
A Behavior Authoring Framework for Multi-Actor Simulations

Mubbasir Kapadia1,2∗ Shawn Singh1,3† Glenn Reinman1‡ Petros Faloutsos1§
1University of California Los Angeles

2University of Pennsylvania
3Google Inc.

(a) (b) (c) (d)

Figure 1: Snapshots of a city simulation authored using our framework: (a) Actors queue up at a hot dog stand while the vendors talk to one
another. In the meantime, a thief lies in the shadows waiting for an opportunity tosteal the money from the stand. (b) Cars giving right of
way to pedestrians. (c) Cautious actors run to a place of safety in the eventof an accident. (d) Fire-fighters extinguish the fire while daring
actors look on.

Abstract

There has been growing academic and industry interest in the be-
havioral animation of autonomous actors in virtual worlds. How-
ever, it remains a considerable challenge to author complicated in-
teractions between multiple actors in a way that balances automa-
tion and control flexibility.

In this paper, we propose a behavior authoring framework which
provides the user with complete control over the domain of the sys-
tem: the state space, action space and cost of executing actions.
Actors are specialized usingeffectandcostmodifiers, which mod-
ify existing action definitions, andconstraints, which prune action
choices in a state-dependent manner.Behaviorsare used to define
goals and objective functions for an actor. Actors having common
or conflicting goals are grouped together to form acomposite do-
main, and a multi-agent planner is used to generate complicated
interactions between multiple actors. We demonstrate the effec-
tiveness of our framework by authoring and generating a city simu-
lation involving multiple pedestrians and vehicles that interact with
one another to produce complex multi-actor behaviors.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation I.2.11 [Artificial Intelligence]:
Distributed Artificial Intelligence—Intelligent Agents

Keywords: Crowds, high-level behaviors, coordination, authoring

∗email: mubbasir@cs.ucla.edu
†email: shawnsin@cs.ucla.edu
‡email: reinman@cs.ucla.edu
§email: pfal@cs.ucla.edu

1 Introduction

Multi-actor simulation is a critical component of cinematic content
creation, disaster and security simulation, and interactive entertain-
ment. One key challenge is providing an appropriate interface to
allow the user toauthor the behavior of autonomous actors that
populate the simulated environment. For example, a user may want
to author massive armies in movies, autonomous actors interact-
ing in games, a panicked crowd in urban simulations, etc. Author-
ing is often a bottleneck in a production process, requiring the au-
thor to either manually script every detail in an inflexible way or
to provide a higher level description that lacks appropriate control
to ensure correct or interesting behavior. The challenge is to pro-
vide a method of authoring that is intuitive, simple, automatic, yet
has enough “expressive power” to control details at the appropriate
level of abstraction.

There are two components to authoring behaviors: (1) behavior
specification, and (2) behavior generation. A behavior is specified
as a scripted sequence of actions, desired goals state and con-
straints, finite state machines, or complex cognitive models. Then,
a behavior generation module computes an action trajectory for
all actors corresponding to the desired behavior(s). There exists
a trade-off between specification and generation of behaviors.
Detailed specification of behaviors (e.g., scripted sequences
of actions) require a simple generation module, while abstract
specifications (e.g., high-level motivations for actors) require more
complexity and automation in behavior generation. In general,
these methods suffer from the following disadvantages:

• Flexibility . Scripted behaviors are dependent on the current
configuration of the actors and the environment and do not

generalize easily to different scenarios.

• Complexity. Authoring complicated interactions between
multiple actors becomes intractable in current approaches.
For example, describing the collaboration of two actors to
pick-pocket a victim could vary drastically based on the prop-
erties of the environment, the victim, or presence of other ac-
tors such as a police officer.

• Effort . There is no clear way of directing the trajectory of the
story without defining behaviors for every participating actor.
For example, a user may wish to specify that two vehicles
meet with an accident without having to script the series of
events that precede and follow the accident.

1.1 Related Work

Generating such behaviors in crowds has been studied extensively
from many different perspectives [Badler 2008]. These methods
represent different tradeoffs between the ease of user specification
and the autonomy of behavior generation.

Scripted approaches [Loyall 1997; Mateas 2002] describe behav-
iors as pre-defined sequences of actions where small changes of-
ten require far-reaching modifications of monolithic scripts. Crowd
approaches [Braun et al. 2003; Durupinar et al. 2008] provide in-
terfaces to specify goals forsmart avatars or map parameters to
personality traits and examine the emergent behaviors in crowds.
Smart Events [Stocker et al. 2010] is a method of externalizing be-
havior logic to authored events that occur in the environment.

Approaches such as Improv [Perlin and Goldberg 1996],
LIVE [Menou 2001], and commercial systems like “Massive”
describe behaviors as rules which govern how actors act based
on certain conditions. These systems arereactive in nature, and
typically produce pre-defined behaviors corresponding to the
current situation. They are not designed to generate complicated
agent interactions over the entire course of a lengthy simulation.
Cognitive approaches [Yu and Terzopoulos 2007] use complex
models such as decision and neural networks to model knowledge
and action selection in virtual agents. They are not easy to edit or
author, and they are often a result of a learning process.

