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Abstract

Intuitionistic proofs can be segmented into scopes which describe when
assumptions can be used. In standard descriptions of intuitionistic logic,
these scopes occupy contiguous regions of proofs. This leads to an ex-
plosion in the search space for automated deduction, because of the
difficulty of planning to apply a rule inside a particular scoped region of
the proof. This paper investigates an alternative representation which
assigns scope explicitly to formulas, and which is inspired in part by
semantics-based translation methods for modal deduction. This calcu-
lus is simple and is justified by direct proof-theoretic arguments that
transform proofs in the calculus so that scopes match standard descrip-
tions. A Herbrand theorem, established straightforwardly, lifts this
calculus to incorporate unification. The resulting system has no imper-
mutabilities whatsoever—rules of inference may be used equivalently
anywhere in the proof. Nevertheless, a natural specification describes
how �-terms are to be extracted from its deductions.
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1 Background
This paper is an exploration of the relationship between scope, proof structure and
proof search in intuitionistic logic. The links between these notions can be framed
in an intuitive way.

1.1 Scope and structure
In intuitionistic proofs, information that is assumed as part of proving some state-
ment can only be used in proving that statement. Intuitionistic proofs derive their
discipline of scope from this constraint. The scope of an assumed formula identifies
the statements to whose proof the assumption may contribute. The scope of an
assumed value identifies the statements which may be instantiated to refer to this
value. Conversely, the scope of a formula to be proved identifies the assumed values
at which it may be instantiated and the assumed formulas that may contribute to its
proof. Both the initial steps that link assumptions and conclusions and the logical
rules that combine proofs must be formulated to enforce this discipline of scope.

The intuitionistic discipline of scope underlies the Curry-Howard isomorphism,
which allows functional programs to be extracted from intuitionistic logic deduc-
tions (Howard, 1980). Assumptions in intuitionistic proofs correspond to variables
in functional programs. The fact that an assumption in a proof has a scope that
determines where it may be used corresponds to the fact that a variable in a program
has a syntactic scope in which it is bound.

The same constraint can be applied in logic programming to implement modules
using intuitionistic implication and to create local variables using intuitionistic
quantifiers (Miller, 1989). The discipline of scope restricts the use of these assumed
facts and values to the appropriate locality.

To exploit these features for practical program synthesis (as in (Martin-Löf,
1982; Constable et al., 1986)) or logic programming (as in (Nadathur, 1993)), it
is not enough merely to be able to infer automatically if a given formula is an
intuitionistic theorem. These tasks call for the automatic derivation of intuitionistic
proofs and the analysis of automatic intuitionistic proof search.

In intuitionistic proof-theory, we are used to inference rules that enforce this
discipline of scope by a discipline of structure. This is what happens for example
in the usual sequent calculi for intuitionistic logic, such as that in Figure 1. Each
sequent contains on the right a single statement C to be proved and on the left a
multiset of assumptions Γ that may be used to prove it. Transitions between scope
arise when there is a difference in assumptions between the premise sequents of a
rule and its result sequent. For example, the (!�) rule describes the derivation of
A � B from assumptions Γ in terms of a derivation with different assumptions:

Γ;A - B
Γ - A � B!�

Above, we have a new scope in which the assumption A may be used, as encoded by
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Γ;A - A Γ;? - A

Γ;A ^ B;A;B - C
Γ;A ^ B - C ^ !

Γ - A Γ - B
Γ - A ^ B ! ^

Γ - A
Γ - A _ B

! _1
Γ - B

Γ - A _ B
! _2

Γ;A _ B;A - C Γ;A _ B;B - C
Γ;A _ B - C _ !

Γ;A � B - A Γ;A � B;B - C
Γ;A � B - C �!

