
Agents in the Real World
Computational Models in Artificial Intelligence and Cognitive Science

Matthew Stone
mdstone@cs.rutgers.edu

September 4, 2003

1 Motivation and Overview

The mid-twentieth century saw the introduction of a new general model of pro-
cesses,COMPUTATION, with the work of scientists such as Turing, Chomsky,

Newell and Simon.1 This model so revolutionized the intellectual world that the
dominant scientific programs of the day—spearheaded by such eminent scientists

as Hilbert, Bloomfield and Skinner—are today remembered as much for the way
computation exposed their stark limitations as for their positive contributions.2 Ever
since, the field of Artificial Intelligence (AI) has defined itself as the subfield of

computer science dedicated to the understanding of intelligent entities as computa-
tional processes.

Now, drawing on fifty years of results of increasing breadth and applicabil-
ity, we can also characterizeAI research as a concrete practice: anENGINEER-

ING APPROACHto constructingCOMPUTATIONAL ARTIFACTS that act in theREAL

WORLD. Such artifacts are known asAGENTS, so we can also describeAI as the

practice of agent design. This practice boasts a wide range of successes, in domains
from human-computer interaction to robotics to electronic commerce and services,
and AI research increasingly emphasizes the techniques and insights required to

capture sophisticated behavior in effective applications. With these practical suc-
cesses,AI may seem to have retreated from the analysis of human intelligence.

In fact, however, the view of human intelligence as a computational process now
guides empirical and theoretical research throughout academia, in philosophy, lin-

guistics, psychology, and even neuroscience. These diverse scientists continue to
frame their explanations of human intelligence in computational terms, and they
continue to build onAI research.

However, research inAI and elsewhere has made it clear that we cannot explain
how people can act so successfully in such a complex worldMERELY by appeal to

the generality and power of computation. Rather, as this volume3 attests, a complete
account of human intelligence must encompass further principles that characterize

human biology, human environments, and human abilities. For, as the cognitive
sciences document in stunning complexity, our natural computation doesn’t just

endow us with general reasoning: it attunes us to a specific range of complex but

1

significant relationships in the world, and allows us to exploit these relationships to
act effectively. Nevertheless,AI can still offer unique insights into human intelli-

gence, by helping to characterize the computational mechanisms and the real-world
knowledge that must underlie our own complex, adaptive behavior; and manyAI

researchers are proud to offer what contributions they can.
In this chapter, I will first set out, in broad strokes, the activities of model-

ing, implementation and evaluation that distinguish the practice of agent design. I

continue by illustrating these activities in more depth as they play out in the most
straightforward case of decision analysis for agent design. The illustration not only

showcases the central elements ofAI practice, but also highlights the insight that
AI practice can give into the problems inherent in computational systems that act

effectively in the world. AI research has discovered important tradeoffs in agent
design and developed a range of effective practical techniques in response. Natural

computation must respond to these tradeoffs too, so I encourage you to viewAI not
only as a toolkit for innovative practical system-building but also as a inspiration to
new research into the computational problems of acting in our world.

2 A General Description of Agents

2.1 Agents Take Real-world Actions Based on Real-world Data

In thinking of AI as an engineering approach to building computational artifacts

that act in the real world, it is easy at first to overlook the dramatic constraints that
the real world imposes on agents, and indirectly on engineers who build agents.
But consider how much freedom in design we find in more typical computer

programming—in structuring classes and methods in object-oriented programming,
for instance.

On the one hand, we can often expect to stipulate what inputs the program will
accept, in an unambiguous and restrictive specification. Thus, a compiler or inter-

preter works with texts described by a formal grammar; operating-systems modules
work with the elements of a particular protocol or programming interface; and even
a user interface channels its communication with its human user through a small

and predefined set of menus, boxes and other widgets. In circumscribing input this
way, we presuppose that other people will respect these artificial limits: they must

take responsibility to write syntactic code, to implement applications that conform
to a systems protocol, to learn to use a graphical interface.

On the other hand, we can typically expect to frame the output of the program
in terms of extremely flexible suites of low-level actions. Look at the sequences

2

of microprocessor instructions delivered by a compiler, the storage and commu-
nications primitives beneath an operating system, or the graphics commands of a

windowing system for a user interface. These actions are carefully designed and ro-
bustly implemented to achieve useful effects reliably and easily. Such resources are

never perfect, but in practice, programmers can expect to overcome any unexpected
results or missing functionality with simple workarounds, not global analysis.

These expectations make for an attractive and useful division of labor. The de-

sign of a computer program becomes an exercise in internal organization—a matter
of carving up an overall task into subproblems in an elegant, comprehensible, exten-

sible way and of realizing lean, encapsulated modules to solve these subproblems.
Such tasks are challenging but sharply delineated.

These idealizations collapse with a commitment to the real world, to an in-
put environment and output effects that precede our implementation and exhibit no

overarching design. In an agent, a designer can no longer stipulate any artificial
invariants that inputs must respect; the inputs must be those that nature provides.
In an agent, a designer can no longer presume a general repertoire of actions with

robustly-designed links to desired effects; the consequences of actions unfold natu-
rally, through the inherent dynamics of a broader world. As if this weren’t enough,

the complexity and unpredictability of the real world seems to complicate the in-
ternal organization of an agent, too. It is fantastically difficult to carve small and

interesting tasks out of the world and solve them in a constrained way, the way
you would carve up the problems induced in typical computer programs and write
separate modules to handle them. Indeed, someAI researchers have suggested that

real-world problems are so complex and interdependent that any sufficiently inter-
esting problem will effectively involve a solution to all of them. (This leads to the

gag concept of anAI -complete problem.)
The difficulties of agent design come as no surprise with the picturesque tasks

that sometimes motivateAI research; after all these are tasks that are only now start-
ing to afford suggestive implementations. One such benchmark is an agent design

to control a physical robot running tours or deliveries in a populated space.4 Here,
inputs might include the readings of real sensors from the environment: optical
cameras, laser and sonar rangefinders, perhaps a global-positioning receiver. These

readings are always more or less noisy, and sometimes fail altogether. Outputs,
meanwhile, might take the form of voltages to motors (on wheels, for example); the

success or failure of such an action will depend on such ephemera as the location of
the robot itself, the location of people and other obstacles in the robot’s surround-

ings, and even the condition of the floor. The gap between inputs and outputs calls

3

for an implementation whose every action responds to an imposing range of con-
siderations. The agent must draw on background information, such as maps of the

environment; it must interpret its current sensed data as mirroring or diverging from
the real state of the world; it must predict and weigh the range of effects a choice

might have in its specific situation.
Despite their almost science-fiction flavor, these ambitious benchmarks do call

attention to practical problems that arise much more generally in cutting-edge com-

puter systems. The use of real-world actions and real-world data, for example, is
now an increasingly common requirement. When internet software assesses the

content of web pages written by people for people, it must deal with the human
idiosyncracies of style, sloppiness and error. When ubiquitous computation is em-

bedded not in a predefined computational infrastructure but an open-ended physical
environment, inputs and outputs involve inevitable uncertainties and indirections.

Any commitment to the real world, no matter how constrained, brings with it the
ensemble of perspectives and challenges to whichAI research responds.

Real-world tasks giveAI a focus onMODELING, describing the real world by

a mathematical approximation. A model, as an approximation of its object, ac-
knowledges the open-ended texture of reality; there are always finer distinctions

to be drawn, wider-ranging interactions to capture. An effective design allows an
agent to respond robustly across a range of possible environments despite these

approximations—a good model can capture just those features and regularities that
an agent depends on in the environment for its success. But even a good model
suggests possible refinments. Pursuing them not only guides the development of

more successful and flexible agents, but also, in the best case, can challenge our
understanding of the rich world in which we too must act.

Mathematics imbues a model with precision. With the methods of logic, prob-
ability and statistics, we can definitively articulate the information about the world

our model can offer, and the assumptions about the world our model embodies. In
so doing, we lay essential groundwork for the implementation and evaluation of an

agent that exploits just this information, but depends on just these assumptions, to
solve its real-world tasks.

2.2 Agents Are Computational Processes

We live in a world so pervaded by silicon, in all its ramifications, that it is easy to

forget that there are alternatives to computational processes. But of course many
artifacts—from clocks to calculators and beyond—could readily have assemblies of

gears and escapements, switches and levers, in place of the chips we now typically

4

find; not so long ago, in fact, the mechanical design would have been inevitable.
Over time, many fields have taken up the description of physical systems that gen-

erate sophisticated real-world behavior in response to messy real-world data. These
fields have developed fundamental mathematical tools which Moore’s law increas-

ingly brings within the sphere of a computational approach: a case in point is the
discrete-time Kalman filter (from control theory in electrical engineering), a prob-
abilistic framework for optimally reconciling a noisy prediction from the past and

a noisy datum from the present.5 Such contrasts impel us to be precise about com-
putation; it is, after all, perhaps the oldest and strongest constant ofAI practice. I

follow Allen Newell’s answer.6

To say that an agent is a computational artifact means that it is aPHYSICAL

SYMBOL SYSTEM. In this context, aSYMBOL is some discrete, atomic element
which STANDS FOR something in the real world. The term originates with the

nineteenth-century American philosopher Peirce, who defined a symbol as any ob-
ject that has an arbitrary conventional meaning.7 In a concrete implementation in
AI , the symbols happen to be sequences of bits in an agent’s digital memory. The

designer of an agent typically determines what each symbol stands for, by describ-
ing an intended correspondence between symbols and the elements of the agent’s

environment. For example, a designer may invent a symbol to name an individual
object in the environment, or may use symbols in a more general and abstract way,

to name some property that objects may or may not enjoy or some possible state of
affairs that may or may not really be the case. Symbolic programming languages
are available to help mediate this correspondence, and designers can also formalize

the correspondence in their mathematical model of an agent’s environment.
In a physical symbol system, occurrences of these symbols are assembled to-

gether intoREPRESENTATIONS: complexes of symbols that correspond to state-
ments about the real world. The correspondence endows the state of the agent—

otherwise just an array of ones and zeros—with intelligible meaning. The agent’s
representations may spell out facts that the agent knows, goals that the agent has

for its environment, or intentions to which the agent is committed. These represen-
tations give the agent meaningful reasons to act in its environment in a specified
way—reasons to act that can themselves take the form of representations. Mean-

while, when we link an agent’s representations further to a formal model of its
environment, we can use our understanding of the model to inform our understand-

ing of the agent’s behavior. An agent’s representations, and its behavior, can fit the
world only as much as the model that guides its design.