The use of domain-independent planners [Fikes and Nilsson 1971]
is a promising direction for automated behavior generation. Plan-
ning approaches provide automation at the expense of computa-
tion. Also, collaboration among agents requires the overhead of
a centralized planner or the modeling of agent communication.
Hence, current systems that use planners for behavior generation,
e.g., [Funge et al. 1999], are restricted to simple problem domains
(small state and action spaces) with a small number of agents ex-
hibiting limited interactions.

To our knowledge, no prior work provides a flexible means of speci-
fication with little effort, while generating complex interactions be-
tween multiple actors. The far reaching goal that still remains a
considerable challenge is to provide an animator with the ability
to easily orchestrate complicated “stories” between multiple inter-
acting actors that can be easily customized and is portable across
scenarios, with minimal user specification.

1.2 Our Approach

In this paper, we provide the user with complete control over the
domain of the system: the state space, action space, and costs of
executing an action. The environment and actors are described with
state metricsthat are affected by actions. The costs of actions are

characterized by generalcost metrics. Metrics and actions are ex-
tensible: users can create additional metrics that better interpret the
simulation by applying operators on existing metrics, and user can
create additional actions as metric modifiers. Existing actor defini-
tions can be specialized using modifiers that modify theeffectsand
costsof actions based on the current state.Constraintsare used to
enforce requirements on actors or on the story (e.g., two cars must
collide during the simulation).Behaviorsare specified as a desired
goal state and an objective function that an actor or group of ac-
tors must optimize. Actors having common or conflicting goals,
are grouped together to form acomposite domainand a heuristic
search technique is used to plan in this domain to generate compli-
cated multi-actor behaviors.

The main contribution of this paper is to combine the expressive
nature of actions, action specializations, constraints, and behaviors
(specification atoms) along with the automation of a heuristic
search planner that works in the composite space of interacting
actors. The intended audience for this framework is two-fold:
domain specialists can define metrics and actions for a given
scenario (state and action spaces), while end-users can specialize
existing action definitions to add variation and purpose to their own
simulation. The planner allows complex behaviors for multiple
interacting actors to be generated with minimal user specification.
Our method has the following benefits:

• Modular and Natural Specification: Domain specialists de-
fine the state and action space for different scenarios while end-
users can specialize and constrain existing definitions to add
variation and purpose to their simulation. Specializations and
constraints can focus on different levels of abstraction and can
be as general or specific as necessary. Behaviors are specified
as goals and objectives for actors that are triggered based on
their current state.

• Cooperative and Competitive Planning: Complicated inter-
actions between multiple actors can be authored by simply
specifying common or contradicting goals for actors in the sce-
nario. Our method automatically clusters actors that have co-
operative or conflicting goals to define acompositestate and
action spaces. This avoids the complexity of modeling com-
munication between actors or the need for explicit scripting of
cooperation schemes in agents. Collaborative behaviors arise as
a solution found by the planner which minimizes the combined
cost of actions of all agents in the composite space.

• High-Level Story Specification: Constraints can be used to
enforce requirements at various points in the simulation with-
out explicitly scripting preceding and succeeding events. This
allows users to make incremental changes in the specification
in an isolated manner.

1.3 Comparison to Previous Work

Our method strikes a happy medium between flexibility of specifi-
cation and automation of behavior generation by allowing the users
to work at different levels of abstraction. Users can control fine
details in their simulation by designing the state and action space
of actors or simply direct the high-level details by specializing ex-
isting actor definitions. Our search method generates complicated
multi-actor interactions without the need of an expensive global op-
timization for all actors in the scenario.

2 Behavior Specification

Figure 2 presents an overview of our framework. A domain expert
first defines the problem domain (state and action spaces) of the
actors in the scene. Next, a director specializes the actors using

file:''www.massivesofware.com''

Figure 2: An overview of the framework.

modifiers, constraints, and behaviors. Actors with dependent goals
or constraints enforcing their interaction are grouped together into a
composite domain, forming a set of independent domains. For each
of these domains, a multi-actor planner generates a trajectory of
actions for all actors in that domain that satisfies the composite goal
while optimizing the individual objective of each actor. The result
of each search is combined into a global plan which is executed to
generate the resulting simulation.

2.1 Domain specification

Domain specification is the lowest level of abstraction at which a
user can work to author behaviors. It entails defining the state
space, the action space and, costs of executing actions for actors
in a scene. An actor is an entity which has a state and can affect the
state of itself or other actors by executing actions. Different actors
in the same scenario may have different domain specifications. For
example, a traditional actor can be defined to simulate pedestrians
in a virtual environment, while the environment can be defined as
an actor which can be used to trigger global events such as a natural
disaster that would affect the state of other actors in the scenario.

State Space.We represent the state space of an actor usingmetrics
– physical or abstract properties of an actor that are affected by the
execution of actions. Users can extend metrics by applying opera-
tors on existing metrics to provide an intuitive understanding of the
properties of the simulation. Let{mi} define the space of metrics
for all actors in the scenario.

Costs.Costs are a numerical measure of executing an action. Dif-
ferent actions can affect different cost metrics by different amounts.
Examples of cost metrics include distance, energy, etc. Let{ci} de-
fine the space of costs.

