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A. PROOF OF THEOREM 2.23

We wish to eliminate delayed inferences from SCL proofs. This transformation depends
on a generalization of delayed inferences, which we can teisplaced inferences since

we intend to eliminate them. We assume an overall derivafiprand consider a right
inferenceR that applies to principdE within some subderivatiod’ of D.

Definition A.1. We say a rightnferenceR is right-based on an inferencé? in D if
R= R or Ris based oR and every inference on whidRis based above and including
R is aright inference. TheRis misplaced in 2’ exactly when there are inferendgisand
R in 2’ such that, inD, M is based on an inferende R is right-based oR, andR is
delayed with respect to.

In this case we will also saR is misplacedwith respect to M. We can abstract a key case
of misplaced inferences by the following schematic derivation:

Right inferences and inferencés{ : M
not based in '
R delayed wriL { ...E... R
(M based in.) !

E.. L

This schematic derivation shows informally hawsplaced inferences help provide an
inductive characterization of the inferences that stand in the way of obtaining an eager
derivation. In an eager derivation, it will be impossible fto appear above. ForR
cannot be delayed with respectlipbut onceR’ andL are interchanged, we will obtain a
new delayed inference th&is based in, until finally we must interchangeandR. Of
course, to do this, we must first intercharigavith the misplaced inferences, such a4,
which stand betweeR andL and cannot themselves be interchanged Wwibiecause they
are based ifh.

Observe that the relatidR is misplaced with respect #d is asymmetrical. To see this,
supposeRr is misplaced with respect td. By definition, R is right-based ofR which is
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delayed with respect to a left inferenteon whichM is based. Meanwhile, favl to be
misplaced with respect g, by definition, we must haw#! right-based oM’ andR based
in some left ruleLg. Any suchM’ would have to be based insince no left inferences
intervene betweeM andM’; M’ must thus appeanside a schematic like that above. At
the same time, since no left inferences intervene beteand R, R would have to be
based in any sucbgr, which must thus appeautside such a schematic, closer to the root
of the overall derivation. Accordingly, any suthk must occur closer to the root df than
L; meanwhile the principal d¥1’ is introduced further from the root than So we will not
haveM’ delayed with respect tog.

Call Rbadly misplaced in 2 if Ris misplaced with respect td andM occurs closer to
the root tharR. A subderivationD’ with no badly misplaced inferences will be caligabd.
An overall good derivation is also eager, since any delayed inference is badly misplaced.

LEMMA A.2. Consider a subderivation 9’ of an overall derivation D, with the prop-
erty that 2’ has good immediate subderivations and that 2’ endsin inference M. From 2’
we can construct a derivation with the same end-sequent that is good.

PROOF The assumption that the immediate subderivation®ofire good is a very
powerful one. For suppose that some inference is badly misplaced with respect to some
other in?’. Then we can only have some rukebadly misplaced with respect td—
anything else would contradict that assumption.

In fact, we can show that some suRmust be adjacent thl. Consider an inference
Sthat intervenes betweeR andM: we will show thatS must be badly misplaced with
respect taMl too. By the definition of misplaced is based on some left rulein D, R
is right-based ofR, andR' is delayed with respect . Now consider the inferences that
Sis based on above. If any of these is a left inferendg, or Sis itself a left inference,
thenRis also misplaced with respect —indeed, badly misplaced. This contradicts the
assumption that the subderivations®f are good. So none of these inferences can be a
left inference, which mearSis a right inference that is right-based on some infere®ice
abovel. S must be delayed with respectlto HenceSis badly misplaced with respect to
M.

Now we can proceed after [Kleene 1951, Lemma 10]. Defineggthde of 2’ as the
number of badly misplaced inferencesn. We show by induction on the grade that
can be transformed to a good one.

The base case is a derivation of grade 0. This caséhiself good. Thus, suppose the
lemma holds for derivations of gradg and considef’ of gradeg+ 1. By the argument
just given, one immediate subderivation—calit—must end with an inferend@ which
is badly misplaced with respect M. Such arR of course cannot be basedM, so we
interchange inference® andM. In the result, the subderivation(s) endingNhsatisfy
the condition of the lemma with gradgor less. By applying the induction hypothesis,
we can replace these subderivations with good ones. By asymriktsynot now badly
misplaced with respect &, nor can any of the other inferences be badly misplaced with
respect taR, since they were not so in the original derivation. It follows that the result is a
good derivation. (]

Using this lemma, we can now present the proof of Theorem 2.23 in full.

THEOREM A.3 (THEOREM2.23). Any SCL(I) derivationD is equal to an eager
derivation?’ up to permutations of inferences.
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PrRoOFE Define thereluctance of D to be the number of rule applicatioRssuch that
the subderivatiorDr of D rooted inRis not good. We proceed by induction on reluctance.
If reluctance is zero is itself good.

Now suppose the theorem holds for derivations of reluctanaad conside® of reluc-
tanced+ 1. Since? is finite, there must be a highest inferefiteuch that some inference
is badly misplaced with respect Bin the subderivatiorDr rooted atR. This Dy satis-
fies the condition of Lemma A.2. Therefore thi can be replaced with a corresponding
eager derivation, giving a new derivation of smaller reluctance. The induction hypothesis
then shows that the resulting derivation can be made eager.