Now, this representational understanding of computation is in a sense superflu-

5

ous: meaning is actually irrelevant to the agent. The agent’s computational pro-
cesses manipulate symbols purely on the basis of their brute identity as arrays of

ones and zeros. The agent undergoes a deterministic sequence of discrete states;
a finite specification ultimately spells out how each state is extended, revised, or

streamlined in its successor, based just on the readings of the agent’s sensors and
the state of its digital memory. Our correspondence between the agent’s state and
its environment does not affect how an agent acts. Nevertheless, symbolic program-

ming is an essential tool inAI , becauseWE so much prefer to understand an agent’s
behavior in terms of the meaning of its representations. Symbolic programming

allows us to draw on the results of computational logic and probability in agent de-
sign, and thereby to make the meaning of representations real. In realizing such de-

signs, we derive agents that appear to actDIRECTLY based on the information they
have about the environment—regardless of how that information is represented or

computed. Such designs epitomize implementation inAI , not only for their intrin-
sic elegance but also for their natural connection withAI practices of modeling and
evaluation, which establish and assess information about the environment.

2.3 Agents Must Be Engineered

AI is an engineering methodology, dedicated to understanding the empirical perfor-
mance of agents as a guide to agent design. That means that after the modeling

and implementation for an agent comes a thoroughgoing evaluation, spanning the
concerns ofAI research. For starters, we must determine how useful the agent
proves for the overall task for which it was designed. In this assessment, nothing

substitutes for observed runs of the agent, both in realistic field tests and across
specifically controlled protocols of execution.

A successful design is not established merely with a satisfactory product; we
must also evaluate our agent as a computational process. In particular, we can

ask how well our algorithms perform not in idealized or worst-case conditions,
but when running on specific hardware under a specific distribution of problem
instances. Such questions become particularly important when an agent reasons

from its model approximately rather than exactly. In such cases, the very behavior
of the agent depends on the empirical properties of its computations.

Most abstractly, but equally importantly, we must undertake an evaluation of
our models themselves; the construction of our agent enables new investigation of

genuinely scientific questions. How well do the models that we have constructed
to describe the environment of our agent actually fit the situations our agent en-

counters? Are the approximations and idealizations about the world that we have

6

adopted in our model appropriate for practical problem-solving? At long last, is the
world as we thought it was?

Evaluation stands on its own as a feature ofAI practice, but it revolves around
modeling every bit as much as does design. Whereas design involves models of the

agent’s environment, in evaluation, we model theENSEMBLE of the agent coupled
with its environment. Our evaluation model distinguishes a particular hypothesis
about the running agent from a family of plausible alternative descriptions of it;

each description maps out the distribution of behavior we should expect from a
suite of events in which our agent runs.

Now, we are rarely fortunate enough in trials of our agent to observe exactly
the behavior that our evaluation hypothesis predicts, and rarely unfortunate enough

to observe results that completely diverge. The difference between what we expect
in trials and what we see is a matter of degree. Modeling in evaluation serves

as the background for the judgments we report in assessing this actual observed
behavior. By modeling the agent in its environment, we can quantify how surprising
experimental results are in light of a specific hypothesis about the running agent.

In evaluation, we can easily be proved wrong, but we will never discover that
our agent works, that our computations are accurate, that our model fits. The best

we can hope for is a provisional go-ahead—an invitation to attempt a richer model,
a more complex computation, even just a more strenuous evaluation. No research

practice rewards those who seek definitive answers. The appeal ofAI is the ability
to ask with absolute freedom, “what if?”—what does it mean to view the world,
and ourselves, against a specific set of assumptions—and the ability to flesh out the

question into a model, to realize the model in a real artifact, and set that thing loose
into a world where, in the end, we can all judge “what if” for ourselves.

3 Decision Models: A Concrete Illustration ofAI Practice

For the rest of this chapter, we will explore this general view of agent design. We
start by considering a simplistic but general way of describing how an agent’s obser-
vations and decisions can lead to successful or unsuccessful real-world outcomes.

These descriptions are known asDECISION MODELS, and the process of construct-
ing such models is known asDECISION ANALYSIS. Decision models do not origi-

nate withinAI ; decision models offer a perspicuous and principled tool for a wide
range of fields, particularly business management, medical care and public policy,

whose practice involves choice under uncertainty.8 But here we will emphasize
how computer scientists in particular can use decision models, as a mathematical

approximation to theDESIGN SPACEfor their agent implementations.

7

3.1 Modeling

To apply decision analysis to agent design, a designer starts by finding a decision

that the agent will frequently need to make. This decision has to make sense to the
designer, so the designer must identify the decision by finding a class of situations

where the agent must act, and which deserve to be treated together. Moreover, since
the agent has to realize the decision on its own, the designer should select a set of
situations where the agent has a specifiable computational state. Finally, since the

agent will apply the same decision analysis across all these situations, the situations
should lead to the same distribution of outcomes for the same choices for the agent;

for example, the agent’s choices in different situations should not affect one another.
In short, to apply decision analysis, the designer has to construct aCONTEXT under

investigation, by finding a set of situations that the agent will enter in a distinctive
computational state, and that the agent could face repeatedly without any repetition
substantially affecting another. The problem for design is to determine what the

agent will do in this context.
Observe that the context of investigation is characteristic ofAI practice in set-

ting up a link to the real world, and an approximation. When we link a distinctive
state of the agent to a specific set of real-world situations, we help ensure that we

have a meaningful subproblem for agent design, because we ensure that the com-
putations we plan for the agent can and will determine the agent’s responses to a

clear range of circumstances. Indeed, it is common in robotics to call such a col-
lection of coherent responses aBEHAVIOR, especially among those who emphasize
the importance of equipping a successful agent with an appropriate repertoire of

behaviors.9 At the same time, in an open-ended world, we must expect that the
agent’s computational states across this set of real-world situations will be only ap-

proximately equivalent; we must expect that such states will arise not under just
these situations exactly, but only approximately so; and we must admit that some

of these situations exert some influence on some others, even if that influence can
be ignored for practical purposes. We must be mindful of these approximations in
implementing and evaluating our design.

Let us consider the implementation of a robot-pet consumer toy as an illustra-
tion. Its task, informally, will be to entertain its owners, by performing tricks such

as fetching a ball thrown past it or dodging a ball rolled towards it. Our toy will
have legs for locomotion, and a simple camera and touch receptors to sense its en-

vironment; we would doubtless want it to take the form suggestive of a familiar
pet—a dog say.

A designer might devote special consideration to those situations where one of

8

��
?

Environment�
6Agent

Act

Perceive

Figure 1: The agent’s cycle of perception and action in its environment.

these tricks takes the dog from a brightly-illuminated area to a darker one. What

if, for example, a slightly malicious child gets the dog to scoot through a doorway
from a sunny room into a dark closet? The dog faces particular uncertainty and risks
in such situations; the dog will have limited visual information until the aperture

of its camera opens mechanically, and the camera can capture crisp images at the
lower light level. Fortunately, since the dog can be provided with a trigger that

identifies cases of insufficient illumination robustly (if never perfectly), the dog can
be designed to handle these situations strategically.

Once we have a context of investigation, we can frame the design problem pre-
cisely. Our final agent will have some algorithm that it follows in this context; this
algorithm continues until the agent’s task is complete or until other conditions pre-

vail and other algorithms take over. We suppose that the execution of this algorithm
involves a sequence of possible states orCYCLES; each cycle offers the agent an op-

portunity first toPERCEIVE its environment and then toACT to change it. Figure 1
offers a mnemonic depiction of the origin of this cycle of execution in the agent’s

interaction with its real-world environment.
In each cycle, the agent begins with expectations about its environment in-

formed by its history, including the distinctive initial state of the algorithm, any
sensor readings it has obtained during prior cycles of execution, and any past ac-
tions it has taken. The agent can then reconcile these expectations with the new

readings about the environment available in this cycle. Finally, the agent selects an
appropriate action. The algorithm we design will determine the agent’s action at

each stage as a function of the agent’s history and sensor readings.
A decision model offers perhaps the simplest possible description of the space

of such algorithms. A decision model represents the stages of execution of possible
algorithms explicitly in terms of a history of observations and choices that the agent
has made from its initial state. It represents the agent’s expectations at each stage

of execution statistically, in terms of the probability of the different observations
that the agent may obtain at that stage. At any stage where the agent will act, the

9

decision model lays out each of the possible actions that we might design the agent
to take. Finally, for stages where the algorithm terminates, the model provides an

assessment of the outcome that the agent has achieved with the complete alternative
history.

The formal structure of a decision model is aTREE—that is, a mathematical
object containing a set ofNODES and a set ofEDGES that lead from one node to
another, where there is exactly one path from any one node to any other node. (A

path follows a succession of distinct edges forwards or backwards.) Each node in a
decision model represents a possible stage of computation for our agent, which the

agent would reach in a subset of possible situations in the context of investigation.
Each edge in a decision model represents a possible way that the computation could

evolve in one step of perception or action.
Internal nodes in a decision model are of two kinds. The first kind,OBSERVA-

TION NODES or CHANCE NODES, represent a stage of execution of the algorithm
which obtains information from sensors. From the agent’s point of view, these ob-
servations are unpredictable; the agent must be prepared for any possible result. At

the same time, the agent may have some evidence about which results are more
likely and which results are less likely.

Mathematically, we describe such an observation using aRANDOM VARIABLE

associated with the observation node. This variable takes on one of a finite set of

differentVALUES, corresponding to the different possible results of the observation.
Since the decision model must represent all possible alternative histories of com-
putation, each possible value determines an edge to a new node, called aCHILD of

the observation node; this child represents a further stage of execution in which the
agent has observed this value. In addition, to formalize the evidence available to

the agent about how its history meshes with the real-world situations of the con-
text, each value gets aPROBABILITY between 0 and 1. Here, this probability is

measured relative to the situations in this context which match the agent’s history;
the probability reports the fraction in which an agent would observe the specified

value. Of course, the sum of the probabilities for alternative values of the variable
must sum to 1.

Figure 2 illustrates the graphical convention that we will use to display obser-

vation nodes in decision models. The node is drawn with a circle with the random
variable within; here it isX. (The use of a circular node provides a standard indi-

cation for a random variable.) The edges to the children of the node are labeled by
value and probability; here we seeX = y with probability 0.8 andX = n with prob-

ability 0.2. For our robot, we can understandX as a boolean observation, derived

10

"!

