a
definitive set of benchmarks that represent the wide spectrum of chal-
lenging scenarios that agents encounter in dynamic environments, and
a scoring method to objectively quantify the performance of a steering
algorithm for a particular scenario. In this paper, we first recognize sev-
eral limitations in prior evaluation methods. Next, we define a measure
of normalized effort that penalizes deviation from desired speed, optimal
paths, and collisions in a single metric. Finally, we propose a new set of
benchmark categories that capture the different situations that agents
encounter in dynamic environments and identify truly challenging sce-
narios for each category. We use our method to objectively evaluate and
compare three state of the art steering approaches and one baseline re-
active approach. Our proposed scoring mechanism can be used (a) to
evaluate a single algorithm on a single scenario, (b) to compare the per-
formance of an algorithm over different benchmarks, and (c) to compare
different steering algorithms.

1 Introduction

Goal driven autonomous agents are used to populate dynamic virtual worlds in
a wide variety of applications ranging from urban simulations, movies, games,
and education. A large variety of approaches have been proposed to address
the problems of steering and navigation in dynamic environments. However,
evaluating the performance of steering techniques is still a fundamental open
problem.

Crowd simulations are evaluated using one of the following methods: (a)
manual inspection, (b) comparison to real-world data, or (c) statistical analysis.
In this work, we focus on the use of computational methods and statistical
tools to analyze, evaluate, and test crowd simulations. The statistical analysis
of multi-agent simulations requires a definitive set of benchmarks that represent
the wide spectrum of challenging scenarios that agents encounter in dynamic
environments, and a scoring method to objectively quantify the performance of
a steering algorithm for a particular scenario.

Prior work has proposed a rich set of application-specific benchmarks and
metrics to evaluate and analyze crowd simulations. The test cases are usually
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limited to a small set of manually designed test cases, and ad hoc, scenario-
dependent criteria. The work of [7] uses presence as a metric for crowd evaluation.
The number of collisions and a measure of effort are often used as quantities
that need to be minimized by steering algorithms [2, 8]. The work in [3] uses
the “rate of people exiting a room” to analyze evacuation simulations. Many
other approaches simply rely on visual fidelity and a subjective evaluation of
the simulation. The work in [4] provides users with the flexibility of defining
derived metrics in order to specify and detect custom behaviors in multi-agent
simulations.

SteerBench [10] is the first work to propose a comprehensive set of manually
defined benchmarks and a scoring method to objectively compare different steer-
ing algorithms in an application independent manner. However, it suffers from
limitations that need to be addressed in order to provide a standard method
of evaluating current and future steering approaches. The work in [6] performs
random sampling in the space of obstacle and agent configurations to gener-
ate a very large set of representative scenarios that represent all the possible
configurations an agent is likely to encounter while steering in dynamic environ-
ments. In addition, it defines three metrics: (1) success, (2) normalized time, and
(3) normalized path length in order to objectively evaluate steering algorithms.
These metrics can be used to measure coverage, quality, and failure for steering
algorithms in the representative scenario space.

In this paper, we first evaluate and analyze three state of the art steer-
ing algorithms and one baseline reactive approach using SteerBench. The three
steering algorithms are: (a) a local field based approach that performs steering
and implicit space-time planning [5], (2) a hybrid method that combines reac-
tion, prediction, and planning for steering and navigation [9], and (3) a method
based on reciprocal velocity obstacles for collision avoidance [1]. From our first
hand experience with SteerBench, we identify important limitations and open
questions that need to be addressed (Section 2). Second, we propose a measure
of effort that can be used to effectively measure the performance of a steering
algorithm for a particular scenario (Section 3). Our scoring measure penalizes
sub-optimal paths, deviations from the desired speed of an agent, and collisions
in a single metric without the need of arbitrarily combining metrics with different
units. In addition, we propose a measure of optimal effort. By normalizing the
score with respect to an optimal, our scores have meaning on their own. They
can therefore be used to compare the performance of an algorithm across differ-
ent scenarios, as well as to compare different algorithms on the same scenario.
Third, we propose an improved set of benchmark categories, and procedurally
generate a large number of scenarios for each category in order to identify a
definitive set of challenging scenarios that agents encounter in dynamic envi-
ronments (Section 4). Finally, Section 5 presents a rigorous evaluation of three
steering algorithms using the improved benchmarks and metrics, and Section 6
concludes the paper.
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2 Experience with SteerBench