Γ;A - B
Γ - A � B!�

Γ;8xA;A[t=x] - C
Γ;8xA - C

8 !
Γ - A[a=x]
Γ - 8xA

! 8y

Γ;9xA;A[a=x] - C
Γ;9xA - C

9 !y Γ - A[t=x]
Γ - 9xA

! 9

Figure 1: A cut free sequent calculus for intuitionistic logic, LJ. y For (! 8) and
(9 !), a must not appear in the conclusion.

the addition of A on the left; but this new combination of assumptions is available
only to prove B, as encoded by the lone B on the right. Other rules simply describe
inferences that may be performed within particular scopes; the assumptions made
available in the premise sequents are the same as those available for the result
sequent. (! ^) is an example:

Γ - A Γ - B
Γ - A ^ B ! ^

In this method of assigning scope, the position of a rule-application in a proof
determines the scope of any new assumptions or new goals for proof that the rule-
application introduces. Viewing the proof as a tree, the path from the root to the
site of the rule-application contains blocks of inferences performed in a common
scope punctuated by inferences that change scope. The sequence of rules that
change scope on this path establishes the scope in force when the rule applies. We
can therefore refer to systems like that of Figure 1 as structurally-scoped sequent
calculi.

Sometimes, a rule-application must take narrow scope in a proof, to respect
the scope of assumptions in which it depends. When the proof is presented in a
structurally-scoped calculus, the rule-application must appear above the rules that
introduce that scope. For example, consider a proof of (C � B_A) � (C � A_B);
the disjunction B _ A depends on the assumption of C. The proof is shown in
(1); ellipsis (: : :) in sequents indicates that certain assumed formulas have been
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suppressed for compactness and clarity.

8>>>>>>><
>>>>>>>:

8>>>><
>>>>: : : : ;C - C

: : : ;A - A
: : : ;A - A _ B

! _1
: : : ;B - B

: : : ;B - A _ B
! _2

: : : ;B_ A - A _ B _ !

C � B _ A;C - A _ B �!

C � B _ A - C � A _ B !�

- (C � B _ A) � (C � A _ B) !�

(1)

We identify three scopes in this proof, corresponding to a sequent in which no
assumptions are available (the root), a sequent in which the assumption of C � B_A
is available (inside the outer brace), and a sequent in which assumptions of C and
C � B _ A are available (inside the inner brace). (In not regarding (_ !) as a
change of scope, we anticipate the results of section 3.2.) In the innermost scope,
the proof proceeds by case analysis, by applying (�!) and (_ !) rules to the
assumption C � B _ A. We could attempt to apply these two rules in either of
the scopes that make that assumption available, but no proof could be built if the
rules were applied in the outer scope. In the outer scope, C is not available, so the
leftmost subproof would involve the impossible goal of showing C � B_A - C.

In other cases, a rule-application must take wide scope, because the indefinite
information it encodes must be resolved before nested assumptions can be made.
Again, in the structurally-scoped calculus, this constrains the position in the proof
tree at which the rule-application occurs. For example, in proving B _ A � (C �
A)_ (C � B), the alternatives for the disjunction B_A determine which implication
should be proved, C � A or C � B. The proof appears in (2).

8>>>><
>>>>:

fB _ A;B;C - B
B _ A;B - C � B!�

B _ A;B - (C � A) _ (C � B)
! _2

fB _ A;A;C - A
B _ A;A - C � A!�

B _ A;A - (C � A) _ (C � B)
! _1

B _ A - (C � A)_ (C � B) _ !

- B _ A � (C � A)_ (C � B) !�

(2)

We identify four scopes in this proof. There is the root where no assumptions
are available, an inner scope in which B _ A is available, and two further scopes,
where C is available, once in conjunction with the B case, and once with the A case.
Consider the left C scope. Once C is assumed, the structural discipline of scope
forces all subsequent reasoning to contribute to the proof of B. Now, we might have
attempted to apply the (_ !) rule here, instead of lower, since the assumption of
B _ A remains available here. Since the disjunction B _ A must contribute not only
to that proof but to the proof of C � A (and A), the proof could not be completed in
this case.
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1.2 Search and structure
Sequent calculus can be seen as a method for formalizing the process of proof
search in natural deduction. Natural deduction systems express the Curry-Howard
isomorphism most concisely: natural deduction proofs correspond to �-terms both
in syntax and in normalization (Prawitz, 1971). However, natural deduction raises
difficulties for describing proof search strategies. Natural deduction involves two
kinds of rules, introduction and elimination rules, that should be used in different
circumstances in proof search. Elimination rules should be used to decompose
assumptions, introduction rules to assemble conclusions. To use them otherwise
requires the interpreter to guess a needed formula from among all possible formulas
of the logic. This distinction is made explicit in sequent systems, which separate
assumptions and conclusions on different sides of the sequent - , and use different
rules to decompose the logical connectives on either side.