HHHHHHHHHHHH

�
�

��

������������

Z
Z

ZZ

X

n, 0.2

y, 0.8

Figure 2: An observation node.

from automatic analysis of the latest image, which reports whether the agent’s field

of view contains a certain kind of blob (possibly indicative of a nearby toy ball and
so possibly suitable for guiding a following behavior). Thus, the readingX = y is

evidence there is a ball to follow; the readingX = n is evidence there is not. The
submodels associated with these different outcomes are not explicitly represented;
triangles mark where the subtrees have been suppressed for exposition.

The second kind of internal nodes,DECISION NODESor CHOICE NODES, rep-
resent a stage of execution of the algorithm at which an action can be performed.

Our design space can include a range of different algorithms that involve alternative
actions for each choice point. We assume that our design may freely select any of

these actions at this stage of execution, whichever we think best. Accordingly, each
decision node has a unique child for each alternative action that we are prepared to

consider.
Figure 3 illustrates the graphical convention we will use for decision nodes. The

node is drawn with a square; an index within the square, here 1, labels the choice for

further discussion. (Again, a square provides a standard notation for a choice.) The
label of an outgoing edges indicates the action taken at the decision node for that

child’s history. Here we consider three possible actions that might be available for
our robotic dog: running a primitive following behavior, represented byf , to track

a visual object; waiting for its cameras to accommodate to the ambient illumination,
represented byw; and returning to home base by some robust behavior, represented
by h (we might assume this behavior uses a different sensory modality from vision,

such as a wireless beacon).
Finally, a leaf node in a decision model represents a state in which our algorithm

has terminated and the agent has realized some distribution of possible outcomes.

11

c
c

c
c

c
c

c
c

c
c

c
c

"
"

"

#
#

#
#

#
#

#
#

#
#

#
#

b
b

b

l
l

l

#
#

#1

f

w

h

Figure 3: A decision node.

We will represent the degree of success that an agent achieves with a course of
action in terms of a real number between 0 and 1, called aUTILITY VALUE . A

utility value of 0 represents total failure; a value of 1 represents complete success.
Intermediate utility values indicate partial success, the higher the better.

Utility is a human abstraction; it records both the preferences by which we as
designers rank alternative real-world results, and our willingness to let our agent

take risks whose results are only possibly favorable. As such, utility is not an ar-
bitrary score but rather a precise tool, whose use reflects a specific collection of

assumptions about what will make an agent successful. Similar assumptions gov-
ern any characterization of the outcome of a decision in terms of its utility.

To start, when we appeal to utility, we presume that we are explicitly committed

in design to a specific measure of possible outcomes. In some decisions, the mea-
sure of outcome is easy: a small business might measure success by dollar profit.

More generally, in agent design, many objectives are reasonable: to minimize the
cost in dollars of the resources consumed by the agent; to maximize work achieved

by the agent, as measured in the natural units of that work whether they be bytes
transmitted in an embedded network or packages delivered in an augmented of-
fice; to maximize the satisfaction of the users or owners of the agents, as indicated

by reported scores on a subjective rating scale; or several such objectives, in any
weighted combination. Typically, our inspiration (or employment) in building an

agent impels the choice. For our robotic dog, for example, we can expect perfor-

12

mance to be measured by the reports that members of its target market give about
how much they enjoy observing and interacting with the toy. To assess perfor-

mance, we really would bring in users for trials with a prototype dog; after trial
runs, users would rank the appeal of the dog on a numerical scale, perhaps using

zero to indicate complete annoyance and five to indicate blissful entertainment. The
higher the score, the better.

Our performance measure gives us information about specific situations that we

will aim to achieve or to avoid. For example, we know that if one maneuver—
fetching, say—always yields a user-satisfaction score of 4, then we should prefer it

over another maneuver—rolling over, say—that always yields a score of 3. How-
ever, to accomplish our design, we will probably have to make decisions that are

less clear-cut. For example, what if fetching sometimes succeeds and yields a score
of 4 but often yields a score of 2, because the dog misses and can’t recover? In this

case, should we program the dog to fetch or to roll over?
The answer to such uncertain decisions depends on our attitude towards risk,

which is independent of our performance measure. For example, suppose that we

want our robotic dog to develop a long, engaging, and consistently satisfying rela-
tionship with its principal user, and we expect that an episode in which the dog up-

sets this person jeopardizes this objective in a way that one equally happy outcome
cannot offset. Then, we would want the dog to prefer a strategy that leads to sure but

mild satisfaction—rolling over, here—over another—fetching, say—that shoots for
thrills but risks disaster. This represents what is known as aRISK-AVERSE strategy.
Buying insurance offers a more familiar example of a risk-averse strategy. Buying

insurance often makes sense for a small business: for the price of your insurance
premiums, you can eliminate the cost you risk paying in an unlikely but bad situa-

tion. Of course, a small business should expect to pay more on average when it buys
insurance than when it doesn’t: after all, the insurance company expects on average

to make a profit on that policy and others like it! This doesn’t make it wrong to buy
insurance. It just shows that even if a small business measures its profit in dollars,

it should not necessarily make its decisions just by the dollars it expects to make.
The performance measure doesn’t capture its attitude towards risk.

Agents don’t have to avoid risk. They can actively seek it out. For our robotic

dog, we might expect that users would enjoy the variability and surprise of a risky
strategy, and that a rare, outstanding success would maintain users’ interest better

than an accumulation of small, predictable wins. Then we would in fact want the
dog to shoot for thrills and risk disaster: aRISK-PRONE strategy. Buying a lottery

ticket is a risk-prone strategy from everyday life.

13

utility

performance

Utility for a risk-neutral agent.

utility

performance

Utility for a risk-averse agent.

Figure 4: Performance, utility and risk. Graphs plot the utility of a sure outcome as
a function of the performance attained.

Utility is a mathematical construction that combines a performance measure
with an attitude towards risk. Utility agrees with the performance measure on out-
comes that are certain—an outcome with higher performance also has higher utility.

However, unlike natural performance measures, utility always extends to uncertain
outcomes in an elegant way. The utility of a risky situation weights the utilities

of the different possible outcomes in proportion to their probabilities. For example,
we assess a risk that half the time pleases the user to utility 0.75 but is equally likely

to please the user to utility 0.25 as worth 0.50; we regard this as an exact equivalent
to a definite outcome that pleases users to utility 0.50.

It turns out that it is possible to construct a utility function that realizes any rea-

sonable set of design preferences. To respect the performance measure, utility just
has to be an increasing function of performance. Among such increasing functions,

a suitable one is always available to represent our attitude towards risk. For exam-
ple, making utility a linear function of performance gives aRISK-NEUTRAL strat-

egy, suitable for design problems where many agent runs contribute independently
to the overall benefit of deploying the agent or agents. Meanwhile, we can encode

a preference for risk-averse strategies through a utility function that preferentially
boosts lower values of the performance measure; we can encode a preference for
risk-prone strategies through a utility function that discounts lower performance

values. Figure 4 contrasts the relationship between performance and utility for risk-
neutral and risk-averse agents.

Concretely, to get our dog to prefer to satisfy users less thoroughly but more of
the time, we might transform a user rating of 2 to a utility of 0.5; a rating of 3, to a

utility of 0.7; and a rating of 4, to a utility of 0.8. A 50-50 chance of outcomes of
2 and 4 determine a utility of 0.5 * 0.5 + 0.5 * 0.8 = 0.65. This fails to surpass the

14

�
�@

@
�

�@
@ 0.7

Figure 5: A reward node.

0.7 utility of a definite outcome of 3. In other words, the utility computed for 3 is
boosted up to 0.7 over the rating of 0.65 you would expect from the utility computed

for 2 and 4 by a linear model. Visually this is reflected in the concave downward
shape of the risk-averse curve of Figure 4. When you draw a chord through the util-

ity curve, you visualize all probabilistic combinations of the two endpoints of the
chord (line segments are linear combinations). Horizontal coordinates along this
chord indicate the average performance measure of the combination while vertical

coordinates indicate its utility. Since these segments always lie below a concave
downward utility curve, it shows that such models prefer the sure outcome, as plot-

ted in the utility curve, over the corresponding uncertain outcome.
By comparison, to get our dog to take a chance on thrills, we could transform a

user rating of 2 to a utility of 0.2; a rating of 3, to a utility of 0.4; and a rating of 4,
to a utility of 0.8. Now a 50-50 chance of outcomes of 2 and 4 determine a utility
of 0.5 * 0.2 + 0.5 * 0.8 = 0.5, which does surpass the definite outcome. Here the

utility computed for 3 is penalized down to 0.4 over the linear rating of 0.5; now
this would be reflected visually in a concave upward curve.

Figure 5 illustrates the graphical convention we will use for leaf orREWARD

nodes. The diamond is the standard notation for an assessment of outcome; the

number within reports the utility achieved.
In our discussion thus far, we have already presented the key ingredients of a

decision model for our robotic dog. In summary, we have identified a context for
agent design in which the robotic dog chases a ball into a darkly-lit region; the
low illumination of the agent’s cameras in these situations sets up a computational

context for specialized decision-making. In this context, the agent has three actions
at its disposal: to continue the chase however it can (f), to wait for its cameras

to accommodate (w), and to return home (h). It can schedule any of these actions
at any stage of execution. However, we rule out two consecutive steps of waiting,

because once the agent has waited for its cameras to accommodate, further waiting
will not improve the images it obtains but will make the agent less likely to catch the
ball or otherwise entertain its owner. Meanwhile, as events develop, the agent has

15

1 X

f

w

h

y

n

2

3

f

h

h

f

Figure 6: Design space for the robotic dog context.

access to a binary observationX. The readingX = y provides excellent evidence
that the agent sees the ball it was chasing; the readingX = n provides excellent

evidence that it does not.
These considerations determine a design space for the agent as illustrated in

Figure 6. The agent begins at node 1 with an initial choice of action. If we design
the agent to follow the ball or to return home, we immediately determine the agent’s

performance in this situation. If, however, we design the agent to wait, we offer the
agent a second perception-action cycle; the agent’s next action is conditional on its

reading forX. At this stage, at decision points 2 and 3, we call for the agent to
commit to follow or to return home. Consequently an outcome is assured.

Figure 6 describes our alternative designs, but does not describe the success that

those designs will achieve in the actual circumstances in which the robot will act.
For that, we must provide the probabilities and utilities that Figure 6 as yet omits.

In special cases, we will be able to supply these parameters as part of our spec-
ification of the agent. Typically these are cases where the design team can base any

values they provide on substantial experience with the task context. Even with such
expertise, specification is contraindicated when the exact parameter values greatly
affect the design, either because small changes in those values can affect which ac-

tions the agent should take or because they can induce substantial differences in the
utility the model predicts for those actions.