SteerBench [10] provides a benchmark suite of 38 scenarios (56 test cases) which
are used to challenge a steering algorithm in the following broad categories:
(1) simple validation scenarios, (2) basic agent-agent interactions, (3) agents
interacting in presence of obstacles, (4) group interactions, and (5) large scale
scenarios. In addition, it proposes the following primary metrics to evaluate
the efficiency of a steering algorithm: (1) number of collisions, (2) total time,
and (3) total energy. A weighted sum of the three metrics is used to compute
a score which can serve as a comparative measure for different steering algo-
rithms. We use SteerBench to evaluate and compare four steering techniques:
(1) EGOCENTRIC [5], (2) PPR [9], (3) RVO [1], and (4) one baseline reactive ap-
proach. The SteerBench scores of these four algorithms are provided in Table 1.
The average time per agent in reaching goal (seconds) and total energy spent per
agent (kg ·m2/s2) for EGOCENTRIC is also provided for reference. In this section,
we describe our experience with using SteerBench and identify some limitations
and open questions that need to be addressed. Please note that these limitations
are not due to bugs but are fundamental shortcomings in the method of evalua-
tion.

Observations. The four algorithms, including the reactive approach, can suc-
cessfully solve 36 out of the 38 scenarios provided in SteerBench. We observe
little or no difference in the scores of all four algorithms on the simple scenarios
and basic agent interactions. The values of the scores range from 100 to 500
depending on the length and difficulty of the scenario. This only allows us to
compare the performance of different steering algorithms on the same scenario
and prevents the score from being considered on its own or across different sce-
narios.

The Oncoming-groups is a challenging scenario that results in different be-
haviors from the three approaches. We notice that EGOCENTRIC results in group
formations where the the two oncoming groups of agents stick together and
smoothly maneuver around the other group, taking a longer but collision-free
trajectory. In PPR and REACTIVE, the agents do not deviate from their optimal
trajectories and resort to reactively avoid oncoming threats. However, the re-
sulting scores of these approaches is not much different and does not capture
these emergent and vastly different behaviors.

The Overtake scenarios were designed to test the ability of an agent to pass
an agent from behind while in a narrow passage. We observe that the scores for
all 4 algorithms are approximately the same. However, However, visual inspec-
tion of the simulation shows that PPR and REACTIVE did not demonstrate an
overtaking behavior. The Surprise scenarios challenge agents to suddenly react
to crossing threats in narrow corridoors. However, the effect of the interesting
interaction between agents on the overall score is diluted due to the length of the
scenario. Finally, the scenarios with 3−4 agents interacting with one another all
have approximately the same score. Agent interactions can be vastly different
depending on the initial conditions and manually designing a few scenarios to
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test interactions between agents is not sufficient.

We identify the following limitations from our first hand experience with Steer-
Bench:

– The evaluation of the steering algorithm is limited to the 56 hand designed
test cases that are provided with SteerBench which cannot capture the entire
spectrum of scenarios that an agent may encounter while steering in dynamic
environments and are prone to the problem of overfitting.

– Often, the most interesting portion of a scenario is the interaction between
agents and obstacles which is only a small portion of the scenario. The
analysis of the entire scenario thus reduces the effect of the interaction of

interest on the cumulative score.
– The metrics are scenario dependent, i.e., the scores produced by SteerBench

vary greatly over different scenarios. This is because the metrics are com-
puted in a time dependent manner. As a result, scenarios that take longer
to complete have larger scores. As a result, it is only meaningful to compare
the scores of two simulations for a test case. However, it is impossible to
evaluate the efficiency of steering algorithms independently for one scenario
over different scenarios.

– There exists no definition of ground truth or optimality for the scenarios. The
notion of a perfect score for a particular scenario would provide a strong basis
for comparison and help better identify the areas of a particular algorithm
that needs improvement.

– The scores are only intended to serve as a basis for comparison between two
algorithms and have no meaning on an absolute scale.

– The weights used to sum three primary metrics also did not have any intuitive
meaning.

Hence, there exists no definitive set of benchmarks that represent the wide
variety of challenging scenarios that agents encounter in complex virtual worlds.
Also, we need metrics that can measure the performance of an algorithm in a time
and scenario independent fashion. This greatly limits the objective evaluation
and comparison of different steering and navigation techniques.

3 Metrics for Evaluation

In this section, we propose a bio-mechanically inspired measure of effort to ob-
jectively score the performance of a steering algorithm on a particular scenario.
We also calculate the optimal value of effort required to solve a scenario which
allows us to normalize our score. Our proposed scoring mechanism can be used
(a) to evaluate a single algorithm on a single scenario, (b) to compare the perfor-
mance of an algorithm across different benchmarks, and (c) to compare different
steering algorithms.