Action Space. The action space of an actor is a set of actions
which it can perform in any given state. Actions affect one or
more metrics of an actor. An action has the following properties:
(1) pre-conditions which determine if an action is possible
in a given state, (2) the effect of the action on the state of the
actor as well as target actors and, (3) the cost of executing an action.

Action actionName(parameters) {
Precondition: conditions on elements of{mi} or {ci}

Effect: effects on elements of{mi}

Cost Effect: effects on elements of{ci}

}

Modifier modifierName{
Precondition: conditions on elements of{mi} or {ci}

Effect: effects on elements of{mi} or {ci}

}

Constraint modifierName{
Precondition: conditions on elements of{mi} or {ci}

Constraint: conditions on elements of{mi}

}

Behavior behaviorName{
Precondition: conditions on elements of{mi}

Goal: conditions on elements of{mi}

Objective Function: values of{wi}

}

Figure 3: Domain Specification and Specialization.Actions,
modifiers, constraints and, behaviors defined using our frame-
work.

2.2 Domain Specialization

End users can re-use of existing actor definitions across different
scenarios by specializing actors in a state-dependent manner with-
out modifying the original definition. Our intent is that an author
will spend a majority of his time at this level of abstraction where
he can specify and generate vastly different, purposeful simulations
in an intuitive manner with minimal specification. We provide three
methods of specializing actors: (1) effect modifiers, (2) cost modi-
fiers and, (3) constraints.

Modifiers. Users can specialize the effects and costs of executing
an action in a state-dependent manner using modifiers. For exam-
ple, aneffect modifiercan be placed on elderly actors to reduce
their normal speed of movement.Cost modifiersindicate what ac-
tions are in an actor’s best interest at a particular state. For example,
a cautious actor can be authored by increasing the cost of actions
that may place the actor in danger (e.g. enter a burning building).

Here, the notion ofdangerwould be a user specified metric in the
state space of these actors.

Constraints. Constraints are used to enforce strict requirements on
actors in a scenario. Constraints can be used to prune the action
choices of an actor in a particular state. For example, constraints
can be used to prevent pedestrians from walking on the road and
obey traffic signals. Constraints can also be placed on the trajectory
of the simulation to author specific events (e.g. two cars must col-
lide), generate complex interactions between actors, and direct the
high-level story.

2.3 Behavior State Machine Specification

A particular behavior state defines the current goal and objective
function of an actor. The goal of an actor is a desired state that the
actor must reach, while the objective function is a weighted sum of
costs that the actor must optimize. The objective functiono of an
actor is specified by setting the weights{wi} of the different cost
metrics{ci}, and is defined aso = min(

P

i
wi ·ci). A user can de-

fine multiple behaviors for an actor which are activated depending
on the current state.

3 Behavior Generation

The entire problem domain is first decomposed into a set of inde-
pendent composite domains, where actors in one composite domain
have common or contradicting goals (Section 3.1). A multi-actor
action-time planner generates action trajectories for each actor in
the composite domain which optimizes their individual objectives
and satisfies the composite goal (Section 3.2). Finally, models of
virtual humans and vehicles are simulated and animated to follow
these trajectories to generate the authored scenario (Section 3.3).

3.1 Domain Decomposition

The entire problem domain is decomposed into a set of indepen-
dent composite domains where actors with dependent goals or con-
straints enforcing their interaction are part of one composite do-
main. The composite state space is the cartesian product of the
states of each actor and the composite action space is the union of
the actions of each actor in the composite domain. The composite
domain is denoted byΣ.

A particular problem instanceP = (Σ, s0, g, {oi}) is defined by
determining the initial states0, composite goalg , and objectives
{oi} of each actor in the composite domain. The composite goal,
g, is the logical combination of the goals for all actors in the com-
posite domain. Common goals are combined using an∧ operator,
indicating that all actors must satisfy their goal. Contradicting goals
are combined using an∨ operator, indicating that any one of the ac-
tors must satisfy their goal. A composite goal can thus be one of
the following:

• A single objective for a single actor (e.g. get a hot dog).
• Multiple objectives for a single actor (e.g get a hot dog and meet

a friend at the park).
• Common objectives for a group of actors (e.g two actors col-

laborating to lift a heavy load).
• Conflicting objectives between actors (e.g. the objective of the

thief is to steal from the victim while the objective of the victim
is to protect his money).

• Combination of common and conflicting objectives (e.g. two
actors collaborating to corner a third actor).

• One or more desired events during the course of the behavior
(e.g. a thief must be caught).