B. PROOF OF THEOREM 3.5

THEOREM B.1 (THEOREM 3.5). Let T" and A be multisets of tracked prefixed expres-
sions in which each formula is tracked by the empty set and prefixed by the empty prefix.
Thereisa proof of I' — A in SCL exactly when thereisa proof of I'; —; A in SCLP in
which every block is canceled.

PrROOF The argument for Theorem 3.5 depends on three lemmas: Lemma 3.8, proved
in Section B.1; Lemma 3.16, proved in Section B.2; and Lemma 3.17, proved in Sec-
tion B.3.

As observed already in Section 2.4, there is an SCL probf-ef A exactly when there
is an SCLI proof ofi' — A. By Theorem 2.23 of Section 2.4, there is an SCLI proof of
I — A exactly when there is aeager SCLI proof of ' — A. By Lemma 3.6, there
is an eager SCLI proof df — A exactly when there is an eager articulated SCLI proof
of I';, —;A. And by Lemma 3.8, there is an eager articulated SCLI prodf;ef>;A
exactly when there is an eager SCLS proofpf—; A.

Continuing through the argument, by the Contraction Lemma, we may assume without
loss of generality thal'; —; A is a simple sequent. We know from its lack of prefixes
that the sequert; —-; A is also spanned and balanced. By Lemma 3.16 of Section B.2.3,
then, there is an eager SCLS prooflgf—; A exactly when there is a blockwise eager
SCLB derivation ofl'; —; A in which every block is canceled, linked, isolated, simple,
balanced and spanned. And by Lemma 3.17, there is a blockwise eager SCLB derivation of
I'; —; Ain which every block is canceled, linked, isolated, simple, balanced and spanned
exactly when there is an SCLP derivationlof—-; A in which every inference is linked.

And if every inference is linked, every block is canceled]

B.1 Proof of Lemma 3.8

We show in this section that an articulated SCLI proof with end-seduent>; © corre-
sponds to an SCLS proof with end-sequBnt—>; ©, and vice versa. In fact, to transform
SCLS to articulated SCLI we have a simple structural induction which replaces®)
with (D—) using the weakening lemma; the soundness of SCLS over SCLI then follows
by Lemma 3.6. Thus, here we are primarily concerned with completeness of a new sequent
inference figure.

The use of(>—S) in eager derivations ensures that the processing of each new goal
refers directly to global program statements. To formalize this idea, we introduce the
notion of afresh inference.

Definition B.2 Fresh. Let D be an SCLV derivation. An inferend® in D is fresh
exactly wherR is a right inference and the path frafto the root never follows the left
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spur of any(D>—) inference.
LeEMMA B.3. Let D bean eager SCLV derivation with an end-sequent of the form
IT,— A;0

and consider a subderivation D’ of D rooted in a fresh inference R. Then the end-sequent
of D' also hasthe form

H/;H AI;G)I
for someIl’, A’ and @'.

PROOFR Suppose otherwise, and consider a maxiffalvhose end-sequent contains a
non-empty multiset of local statemerts We can describ&’ equivalently as the sub-
derivation of D that is rooted in a lowest fresh inferenRewhen the end-sequent @b
contains some local statemenBcannot be the first inference @, so there must be an
inferenceSin D immediately belovR. If Sis a left rule, then the fact tha? is eager leads
to a contradiction.R must be based i, or elseR will be delayed. This meanSis an
implication inference; but given th&is fresh,R must appear along the branch(af—S)
without local statements. Meanwhile Siis a right rule, it follows from the formulation of
the rules that if the end-sequentBg has non-empty local statements then the end-sequent
of D must also. This contradicts the assumption et first. [

Now we proceed with the proof of Lemma 3.8.

LEMMA B.4 (LEMMA 3.8). An eager articulated SCLI derivation whose end-sequent
is of the form

IT,— A;0
can be transformed to an eager SCLS derivation of the same end-sequent.

PROOF We assume an eager SCLV derivati®nwith such an end-sequent; we show
that we can transform it into an eager SCLS derivatidrwith the same end-sequent. The
proof is by induction on the number of occurrence$of-) inferences inD.

In the base case, there are(m—) inferences and’ is justD.

Suppose the claim holds for derivations whére—) is used fewer tham times, and
supposeD is a derivation in whicH>—) is usednh times. Choose an inferenteof (O —)
with no other(>—) inference closer to the root @9; we must rewrite the left subderiva-
tion atL to match the(>—S) inference figure. To do this we will draw on additional
inferences frontD. We find these inferences in a subderivatibhof D distinguished as a
function of L—in particular, we identifyD’ as the largest subderivation #f containingL
but no right inferences or segment boundaries below

Using Lemma B.3, we develop a schemaidfthus:

A DB
ILT,ADBY — AL A0 ILT,ADBY,BY — A0

ILT,ADBY — A;0

L
Q)L

I, — A;0
(Segment boundary or right rule)
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We supposé. applies to an expressioh D B§‘<; the left subderivation of, P* adds the
goalA; the right, D8, uses the assumpti@ The subderivation af” from the end-sequent
of L abstracts the left inferences performed elsewhere in this segment (and any subgoals
that these inferences trigger). We notate this tree of inferefitesBy Lemma B.3,2’
ends with a sequent of the foriit — A; ©. Because of the form of the intervening rules,
we have the same succedan® atL, as well as the same global statemdiiits