16

y, 0.8

, 0.2n

1

0.3

h

f

w

0.2 2

3

0.25

h

h

X

f

f

0.1

0.7

0.25

Figure 7: Full decision model for the robotic dog context.

The alternative is to determine parameter values by empirical investigation. For
our robotic dog, that would mean building a prototype that could exhibit the full

gamut of possible behavior for the context under investigation. We then estimate
parameter values by collecting a range of possible histories with this prototype and

assessing the outcome the prototype obtains in each. In other words, this is a prob-
lem of MACHINE LEARNING, a topic we return to in Section 4.1.

Let us assume that we have applied one or the other of these methods, and have
obtained the results schematized in Figure 7. Specifically, we find that users find a

successful chase quite entertaining (0.7). On the other hand, for the robot to chase
after a ball it can’t see is hardly any fun (0.2), and it is all the more boring when the
robot waits before doing so (0.1). In between are cases where the robot just returns

home, either immediately (0.3) or after some delay (0.25); while these outcomes
are not themselves fun, they at least afford another game. Finally, as Figure 7 again

shows, we find that our robot is able to reacquire the ball with probability 0.8 after
waiting to get a better image.

By this point, you may be quite keen to know what it is that our robot should
actually do. The answer is the algorithm—or as we shall soon say, thePOLICY—
presented informally in (1).

(1) Wait. Then, ifX = y, follow; if X = n, return home.

17

Remembering that the utility of an uncertain outcome is the utility of its specific
alternatives, weighted by their probability, you should be able to convince yourself

that by implementing this policy, the robot can achieve a utility of 0.61.10 You can
also check that no alternative choice for our agent at any stage of execution will

yield higher utility than what (1) provides at that stage.11 In fact, then, our design
space does not offer any policies that improve on (1).

3.2 Implementation

In building our robotic dog, or any otherAI agent, we have the opportunity not

only to implement specific policies such as (1) but also to work with classes of
models and classes of policies in a general way. It is these general computations that

offer the most compelling demonstration of the flexibility and elegance of physical
symbol systems. This section offers an illustration: here we consider a general
implementation of representation and reasoning with decision models.

In presenting this implementation, I will adopt the practice, common in com-
puter science, of usingPSEUDO-CODE, which abstracts from the details of any par-

ticular programming language and allows the reader to adapt the discussion easily
to the programming language of their choice.12

3.2.1 Representation

We begin by describing representations for decision models and for policies. Our

pseudo-code assumes basic types forINTEGERS, as typically realized as binary nu-
merals of fixed length;REAL NUMBERS, as typically realized in accord with stan-

dards for floating-point arithmetic operations; and a further basic type, forSYM-
BOLS, which is rather distinctive toAI . The symbol type provides a set of arbitrary
elements for which a programmer maintains an arbitrary and open-ended correspon-

dence with constituents of a real-world environment; programmers specify symbols
as character strings and the computational realization of symbols is typically closely

related to these strings, but may streamline the implementation to speed up compu-
tations.

Our pseudo-code also assumes three ways of assembling elements together into
larger representations, orDATA STRUCTURES. A LIST groups together any number

of data elements of the same kind into a sequence whose elements can be accessed
only by stepping forward one element at a time. To specify a list, I will give the el-
ements in brackets, as[1,2,3]; when describing computations that apply uniformly

across a list, I will also use ellipses, as[a1 . . .an], and indices, asai. A TUPLE groups
together a specified number of data elements of specified kinds into a structure each

18

of whose elements can be accessed directly. To specify a tuple, I will give the el-
ements in parentheses, as(1,2,3). Finally, aNAMED STRUCTURE provides a way

of grouping together heterogeneous collections of data when a representation takes
qualitatively different forms in different cases. Each instance of a named structure

is written f T where f is a symbol that identifies which form the data takes andT

is a tuple that specifies the specific data elements for this instance; the definition of
the named structure describes which such cases are possible.

Thanks to these assumptions, we can specify decision models using named
structures as in (2).

(2) A MODEL is a named structure consisting of one of the following:

• obsv(X,os) whereX is a symbol (representing the observation
being made) andos is a nonempty list of tuples(vi , pi ,mi) with vi a

symbol (representing an observed value),pi a real (representing its
probability), andmi a model data structure (representing what
happens next);

• dcsn(n,as) wheren is an integer (indexing the choice) andas is a

nonempty list of tuples(ai,mi) with ai a symbol (representing an
action to take) andmi a model data structure (representing what

happens next);

• rwd(u) whereu is a real (representing an attained utility).

The three cases correspond to the three kinds of nodes introduced earlier. The
symbolobsvkeys an observation node; the parameterX represents a variable that

the agent can observe, and the listosrepresents both the observations that the agent
might make, and the consequences of those observations. The symboldcsnkeys

a decision node;n indexes a specific possible choice for the agent, and the listas

determines both what the actions the agent can take and what consequences those

actions have. The symbolrwd keys a reward node; the parameteru represents the
utility of outcomes that the agent has achieved. Note that the hierarchical structure
of decision models is realized by the recursion in the definition of (2), which allows

obsvanddcsnstructures to contain other model structures as constituents. This
recursion grounds out inrwd nodes as the base case.

Figure 8 shows how we write the model of Figure 7 as a data structure according
to the conventions culminating in (2). Figure 8 doubtless helps motivate the graph-

ical format of Figure 7 as a means for people to communicate decision models! At

19

dcsn(1, [(f , rwd(0.2)),
(w, obsv(X,[(y,0.8,dcsn(2,[(f ,rwd(0.7)), (h,rwd(0.25))])),

(n,0.2,dcsn(3,[(f ,rwd(0.1)), (h,rwd(0.25))]))])),
(h, rwd(0.3))])

Figure 8: Data structure for the model of Figure 7.

the same time, however, it underscores that any depicted model also corresponds to
a concrete data structure that can be recreated on a machine.

By the same token, the interpretation we sketched for graphical decision mod-
els in Section 3.1 now allows us to interpret any model data structure as embodying
a precise claim about the world. We start from our design context. This context

gives us a correspondence between the action symbols in a data structure and the
real actions our agent can take; it gives us a correspondence between observation

symbols and the real computations our agent could do to obtain a reading from a
specific sensor; and it gives us a correspondence between value symbols and the real

readings that our agent could derive from its sensors. Moreover, the context deter-
mines the distribution of real-world situations which a model structure as a whole
must describe, for the model proceeds from a computational state triggered in just

these situations and spells out the possible consequences of the agent’s subsequent
actions.

In general, then, each substructure of the whole model describes the result of
particular observations and actions in the context and so will make aCLAIM about

a corresponding subset of these situations.
Drawing on this background, we can formalize such claims as in (3). The def-

inition, with its basis clause (3a) and inductive clauses (3b) and (3c), mirrors the
recursive composition of model structures.

(3) a A structurerwd(u) claims about situationsS that these situations give

the agent an expected utilityu, and no opportunity for further action.
b A structureobsv(X, [(v1, p1, t1) . . .(vn, pn, tn)]) claims about situationsS

that these situations all provide the agent a reading corresponding to
observation symbolX; that each resultvi occurs with probabilitypi

throughoutS, determining corresponding situationsSi; and that the
claims of each substructureti hold about situationsSi .

c A structuredcsn(n, [(a1, t1) . . .(an, tn)]) claims about situationsS that
these situations all provide the agent an opportunity to act in which the

20

agent can be designed to do any of the actions corresponding toa1 . . .an,
determining corresponding situationsS1 . . .Sn; and that the claims of

each structureti hold about situationsSi .

A body of definitions such as (3) that relates an agent’s data structures recursively
to conditions on its environment is called aCOMPOSITIONAL SEMANTICS. A se-

mantics allows us to interpret an agent’s data structures as representations of its
environment. The payoff for this interpretation comes in the operations that we de-

fine on the agent’s representations. We will be able to show that these operations
allow the agent to act as it should if its environment matches what it represents.

To proceed, we also need a data structure that can represent an algorithm by
which the agent acts in its environment. As a computer scientist, one learns to take

this very deep step quite casually—we can design data structures that represent
anything we want, so we can even design data structures that represent rules for
carrying out computations! (4) defines a named structure for such an algorithm.

(4) A POLICY is a named structure consisting of one of the following:

• switch(X, ps) whereX is a symbol andps is a nonempty list of
tuples(vi,πi) wherevi is a symbol andπi is a policy data structure;

• do(a,π) wherea is a symbol andπ is a policy data structure;

• a caseendfor which no further data is required.

Informally, switch(X, [(v1,π1) . . .(vn,πn)]) represents a conditional algorithm in

which the agent first carries out the observation corresponding toX and then con-
tinues with the policyπi for whichever readingvi is obtained;do(a,π) represents

a sequential algorithm where the agent first performs the action corresponding toa

and then continues with the policyπ; endrepresents the final stage of execution at

which the policy ends. Thus the policy described in (1) can be implemented in the
policy structure of (5).

(5) do(w,switch(X, [(y,do(f ,end)),(n,do(h,end))]))

As with Figure 8, this example serves as a reminder that we could at any point
recast our human descriptions in an explicitly computational formalism (and as an

illustration of why we may prefer not to).
A given model represents an environment in which only select policies are guar-

anteed to be executable; we will call such policiesFEASIBLE in the model.

21

(6) a In a modelrwd(u), endis the one and only policy that is feasible.
b In a modelobsv(X, [(v1, p1, t1) . . .(vn, p1, tn)]), a policy is feasible if and

only if it takes the formswitch(X, [(v1,π1) . . .(vn,πn)]), where eachπi is
feasible inti.

c In a modeldcsn(n, [(a1, t1) . . .(an, tn)]), a policy is feasible if and only if
it takes the formdo(ai,π), whereπ is feasible inti .

(6) links models recursively to policies with a corresponding structure—(6a) pro-

vides the base case, for both models and policies; (6b) and (6c) describe inductive
cases that simultaneously characterize complex models and complex policies.

A model determines the expected utility of any policy that is feasible in it, by
describing the probability of alternative outcomes under the policy and the utility

associated with each outcome. The overall utility (as always) sums the utility of
each outcome weighted by its probability. You should be able to construct a recur-
sive definition by cases, analogous to that in (6), which calculates this utility.13

3.2.2 Reasoning

Now we turn to the main problem: given a decision modelt, compute a feasible

policy that has the highest expected utility int. Such a policy is called anOPTIMAL

policy for t. The significance of this problem derives from the compositional se-

mantics we have provided for decision models. Suppose thatt is an accurate model,
so that the claim associated witht truly describes our agent’s environment. Then

when the agent acts in this environment, it must carry out a policy that is feasible in
t. Moreover, each feasible policy actually has the utility predicted for it byt. Thus,

when t is an accurate model, an optimal policy obtains results for our agent that
cannot be improved. This section describes a procedureOPTIMUM that solves this
key problem, and justifies the details of this procedure in a mathematical way.