The work in [12] describes that steering agents should obey two principles
while navigating in dynamic environments: (1) they should minimize the distance
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Test Case Time Energy Egocentric RVO PPR Reactive

Simple-3 5.75 112.0 117.76 114.41 118.77 117.87
Simple-obstacle-2 14.2 253.13 267.33 265.67 268.23 268.23
Curves 21.5 363.85 385.35 431.22 385.5 385.5
Crossing-6 22.2 277.8 298.32 298.94 295.25 295.25
Oncoming-obstacle 16.83 267.87 284.7 289.64(0.5) 284.1 276.75
Oncoming-groups 41.72 598.87 640.5 643.83 637.53 638.75
Fan-out 32.25 519.98 552.24 549.48 551.3 551.3
Cut-across-2 33.57 505.9 539.49 546.82 537.1 536.9
Surprise-2 25.7 353.84 429.54(1) 401.56 407.15 406.62
Overtake-obstacle 16.9 279.27 296.17 300.28 291.23 297.6
4-way-confusion-2 15.26 253.4 268.67 267.0 269.13 265.63
Double-squeeze 22.63 308.43 331.05 371.3(1) 354.6(0.5) 379.5(1)
Doorway-two-way – – Fail 331.38 Fail Fail

Wall-squeeze – – Fail Fail 434.43(2) Fail

Table 1: Evaluation Results using SteerBench – Lower score is better. Numbers in ()
is the average number of collisions per agent.

traveled in reaching their destination, and (2) they should attempt to move at
their preferred speed. A collision-free trajectory is a fundamental requirement
that must also be met. A simple effort function that measures the distance
travelled by an agent to reach the goal does not address the influence of speed.
Similarly, a metric that only measures the time to reach the goal will result in
the agents walking at their maximum speed rather than at their preferred speed,
expending more energy than necessary.

The Principle of Least Effort states that an organism will maintain on average
the least possible work expenditure rate as estimated by itself. When applied to
steering, it means that agents will naturally choose a path to their goal which
they expect will require the least amount of effort. Biomechanics research has
quantified the energy expended by a walking human as a function of the subject’s
instantaneous velocity [13]. The effort, Ea

m(s) of an agent a as the metabolic
energy expended while walking along a path for a given scenario s is computed
as follows:

Ea
m(s) = m

∫ t=T

t=0

es + ew|v|2dt. (1)

Here, m is the mass of an agent, T is the total time of the simulation, and
es, ew are per agent constants. For an average human, es = 2.23 J

Kg·s
and

ew = 1.26 J·s
Kg·m2 .

Collision Effort. We introduce an effort penalty, Ea
c (s) for collisions. For every

second that an agent, a is in a state of collision, this penalty is a function of the
penetration of the collision.
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Ea
c (s) = m

∫ t=T

t=0

eccp(t)dt, (2)

where ec = 10 J
Kg·m·s

is a penalty constant for collisions. The collision penetra-

tion function, cp(t) estimates the current penetration depth of the collision if the
agent is colliding with another agent at that point of time.

Optimal Effort. The optimal effort for an agent a in a scenario s is defined as
the energy consumed in taking the optimal route to the target while traveling

at the average walking speed =
√

es

ew

= 1.33m/s. Let Loptbe the optimal length

for an agent a to reach the target. The optimal effort, Ea
opt(s) for an agent a is

calculated as follows:

Ea
opt(s) = 2mLopt

√
esew. (3)

The derivation of Equation 3 can be found here [2]. We calculate Lopt as the
length along the optimal trajectory (found using A*) for an agent to reach its
goal, taking into account only static obstacles.

Normalized Effort. The normalized effort for a particular agent a in a scenario
s is defined as the ratio of the optimal effort in reaching a target to the actual
effort taken, accounting for collisions. It is calculated as follows:

Ea
r (s) =

Ea
opt(s)

Ea
m(s) + Ea

c (s)
(4)

The normalized effort for all agents for a given scenario is calculated as follows:

Er(s) =

a=N
∑

a=1

Ea
r (s)

N
(5)

where N is the number of agents in the scenario. The value of Er(s) ranges from
0 to 1 with a higher value indicating better performance for a given scenario. A
perfect steering algorithm would have Er(s) = 1.

Average Quality. The average quality of a steering algorithm over a set of
scenarios is computed as the average value of Er(s) for all scenarios.