Sequent systems therefore provide a straightforward framework for proof search.
In this framework, the structure of a proof corresponds to the order in which rules
should be applied during proof search. The algorithm to search for proofs is simply
to build sequent proofs from the root up, repeatedly extending an unfinished branch
of the proof by applying a sequent rule that extends the branch. The choice of which
rule to apply is nondeterministic; we might apply some finite lookahead to help
identify rules that make progress toward completing the proof, but in general we
must backtrack among alternative choices for extending the proof. This algorithm
for sequent search serves as a jumping off point for further optimizations, including
tableau (Smullyan, 1968) and matrix proof methods (Andrews, 1981; Bibel, 1982).

1.3 Scope, search and structure: a conflict
Following these two intuitions, position in a sequent calculus proof identifies both
the scope of a rule-application and the time at which the rule-application must be
considered in proof search. The dual roles of position are in conflict. From the
perspective of proof search, we would like to apply a rule only when we recognize
that it is needed. However, as examples (1) and (2) show, we must consider applying
a rule in each of the scopes possible for it. In the structurally-scoped calculus, such
scopes correspond to positions in the proof—positions that may represent earlier
stages in proof search than the stage when the need for the rule is recognized.

For example, consider a variant of the theorem of (2):

B _ A;B ^ C � F;A ^ C � E - (C � E) _ (C � F)

Again, to prove this it is necessary to apply (_ !) at wide scope, before any
assumption of C, because B and A contribute to the proofs of different implications.
But now these contributions are indirect and can be identified only on the basis of a
chain of inferences performed in the nested scope. For example, B combines with
C to establish the conclusion F by (�!). Recognizing such indirect connections
can be as hard as constructing the proof itself. In first-order intuitionistic logic
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in particular, there is no bound on the length of inference chain in a nested scope
that may be required to link the result of rule applied in a wide scope to a needed
conclusion. In general then, automated methods must be prepared to apply a rule
before they know whether the application will even be needed! The regime for
imposing scope on proofs means that proofs can no longer be constructed in a goal-
directed manner. This is a severe problem in practice, where policies for avoiding
or guessing rule-orderings in particular situations are typically required (Tennant,
1992).

The difficulty is exacerbated because it is impossible in general to apply all
possible rules in an outer scope before moving in to a nested scope. The decision to
apply the rule to change scope must be undertaken when other possible inferences in
the outer scope remain. Should proof search fail subsequent to this decision, we must
reconsider applying some of these possible inferences. This means backtracking
to a stage when the proof contained an open branch in this scope—so it means
discarding (then perhaps repeating) all search attempted since changing scope.

2 Overview
Considerations of search invite us to decouple scope in intuitionistic proofs from
position. We shall see in this paper how we can accomplish this by making the dis-
cipline of scope explicit, so that the scopes of terms, formulas, and rule-applications
are represented overtly by terms in the proof. We can refer to proof systems so
obtained as explicitly-scoped sequent calculi for intuitionistic logic.

By allowing a rule to be applied in a given scope at any point in proof search,
explicitly-scoped calculi eliminate the difficulties observed above. Explicit scoping
allows rules at wide-scope to be selected locally on the basis of an immediate con-
tribution to the proof (possibly at nested scope) and to be added to the proof without
revising deductions at nested scope that have been performed already. However,
despite the potentially unorthodox order in which they are built, explicitly-scoped
proofs correspond directly to ordinary natural deduction proofs. Explicitly-scoped
sequent calculi therefore offer a framework for automatically deriving �-terms and
for regulating the combination of modular information in logic programming proof
search.