We useD" to construct an eager SCLS derivatishcorresponding taD?; we will
substitute the result for the left subtreeLab revisel to fit the (O—5) figure. In outline,
the derivation we aim for is an eager SCLS version of:

Q)A
D-+ AL

The problem is that ifD” is rooted in a right inference t8, we will not obtain an eager
derivation when we reassemhile The SCLS derivatiot we use is actually constructed
by recursion on the structure @, applying this kind of transformation at appropriate
junctures. At each stage, we call the subderivatio®bfwe are considering?.
For the base case, this subderivation is an axiom, and we construct this subderivation as
a result. IfD"A ends in a right rule, the construction proceeds inductively by constructing
corresponding subderivations and recombining them by the same right rule. With a right
inference here, the resulting derivation must be eager since the subderivations are eager.
If DA ends in a left inference, the construction is immediate. We observetfdias
an end-sequent of the form

IL,II;— A A;0,0

(The inventory of expressions can only be expanded, and that only in certain places, as
we follow right inferences to reac’”.) So we first weakerD" by the needed additional
expressions-H’ on the left and\’ (locally) and®’ (globally) on the right; then we identify

the open leaf inD- with 22, obtaining a larger derivatiof defined as:

Q)/A
'+ D"+ A+ A6

Any delayed inference i, would in fact be delayed i, so this is an eager derivation.
The result has, moreover, fewer tha(>—) inferences, since it omits at ledsfrom 2.
Then the induction hypothesis applies to give the needed SCLS derivation

Given the derivationd so constructed, we substitufor D* in D. The resultD* is
an eager derivationD* contains an(>—S) inference corresponding o and therefore
contains fewer than uses of(>—). The induction hypothesis applies to transfafm to
the needed overall derivation]

B.2 Proof of Lemma 3.16

B.2.1 Replacing Herbrand terms. To begin, it is convenient to observe that the use
of indexed Herbrand terms allows us to rename Herbrand terms in a proof under certain
conditions.

LEMMA B.5 SUBSTITUTION. Let D bean SCLU derivation with end-sequent
I, —;0
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in which no Herbrand terms or Herbrand prefixes appear; consider a spanned simple
subderivation 2’ in which a modal Herbrand function n4 occurs in some sequent, but
does not occur in the end-sequent. Let ), be a Herbrand function that does not occur in .
Then we can construct a proof 2* containing corresponding inferencesin a corresponding
order to D but in which Herbrand terms and Herbrand prefixes are adjusted so that n}, is
used in place of N precisely in the subderivation corresponding to 2.

PROOFE The argument proceeds by induction on the structure of derivations. A complex
substitution may be required, because the Herbrand calculus may require not only the
replacement off itself but also the replacement of Herbrand terms that depend indirectly
onnj. Itis convenient to begin by replacing any first-order Herbrand term not introduced
by a (3 —) or (— V) inference by a distinguished constapt—starting with leaves of
the derivation and working downward. This replacement is to ensure that each first-order
and modal Herbrand term i is determined from an expression in the end-sequent of
D by a finite number of steps of inference. We continue with the systematic replacement
of ni and its dependents. In both cases, the formDognsures that a finite substitution
can systematically rename all these Herbrand terms as required. We use the fact that each
sequent is simple and spanned to extend this substitution inductively upward. Because
each sequent is spanned the substitution does not need to be extefided)anferences;
because each sequent is simple the substitution can be extended freshlygtand
(—>) inferences. Finally, the form of first-order Herbrand terms ensures that a finite
extension of the substitution suffices for 3) and(V —) inferences. O

B.2.2 Rectifying blocks. The transformation of individual blocks appeals to the fol-
lowing definition ofrequired elements of proofs.

Definition B.6 Required. Given a derivatiorD with end-sequent
ILT — A0

we say that an expression occurreicimn © or IT is required iff either it is linked or some
block in D is adjacent to the root block and has an end-sequent

n;,—;e
in whichIT or ® contains an expression occurrence basetl in

LEMMA B.7 RECTIFICATION. We are given a blockwise eager SCLU derivation D
such that: every block in D is canceled and isolated; every block in D other than the
root is spanned, linked, balanced and simple; and the end-sequent of 9 is balanced. We
transform 9 to an SCLU derivation 2 in which every block is canceled, linked, isolated,
balanced and simple and every block other than the root is spanned. Every block in D
other than the root block is identical to a block of D; and the inferences in the root block
of D correspond to inferences in the same order in D (and so 2’ is blockwise eager). If
the end-sequent of D is spanned then D’ is spanned and isolated.