ProcedureSearch(Σ, s0, g, {oi})
Input : Σ = The composite domain
Input : s0 = The composite start state
Input : g = The composite goal objective
Input : {oi} = The cost objectives for each actor in the composite space
Output : π = Action trajectories for all actors that meets desired behavior
OPEN = {s0}
CLOSED = {φ}
while OPEN 6= {φ} ∨ N < Nmax do

N = N + 1
s = args min(f(s)) wheres ∈ OPEN
goalReached= isGoalConditionSatisfied(g, s)
if goalReachedthen

π = generatePath(g,CLOSED)
return π

end
OPEN = OPEN− {s}
CLOSED = CLOSED ∪ {s}
A = generateCompositeActions(s)
foreacha in A do

t = getTime(s)
s′ = simulate(s,a,t,t+1)
if g(s′) > g(s)+costFunction(s,a,t,t+1) then

g(s′) = g(s)+costFunction(s,a,t,t+1)
end
f(s′) = g(s′)+ heuristicFunction(s′)
OPEN = OPEN ∪ {s′}

end
end
if N == Nmax then

s = args min(f(s)) wheres ∈ OPEN
π = generatePath(s,CLOSED)
return π

end
else

return NULL
end

Algorithm 1 : Heuristic Search Algorithm

Since the planner works in the composite space of multiple actors,
complicated interactions between actors that may be collaborating
or competing with one another can be generated, without the need
of global centralized planning across all actors in the scenario. Even
though the actions of an actor only affect the state space of the
composite domain it belongs to, the possibility of an action is de-
termined by considering the global state space of all actors in the
scenario. This is done to ensure collision-free trajectories between
two independent plans. As a result, the action trajectories gener-
ated for actors in different groups can be overlayed to generate a
complete simulation.

3.2 Multi-Actor Action-Time Planner

The input to the planner is the problem definitionP =
(Σ, s0, g, {oi}), described above. The heuristic search process gen-
erates a trajectory of actions for all actors in the composite space
which meets the composite goal,g while optimizing the individual
objectives,{oi} of all actors in the group. Our planner extends tra-
ditional planning approaches [Fikes and Nilsson 1971] as follows:
(1) it works in the composite space of multiple actors with compet-
itive or collaborative goals, (2) it explicitly takes time into account
with different actions taking variable amounts of time and actions
of different actors overlapping and, (3) it uses an automatically de-
rived heuristic estimate to speed up the search process.

Overview. Using a heuristic planner, the search tree expands as
follows: For the current state, a set of possibletransitionsis first

generated. Each transition represents the forward simulation of the
actions for all actors in the composite space by one time step, where
actors are simultaneously executing actions. The planner chooses a
transition by minimizing the sum of thetotal costof the transition
and theheuristic estimateto reaching the composite goal. The cost
of a transition is computed such that the action chosen by an actor
optimizes its own objective function. When the planner reaches a
state which satisfies the composite goalg, it returns the generated
plan.

Transitions. A transition represents the simultaneous execution of
actions chosen by all actors in the composite domain by one time
step. A transition is said to bevalid and ready to simulate if all
the actors have a valid action that they are executing or ready to
execute. An action for a particular actor possible if all the follow-
ing conditions are met: (1) the actor is currently not executing an
action, (2) the preconditions of the action are satisfied and, (3) no
constraints prohibit the action. For a valid transition, the actions of
all actors are simulated for one time step in a random order. The
explicit modeling of time in the action definition results in overlap-
ping actions, actions being partially executed (action failure) and
actors choosing to perform new actions while other actors are still
performing their current action.

After the simulation of a transition, an actor may find itself in one
of the following states: (1)Success.The action is successfully com-
pleted and the actor must chose a new action in the next time step.
(2) Executing.The action is partially executed at the end of the sim-
ulation routine for that time step. (3)Failure. The preconditions of
the action are negated as a result of the execution of actions of other
actors. The action is said to have failed and the actor must choose a
new action.

Cost Function. The cost of simulating a transition{ai}, at states,
in the time interval(t, t + 1) whereai is the action chosen by actor
i in the composite domain is given by:

P

i
oi({cj}), where{cj}

are the values of the cost metrics for simulating action,ai for actor
i at state,s, from time,t to t+1, andoi is the objective function of
actori.

Heuristic Function. The heuristic function is used to provide a cost
estimate from the current state to the goal state. Since our system is
domain independent (a user may specify any state space and action
space), manually defining heuristics for such a domain becomes
cumbersome. Even worse, the goal specification is not a single state
or set of states but a condition that must be satisfied. The automatic
derivation of heuristics [Bonet and Geffner 2001] has been exten-
sively studied in task planning literature and is shown to scale well
for large problem domains. Our design of a heuristic function is
fairly straightforward and efficient. We first relax the preconditions
on the actions (all actions are deemed possible at any given instant
of time) and do a fast greedy search for a trajectory of actions that
takes the planner from the current state to the goal. The sum of the
cost of all actions is the heuristic,h for that particular state,s.

3.3 Animation and Simulation Engine

The output of the planner is a set of action-time trajectories for each
actor in the simulation. These trajectories provide information re-
garding the spatial position of each actor at a given point of time
as well as the current action of the actor. Since the planner takes
time into account and always considers the global state of all actors
(not just the actors in the composite domain) while generating a
valid plan, the resulting solution is guaranteed to be collision-free.
Hence, a simple steering algorithm is first used to simulate coin
shaped agents to accurately follow the paths. Next, an animation
system is used to animate models of virtual humans and vehicles
along the simulated paths. Characters are animated by transition-

ing between walk, run and stop animations based on the speed of
movement. Also, animations are used to visualize the current ac-
tion being performed by an actor (e.g., a thief stealing from money
from the hot-dog stand).