The central results of this paper substantiate these observations. First, in sec-
tion 3, we present simple and direct arguments based on permutabilities of inferences
that establish a constructive correspondence between proofs in an explicitly-scoped
system and proofs in the structurally-scoped one. We obtain a lifted version of this
calculus in section 5.1 using a standard construction (Lincoln and Shankar, 1994);
unification in the lifted calculus constrains the scope of rule-applications dynami-
cally in the course of proof search. Then, we outline in section 5.2, how �-terms
can be extracted from the lifted, explicitly-scoped sequent deductions by adapting
the techniques proposed by (Felty, 1991).

These results strengthen existing semantic techniques by giving them a con-
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structive, proof-theoretic foundation. In this overview, we motivate the distinction
in two ways: by contrasting the intuitions underlying semantic and proof-theoretic
derivations of explicitly-scoped calculi, and by reviewing a parallel distinction in
first-order classical logic between Herbrand’s theorem and the Skolem-Herbrand-
Gödel theorem.

We have found this alternative syntactic representation of scope extremely useful
in practice, in part because of the further results it enables and for its applications to
logic programming and program synthesis. For example, invariants of the sequent
calculus can be used to devise efficient algorithms for constraining scopes (Stone,
1997a). Moreover, new logical fragments can be shown to have uniform proofs in
this system, giving a logical and syntactic characterization of logic programming
languages with modules and indefinite information; see section 5.1 (Further work
along these lines is currently in progress).

2.1 Semantic vs. proof-theoretic intuitions
Any semantics for intuitionistic logic allows us to reason classically about intuition-
istic provability, as follows. The semantics specifies a class of models, where each
model contains some set of points at which objects exist and at which relations hold.
The semantics also describes how formulas are evaluated for truth and falsehood
with respect to these points according to compositional rules that can be expressed
using classical formulas. (For a survey of intuitionistic semantics see (Troelstra and
van Dalen, 1988a), chapter 2 and (Troelstra and van Dalen, 1988b), chapter 13.)

Given the semantics, a demonstration that a formula is valid can proceed by
translation: each formula is labeled with a term that represents its point of evaluation
and is decomposed in keeping with the rules for its semantic evaluation according
to the inference rules of classical logic. In classical logic, propositional rules can
be applied in any order with the same effect. Thus by labeling formulas and using
classical inferences, we can eliminate the interdependence of scope and structure
that complicates proof search for structurally-scoped systems like LJ.

In particular, in a Kripke model for intuitionistic logic (Kripke, 1965), the points
of evaluation are called possible worlds. Conjunction, disjunction and existential
quantification are interpreted classically at the world of evaluation. Implication
and universal quantification must hold not only at the world of evaluation but for
all worlds accessible from the world of evaluation under a transitive, reflexive
accessibility relation.

In Kripke semantics, each world can be identified by a sequence of transitions
of accessibility required to reach that world. This suggests using terms representing
such sequences as labels in translation theorem-proving. In the earliest such system,
Fitting represents transitions of accessibility as integers and paths of accessibility
as integer strings (Fitting, 1969; Fitting, 1983). Smullyan uses variables instead
of integers to represent transitions and thus obtains a closer correspondence with
classical deduction (Smullyan, 1973). Wallen shows how theorem-proving tech-
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niques for classical logic, such as matrix proof methods (Andrews, 1981; Bibel,
1982) and structure-sharing (Boyer and Moore, 1972), can be applied to Smullyan’s
system (Wallen, 1990). After further study, these systems can now be regarded
as instances of more general techniques of semantics-based translation (Ohlbach,
1991) and labeled deductive systems (D’Agostino and Gabbay, 1994).

These works provide new inference systems and semantic demonstrations that
these systems allow the same theorems to be proved as a structurally-scoped intu-
itionistic sequent calculus. But they leave open the question of how to extract a
proof in the structurally-scoped system from a theorem derived in the new system.
Indeed, the standard interpretation of?, as a formula true in no world of any Kripke
model, could make this extraction genuinely problematic (see section 3.3.1).