PROOF We describe a transformation that establishes the following inductive property
givenD. There are simple multisef§y C IT and®y C ©, together with multisets’ C T’
andA’ C A such that: any®’ that spandly includes®y; and for any simpld1’ with
Iy C IT' C I1 and any simple®’ with ©® C © such thafll’ and®’ are spanned b§’ and
the pairll’, ® is balanced, there is®’ in which every block is canceled, linked, balanced,
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balanced and simple, with end-sequent;

;1" — A0
In this 2/, each expression if is linked; each expression iV is linked; eacHTy ex-
pression that occurs i’ is required and eacB®)y expression that occurs @ is linked.
Every block inD’ other than the root block is identical to a block®f and the inferences
in the root block ofD correspond to inferences in the same ordeDinFinally, if T” and
A’ are spanned b§’ then?’ is spanned; ifD is linked then?’ contains all the axioms of

D.
At axioms, for®D of

LT, Ay —= Ay A0
Ty and®y are empty, whild” = Ay andA’ = AL, Assume we are given simpl& from
IT and simpled’ from © with IT" and®’ spanned by’. We construct)’ of
;A —= AL, 0
If Aﬁl( is spanned b®’, this axiom is spanned too; the remaining conditions are immediate.
At inferences, consider as a representative ¢ase:). D ends:

Dy D,
ILT,AVBY, Ay —= A0 I;T,AVBY, By — A0
ILT,AVBY — A0

The blocks ofD; and D either contain the root or are blocks frafn the Herbrand pre-
fixes in the end-sequents f and?-, occur with the same distribution as4m. Therefore
we can apply the induction hypothesis to §ii1, Om1, I'; andA] for Dy; we can apply it
to getlTvz, Owm2, I, andA), for D,. To transform® itself, we perform case analysis df
andI,.

If T} does not contain an occurrenceAﬁj, thenIly = IIy1, O = Om1, I' =T and
A" = Al; D] suffices to carry through the induction hypothesis.

Similarly, if T, does not contain an occurrencer{, thenIly = Iy, Opm = Oma,

I =T andA’ = A}; D, suffices to carry through the induction hypothesis.

Otherwise, we will set ugly = Iy UTIy2 and®y = Op1 U BOpm2 (as sets); by the
inductive characterization dfiy1, ITy2, Om1 and®y2, any @' that spans bothly, and
Iy includes botBy; and®y2. We also set up” as the multiset containing at least one
occurrence oAV B§‘( and as many expression occurrences of any expression as either are
found inT}\ A\ or are found inl%\Bl; we set upA’ as the multiset containing as many
expression occurrences of any expression as are found in AitloeA’.

To continue, we now consider simdlE from IT and simpled’ from © such thafly; C
IT, Ty, C IT, IT" and®’ are spanned b®’, and the paifl’,®’ is balanced. We know
that®’ includes®y. We can apply the inductive property to transfoba and 2, into
derivations with the inductive property:

Dy D,
Ir;1; — A, 0 Ir; 1, — A, 0/
We weakerthe lowest block of D] on the left by the expressions I and not already in

I and on the right by the expressiongiih and not already in\', giving ;. We similarly
weaken the lowest block @b, on the left by the expressions i and not already i,
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and on the right by the expressionsiih and not already in\}, giving 25 . Only the lowest

blocks are affected by the weakening transformations, so other blocks remain canceled,
linked, spanned, isolated and simple; the lowest block in each case remains canceled. The
lowest blocks also remain linked since no inferences are added; and they remain simple
(and balanced) because no weakening occurs in the global areas. Cofstsct

2 Dy
I, T+, A —= AT, 0 I;T+,BY —= AT, 0/
I, — AT, @

The end-sequent is simple and balanced so the root block is simple and balanced; the
inference is linked sincéy andBY are linked in the subderivations, so the root block is
linked. The root block remains canceled as always.

Any Iy expression is required here because it is required eithé¥irin virtue of
its membership idIy; or in Q)2+ in virtue of its membership idly32; likewise any®y
expression is linked here because it is linked eithe®if in virtue of its membership
in Opy Or in Q)z+ in virtue of its membership i®y2. Thus, except for the spanning
conditional, we have shown everything we need of this

Finally, then, ifT” andA’ is spanned by’, A} andA/, are spanned b§’ andI"; andI?
are spanned b@’ in the resulting (spanned) subderivatiah$ and 25. This shows that
the end-sequent @b’ is also spanned, sp’ itself is spanned.

This reasoning is representative of the construction required alsphfer), (3 —),
(V =), (= A), (= V), (— 3), (— V), (decide) and (restart). It applies also far—S),
with the obvious caveat that we do not weaken the left subderivation to match local left
expressions, since the form of the—S) inference requires there to be none.

Next we haveV —B); we consider the representative casé\wf-2). D ends:

Dy Do

Iy, IT; T, AV By , Al —> A;00,0 To, BY; — 09
Tlo, ILT,AVBY — A;0,0

We treat this specially to respect the block boundary befexeln particular, we apply the
induction hypothesis t@; (as we may since its end-sequent has the same distribution of
Herbrand prefixes as does that®j, to getllyi, Om1, I} andAj. If A§‘< does not occur
in T}, we letIly = Iz, O = Om1, I =T andA’ = AJ; any derivation?; constructed
from appropriatd]l’ and®’ suffices to carry through the induction hypothesis.

Otherwise, we gelly = Iy UTlg (as a set)@y = Om1; any @ that spandly also
spansllyy and so include®y. A’ = A} andI” containsI'; with the occurrence oAgl(
removed, together with an occurrence/ot BY if T does not already contain such an
expression.