3.4 Behavior Generation Algorithm

The algorithm used to generate multi-actor behaviors is described
below:

1. Define Actors,Aci = 〈Si, Ai, Ci, Bi〉, whereSi is the state
space,Ai is the action space,Ci is the set of constraints and
modifiers, andBi is the set of behaviors defined for actori.

2. Determine Composite Domains,CDj = 〈Sc
j , Ac

j , C
c
j , Bc

j 〉,
whereSc

j = {S1 × S2 × ... Sn} is the composite state space,
Ac

j =
Sn

i=1
{Ai} is the composite action space,Cc

i = {Ci}
is the set of specializations, andBc

j = {Bi} is the set of
behaviors defined for all actorsi = 1 to n in the composite
domainCDj .

3. For each Composite Domain,CDj

(a) Define Search Domain,Σ = (Sc, Ac, Cc).
(b) Determine initial state in the composite space of all

agents,s0 =
Sn

i=1
s0

i

(c) Determine active behaviors,bi for each actor,i in com-
posite domain,CDj . The active behavior for each actor
determines the goal,gi and the objective functionoi.

(d) The composite goal,g is the logical combination of
the goals,{gi} for all actors in the composite domain.
Common goals are combined using an∧ operator, indi-
cating that all actors must satisfy their goal. Contradict-
ing goals are combined using an∨ operator, indicating
that any one of the actors must satisfy their goal.

(e) If no behavior is active for actors,Return.
(f) Solve for sequence of actionsπ by performing a search,

π = Search(Σ, s0, g, {oi}), whereΣ is the search do-
main,s0 is the composite start state,g is the composite
goal, and{oi} are the objective functions for each actor.

4. Combine plans for all domains,Π = π1 ∪ π2 ∪ ...πn.

5. Execute Global Plan,Π.

6. Determine new states of all actors.

7. Repeat Steps 2-6.

4 City Simulation

We demonstrate the effectiveness of our framework by authoring a
car accident in a busy city street and observing the repercussions of
the event on other actors that are part of the simulation, such as the
old man and his son, whose behaviors are automatically generated
using our framework.

4.1 Actor Specification

We first define the state space and action space of three actors in
the scenario: (1) a generic pedestrian, (2) a vehicle and, (3) a traffic
signal.

Pedestrian: The state of a pedestrian comprises its position, ori-
entation, speed of movement, mass, and, a collision radius. In
addition, pedestrians have the following abstract metrics: hunger,
safety, amount of money. These metrics are variables whose values
are modified by actions. TheMoveaction (Figure 5(a)) is defined

(a) (b) (c) (d)

Figure 4: Interaction between thief and the vendors: (a) The thief steals money fromthe hot dog stand when the vendors walk away (because
of the accident). (b)-(d) The vendors collaboratively work together to surround the thief in the alley and manage to catch him.

to kinematically translate an actor and has an associated distance
and energy cost. The routineCheckCollisions(..) returns
false if theMove action causes the pedestrian to enter a state of
collision. Additional actions (e.g.Eat) can be associated with
different metrics (e.g. hunger). The pedestrian is given a simple
behavior to move towards a specified goal position ((Figure 5(b))
while minimizing distance and energy cost. The goal positions are
randomly generated to produce a realistic city simulation with wan-
dering pedestrians. Additionally, the pedestrians monitor the state
of a traffic signal which coordinates the movement of pedestrians
and vehicles at an intersection ((Figure 5(c)).

Vehicles: The state and action space of vehicles is defined simi-
larly to simulate their movement. In addition, they have a metric
damage which increases if a vehicle collides with another vehicle.
Vehicles are constrained to stay on the roads, give right of way to
pedestrians, and obey the traffic lights.

Traffic Signals: A traffic signal represents an environment actor
that models the simulation of the traffic signals at the intersec-
tion. It has a single metricsignal state which is the current
state that the traffic signals at the intersection are in. An action,
ChangeTrafficSignal (Table 1(a)) determines the state of the
traffic signal based upon the current simulation time. The pedes-
trian and the vehicles query the signal state in order to follow the
traffic signals.

4.2 Actor Specialization

These generic actors are specialized as follows:

• Fire-fighters: Fire-fighter actors are specialized pedestrians
whose common goal is to extinguish any fires that may be
present in the city block. These actors have proportionally
lower weights for the safety metric – this implies that they can
move closer to a dangerous situation in performing their jobs.
Table 1 (g) outlines the behavior description for fire-fighters.

• Elderly: An elderly person is specialized by creating an effect
modifier which reduces their walking speed. In addition, the
elderly actor has an effect modifier which makes him follow his
grandson (Table 1(e)).

• Grandson: The objective of the grandson is to escort his grand-
father at all times and to keep him away from danger (e.g. car
accidents, oncoming traffic and other pedestrians). We achieve
this by introducing a simple script,ProtectGrandfatherB
which changes the objective function of the grandson to include
the safety cost metric of the grandfather as well.

• Cautious Actor: A cautious actor is authored by increasing the
cost of actions that may place him in danger (Table 1(b)).

• Daring Actor: A daring actor is authored by lowering the cost
of actions that may place him in danger (Table 1(c)). Here,
danger is a user-defined metric that is associated with each actor
in the scenario.