Our results provide constructive correspondences between path-based explicitly-
scoped proofs and structurally-scoped proofs. In addressing this question, the
present result provides a proof-theoretic strengthening of existing work. In fact, to-
gether with the soundness and completeness theorems for classical logic, the present
result constitutes an alternative demonstration of the soundness and completeness
of LJ proofs under a variant of Kripke semantics: the fallible semantics, where ?
may be true at selective worlds in a model, provided all other atomic formulas are
true there (Veldman, 1976).

The strengthening of results corresponds to a strengthening in the interpretation
of the labels of formulas. In path-based translation, the elements of a term �
correspond to transitions between possible worlds, and the association between a
term � and a statement p means that p is to be evaluated in the semantics at a world
represented by �. In virtue of our new constructive correspondence, the elements
of a term � correspond directly to rule-applications that effect a change of scope
in structurally-scoped proof. As a sequence, � describes the sequence of scope-
changing rule-applications that apply along some path in the proof tree. Labeling
p with � indicates that the rule that introduces p should appear in the structurally-
scoped proof at the scoped location identified by �. By rearranging a labeled proof
so that the position of inferences in the tree matches the positions named by their
labels, we can transform an explicitly-scoped proof into a structurally-scoped proof.
Thus, instead of appealing to semantic intuitions, we can see that the labeling terms
are a purely syntactic notation that allows intuitionistic deductions to be built in an
incremental way.

2.2 Herbrand’s Theorem as a parallel
A parallel with these results can be found in Herbrand’s theorem for classical
logic, which offers a device for reasoning about the right scope for applications of
quantifier rules independent of the order in which those rules appear in the proof.
(Lincoln and Shankar, 1994) offers a demonstration of the generality of this way of
looking at Herbrand’s theorem.

The problem is similar to the one just described: The quantifier rules in Figure 1
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involve a link between structure and scope in deductions. The (! 8) and (9 !)
impose a requirement that the eigenvariable substituted for the bound variable must
not occur elsewhere in the sequent to which the rule applies:

Γ;9xA;A[a=x] - C
Γ;9xA - C

9 !y

Because of this condition, we may regard the subproof above the rule as representing
the scope of the eigenvariable. Above this rule, the other quantifier rules (8 !) and
(! 9) may perform substitutions into formulas so as to include the new variable a.
Such rules then cannot be permuted below the introduction of a, without violating
the eigenvariable condition.

As extended in (Shankar, 1992; Lincoln and Shankar, 1994), Herbrand’s theo-
rem describes alternative sequent rules for quantifiers that substitute complex terms
for bound variables instead of eigenvariables. These terms, called Skolem or Her-
brand terms, are representations of eigenvariables; they have the form f(t1; : : : ; tn)
where f is a symbol associated with an occurrence of a quantifier and t1; : : : ; tn is
a sequence of terms specified by the logic. This sequence is designed to include
as subterms representations of all the eigenvariables that would have to appear in
the sequent when the quantifier rule applied—no matter what rearrangements to the
proof were performed. In classical logic, the only obstacle to such rearrangement
is the impossibility of applying a rule to a subformula lower than any inference
involving the formula that contains it. The sequence t1; : : : ; tn therefore lists the
instantiations made as part of deriving the quantified formula to which the rule
applies. In structurally-scoped calculi for intuitionistic and linear logic, additional
terms are required to reflect the different scopes of quantifiers at different positions
in the proof.

The structure of Herbrand terms induces a partial ordering on rules. If a variable
is instantiated to t at rule L and a variable is instantiated to a term that properly
contains t at rule H, then L should occur lower than H. And among rules that
instantiate a variable with a term t, the rule that constructs t as a representation
of an eigenvariable should occur lowest. The proof of the theorem shows how to
rearrange the proof so that the position of quantifier rules respects this ordering. At
this point, the Herbrand terms can be replaced by variables that satisfy eigenvariable
conditions when necessary.