4 Benchmarks for Evaluation

Based on the work in [6], we define a scenario as one possible configuration of
agents and obstacles. A large number of scenarios can be generated by randomly
sampling agent and obstacle configurations. However, in the majority of cases, it
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is of particular interest to define scenarios which capture challenging interactions
between agents. Trivial scenarios where agents need not perform any steering to
reach their destination (i.e. agents never interact with one another) are generally
not going to provide a meaningful comparison. To ensure agent interactions, we
place a constraint on scenario generation such that all agents must interact
(i.e. their optimal paths must cross in space and time). The resulting scenarios
generated focus on more interesting interactions between agents, and therefore
avoid diluting evaulation scores in our methodology by measuring trivial steering
simulations where agents do not interact. We also provide the flexibility place
additional user-defined constraints on the generated scenario in order to meet
certain criteria in order to define specific categories of scenarios.

We define a set of benchmark categories that uniquely capture the different
challenges that steering and navigating agents encounter in dynamic worlds.
These benchmark categories are described below.

– Single Agent Navigation. These scenarios have one agent with a fixed
initial and desired position. We randomly sample obstacle configurations in
order to evaluate the navigation capabilities of an algorithm. Figure 1(a)
illustrates an example scenario generated for this category.

– Agent Interactions. These scenarios represent different configurations of
oncoming as well crossing agents (Figure 1(b)-(c)). Agents are randomly
positioned at the boundary with goals at the opposite end of the environ-
ment to ensure that all agents will arrive at the center of the environment
at approximately the same time, thus forcing an interaction. An obstacle
is randomly positioned in the center to pose an additional challenge. The
number of agents is varied from 2 − 10.

– Narrow Passages. These scenarios challenge oncoming agents to travel in
narrow passages that are just big enough to allow two agents to pass through
(Figure 1(d)). The number of agents is varied from 2 − 4.

– Narrow Crossings. These scenarios capture combinations of oncoming and
crossing interactions between agents in narrow corridoors (Figure 1(e)-(f)).

– Oncoming Groups. The scenarios in this category represent interactions
between oncoming groups of agents (Figure 1(g)-(h)). Agents are randomly
positioned on two opposing sides of the environment forming two oncoming
groups. Different obstacle configurations may also be randomly positioned
in the center of the environment to pose as an additional challenge. The
number of agents in the group is varied from 2 − 5.

– Crossing Groups. These scenarios represent interactions between crossing
groups of agents (Figure 1(i)-(j)). Agents are randomly positioned in 2 adja-
cent groups which interact in the center of the environment. Obstacles may
also be randomly positioned in the center of the environment. The number
of agents in each group is varied from 2 − 5.

– Group Confusion. This category captures interactions between 4 groups
of agents that arrive at the center of the environment from opposite sides
(Figure 1(k)-(l)). The number of agents in each group is varied from 2 − 4.
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We randomly generate 10, 000 scenario samples for each of the benchmark
categories and and calculate the mean of the average quality of the three steering
algorithms [1, 5, 9]. Figure 2 illustrates the average quality distribution for the
benchmark categories described above. We identify the 100 scenarios with the
lowest quality scores as the failure set for each benchmark category. These are
highlighted in blue in Figure 2. The next 900 scenarios (highlighted in red) with
lowest quality measures are identified as challenging scenarios for the respective
benchmark category. The average quality thresholds for the failure set and the
challenging scenarios are given in Table 2.

Benchmark Category Failure Threshold Challenge Threshold

Single Agent Navigation 0.125 0.481
Agent Interactions 0.212 0.303

Agent Interactions Obstacle 0.136 0.225
Narrow Passages 0.322 0.566
Narrow Crossings 0.245 0.631
Oncoming Groups 0.192 0.322

Oncoming Groups Obstacle 0.115 0.176
Crossing Groups 0.222 0.380

Crossing Groups Obstacle 0.149 0.258
Group Confusion 0.112 0.177

Group Confusion Obstacle 0.132 0.175

Table 2: The average quality thresholds used to identify the failure set and the chal-
lenging scenarios for each benchmark category. In Figure 2, the scenarios which fall
below are the failure threshold are highlighted in blue while the challenging scenarios
are highlighted in red.

5 Results

In this section, we evaluate EGOCENTRIC,PPR,RVO and REACTIVE using the pro-
posed metrics and benchmark categories described in Section 3 and Section 4.
Table 3 provides the average quality measures of the four steering algorithms
for the aforementioned benchmark categories. The FAIL quality measure de-
scribes the quality of the algorithm for the scenarios in the failure set. The
CHALLENGE quality measures describes the quality measure of the algorithm on
the challenging scenarios. Finally, the ALL quality measure describes the quality
of the algorithm on the remaining sampled scenarios.