Action Move(Velocity : v, TStep: dt) {
Precondition:
CheckCollisions(self.position + vdt) == false;
Effect:
self.position = self.position + vdt;
Cost Effect:
self.energyCost = 1

2
(self.mass)|v|2;

self.distanceCost = |v|dt;
}

(a)

Behavior GoalBehavior {
Precondition: self.goalPosition 6= 0;
Goal: self.goalPosition;
Objective Function:
min(self.distanceCost + self.energyCost);

}

(b)

Constraint PedSignalConstraint {
Precondition: true;
Constraint:
if ((signal.signalState == 0
∧CrossingRoad(self.position,C))
∨(signal.signalState == 1
∧CrossingRoad(self.position,A))
∨(trafficSignal.signalState == 2
∧CrossingRoad(self.position,B)))
true;
else false;

}
(c)

Figure 5: A generic pedestrian with a simple Move action (a),
a behavior to go to a specified goal position (b), and a con-
straint to follow the traffic signals (c).

• Street Vendor: A street vendor is given the behavior of man-
ning his hot dog stand and ensuring that his money is not stolen.

• Thief: The goal of the thief actor is to make money while min-
imizing his risk of getting caught (Table 1(j)). He has an action
Steal(Table 1(k)) which allows him to steal money from the
hot dog stand. In addition, a cost modifierRiskCostModifier
(Table 1 (l)) assigns a high cost to stealing in the presence of
other actors. He is therefore looking for an opportunity to steal
when the vendor is distracted.

• Reckless Vehicle:A reckless vehicle is modeled by introduc-
ing a high cost to moving at slower speeds and relaxing the
constraints of obeying traffic signals and collisions with other
vehicles. Table 1 (n) and (o) define the effect and cost modifiers
for a reckless vehicle.

4.3 Results

We populate a city block with pedestrians and vehicles using our
framework. Furthermore, actor specializations provide an easy and
intuitive way to add variety and purpose to the virtual world. We
observe pedestrians walking along the sidewalks in the city in a
goal-oriented manner (satisfying hunger by getting a hot dog, going
to the park to meet a friend, stopping to take a look at objects of
interest) while obeying constraints and modifications (obey traffic
lights, avoid collisions, stay off the streets etc).

In order to add drama to the simulation, we introduce constraints
on the trajectory of the entire simulation. First, we introduce a con-
straint,AccidentC(Table 1(m)), that an accident must happen (i.e.
two vehicles must collide). A simulation is generated where two
reckless vehicles collide with one another, resulting in a fire that
stops the traffic at the intersection (Figure 1(d)). Cautious pedestri-
ans who are near the accident run away to a safe distance in panic or
walk away calmly (depending on their specialization) while daring
actors approach the scene of the accident.

The car accident triggers the activation of the behaviors in the fire-
fighters who run to the location of the fires. They work together col-
laboratively to extinguish both fires (a result of the planner working
in the composite domain). Upon noticing the accident, the vendor
runs to a place of safety (high cost modifier on safety). As soon
as the thief notices that the vendor has left his stand, he slowly ap-
proaches the stand, steals the money and runs to a place of safety.

We vary the simulation result by introducing other specializations
or modifying existing ones. In a first take, we define the objectives
of the two vendors to minimize safety cost as well as the cost of be-
ing robbed as individuals (Table 1(h)). When the accident happens,
they run to a place of safety while keeping the stand in eyesight. As
soon as they see the thief stealing the money, they both chase after
him. However, the thief has a head-start and runs away. This is
because the planner generates solutions that tries to achieve the ob-
jective of each vendor independently. Hence, we observe that in the
composite domain of the thief and two vendors, the thief succeeds.
In a second take, we modify the objectives of the vendors to mini-
mize the cost of both being robbed (Table 1(i)). The common goal
of the vendors implies that the planner searches for a solution that
optimizes their combined objectives. As a result, the two vendors
cooperate to corner the thief in an alley (Figures 4(a)-(d)).

Performance and Implementation Details.We demonstrate 106
actors in the city simulation, with 15 cars and 91 pedestrians. Based
on constraints, goal definitions and spatial locality, the following
composite domains are defined: (1) 15 cars and 4 fire-fighters,
(2) old man and son and, (3) generic pedestrians grouped together
based on spatial locality. Dividing the problem domain into smaller
composite domains reduces the branching factor of the search by
two orders of magnitude, reducing an intractable search problem to
smaller, more feasible searches. The plans for each of these do-
mains is then overlayed to form the complete solution. The perfor-
mance results are provided in Figure 6. The amortized performance
of our behavior generation framework for the results shown in the
video is 0.02 seconds per actor per second of simulation generated.

We use a hybrid programming model that combines scripts and C++
classes to generate the results described in the paper. For example,
Pedestrian, Vehicle and,TrafficLight are derived im-
plementations of an abstractActor class. Actors are specialized
using XML scripts which facilitate rapid prototyping and experi-
mentation to see how varying script parameters affect the simula-
tion. For ease of exposition, we use pseudocode to describe the
scripts in the paper. From our experience with authoring the city
simulation, we observe that the overhead of defining actors in C++

is mitigated as we spend a majority of our time at the scripting layer
incrementally adding and modifying specializations to generate the
result that we desire.