This result links instantiations of variables and the possibility of reordering in-
ferences: it chooses instantiations in a way that eliminates the need for backtracking
among orderings of quantifier inferences. It therefore offers a greater potential for
cutting down proof search than a result describing correct instantiations to skeletons
of proofs in which the order of rules is fixed, as in (Voronkov, 1996). Herbrand’s
theorem can also be contrasted with a weaker result, the Skolem-Herbrand-Gödel
theorem. The latter theorem shows how a problem of first-order provability can be
related to a set of problems of propositional provability by using instantiations with
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functional terms. This theorem has been extended beyond classical logic in (Fitting,
1996), using an extension to the logical syntax. Again, while this result offers a
way to derive theorems, it does not directly offer a way to obtain proofs.

3 Scoping by Position: A Sequent Presentation
This section describes and verifies a first explicitly-scoped sequent calculus for
intuitionistic logic. The calculus is based on two intuitions: first, that the scope
transitions of structurally-scoped intuitionistic proofs are associated precisely with
the rules for implication and universal quantification; and second, that the scope of
a rule-application is given by the sequence of scope-changing rules that occur on
the path from the root of the proof to the site of the rule-application. Our strategy
is simply to name each rule-application that creates a scope, using a fresh variable
(following to the first intuition), and to label each formula in the proof with a string
of names recording the scope of the rule that introduced it (following the second).

For example, suppose the (!�) rule applies to a formula A � B labeled by �.
In the structurally-scoped proof, this rule makes a transition from the scope where
A � B is introduced, namely �, the scope where to a new, nested scope, which
we name ��. So the rule makes available an assumption of A labeled �� and a
conclusion of B, also labeled ��. Because scope in this rule is made explicit, there
is no need for a further structural mechanism to enforce the intuitionistic connection
of A and B.

Dually, suppose the (�!) rule applies to a formula A � B labeled by �. The
assumption of A � B is made at a scope named by �, but this assumption once
made can persist into nested scopes. So if we derive A with a label � that has � as a
prefix—corresponding in any scope nested within �—we can conclude B in scope
�. For similar reasons, at leaves of the proof, where we match an assumption with
an identical conclusion, the label of the assumption must be a prefix of the label of
the conclusion.

The structure of the section is as follows. In 3.1, we make some observations
about the sequent calculi we will be studying. We adopt a treatment of structure in
sequents that makes permutation of inference particularly easy to describe. Then,
in 3.2, we substantiate the claim that the scopes of intuitionistic logic proofs are
associated with exactly the rules for implication and universal quantifiers. The
section introduces a sequent calculus in which the right of a sequent is a multiset
of formulas and the sequent rules for disjunction and existential quantifiers match
those for classical logic. The new calculus offers a simple opportunity to introduce
the technique of using permutations of inference to establish the correspondence
between proofs in different systems.

Section 3.3 formally describes this explicitly-scoped sequent calculi for intu-
itionistic logic. Section 3.4 gives transformations between proofs in this system
and proofs in the structurally-scoped system. These transformations exploit the
intuitions behind the annotations in a straightforward way. In particular, to trans-
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form a structurally-scoped proof to an explicitly-scoped proof, we simply label the
occurrences of formulas in it according to the scoped positions specified by the
structure of the proof. Meanwhile, to transform an explicitly-scoped proof into a
structurally-scoped proof, we rearrange the inferences in the explicitly-scoped proof
so that the positions of rule-applications match the labels of their formulas.

3.1 Preliminaries
In the system of Figure 1, a sequent is written Γ - A, where Γ is a finite multiset
of formulas and A is a single formula. A derivation is a tree of sequents derived
from initial (or axiom) sequents according to the rules of Figure 1. We will also
call derivations proofs, provided no confusion with meta-level argumentation about
derivations (another kind of proof) might result. The root of a derivation is called
its end-sequent. If a rule applies to a formula A occurrence in the end-sequent of
derivation D, we call A the principal formula of the rule-application, and we call
the designated occurrences of the immediate subformulas of A in the immediate
subderivations of D the side formulas of the rule-application. For quantifier rules,
the variable a introduced is the eigenvariable of the rule.