In order to streamline the mathematical development, we will avail ourselves of
the certain constructs in our pseudo-code for procedures. First, we specify proce-

dures by cases, depending on the form of representation of the available data. For
example, forOPTIMUM, the data is the model structuret; t may take the form of an

observation, a decision, or a reward, and in each of these cases a different course
of action is indicated. Be aware that we are abstracting away from the alternative

mechanisms programming languages have to achieve such definitions: some do it
directly, in procedure definitions; some do it indirectly, by packaging data together
with special-caseMETHODS of operation intoOBJECTS; others can only do it ex-

plicitly, with conditional statements.

22

Second, we assume that procedures can construct an arbitrary structure of data,
andRETURN it as a result. ForOPTIMUM, the result will be a tuple(π,u) reporting

both the optimal policyπ for t and the maximum utilityu that the agent can achieve
in t. (Evidently, u must be the utility ofπ in t.) Again, you would do well to

remember that programming languages do not all make it equally convenient to
deliver such complex results.

Third, we will use general assignment statements of the form in (7) to indicate

that the values in the specifiedstructureare determined through carrying out the
specifiedcomputation.

(7) structure← computation

Our definitions will assign a value to any variable at most once. The convention of

assignment may therefore be regarded as an instruction to reuse a computed value
(like a kind of abbreviation); it does not require the use of program variables with
mutable values, which can be changed repeatedly over the course of a computation.

Finally, we will use mathematical notation to specify such routine calculations
as summation, finding the largest element in a list, applying a common operation to

all the elements of a list, or constructing a new list in a uniform way.
Pause, then, to consider the procedureOPTIMUM as defined in the three cases

of (8).

(8) a OPTIMUM rwd(u)

RETURN (end,u)

b OPTIMUM obsv(X, [(v1, p1, t1) . . .(vn, pn, tn)])

for eachi: (πi ,ui)← OPTIMUM(ti)
RETURN (switch(X, [(v1,π1) . . .(vn,πn)]),∑i pi ∗ui)

c OPTIMUM dcsn(n, [(a1, t1) . . .(an, tn)])

for eachi: (πi ,ui)← OPTIMUM(ti)
d← any i that maximizesui

RETURN (do(ad,πd),ud)

We wish to show theCORRECTNESSof this definition; that is, we wish to show,

for any treet, thatOPTIMUM t returns a pair with the optimal policy fort and the
maximum utility possible int. In keeping with the form of Definition (8), which

sets out the result ofOPTIMUM on a larger model in terms the result ofOPTIMUM

on smaller model, we will argue for correctness bySTRUCTURAL INDUCTION.

23

Each model structure has a maximum length in the number of steps of percep-
tion and action that it offers the agent; call this theHEIGHT of the model. In struc-

tural induction, we group together models by height, and consider what happens as
height gradually increases.

The base case comes in a model with height 0, which must take the formrwd(u).
By (8a), hereOPTIMUM returns(end,u). This is the only feasible policy, so it must
be optimal, and of courseu is its utility.

We now hypothesize for the purposes of argument thatOPTIMUM is correct
for models of heighth or less, and consider a modelt of heighth+ 1, for which

OPTIMUM returns(π,u). This model must be constructed inductively from smaller
models, as anobsv or dcsn structure. Nowu will be the utility of π, as you

can easily verify,14 so it suffices to show that the utility int of any feasible pol-
icy π′ is at mostu. We prove this by considering separately the two possible

forms thatt could take:obsv(X, [(v1, p1, t1) . . .(vn, pn, tn)]), where (8b) applies; and
dcsn(n, [(a1, t1) . . .(an, tn)]), where (8c) applies.

In the first case,π andπ′ are conditional policies. The overall modelt includes a

submodelti of how the world evolves with any particular readingvi . In ti, π directs
the agent to follow a policyπi, while π′ directs the agent to follow a policyπ′i .
Becauseti has height at mosth, πi is optimal forti by hypothesis; so the utilityu′i of
π′i in ti does not exceed the utilityui of πi in ti. Now, the utility ofπ, u = ∑ pi ∗ui,

while the utility of π′, u′ = ∑ pi ∗u′i . Since in each caseu′i ≤ ui, u′ ≤ u. But π′ is
arbitrary: it follows thatπ is optimal fort.

In the second case,π andπ′ are sequential policies. The overall modelt includes

a submodelti of how the world evolves with any particular actionai . According to
the clause (8c) which computesπ, π is constructed first to perform that actionad

for which theOPTIMUM algorithm for submodeltd leads to a policyπd with the
best results. (Of course,π continues withπd.) Meanwhile,π′ spells out some initial

actionai and a policyπ′i to follow afterward. Since the corresponding submodelti
of t has height at mosth, OPTIMUM computes an optimal policy forti with some

utility ui . The utility of π′i and thus the utility ofπ′ cannot exceedui . At the same
time, in (8c), we choseπd, based on its utility, when the optimum policyπi for ti
and its utilityui was a possibility; that means thatπd and thusπ must have utility at

leastui . Again the utility ofπ must be at least that ofπ′ and sinceπ′ is arbitrary it
follows thatπ is optimal fort.

We have thus established thatOPTIMUM starts out treating models correctly,
and that as models increase in height arbitrarily,OPTIMUM continues to treat them

correctly. Thus, we have established thatOPTIMUM is correct for all models.

24

I hope that the rigor of this discussion, which epitomizes the precision possible
in studying computational operations on representations, has not obscured the cen-

tral insight which lies behind the procedure of (8) (and its correctness proof, too).
To decide how to act, an agent looks forward into the future as far as it can. In the

case of decision models, that limit is set by reward nodes, which offer the agent no
further actions. From there, the agent works backwards towards the present; at each
step it gradually works out the best policy to guide its action in whatever decisions

await, but at the same time eliminates from consideration a vast array of policies
that will not fare as well. In this way, as the agent goes from step to step, it can

focus its deliberation on just its good, live options.
The OPTIMUM procedure is just one of many useful algorithms for working

with decision models and policies. An obvious further example is the procedure to
EXECUTE a specified policy. Such a procedure must presume a primitiveGET that

obtains the reading of a specified variable, and a primitiveRUN that carries out a
specified action. With these resources, the procedure can be specified recursively
by case analysis on the structure of policies, along similar lines toOPTIMUM—as

you are invited to verify yourself.15

3.3 Evaluation

Let’s survey the steps outlined thus far. We have framed our problem, by looking

to the world for a coherent task and considering diverse approaches to solve it.
We have refined this design space into a model of the agent’s environment and
task, by assessing the performance of an initial prototype. And we have drawn on

general procedures to create a decision-making strategy for our agent that best fits
this model of the world. We have, in short, done our very best to make sure that our

agent is going to work. And why should we not have? Careful development may
be painful, but real-world failure is worse.

Despite these efforts, however, success is never assured. Each step has its dan-
gers. Basic approximations and design assumptions may not suit the open-ended
environment in which the agent must act. Training data, too, may misrepresent the

actual environment, whether through changing circumstances or just bad luck. And
a real implementation is not an idealized mathematical construction but a human

and imperfect creation, in which frank errors cannot be ruled out.
It is fair to ask, then, does the system work? Does it in fact work for reasons

we understand? How might such agents be improved in the future? Any answers to
such questions are ultimately subjective judgments, but the premise of evaluation is

that they are judgments for which general guidelines are available.

25

The judgment of whether we understand the actual performance of a final agent
(the second of our three questions) is often the clearest. We can base this judgment

directly on a model of our agent’sPERFORMANCEin its environment. A perfor-
mance model describes the full distribution of outcomes that the agent will achieve

by following its policy. As such, it may naturally extend the basic model of the
environment that we use to construct the agent.

Take decision models. A decision model is an incomplete description of the

distribution of an agent’s outcomes in its environment, because each leaf in the
model summarizes a whole distribution of outcomes by a single utility value. The

model of Figure 7, for example, just says that on any trial our agent has a 0.8
probability of achieving outcomes that have utility 0.7ON AVERAGE and a 0.2

probability of achieving outcomes that have utility 0.25ON AVERAGE. This is
useful for the agent: the agent really is indifferent between a certain outcome with

utility 0.7 (say), and two equally likely outcomes, one with utility 1.0 and one with
utility 0.4. But the difference matters for us for evaluation: in the first case, a trial
where the agent sees an outcome of 0.4 may be quite unexpected; in the second

case, it is routine.
In the case of decision models, then, the performance model augments the world

model by information about the distribution of possible utilities at each leaf. Natu-
rally, this distribution can be estimated from the outcomes in training, much as the

expected utility itself can be. (But you must plan for the evaluation!) In turn, the
separate distributions determine the overall distribution of outcomes for a particular
policy.

In practice, we just need to estimate the overall variability of the outcomes under
a policy. We can measure this by a statistic called theVARIANCE of the distribution

of the observed utilityu. If the mean value foru is µ (here the expected utility), the
varianceσ2

u is the value we expect for(u−µ)2. Let’s assume that we have found

that the observed utilities for different outcomes, for the model of Figure 7, cluster
closely around their average values; in this case we could have a value ofσ2

u of

perhaps 0.036.
In order to use this model to assess the performance of the agent, we perform a

substantial numbern of representative runs with our agent and tabulate the results.

Now, individual trials may have unpredictable results, but, if our model is good, our
agent’s average performanceue across alln trials of an experiment is very likely

to come close to the model averageµ. Any individual data point can have an ex-
treme value, but for the average performanceue to have an extreme value, a large

proportion of the trials from the experiment must happen to diverge fromµ toward

26

σe σeσe

p

µ
u

σe

e

Figure 9: Idealized histogram showing relative probability of different experimental
resultsue for average utility acrossn trials.

the same extreme.
Figure 9 depicts the situation mathematically. It envisages an idealized his-

togram of the results that our model predicts we would obtain, across many exper-
iments withn trials. The peak in the histogram occurs when the experiment sees
outcomes whose average utility exactly matches the model meanµ. As the average

observed utility diverges from the model meanµ, results become increasingly rare,
although any result remains possible in principle. The narrowness of the peak re-

flects the varianceσ2
e of results across multiple potential experiments. We expect

this variance to decrease as more trials are run in the experiment. In fact, it can be

shown under reasonable assumptions thatσ2
e is approximately equal toσ2

u/n, so asn
increases the experimental results are more precise; with probability approximately

0.95 the result of an experimentue will lie no further than twiceσe from µ. (Note
that by repeating the experiment, we do not change our expected average, namely
µ. We simply reduceσe, the “error” we expect between the experimental result and

µ.)
We can now regard our experimental trials as a test of theHYPOTHESISthat the

performance of our agent in the real world matches our model of its performance.
Our experimental trials have an average utility which diverges by some amount

d from µ. A divergence as large asd or larger could always be due to chance.
Figure 9 illustrates how our performance model quantifies the probability of such
chance divergences. In particular, ifd > 2σe, the odds of seeing such a divergence

by accident are worse than one in twenty. Such unlikely results should raise our
suspicions about the model.