Assume simpldl’ with TTyy C IT" C IT and simple®’ with ® C ® with IT' and ©®’
spanned by’ and the paill’,®" balanced. As before, we must ha®g included in®’.
We therefore obtaimD; by the inductive property; we then weakel locally within the
lowest block byAvV B§‘< on the left if necessary, to obtain a good derivatigh

The needed) is now constructed as:

D Do
I, Ay — A O To, BY; — 6o
;0 — A0
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We first argue that the construction instantiateqthe-2) inference rule. Every Herbrand
prefix in Tlpe and B§ occurs inIT’ or I, soIlge and Bf< are spanned bg’. But because
the root block in? is isolated ITpe andBY are spanned minimally b§o. Thus@o C ©'.
e C Iy by construction; by isolatiohly is the smallest set such that the pailtf, ©¢

is balanced. But sincH’, ®’ is balancedITy C IT'.

Now we show thatD’ so constructed has the needed properties. The end-sequent is
simple and balanced so the root block is simple and balanced. The inference is Aﬁked:
is linked in D} by the induction hypothesig is linked in D, becauseD, begins a new
block which by assumption is canceled. The root block remains canceled as always. Any
[Ty expression is required here because either a corresponding expfidgsiarthe new
block at the left subderivation is based on it, or because it is requiréy.ifEvery ©y is
linked because it is linked ;.

Finally, if I” andA’ are spanned b§’, thenA andI™; are spanned b@}. The new sub-
derivation?; is therefore spanned by the inductive property; this ensures that the overall
derivation is spanned.

Next considefd —). D ends:

Dy
LT, AL ARy — AO
ILT,OA, — A0

As always, we apply the induction hypothesi€tp(as we may since the Herbrand prefixes
onIT and® formulas remain the same) to obtdify1, Om1, '} andA]. If A%V does not
occur inT, we letIly = Iy, O = Om1, I' =T andA’ = Af; any subd'erivatiorﬂ)i
obtained by the inductive property suffices to witness the inductive proper.for

Otherwise we obtaifi” by extendingl™; by the principal expressioiAg‘< if necessary
and eliminating the side expressié&fw; [Ty = Imy, O = Om1 andA’ = A}, (Since
these are common to the subderivation, &Hythat spandTy includes®y.) Now we
considerT’ with Iy C IT" C IT and®' with ® C ©, IT" and®’ spanned by’ and the
pairIT',© balanced. As always, we ha@y C ©'. We obtain?; usingIT’ and®’, and
weaken the lowest block by local formulas; calling the regdjit, we can produceD’ by
the following construction:

2
T, ALY, — A
;T — A, @

Everything is largely as before. The key new reasoning comes when we assuiifeatict
A" are spanned b§’. We must argue thdt’,AQV,w is in fact spanned b@'. SinceAﬁfw is

linked in D}, there must be an axiom in this block which is based{, ; indeed, since
the expression occurs as a local antecedent, this axiom must occur within the segment. This
axiom must pair expressions prefixed by a pattvherepy is a prefix ofy. But because
D' remains blockwise eager, no inferences applg'tor © formulas within the segment
(nor can they in this fragment augment thieor ®' formulas within the segment); therefore
someA’ expression is associated with Herbrand prefixBut sinceA’ is spanned by,
we have that every prefix gf is associated with son@ expression; so every prefix pf
is associated with son® expression. Thu®;" is spanned and in tur®’ is spanned.
We have one last representative class of inferencgs i~ 0) and(—>). We illustrate
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with the case wher® ends in(—>):

D
I Agi"m,r — A A > B;‘(;@,Bgz‘?m

ILT — A A>{B};©

We begin by applying the induction hypothesis®y (as we can, given the symmetric
extension oflI and © by labeled expressions). We obtah, w1, I} and A7; we
consider alternative cases in respons®tand Oy;. First we supposB“‘n Z0. It

follows by our assumption aboup that A”" n & I either, nor does) occur in®. For
this case, we start by defining an oveﬂam and@M Oy is Op1 with any occurrence of
B”fn eliminated;ITy is Iy with any occurrence OAmun eliminated. ITyy contains no
occurrences ofm, sincell does not; thus given the inductive property@y; andIlyzi,
any ©' that spandIy spans©y. We definel” andA’ so thatl” = I'; andA’ contains
A/, together with an occurrence 8f>; By, providedA] does not already contain one and
Bﬁ?lm € Om1 orAQ?un € ITy1. So, assume we are given simpléwith ITyy C IT' C IT and
simple® with © C © (and so®y C ©') such thafll’ and®’ are spanned b’ and the
pairIT’,® is balanced.

We consider whetthif“m € Om1 Or A)“g‘un € Iy1. If neither, we apply the induction
hypothesis taD; for the case tha®] is © andI1} isIT'. The resulting derivatiod; serves
as?'.

Otherwise B}, € ©w1 or AL, € Tlw1; we apply the inductive property ab; for
the case tha®) is @, By, andIT} is I, AL, (clearlyIT} and®; are spanned b}
assumindl’ and®’ are spanned bg’; the pairll}, © is also balanced given its symmetric
extension). IfB>< € Om1, by the inductive property it is linked. M\““m € vy, itis
required, but we shall show that it is in fact linked. By the definition of being required, the
other possibility is that there is a block adjacent to the root blockjofvith end-sequent

H”,E; — Q"

in which the (v —B) inferenceR that bounds the block is based EhandI1”,E or ©”
contains an expression occurrence basefeﬁ%. But since the original block is isolated
in the original, it is E that must be based i,,,. But thenRis based inA}}, andRis
linked: in particular its side expression in the left spur) must be Iinke@sﬁg1 is linked
too.