Currently, scripting is limited to the XML schema definition and
requires end users to be aware of the constructs and variable names
that are defined for actors. Also, there are no automatic validations
to ensure that scripts do not override or conflict with each other.
For future work, we will develop a graphical user interface that will
expose the constructs for actor definition and specialization to end
users in an easy and intuitive fashion.

Number of actors 106
Number of composite domains 12

Max # of actors in a composite domain 19
Total generation time 219 sec

Max generation time for one domain 76 sec
Min generation time for one domain 8 sec

Generation time per actor 2.06 sec
Length of output simulation 95 sec

Amortized time per actor per second 0.02 sec

Figure 6: Performance Results.

5 Discussion

In this paper, we present a multi-actor planning framework for gen-
erating complicated behaviors between interacting actors in a user-
authored scenario. Users define the state and action space of actors
andspecializeexisting actor definitions to add variety and purpose
to their simulation. Actors with dependent goals are grouped to-
gether into a set of independent composite domains. For each of
these domains, a multi-actor planner generates a trajectory of ac-
tions for all actors to meet the desired behavior. We author and
demonstrate a simulation of more than one hundred actors (pedes-
trians and vehicles) in a busy city street and inject heterogeneity and
drama into our simulation using specializations. With help from
the community, we envision a growing open-source library of actor
definitions that can be re-used to direct completely new simulations,
with a few simple specializations.

Limitations. The behaviors generated by our framework are heav-
ily dependent on the manner in which actors are grouped together
and the weights of the objectives. For example, authoring interac-
tions between the old man and firemen would necessitate the old
man and firemen belonging to the same planning domain. For fu-
ture work, we will adopt a dynamic clustering strategy in which
actors may be re-grouped based on their current states.

One of the major design choices of this framework was the use of
a multi-actor planner which prohibits its use in interactive applica-
tions such as games. The major reason for adopting a centralized
approach was to facilitate the authoring of complex multi-actor in-
teractions which would require a complex model of communication
and prediction between actors in a decentralized system. We are
currently investigating the use of anytime planners as well as paral-
lel search algorithms for both centralized and agent-based planning
in an effort to achieve real-time performance.

Acknowledegements

We wish to thank the anonymous reviewers for their comments. The
work in this paper was partially supported by NSF grant No. CCF-
0429983. We thank Intel Corp., Microsoft Corp., and AMD/ATI
Corp. for their generous support through equipment and software
grants.

Author Biographies

Mubbasir Kapadia Mubbasir Kapadia is
the associate director and post-doctoral re-
searcher at the SIG Center for Computer
Graphics Lab at University of Pennsylvania.
He received his Ph.D. and M.S. in Computer
Science at the University of California, Los
Angeles in 2011 with a dissertation on au-
thoring and evaluating autonomous virtual
human simulations. He received a Bachelors

in Computer Engineering from D.J Sanghvi College of Engineer-
ing, Mumbai, India in 2007. His current research focuses on the
application of automated planning and machine learning principles
to simulate autonomous virtual humans.

Shawn SinghShawn is a PhD Candidate in
computer graphics at UCLA under Professor
Petros Faloutsos and Professor Glenn Rein-
man. His research includes pedestrian navi-
gation in crowds as well as architectures for
real-time ray tracing and photon mapping.
He received his M.S. in computer science at
the University of Southern California, and
his B.S. in music and computer science from

the College of William and Mary.

Glenn ReinmanGlenn Reinman is an asso-
ciate professor in the Department of Com-
puter Science at University of California,
Los Angeles. He received his Ph.D. and
M.S. in Computer Science at the University
of California, San Diego in 2001 with a dis-
sertation on fetch optimizations for aggres-
sive out-of-order superscalar processors. He
received a B.S. in Computer Science and En-
gineering from the Massachusetts Institute

of Technology in 1996.

Petros FaloutsosPetros Faloutsos is an as-
sistant professor at the Department of Com-
puter Science at the University of California
at Los Angeles. He received his PhD degree
(2002) and his MSc degree in Computer Sci-
ence from the University of Toronto, Canada
and his BEng degree in Electrical Engineer-
ing from the National Technical University
of Athens, Greece. Professor Faloutsos is
the founder and director of the graphics lab

at the Department of Computer Science at UCLA. Faloutsos’ re-
search interests include graphics, animation, virtual humans, and
surgical robotics. Professor Faloutsos is also interested in computer
networks and he has co-authored a highly cited paper on the topol-
ogy of the Internet. Professor Faloutsos is a member of the Editorial
Board of the Journal of The Visual Computer and has served as a
Program Co-Chair for the ACM SIGGRAPH/Eurographics Sympo-
sium on Computer Animation 2005. He is a member of the ACM
and the Technical Chamber of Greece.

References

BADLER, N. 2008. Virtual Crowds: Methods, Simulation, and
Control (Synthesis Lectures on Computer Graphics and Anima-
tion). Morgan and Claypool.

BONET, B., AND GEFFNER, H. 2001. Heuristic search planner
2.0. AI Magazine 22, 3 (Fall), 77–80.