In forming a judgment about our hypothesis, we must consider not only the fit
between the hypothesis and the data but also the alternative hypotheses are avail-

27

able. Suppose that our results are suspicious. If no available hypothesis explains
our results better, our results do not speak against our hypothesis; we simply know

that our results truly are unlucky. On the other hand, when competing hypotheses
about our agent’s performance would fit our observed results better, the poor fit of

our hypothesis to the data does provide evidence against our hypothesis.
A standard measure that reconciles these two considerations is the risk of being

wrong if our performance model is correct, but we judge our experimental results to

be in conflict with it. We calculate this by considering the probability of obtaining
results that diverge from our prediction as much as those we have obtained and that

some alternative model explains better. For most scientific purposes, we are willing
to accept a risk of error of one in twenty. In most agent performance evaluation, we

anticipate that our agent could achieve any utility as an alternative; the interactions
we do not model could help or hurt the agent. Accordingly, we count an experiment

as calling a performance model into question when the observed divergenced is
greater than roughly twice the divergenceσe expected in the experiment.

As a concrete illustration, suppose we run an experiment in which our robotic

dog performs the accommodation-and-chasing procedure developed in Sections 3.1
and 3.2 40 times. In these trials, it achieves an average utility of 0.65. By eye it

looks as though our agent is doing very well—almost too well. Is it? With this
experiment,σ2

e = σ2
u/n = 0.036/40= 0.0009; soσe = 0.03. Thus, we reject the

model only if the observed divergence exceeds 0.06. Here the divergence is 0.04. It
appears that our experimental result of 0.65 is not so unexpected.

We can evaluate other claims about our agent’s performance along similar lines.

For example, we often want to report that our agent is a success. Typically, we mean
by this that our agent yields an improvement over what was previously possible, and

we have to test the alternative that our agent performs the same as others, or worse.
Suppose that, in addition to experimental results from our own agent, we have

experimental results from a benchmark agent, solving real-world tasks under iden-
tical conditions. For new problems, the comparison should be with a simple but

reasonable agent; thus our robot dog suggests a benchmark design which always
just returns home in cases of difficulty. For well-studied problems, of course, other
researchers’ work supplies the benchmark agents, and it may not even be necessary

to obtain one’s own experimental results for them. Agents’ performance is often
published for standard sets of training and test data made available by the research

community.
We will have observed some improvement over the benchmark in our experi-

ments with our agent; otherwise the experiments certainly provide no evidence that

28

our agent is an improvement! As part of our judgment of evaluation, we have to
pronounce our opinion as to whether the observed difference reflects a genuine fact

about the agents’ real-world performance, or whether the difference might have
originated by chance. Here the key step is to devise a mathematical argument about

the probability of obtaining an improvement as large as we did by chance, if our
agent and the benchmark agent really have the same performance. It obviously
bolsters our case if this probability is very small.

Where evaluation against a basic benchmark provides a check for the progress
we have made with an agent, evaluation against a suitable upper bound gives insight

into how much room our design leaves for improvement. Such bounds may be ob-
tained experimentally by investigating how well expert humans are able to perform

in the agent’s task, or by investigating alternative agent designs whose training and
test data sets include important task information that would not normally be avail-

able to an agent in practice. More generally, with suitable experimentation and
comparison (always backed up by statistical argument), it becomes possible to de-
fend precise claims about the situations, the representations, or the decisions that

underlie an agent’s strengths or contribute to its weaknesses. Such judgments can
be an invaluable guide to further research.

4 Decision Models and ParadigmaticAI Problems

Decision analysis not only epitomizes the practice of agent design, but also mani-
fests the enduring challenges ofAI research. In this section, I use decision models
as a starting point to delineate these directions for investigation. On the one hand,

decision models illustrate all the general difficulties inherent in connecting repre-
sentations with a complex and uncertain world. Chief among these is the problem

of MACHINE LEARNING, exploiting an agent’s experience in its environment to
ground its models and improve its performance.

On the other hand, decision models turn out to be badly unsuited for most real-
world tasks. This leads to a search for new models. The search responds not only to
the diverse applications ofAI—areas such asROBOTICS andCOMPUTER VISION;

HUMAN -COMPUTER INTERACTIONandNATURAL LANGUAGE DIALOGUE; MED-
ICAL andSCIENTIFIC INFORMATICS—but more generally to the diverse cognitive

abilities which people manifest across different domains. Better models capture
insights that we discover about the real world, in representations that are more gen-

eral, more robust, or more concise than decision models. But new models also bring
new kinds of problems; a case in point isPATTERN RECOGNITION, the computa-

tional investigation of discrete responses to a continuous environment.

29

4.1 Problems of Learning and the Complexity of Models

In accounting for the limits of decision analysis—or any very flexible class of real-

world models—the central concept is theCOMPLEXITY of the model as a descrip-
tion of an agent’s environment. A model is complex to the extent that it is free to

represent arbitrary relationships that might hold in the environment. By this defi-
nition, we may argue that decision models are in fact as complex any model could
be.

To see why, suppose we have a decision modelt and a policyπ that is feasible in
t. For expository purposes, we will assume that all executions of policyπ terminate

after exactlyn+1 steps of action, and we will assume that each cycle of perception
feeds the agent the value of a binary observation variable. We label these variables

Xi with i ranging from 1 throughn.
Familiar arguments show that the modelt assigns 2n possible outcomes to pol-

icy π.16 This structure isEXPLOSIVE in size, in the sense that small increases in

the number of steps required to complete the agent’s task will lead to enormous
increases in the computational resources required to represent and reason about the

agent’s progress. For real-world action, however, it is important to emphasize an-
other side to this explosion. Small increases in the number of steps required to

complete the agent’s task will lead to enormous increases in the amount ofREAL-
WORLD EXPERIENCErequired to construct a full and meaningful model.

The explosion originates in the fact that the modelt and policyπ are capable of
determining anARBITRARY joint distribution on the values of variablesX1 through
Xn. To make this precise, letP(X1 = x1 . . .Xn = xn) denote the probability that the

observationsX1 throughXn take on a specified combination of readingsx1 through
xn during a history with the agent. Then a joint distribution is any assignment

of probability values forP(X1 = x1 . . .Xn = xn) across possible observations, and
whatever this assignment may be, we can construct a decision model to realize it.17

Now, in Section 3.1, we saw that, except in those few cases where designers
bring very precise and accurate background knowledge to the construction of a
model, the free parameters of a model must be estimated from a set of training data.

The field ofMACHINE LEARNING18 offers diverse frameworks for this estimation
problem. A simple statistical approach is to look for a model that maximizes the

overall likelihood of the observed data; a more sophisticated one is to interpret the
data as giving indirect evidence about a restricted set of likely parameter values

that we supply in advance. Still other approaches recover parameters from data by
more general optimization techniques that have proven effective throughout a range

of practical distributions of problem instances; popular instances of this kind of

30

strategy includeSUPPORT VECTOR MACHINES19 and (despite their name)NEURAL

NETWORKS.20

Machine learning also affords numerous perspectives on how to process the evi-
dence derived from data. The data may come in a single batch; in this case, learning

algorithms can use any data at any stage of computation and can report just the final
set of parameter values. By contrast, inINCREMENTAL LEARNING, the learning
algorithm iteratively reconciles a provisional model with a new observation to de-

rive a better model. Moreover, when action is involved, we may emphasize how
the agent’s policy changes with new observations (and refinements to parameter

values); this is the perspective ofREINFORCEMENT LEARNING.21

For all this diversity, no machine learning method can overcome the fact that

training data is noisy. In general, empirical observations of the real world reflect
underlying regularities of the world only partially. Our introduction to evaluation

illustrated this point already in detail. We saw that repeated observations are nec-
essary in order to derive an estimate for a parameter value that will be close to the
true value with high probability.

Thus, to build a decision model from data requires repeated observations of each
of the 2n possible outcomes. With a training set of practical size (and don’t forget

that the limit is often the real-world effort—even the real-world cash—required to
obtain the training data) and with a decision model of substantial complexity, it is

inevitable that many of these outcomes will not occur, or will occur so infrequently
that any derived parameter estimates are quite likely to be inaccurate. Under such
circumstances, decision models are unlikely to be useful.

Sensor readings with a large space of possible values provide a complementary
illustration of the complexity of decision analysis. Consider an observationD that

approximates the distance to some obstacle. In a digital computer, the values forD

will be discrete; the number of different possible values will be finite. In principle,

a decision model can describe this, by inducing a distinct submodel for each alter-
native reading. When the number of alternative values forD reaches 256, 65536,

or more, the amount of training data required also skyrockets; the model again be-
comes hopeless. An effective model will have to treatD as a continuous variable,
and agents will have to learn the model and reason from it to determine the ranges

of values forD which call for different responses.

4.2 Problems of Modeling and the Complexity of Environments

We see how severe a drawback this complexity of decision models can be, once

we distinguish between the complexity of an agent’s models and the complexity

31

inherent in the agent’s environment. AnENVIRONMENT is COMPLEX to the extent
that its outcomes inherently reflect intricate interrelationships among many causal

processes, which have to be discovered empirically. A complex environment offers
little basis to generalize from one circumstance to another; in a complex environ-

ment, designers may have no alternative but to equip their agents with a model that
is accurate and that therefore is complex, too. In a complex environment, designers
must come to terms with the concomitant difficulties in computation and training.

However, a wide range of important environments must be simple, in the sense
that important interactions can be described by a small number of empirical param-

eters. Indeed, a computational perspective on human intelligence suggests that all
the behaviors that people naturally develop appeal to simple models of the world.