Thus we can weaked] in its lowest block if necessary b >; Btl( as a local right
formula (inT), producing®;"; D; remains good by the same argument as the earlier
cases. Thus we can constriet as:

@4-
I A;“m,r’ — A’ ,A>iBY; @, B;*)m
T — A& '

The end-sequent here is simple and balanced, so the whole root block is simple and
balanced. The new inference is linked (in virtue of the linked occurrence of one side
expressmn—A”“w] or By un) so the whole root block is linked. The root block is of course
canceled. Each element Hiy is required because it is an elementliy; and required

in the immediate subderivation; each elemen®gf is linked, because it is an element of
®wm1 and therefore linked in the immediate subderivation.
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To conclude the case, suppose the end-sequemtisfspanned and thdt andA’ are
spanned by’; it follows that same property applies @, so the subderivation is spanned.
Then the end-sequent must also be spanned.

The alternative case h&” € ©. By assumption, it also ha@"‘ eIl. We therefore
define an overallly; and®y d|rectly aslly1 and Oy, respectwely, similarhyl” =
andA’ = A]. To construct the needefY for appropriatdl’ and®’, we simply apply the
induction hypothe3|s ta, for the case tha®) is © andIl} isIT'. The resulting derivation
D suffices.

Having completed the induction, we argue that we can obtain an o@ftdiat is iso-
lated, assuming the origind? is not only isolated but spanned. Apply the inductive result
to D for the casdl’ =I1 and® = ©; sincel” C T andA’ C A we obtain a spanned
derivation?’ ending

ILT — A0
Consider the end-sequent of any block other than the rodX;it is
Ip, E; —; 00

where a corresponding block occurs4n | argue by contradiction that for arfy € Ty

eitherF e IT or F is based in an occurrencefas the side expression of an inferencéin

in which E is also based. (This will show tha? is isolated.) So consider an exceptional

F. Since? is isolated, ifF € I1, F is based in an occurrence Bfas the side expression

of an inference irMD in which E is also based; this inference introduces some path symbol

n which occurs in the label df andE. In 2, E can not be based in such an inference;
otherwiseF would also be based in that inference, sifieeis simple. (We have assumed
thatF is not based in such an inference.) But in this case the expression in the end-sequent
of 2’ on whichE is based must contaip. Because the end-sequent®fis spanned the

form of [T and® is constrained irD, F must occur if1. This is absurd. [

We conclude Section B.2.2 by observing some facts about this construction. Fif3t, let
be a derivation obtained by the construction of Lemma B.7, and supipdseveakened (in
a spanned and balanced way¥® by adding occurrences of global expressions that either
already occur in the end-sequent®f or never occur as global expressiongih Then a
straightforward induction shows th4Y is obtained again fromD” by the construction of
Lemma B.7.

Second, observe that #' is a derivation obtained by the construction of Lemma B.7,
and?” is obtained frontD” by the renaming of Herbrand prefixes (as in Lemma B.5), then
straightforward induction shows thdt’ is obtained again fron®” by the construction of
Lemma B.7.

Third, let?’ be a derivation for which the construction of Lemma B.7 yields itself. Let
v be a prefix and let thH; © be the smallest balanced pair whé&reontains all the carriers
of prefixes ofv introduced in?’. Suppose each expressionlinand® has the property
that at most one inference @ has an occurrence of that expression as a side expression.
Consider a derivatioD” obtained from?’ by weakening globally byT (on the left) and
by © (on the right). LetD* be the result of applying the construction of Lemma B.7
to 9. ThenD* contains any subderivation @ whose end-sequent contaifisand ©
as global formulas. Again this is a straightforward induction; the base case considers a
subderivation ofD’ whose end-sequent contaifisand® as global formulas; in this case
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we apply the first observation. Unary inferences extend the claim immediately. At binary
inferences, one subderivation must be unchanged, by the first observationflsinckd

are introduced on a unique path, ed€¢land® formula never occurs or already occurs in

the end-sequent in that subderivation. Thus the other subderivation necessarily appears in
the derivation obtained by the construction of Lemma B.7.

B.2.3 Block conversion. We now have the background required to perform the con-
version to block structure, and complete the proof of Lemma 3.16.

LEMMA B.8 (LEMMA 3.16). We are given a blockwise eager SCLS derivation D
whose end-sequent is spanned and balanced and takes the form:

I1, —;0

We transform D into a blockwise eager SCLB derivation in which every block is canceled,
linked, isolated, simple, balanced and spanned.

PrROOF Our induction hypothesis is stronger than the lemma. We assume a blockwise
eager SCLU derivatio with end-sequent of the form

I, —;0

in which every block is canceled, linked, isolated, simple, balanced and spanned, such that
that the subproof rooted at arfy —) inference in?D is an SCLS derivation. And we
identify a distinguished expression occurreficin the end-sequent ab which is linked.
By Lemma B.7, it is straightforward to obtain such a derivation from the SCLS derivation
(containing only a single block) that we have assumed. We transfoinio a blockwise
eager SCLB derivation in which every block is canceled, linked, isolated, simple, balanced
and spanned and in whidhis also linked; we perform induction on the number'af—)
inferences inD.

In the base case there are (vo—) inferences, s®@ itself is an SCLB derivation.

In the inductive case, we assurfiewith n (v —) inferences, and assume the hypothesis
true for derivations with fewer. We find an applicatibrof (v —) with no other closer to
the root ofD. We will transform? to eliminateL.