The sequent calculus of Figure 1 is given as G3a in (Kleene, 1952) and as
GK�;^;_;8;9;?

i in (Gallier, 1993). It reflects a particular approach to the treatment
of structure in sequents, which we will adopt throughout this paper. The calculus
dispenses with the rule of contraction:

Γ;A;A - ∆
Γ;A - ∆ C

in favor of the preservation of principal formulas of rules in subderivations. This
automatic duplication of formulas streamlines and localizes the representation of
reuse of premises (without this, in converting sequent proofs to natural deductions,
intermediate results will first be weakened, then contracted); and in fact, duplication
falls out of a natural logical specification of the sequent system (as in (Felty, 1991)).
The calculus also dispenses with weakening:

Γ - ∆
Γ;A - ∆ W

because the axiom rule allows any finite multiset of formulas on the left in addition
to the formula that agrees. Instead of repeatedly weakening the end-sequent of
a derivation D by formulas Λ using a structural rule, we can define a derivation
Λ + D obtained from D by replacing the left multiset Γ of every sequent in D by
the multiset union of Λ and Γ. As long as no eigenvariable of D occurs free in Λ,
Λ +D is also a correct derivation.

Because the sequent calculus avoids structural rules, it is simple to describe
interchanges of logical rules in this calculus. Adjacent logical inferences are applied
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Γ;A - A;∆

Γ;A ^ B;A;B - ∆
Γ;A ^ B - ∆ ^ !

Γ - A;A ^ B;∆ Γ - B;A ^ B;∆
Γ - A ^ B;∆ ! ^

Γ - A;B;A _ B;∆
Γ - A _ B;∆ ! _

Γ;A _ B;A - ∆ Γ;A _ B;B - ∆
Γ;A _ B - ∆ _ !

Γ;A - B
Γ - A � B;∆!�

Γ;A � B - A;∆ Γ;A � B;B - ∆
Γ;A � B - ∆ �!

Γ;8xA;A[t=x] - ∆
Γ;8xA - ∆ 8 !

Γ - A[a=x]
Γ - 8xA;∆

! 8y

Γ;9xA;A[a=x] - ∆
Γ;9xA - ∆

9 !y Γ - A[t=x];9xA;∆
Γ - 9xA;∆ ! 9

Figure 2: A cut free sequent calculus for minimal logic, LMM. y For (! 8) and
(9 !), a must not appear in the conclusion.

in succession, so that a higher inference H is applied at the root of the immediate
subderivation of a lower inference L. (No structural rules intervene.) If a side
formula of L is not the principal formula of H, we may attempt to replace the
derivation of the end-sequent of L by a new derivation of the same end-sequent with
H at the root, followed immediately by L, capped by subderivations copied from
the original derivation (but possibly weakened). Performing such a replacement
constitutes an interchange of rules L and H and demonstrates the permutability of
L and H; see (Kleene, 1951). Such replacement is not always possible because of
structural conditions L and H impose; in that case the inferences are impermutable.

Since structure is treated implicitly, it is also possible to think of the left of a
sequent as a set rather than a multiset of formulas. While simpler now, a set-based
formulation complicates the translation from sequent proofs to natural deduction
proofs, because the translation calls for several occurrences of the same formula to
appear, labeled with distinct proof-terms.

3.2 Refining the structural discipline of scope
In justifying explicitly-scoped calculi, we will use not LJ but a somewhat less
familiar sequent system, LMM, given in Figure 2. The use of LMM instead of LJ is
a convenience which makes transparent the way that scoped regions are created in
intuitionistic sequent proofs, exactly at (!�) and (! 8) rules. This transparency
makes the correctness of the system presented below easier to see and to show.

LMM is a sequent calculus presentation of minimal logic—the fragment of
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intuitionistic logic without negation or an absurdity rule.2 Following (Fitting, 1969),
this formalization localizes the specifically intuitionistic character of the system in
the (!�) and (! 8) rules. (The particular presentation above restricts the system
GKT �;^;_;8;9;?

i of (Gallier, 1993) to minimal logic.) In LMM, unlike in LJ, the
right of a sequent is a multiset of formulas, and the same structural conventions
apply on the right and the left. In particular, as before, weakening is built into initial
sequents, while contraction is built into inference figures.