Observations. The Single Agent Navigation benchmarks are primarily used
to test the planning abilities of the algorithms. We observe that the three stan-
dard algorithms have similar quality measures while REACTIVE performs particu-
larly poorly as it constantly steers towards a local target that is chosen by casting
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a ray towards the goal. In contrast, the quality measures of REACTIVE are compa-
rable to PPR for the benchmarks involving agent interactions, as these scenarios
challenge the reactive behavior of agents to avoid other dynamic threats. The
Narrow Passages and Narrow Crossing are particularly challenging bench-
marks as it challenges the ability of the steering agents to predictively avoid
oncoming and crossing threats and prevent possible deadlock situations. A large
percentage of the energy calculation in these two benchmark categories was due
to collisions where agents were simply unable to predictively avoid oncoming
and crossing threats and simply resorted to colliding with other agents. For all
the Group Interactions benchmarks, we observe that PPR and REACTIVE both
have similar quality measures. This is because PPR turns off predictions in the
presence of crowds (more than 4 agents) and resorts to purely reactive behavior
which is reflected in the scores. EGOCENTRIC outperforms the other algorithms
in the group interactions due to the emergence of group behavior where nearby
located agents tend to stick together while handling other agent groups.

Benchmark Category Quality Egocentric RVO PPR Reactive

Single FAIL 0.102 0.154 0.113 0.0076
Agent CHALLENGE 0.321 0.385 0.334 0.121

Navigation ALL 0.691 0.776 0.715 0.543
FAIL 0.204 0.210 0.203 0.198

Agent CHALLENGE 0.271 0.267 0.260 0.257
Interactions ALL 0.653 0.643 0.641 0.645

Agent FAIL 0.132 0.142 0.121 0.113
Interactions CHALLENGE 0.191 0.193 0.183 0.178

Obstacle ALL 0.601 0.613 0.564 0.546
FAIL 0.302 0.256 0.278 0.132

Narrow CHALLENGE 0.476 0.432 0.452 0.332
Passages ALL 0.744 0.732 0.734 0.687

FAIL 0.182 0.174 0.178 0.123
Narrow CHALLENGE 0.465 0.452 0.445 0.343

Crossings ALL 0.781 0.755 0.742 0.698
FAIL 0.182 0.171 0.161 0.157

Oncoming CHALLENGE 0.312 0.286 0.255 0.253
Groups ALL 0.656 0.617 0.572 0.567

Oncoming FAIL 0.133 0.127 0.103 0.097
Groups CHALLENGE 0.189 0.165 0.145 0.138

Obstacle ALL 0.465 0.426 0.392 0.390
FAIL 0.221 0.209 0.193 0.192

Crossing CHALLENGE 0.348 0.327 0.305 0.301
Groups ALL 0.667 0.643 0.603 0.612

Crossing FAIL 0.156 0.143 0.134 0.134
Groups CHALLENGE 0.245 0.223 0.204 0.210

Obstacle ALL 0.534 0.509 0.481 0.491
FAIL 0.125 0.123 0.101 0.091

Group CHALLENGE 0.167 0.156 0.145 0.143
Confusion ALL 0.512 0.476 0.428 0.412

Group FAIL 0.142 0.134 0.121 0.115
Confusion CHALLENGE 0.175 0.167 0.154 0.144
Obstacle ALL 0.412 0.387 0.341 0.324

Table 3: Average Quality of EGOCENTRIC,RVO,PPR, and REACTIVE on all benchmark categories: (1) FAIL:
Failure Set (100 most difficult scenarios generated for that category). (2) CHALLENGE: Challenging
Scenarios (1000 most difficult scenarios generated for that category, excluding the failure set). (3)
ALL: The remaining 9000 scenarios that were generated.
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6 Conclusion

In this paper, we propose a set of benchmark categories to capture different
situations that steering agents encounter in dynamic environments and a measure
of normalized effort that penalizes deviation from desired speed, optimal paths,
and collisions in a single metric. We use our method to objectively evaluate and
compare three state of the art steering approaches and one baseline reactive
approach. Our proposed scoring mechanism can be analyzed on its own, can be
used to compare the performance of an algorithm over different benchmarks,
and also be used to compare different steering algorithms. For future work, we
would like to analyse the performance of steering approaches based on principles
of energy minimization [2] and approaches that use more complex locomotion
models [11]. We would also like to to compute metrics for real crowds to serve
as ground truth for the benchmarks.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Fig. 1: Randomly generated scenarios for each of the benchmark categories.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 2: Mean of average quality of EGOCENTRIC,PPR,RVO for the following benchmark
categories. (a) Single agent navigation. (b) Agent interactions with obstacles. (c) Nar-
row passages. (d) Narrow crossings. (e) Oncoming groups. (f) Crossing groups. (g)
Group confusion. (h) Group confusion with obstacles. The blue, red, and green points
highlight the failure set, challenging scenarios, and the remaining scenarios respectively.