There wouldn’t be time to learn descriptively complex models of a causally com-
plex environment from the limited experience people get. Readers familiar with lin-

guistics or psychology will recognize this as a version of the Chomsky’sPOVERTY-
OF-THE-STIMULUS ARGUMENT: an intelligent agent’s open-ended behaviors must
be informed not only by limited experience in the world but also by innately con-

strained models of the world.22 In this connection, it is worth reinforcing that the
inference to restricted models of the world applies regardless of how learning is un-

derstood or how learning proceeds—the argument depends only on the intractability
of optimizing large numbers of parameters simultaneously.

A good way to think about practical models inAI and cognitive science is in
terms of theREAL-WORLD CONSTRAINTSthat a model adopts. These real-world
constraints are statistical assumptions about the relationships among variables that

allow agents to generalize from experience by rule. The advantage of such con-
straints is that they enable an agent to learn more quickly, by reducing the amount

of data required to fit a model to the agent’s environment. The challenge of such
constraints is that the assumed relationships among variables must be borne out in

the environment for an agent’s learning to be effective. Typically, it is only possible
to state meaningful constraints in a richly-structured representation of the environ-

ment, which makes causal and functional relationships explicit.
For example, consider designing a behavior where our agent classifies and re-

sponds to a new object in its environment. Think of our robot pet reacting to an

approaching object that is brought to its attention by the looming in its visual field:
Is this a toy, which the agent might pick up or fetch? Is this (part of) a person, who

the agent might attempt to interact with? Or is this something dangerous, which the
agent must avoid? In choosing its response to the object, the agent’s performance

depends on whether it deals with the object as befits its category.

32

Unfortunately, the agent cannot directly observe this. The agent has only its
observations—some perceptual features of the new object. Our robot pet, for ex-

ample, might be able to estimate an approaching object’s speed, size, or shape.
A decision model could only attempt to connect these observations directly to the

choice of action the agent must make.
However, a model that incorporates an explicit representation of the true but

hidden state of the world may be simpler, if it concisely describes the underlying

generalizations in the environment. In our example, such a model could spell out
how the agent’s observations of an object correlate with the object’s category. Toys

might tend to be small, and move at a medium speed; people might prove slower,
larger and characteristically blobby; dangerous objects might appear fast, or large,

or even just pointy. By describing the baseline frequency of these different cases—
say toys and people are relatively common while danger is thankfully rare—the

model allows the agent to interpret its observations as giving evidence about what
category that the object belongs to, and to react appropriately. In effect, then, this
model links an agent’s behavior to itsCATEGORIZATION of its environment. Of

course, in designing agents, we need not always think of objects or categorization
as concretely as this; we can apply these models, and our intuitions about catego-

rization, in open-ended ways.
To bring home the generality of this idea, let us consider a class of models that

represents the hidden state that the agent must infer and respond to as a random
variableS. The model specifies a constrained range of possible values forS, each
of which corresponds to a distinct set of real-world circumstances that arise with a

specified frequency in the agent’s experience. Mathematically, the model represents
this by aPRIOR distributionPm(S= s) on the alternative values forS.

The model also describes these circumstances (approximately), by associating
each value ofSwith a characteristic distribution of observations and outcomes for

the agent. The model represents the agent’s observations as noisy, incomplete but
independent clues to this state. Mathematically, for each observation variableOi ,

the model specifies theLIKELIHOOD of seeing a particular readingo assuming the
state has values, or Pm(Oi = o|S= s). Meanwhile, the model links the utility of
each action just to the underlying state of the world. Mathematically, the model

describes these outcomes with a tableU(s,a) of the utility expected when the state
of the environment iss and the agent’s choice of action isa.

Diagrams such as that in Figure 10 use the standard convention of a directed
arrow between nodes to depict these probabilistic dependencies. In Figure 10, the

state is represented by the random variableS. The agent’s observations, represented

33

O
1

S A

UO O
2 n...

Figure 10: Naive Bayes Model

by random variablesO1 throughOn, appear as nodes linked only fromS. The

agent’s utility, represented by the reward nodeU , is linked both fromSand from the
choiceA that the agent makes. These representations amount to assumptions about

the environment that we make in using such models to design an agent. When these
assumptions fit, they allow an agent to reason successfully, to learn efficiently from

limited training data, and to generalize reliably from it.
The agent’s behavior involves making a series of observations and then respond-

ing with an appropriate action; the model provides the agent with grounds for this

choice as follows. The agent first estimates the probabilities of alternative states of
the environment, by matching its observations against the model. The agent then

determines the most promising action, by calculating utilities in the model based
on this inferred distribution. If the model describes the environment accurately, this

policy allows the agent to act as successfully as possible.
More precisely, suppose that the agent has observed valueso1 throughon for

the variablesO1 throughOn. The model determines a probability distribution

(9) Pm(S= s|O1 = o1 . . .On = on)

describing how probable any state of the world is given the observations the agent

has made. Theis probability, called thePOSTERIOR, represents the agent’sBELIEF

that the environment is in states; thus the posterior distribution summarizes the

information that the agent has about its environment. Using the posterior, the agent
can determine the expected utility of any actiona given its observations, which
we writeUm(a|O1 = o1 . . .On = on), by weighting the outcome fora in alternative

possible statessby the agent’s current belief ins. (10) formalizes the relationship.

(10) Um(a|O1 = o1 . . .On = on) = ∑
j

Um(sj ,a)Pm(S= sj |O1 = o1 . . .On = on)

34

Of course, the agent’s best strategy is to take the action with the highest expected
utility.

The models depicted in Figure 10 are known as naive Bayes models. The Bayes
part is because we use Bayes’s Theorem23 to calculate (10) from the parameters of

the model. (11) shows the instance of Bayes’s Theorem we need.

(11) Pm(S= s|O1 = o1 . . .On = on) =
Pm(O1 = o1 . . .On = on|S= s)Pm(S= s)

Pm(O1 = o1 . . .On = on)

In words, Bayes’s Theorem states that ourBELIEF, that the environment is in state
s given our observations, trades off theLIKELIHOOD of obtaining our observations

if the environment was in statesagainst thePRIORprobability that the environment
is in states. We obtain a probability by normalizing for the overall probability of
making our observations—the normalization factor can be calculated by summing

the probability of being in a specified state and making our observations, over all
possible states.

The model’s “naive” independence assumptions entail (12).

(12) Pm(O1 = o1 . . .On = on|S= s) =
n

∏
i=1

Pm(Oi = oi |S= s)

Thus, we can justify the algorithm in (13) for computing theOPTIMUM action after

observationso1 throughon according to a naive Bayes modelm.

(13) a OPTIMUM m,o1 . . .on

for eachj: p′j ← Pm(S= sj)∗∏i Pm(Oi = oi |S= sj)
po← ∑ j p′j
for eachk: uk← ∑ j(Um(ak,sj)∗ p′j/po)
d← anyk that maximizesuk

RETURN (ad,ud)

By (11) and (12), the algorithm ensures that the value ofp′j/po is the posterior

(14) Pm(S= sj |O1 = o1 . . .On = on)

Thus by (10), the algorithm stores inuk the expected utility inm of actionak.

(12) shows the sense in which the naive Bayes model’s independence assump-
tions allow an agent to generalize from its experience by rule. An agent using (12)

(as implemented in (13)) is making a prediction about a combination of observa-
tions o1 throughon that it may never have seen together before. The prediction

35

rests on the agent’s interpretation of its experiences in terms of a small number of
likelihood parameters,Pm(Oi = oi|S= s), each of which summarizes commonali-

ties among the disparate experiences the agent has had. The rule that underlies the
generalization is in this case quite simple: multiplication.

More formally, we now see how we can eliminate much of the complexity of a
decision model in a naive Bayes model. To illustrate, we will use|S| to represent the
number of states in the model and|A| to represent the number of actions available

to the agent; we will again assume that the observations are binary.
The naive Bayes model determines a utility for each combination of observa-

tions and actions. This is|A|2n values in this case. In a decision model, this would
be prohibitive; each value would have to be represented, and learned, separately.

But in the naive Bayes model, these|A|2n values are derived indirectly, using a
number of parameters that is potentially much smaller. The naive Bayes model has

a table of utilities with|A||S| entries; it has a table of priors with|S| −1 entries;
and it hasn tabled likelihood functions, each with|S| entries. That is a total of
(|A|+n+1)|S|−1 parameters.

We may be able to identify a reasonable number of meaningful states in the
world as part of designing our agent, so that|S| is very small by comparison to 2n.

Then the naive Bayes model offers a vast improvement in size; there is a corre-
sponding improvement in the amount of memory required to represent the model

and the amount of training data required to build it.
Of course, not all environments can be described in terms of a single variable

that takes on a small number of values. Richer environments demand richer models

which offer an agent ways to reason about the state of the world more systemati-
cally. Indeed, effective modeling may mean understanding at a high level how and

why an environment works, and realizing that explanation in computational terms;
an agent may need this high-level explanation to select the actions that it should

take based on the observations, and more generally on the experience, available to
it.

Fortunately, this modeling need not start from scratch. Designers have ready
sources of causal hypotheses, from their scientific understanding of the real world,
from evaluations of prior agents, and even from intuitions about our own action

in the world. At the same time,AI research offers an inventory of broadly use-
ful models that implement common forms of explanation. Important special cases

come from domains where agent need to recognize patterns of change over time
or patterns of hierarchical structure in sequences of observations. Such models can

be built and used effectively with elegant and efficient algorithms. But graphical

36

representations of probabilistic dependencies, as illustrated in Figure 10, can de-
scribe arbitrary causal interactions in an environment.24 Not surprisingly though,

as models become more general, it becomes increasingly difficult to tie them to
the training available in concrete domains or to algorithms that enable tractable

decision-making. Research proceeds.

5 Directions, Connections, Distinctions

The enterprise of modeling the world is open-ended, and so is the enterprise of
AI itself. In a chapter such as this, I cannot even begin to catalogue all possible

problems, all possible models, even all possible approaches. Rather my aims have
been to introduce the goals and perspectives ofAI practice, in Section 2; to acquaint

you in detail with a concrete case ofAI practice, through Section 3; to hint at the
problems and possibilities to which pastAI research has led, in Section 4; and,
perhaps with all this, to point out the general problems of real-world action that

AI shares with cognitive science, and so to whet your curiosity for the additional
results—indeed the future results—whichAI research still offers.

These additional results include the numerous approaches to intelligent behavior
based purely on optimization to which I have given short shrift. These engineering

approaches are effective and useful, and historically have been just as inspired by
biological computation—and just as inspiring in the effort to understand biological

computation—as the more severe model-based techniques I have emphasized.
I have also passed over a rich tradition of purely logical models of the world.