Let 2’ denote the smallest subderivation®fcontaining the full block ofD in which
L occurs. Explicitly, D’ may be? itself; otherwise D' is rooted at the right subderivation
of the highestv —8) inference below.—an inference we will refer to ad. In either
case, our assumptions allow us to identify a distinguished linked exprdssiothe end-
sequent ofD’: either the assumell from D, or the side expression of the infererde
(assumed canceled). Suppdse By is the principal ofL. We can apply Lemma B.5 to
renameAV By to AV B§ in such a way that each symboljinthat is introduced D’ is
introduced by a unique inference there. Now we can infer the following schenta for

DA DB
o, F,IT; T, AV By, Ay —> A;00,0 Iy, F,IT; T, AV By ,BY — A;00,0 .
ITo, K, IT;T,AV B; — A;0,0
Q)L
Ip,F; —; 00

That is, the subderivation @@’ belowL is?D"; the right subderivation above(in which B
is assumed) i9B; the left isDA.
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We will use the inferences from" to construct alternative smaller derivations in place
of D and DB. By @, indicate the minimal set of formulas required in additionGig
to spanAk: by IT indicate the minimal set of formulas required in additiodlg F and
AE‘( to ensure that the pair given ﬂ?o,H’,F,AE‘( and ©p,®’ is balanced. (This is well-
defined because the sequélit F — Oq is already spanned and balanced.) Now we can
construct two new subderivatiod¥” and 2’8 given respectively as follows:

I+ A + DA+ O
Ty, F, TT, T, AL ; T, AV BY , AL —> A;0,0,0

T, F.ILIT, AT AV Bl —= 4:05,0,07 %97
T+ Ay + D+ €
To, F, I1, Ay ; —; 00,
I+ B + DB+ @]
I gH- LBt — A '
o, F, ILIT, By ; T, BV By, By 4:00,0,9" \ ide

o, F, I, 1T, B I, BVBY, — A;00,0,0
Il +BY + D~ + €
HO) F7 H/, Bgl(, _>;®O,@/

That is, we weakerD” and DB by global versions of the side expression of inferehce
throughout theitowest blocks; we apply a (decide) inference to obtain a new subderivation
to substitute for the subderivation rootedLain D-. We weaken by sufficient additional
formulas globally in thdowest blocks to ensure that the end-sequents of these derivations
are balanced and spanned.

Since we have changed only the lowest block here, and have ensured that this block
remains isolated and canceled, we can now apply Lemma B.7 to obtain corresponding
derivationsD{* andDP in which every block is canceled, linked, isolated, simple, balanced
and spanned. In light of our first observation about the construction of Lemma B.7, we can
see that the inferences 6 are preserved up to the new (decide) inference. And in light
of our third observation about the construction of Lemma B.7, given the unique inferences
introducing®q andTTy, this (decide) inference must be preservedph ThusA§‘< is linked
in D and for analogous reasoBY is linked inDE. These derivations satisfy the induction
hypothesis as deductions with fewer thafiv —) inferences; we can apply the induction
hypothesis WithA;‘( and Bgl( as the distinguished linked formulas to preserve. This results
in SCLB derivations? and‘B with the same end-sequents®% and 2’8, in which every
block is canceled, linked, isolated, simple and spanned, and in which respeet[vabd
BY are linked.

We need only one ofl and‘B to reconstructl’ using blocking inferences. For example,
we obtain a proof usingv —B) by using3 in place ofD® as schematized below:

DA B
To, F,IT; T, AV BY, Ay — A;00,0 Mo, F. I, BY —= 00,0 g
T, FILT,AVBY — A;60,0 L
£DL
o, F; —;60

In a complementary way, we obtain a proof using—8) by using4 in place of D* as
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schematized below:

DB a
I, F, T, T, AV By, BY — A; 00,0 I, F, I, Al —> B, 0’ 5
Tlo, F,IT,AVBY — 4,00,0 VoL
Q)L
I, F; —; 00

Note that the root block is isolated in both cases, because we have added only as many
formulas tolT’ and®’ as are necessary to obtain a balanced, spanned sequent; the remain-
ing expressions originate in the end-sequent of the previous block, which we know was
isolated. Thus, in both cases, we have blockwise eager derivations in which every block is
canceled, isolated, simple, balanced and spanned, in which fewen {han-) inferences
are used, and in which only the root block may fail to be linked. We thus need to apply
the construction of Lemma B.7 again to ensure that the root block is linked. It is possible
for the distinguished occurrence Bfnot to be linked in one of the resulting derivations,
but not both. To see this, consider applying the construction of Lemma BIY itself,
as a test: the result will b®’ since?’ is linked. Starting from»” and DB and axioms
elsewhere, each inference 4 corresponds to an inference in the alternative derivations
schematized above. We can argue by straightforward induction that no formula is linked in
the reconstructed’ unless it is also linked in the one of the corresponding reconstructed
alternative derivations. AnH is linked in 2.