BRAUN, A., MUSSE, S. R.,DE OLIVEIRA , L. P. L., AND BOD-
MANN , B. E. J. 2003. Modeling individual behaviors in crowd
simulation.Computer Animation and Social Agents 0, 143.

DURUPINAR, F., ALLBECK , J., PELECHANO, N., AND BADLER,
N. 2008. Creating crowd variation with the ocean personality
model. InProceedings of AAMAS’08, 1217–1220.

FIKES, R. E.,AND NILSSON, N. J. 1971. Strips: A new approach
to the application of theorem proving to problem solving.Artifi-
cial Intelligence.

FUNGE, J., TU, X., AND TERZOPOULOS, D. 1999. Cognitive
modeling: knowledge, reasoning and planning for intelligent
characters. InProceedings of ACM SIGGRAPH, 29–38.

LOYALL , A. B. 1997.Believable agents: building interactive per-
sonalities. PhD thesis, Pittsburgh, PA, USA.

MATEAS, M. 2002. Interactive drama, art and artificial intelli-
gence. PhD thesis, Pittsburgh, PA, USA.

MENOU, E. 2001. Real-time character animation using multi-
layered scripts and spacetime optimization. InProceedings of
ICVS ’01, Springer-Verlag, London, UK, 135–144.

PERLIN, K., AND GOLDBERG, A. 1996. Improv: a system for
scripting interactive actors in virtual worlds. InProceedings of
ACM SIGGRAPH, ACM, New York, NY, USA, 205–216.

STOCKER, C., SUN, L., HUANG, P., QIN , W., ALLBECK , J. M.,
AND BADLER, N. I. 2010. Smart events and primed agents. In
IVA, 15–27.

YU, Q.,AND TERZOPOULOS, D. 2007. A decision network frame-
work for the behavioral animation of virtual humans. InPro-
ceedings of the ACM SIGGRAPH/EG Symposium on Computer
Animation, 119–128.

Action ChangeTrafficSignal {
Precondition:
true;

Effect:
timeMod = currentTime % 100;
if (timeMode <= 35)

self.signalState = 0;
else if (timeMode <= 70)

self.signalState = 1;
else self.signalState = 2;

}

(a)

CostModifier CautionCM {
Precondition:
∃ a: a.danger > 0 ;

Cost Effect:
self.safetyCost = max(a.danger);

}

(b)

CostModifier DaringCM {
Precondition:
∃ a: a.danger > 0 ;

Cost Effect:
self.safetyCost =

MAX_COST - max(a.danger);
}

(c)

EffectModifier DaringEM {
Precondition:
true;

Effect:
a = arg max(a.danger) ;
self.goalPosition = a.position;

}

(d)

EffectModifier ElderlyEM {
Precondition:
true;

Effect:
self.speed = min(self.speed,1.0)

}

(e)

EffectModifier FollowEM(Actor : a) {
Precondition:
true;

Effect:
self.goalPosition = a.position;

}

(f)

Behavior FireFighterB {
Precondition:
∃ a ∈ Actors: a.fire > 0;

Goal:
∀ a ∈ Actors a.fire = 0;

Objective Function:
min(0.3·self.safetyCost

+ self.distanceCost
+ self.energyCost);

}

(g)

Behavior IndividualVendorB {
Precondition:
true;

Goal:
self.money >= 100;

Objective Function:
min(self.stolenCost);

}

(h)

Behavior CooperativeVendorB {
Precondition:
true;

Goal:
self.money >= 100 ∧
otherVendor.money >= 100;

Objective Function:
min(self.stolenCost

+ otherVendor.stolenCost);
}

(i)

Behavior ThiefB {
Precondition:
true;

Goal:
self.money >= 100

Objective Function:
min(self.distanceCost

+ self.energyCost);
}

(j)

Action Steal(Actor a, Amount: m){
Precondition:
m <= a.money ∧
DistanceBetween(self,a) < 1.0;

Effect:
a.money = a.money - m
self.money = self.money + m

Cost:
self.stealCost = m;
a.stolenCost = m;

}

(k)

CostModifier RiskCostModifier {
Precondition:
true;

Effect:
self.stealCost +=
max Dist(self.position,a.position)

}

(l)

Constraint AccidentC {
Precondition:
true;

Constraint:
// Two vehicles must collide
// at some point in time
∃ a1, a2 :
IsAVehicle(a1) ∧
IsAVehicle(a2) ∧
Distance(a1, a2) < 5.0;

}

(m)

EffectModifier RecklessVehicleEM {
Precondition:
true;

Effect:
self.collisionRadius = MIN;
self.followSignals = FALSE;

}

(n)

CostModifier RecklessVehicleCM {
Precondition:
true;

Effect:
// low cost for traveling
// at MAX_SPEED
self.speedCost

= MAX_SPEED-self.speed;
}

(o)

Table 1: Scripts used to author the city simulation.

	Introduction
	Related Work
	Our Approach
	Comparison to Previous Work

	Behavior Specification
	Domain specification
	Domain Specialization
	Behavior State Machine Specification

	Behavior Generation
	Domain Decomposition
	Multi-Actor Action-Time Planner
	Animation and Simulation Engine
	Behavior Generation Algorithm

	City Simulation
	Actor Specification
	Actor Specialization
	Results

	Discussion