The motivations for such models have always been diverse (and contentious); for

me, such models contribute a worst-case analysis of intelligent behavior. Logic de-
mands that we avoid risk altogether by formulating models and policies that must

succeed, within limits, no matter how the world might turn out to be. This worst-
case design provides the only principled way to back off from dependence on dis-

tributions derived from empirical data to strategies that apply in genuinely novel
situations—that is, even in the most remote possibility.

The diverse investigations ofAI aim for agents that are sensitive to empirical

regularities in their surroundings and that exploit these regularities efficiently to
thrive in their environment. These are strengths that biological intelligence also

exhibits. ButAI research can base its strategies and computations on designs that
depart radically from biology; as it does so, it increasingly delivers intelligent real-

world behavior in ways that diverge from biological intelligence. For example, in
its chess match with Kasparov,25 IBM’s Deep Blue relied on hardware and software

that was capable of performing billions of operations per second and that in fact pur-

37

sued extravagant search forward move-by-move through possible developments of
the game; such a strategy seems impossible for a brain that makes up in parallelism

what it lacks in speed. Mismatches proliferate among the many important problems
which people master only with difficulty: medical diagnosis, investment, scientific

data analysis, engineering design.
Such examples underscore the uniqueness ofAI as an engineering approach

to building computational artifacts that act in the real world. Practitioners ofAI

must take this engineering perspective to heart to have an impact on the way people
design and build useful agents. Cognitive scientists must also come to grips with

it if they are to exploit new ideas fromAI research which promise to inform our
scientific study of ourselves.

But all should welcome the rigor that the view inspires. In engineering, anad

hoc implementation—however ingenious—is quickly discarded as problems and

technology change; a principled design—a model of the world and the computa-
tional results to put the model to use—remains a lasting contribution. In cognitive
science, theories of the functional value of human cognitive abilities will remain

speculation until connected with an engineering model of the problems people face
and the performance that people achieve in everyday circumstances. Inspired by

such inherent connections, I for one expect the long and fruitful interchange be-
tweenAI and cognitive science to continue.

Thanks
Doug DeCarlo, Karin Johnsgard, David Parkes, Lou Steinberg.

Notes

1 With his paperOn computable numbers, with an application to the Entschei-
dungsproblem(Proceedings of the London Mathematical Society, 1937), Alan Tur-
ing offered his celebrated characterization of all mechanical procedures which can
be executed according to a finite set of precise instructions.

Noam Chomsky’sSyntactic Structures(published 1957) and the more incendi-
ary A review of B. F. Skinner’sVerbal Behavior (Language, 1959) decisively intro-
duced linguistics, philosophy and psychology to a computational interpretation of
the rules of linguistic structure.

Alan Newell and Herbert Simon’sgeneral problem solver(implemented 1957
with programmer J. C. Shaw, and described in a contribution to Feigenbaum and

38

Feldbaum’sComputers and Thought, 1963) invoked an explicitly symbolic concep-
tion of computation as a general way to derive goal-directed real-world behavior by
algorithmic processes.

2 David Hilbert stormed through mathematics at the end of the nineteenth cen-
tury and beginning of the twentieth; he published groundbreaking work in algebra,
number theory, geometry, and the foundations of physics and mathematics. But
he concluded his career with investigations into proof theory whose goal was the
demonstration of the consistency and completeness of mathematical method; the
theory of computation, as developed by Kurt G¨odel, Alan Turing and others, dis-
solved this goal into impossibility.

Leonard Bloomfield’s textLanguagefrom 1933 set the agenda for American
linguistics for the next twenty-five years. The book is remarkable both for its
meticulous methodological advice, which helped a generation of fieldworkers doc-
ument the words and sounds of the indigenous languages of North America, and
for its frank admission that, to study such matters as linguistic meaning, linguistics
awaited some new scientific tools (in retrospect, that tool was computation).

B. F. Skinner’sThe Behavior of Organisms(published 1938) advanced a par-
ticular kind of associative learning, the pairing of stimulus and response through
reinforcement, as a uniform explanation for the results of experiments document-
ing the ability of animals to act successfully in problematic environments. Skinner’s
behaviorist approach left no place for psychological representation, or for computa-
tion, in the explanation—an omission that ultimately proved the theory’s undoing.

3 A revised version of this chapter will appear in the second edition of Zenon
Pylyshyn and Ernie Lepore’sWhat is Cognitive Science, to be published by Basil
Blackwell next year.

4 The landmark implementation is described in W. Burgard, A.B. Cremers, D.
Fox, D. Hähnel, G. Lakemeyer, D. Schulz, W. Steiner, and S. Thrun, “The Interac-
tive Museum Tour-Guide Robot,” Proceedings of the Fifteenth National Conference
on Artificial Intelligence (AAAI-98), 1998.

5 Rudolf Kalman introduced this discrete-time filter in his paper “A new
approach to linear filtering and prediction problems”, inJournal of Basic
Engineering—Transactions of the ASME, Series D, 83(1), pages 35–45, 1960. It
was used right away in aerospace, for example for navigation in the Apollo space
program. But its heavy burden of computational operations and numerical precision
meant that the filtering process typically had to be approximated and simplified to
run on available hardware; see for example Peter Maybeck’s textStochastic Models,
Estimation, and Control, Academic Press, 1978.

39

6 Newell’s perspective, articulated for example inUnified Theories of Cognition
(Harvard University Press, 1980), suggests an intimate relationship betweenAI and
computational perspectives on human cognition. In particular, it postulatesNAT-
URAL representations—mental tokens that take on meaningful correspondences
with the world but at the same time are manipulated syntactically through sym-
bolic computation—to account forINTENTIONALITY , the connection between our
own mental life and the broader world we think about and act in.

7 With his theory of signs, Charles Sanders Peirce (1839–1914) offered an ac-
count of the parallels and diverges between linguistic meaning and natural meaning.
Linguistic meaning is symbolic; the wordfire for example is connected with fires in
an arbitrary way. Smoke also means fire, but smoke is what Peirce called anINDEX:
such signs are linked to what they mean by correlations in the natural world. See
The Essential Peirce, Volumes 1 and 2, Indiana University Press, 1992 and 1998.

8 Making Hard Decisions(Robert Clemen, Duxbury Press, 1995) is a represen-
tative text on decision analysis—for the MBA curriculum.

9 See for example Ronald Arkin’sBehavior-Based Robotics, MIT Press, 1998.

10 A fraction of 0.8 of histories with this policy lead to an observation ofX = y,
to following, and then to a utility of 0.7; a fraction of 0.2 lead to an observation of
X = n, to returning home, and then to a utility of 0.25. Weighting these outcomes
by their probability gives 0.8×0.7+0.2×0.25= 0.61.

11 At choice 1, the other options’ utilities of 0.2 and 0.3 are less than the 0.61 we
get by waiting and continuing with (1). At choice 2, our policy of following for 0.7
beats the alternative of returning for 0.25. At choice 3, our policy of returning for
0.25 beats the alternative of following for 0.1.

12 Indeed, after studying this section, you might profit from constructing your
own definition of its two key representations, theMODEL and thePOLICY, and from
accomplishing your own implementation of its two key algorithms,OPTIMUM and
EXECUTE—either in a familiar language or even in one of the specialized languages
of AI , such as Prolog, Scheme or SML.

13 Here is one such definition:

(15) a In a modelrwd(u), policy endhas utilityu.
b In a modelobsv(X, [(v1, p1, t1) . . .(vn, p1, tn)]), policy

switch(X, [(v1,π1) . . .(vn,πn)]) has utility

∑
i

pi ∗ui

40

whereui is the utility in modelti of policy πi.
c In a modeldcsn(n, [(a1, t1) . . .(an, tn)]), policy do(ai,π) has utilityui

whereui is the utility in modelti of policy π.

14 Just refer to (15).

15 Here’s one specification ofEXECUTE.

(16) a ToEXECUTE end, nothing is required.
b To EXECUTE switch(X, [(v1,π1) . . .(vn,πn)])

o← GET X
j← the i for whicho = vi

EXECUTEπ j

c To EXECUTE do(a,π)

RUN a
EXECUTE π

16 At the first step of action, there is one outcome; after each step of observa-
tion, the number of outcomes doubles; by the time the policy terminates, the leaves
number 2∗ . . .∗2 (n 2s); thus, 2n.

17 This fact admits two kinds of explanations. Conceptually, we can see each
layer i of observation in the model as specifying a distribution of variableXi that
is conditional on specific values of any earlier observationsX1 throughXi−1; this
distribution is writtenP(Xi = xi |X1 = x1 . . .Xi−1 = xi−1). In general, any joint dis-
tribution on multiple variables (perhaps conditioned on some informationC) can be
factored as the distribution of the first (givenC) times the distribution of the others
given the first (andC), as in (17):

(17) P(X1 = x1 . . .Xi = xi |C) = P(X1 = x1|C)P(X2 = x2 . . .Xi = xi |X1 = x1,C)

Unfolding (17)n−1 times, then, we see that the distribution provided at each layer
is exactly what is needed. More algebraically, and more significantly for present
purposes, the joint distribution is specified by 2n− 1 parameters and the modelt
also has exactly 2n−1 free parameters for probabilities (the counts reflect the fact
that probabilities always sum to 1). Matching these parameters is thus a matter of
solving appropriate equations.

18 The standard introduction to machine learning is Tom Mitchell’sMachine
Learning, McGraw-Hill, 1997.

41

19 See Nello Cristianini and John Shawe-Taylor,An Introduction to Support Vec-
tor Machines, Cambridge University Press, 2000.

20 See Christopher Bishop,Neural Networks for Pattern Recognition, Oxford
University Press, 1995.

21 See Richard Sutton and Andrew Barto,Reinforcement Learning: An Introduc-
tion, MIT Press, 1998.

22 The famous formulation—in which Chomsky argues that people’s productive
use of language must be informed not only by experience with language but also
by models of language embodying substantive universals—is in the collectionLan-
guage and Learning: The Debate Between Piaget and Chomskyedited by Massimo
Piatelli-Palmerini and published by Harvard University Press, 1980.

23 The result, first explored by minister and sometime mathematician Thomas
Bayes (1702–1761), is easy to rederive. Just start from the two ways to express the
joint probability of two events, a possible causec and its possible effecte:

(18) P(c,e) = P(c|e)P(e) = P(e|c)P(c)

Divide byP(e), to see how to infer the causec given a model of its effects:

(19) P(c|e) = P(e|c)P(c)
P(e)

24 The seminal monograph is Judea Pearl’sProbabilistic Reasoning in Intelligent
Systems, Morgan Kaufmann, 1988.

25 Documented on the internet at http://www.research.ibm.com/deepblue/home/html/b.html.

42