Call the derivation in whicli is linked D”; we substituteD” for D’ in D. SinceF re-
mains linked in®”, when we do so, we obtain a blockwise eager SCLU derivation with an
appropriate end-sequent, with fewer origifiel—) inferences, and in which every block
remains canceled, linked, isolated, simple, balanced and spanned, and in(whieh
inferences lie at the root of SCLS derivations. Applying the induction hypothesis to the
result gives the required SCLB derivatiori]

B.3 Proof of Lemma 3.17

LEMMA B.9 (LEMMA 3.17). Given a blockwise eager SCLB derivation D, with end-
sequent
I, —;0
in which every block is linked, simple and spanned, we can construct a corresponding
SCLP derivation of the same end-sequent in which every block remains linked.

PROOFE We again use an induction hypothesis stronger than the lemma. Given the
conditions of the lemma, we construct an SCLP derivati¥rin which four additional
properties hold:

—the end-sequent @b’ takes the form
ILT —- A0
with TV C T andA’ C A;

—P’ contains in each segment or block all and only the axioms of the corresponding
segment or block of;

—wheneverD’ contains a sequent of the form
;1" — F, 0
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F is the only right expression on which an axiom in that block is based; and
—wheneverD’ contains a sequent of the form

I1*;F — A*; ©"
thenF is the only left expression on which an axiom in that segment is based.
In the base casd) is
;T Af —= B}, A; 0
and?' is
;A —BY;0
Supposing the claim true for proofs of heidghtconsider a proof> with heighth+1. We
consider cases for the different rules with whibtcould end.

The treatment of — A) is representative of the case analysis for the right rules other
than(—>). D ends

I, — AL L AABY A0 I, — BY ,AABY,A;©
IT, — AABY,A© -

(It is a consequence of Lemma B.3 that in the initial derivation there is an empty local
area.) We simply apply the induction hypotheses to the immediate subderivations. If the
resulting derivations end with (restart), consider the immediate subderivation of the results,
otherwise consider the results themselves. These derivations end

I1,—C;0

I, — D;06

We must haveC = Al ; we know from the structure ab thatAl is linked, andAy could
not be linked inD unlessC = Ay since?’ shows that all of the axioms i derive from
C. For the same reasdd = B;P(. So we can combine the resulting proofs by(an A)
inference to give the needed.

The case of—>) proceeds similarly, but relies on an additional observatiBrends

Dy
LA — A A> BB, ©
IT;— A A>{B};0

—>

We apply the induction hypothesis #; and eliminate any final (restart) inference. This
gives us a derivatioD; of

LA — E;BY, . ©
If we know that theB-side expression of this inference is linked in this block, then we
can conclude, as before, thatis an occurrence of the expressinﬁ'_fm. We show this
as follows. We know from the structure @b only thatone of the A-expression and the
B-expression must be linked. However, it is straightforward to show that no left expression
Aﬁlam is linked in an SCLP derivation with a local ga&} unlessun is a prefix ofv. (The
argument is a straightforward variant for example of [Stone 1999, Lemma 2].) Siige
simple and spanned, must be neWBf(‘?lm is the only expression whose associated path
term hagu as a prefix.
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Thus, we construeD’ using an SCLP inference as
Dy
o Mmoo gHn
I A s = By B m: © NS
I, — A>{B};0

Now supposeD ends in a left rule other thafp—S) or (Vv —8B). We take(A —) as a
representative case; th@nis:

Dy
I, T,AABY, AL BY —= A0
ILT,ANBY — A0

—

Apply the induction hypothesis t®. If the result ends in a (decide) inference, %t be
the immediate subderivation of the result; otherwiseZietbe the result itself.D; is an
SCLP derivation with an end-sequent of the form:

ILE—F,06

E must be a side expression of the inference in question,(ere); otherwise the corre-
sponding inference could not have been linke@inOne of the inference figurég. — )
and(A —g) must apply depending on which side expres&as. For concrete illustration,
we supposé& is Ak ; then we construct’ as:
Dy
LA, —F;0
MAAB, —F,0/ t

Next, we suppos@® ends in(>—S), as follows:
Dy Do
I, — AL, A0 I;T,ADBY,BY — A0
MT,ASBE — A0 -

_s

We begin by applying the induction hypothesis to the subderivatiprfter stripping off
any (restart), we obtain an SCLP derivati® with end-sequent
I,—C;0

By the usual linking argument, the expressidmust be identical t@\;. We then apply the
induction hypothesis also to the right subderivation. Again, after stripping off any (decide),
we get an SCLP derivatiof, with end-sequent

IT;D — E;®

By the usual linking argumenD) must in fact be identical tcBgl(. Thus we obtain the
needed?’ by combining the two derivations by the SCI(B—) rule:
D Dy
I, — AL; 0 I1;BY — E;0
IADBY —E;0

o—
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Finally, for (v —B), we consider the representative caseads schematized below:
Dy D
IL;T, Ay — A;© 1, BY; —; 0
ILT,AVBY — A;0

V —>E

We begin by applying the induction hypothesis4m, the subderivation in the current
block; if necessary, we strip off any initial (decide) inference, obtairigvith an end-
sequent that by linking takes the form:

I, Al —E;0

Next, we apply the induction hypothesis to the other subderivation. Since both local areas
are empty in the input subderivation, they remain empty in the result subderivation: this
gives D, with end-sequent:

1, BY; —; 0’
The two subderivations can be recombined by the SCLP-_ ) inference to obtain the
neededD’:
Dy Dy
I, Ay — E;0 IT,BY; —; 0
ILAVBY;,— E;©

V —L
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