LMM exploits these multiple conclusions to give the same sequent rules for
most connectives that the connectives have in classical logic. (The sequent calculus
for classical logic, LK, also has multiple formulas on the right in sequents.) For
example, instead of LJ’s two right rules for disjunction, LMM has a single (! _)
rule:

Γ - A;B;A _ B;∆
Γ - A _ B;∆ ! _

This rule leaves both disjuncts available and thereby allows the choice of which
disjunct is to be proved to be delayed.

The difference with classical sequent calculus lies in the (!�) and (! 8) rules,
which apply to deductions where only their side formula appears on the right in the
end-sequent, for example:

Γ;A - B
Γ - A � B;∆!�

These are the rules where assumptions are made; discarding the right formulas
isolates the subderivation in which the assumption is used, and thereby ensures
that the use of any assumption respects its scope. Alternatively, this restriction
introduces impermutabilities into the logic by eliminating the possibility of delaying
the resolution of disjunctive possibilities until above these rules. Note that since
formulas are discarded, to construct a derivation from D that weakens by Λ on the
right (writtenD+Λ), we must add Λ to the right of just those sequents in D that do
not lie above an application of (!�) or (! 8).

The correctness of LMM is typically shown by a simple argument that shows
how LMM proofs can be recursively translated to proofs in LJ in which cuts may
appear. Then, the cut-elimination theorem can be used to reduce these proofs to
cut-free proofs (cf. (Gallier, 1993)). We can also show the correctness of LMM by
permuting inferences.

2Minimal logic shares with intuitionistic logic the properties of scope relevant for logic program-
ming and program synthesis. Intuitionistic negation can be simulated in minimal logic by translating
all goal subformulas A into A _ ?. In fact, as discussed in more detail in section 3.3.1, other
treatments of intuitionistic negation are problematic for the representation of scope in proofs—in
translation methods, these treatments may open up the possibility of reasoning about intuitionistic
semantics in an essentially classical way.
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Lemma 1 Every LMM proof D with end-sequent Γ - A (for a single right
formula A) can be transformed into an LJ proof by permuting inferences and then
“cleaning up” the right sequents.

Proof. First we describe the cleaning up. Let D0 be an LMM proof, and suppose
that every subproof with end-sequent Γ - ∆ that ends in a left rule involves a
singleton ∆. Then D0 can be transformed to LJ by the following translation.

At the axiom, we translate Γ;A - A;∆ by Γ;A - A. Now, consider
inferences (! ^), (! _), (! 9) and (�!). Each immediate subderivation ends
in Γ - ∆, and translation gives an LJ proof with end-sequent Γ - A for
some A 2 ∆. If A is not a side formula of R—in any subderivation for right
rules, or in the left subderivation for (�!), which establishes the antecedent—omit
R from the translation: The translation of the subderivation is the needed result.
Otherwise construct the translation of the derivation by applying R to the translated
subderivations, replacing occurrences of (! _) with either (! _1) or (! _2) as
appropriate.

Proofs ending in any of the remaining rules are composed of immediate sub-
derivations Γ - A—where the subderivations derive a single formula on the left
(common to both subderivations, if applicable). Thus, we can obtain an overall
translation by translating these subderivations and applying the corresponding LJ
rule to the results.

Now, suppose inferences are ordered in D0 in the following way. If a left rule
occurs immediately above a right rule, it is either (!�) or (! 8); and if a left rule
L occurs immediately above a (�!) inference R, L is in the right subderivation of
R. Given this ordering, if the end-sequent of D0 has a singleton on the right (or ends
in a right rule), then every subderivation of D0 that ends by deriving Γ - ∆ by a
left rule, has a singleton ∆.

We permute the inferences in D so that they are ordered this way in two steps.
First, we reorder left rules that occur above problematic right inferences; then we
reorder left rules that occur on the wrong side above (�!) inferences.

In the first step, we observe that inferences other than (!�) and (! 8) fall
into connected blocks in D in which (!�) and (! 8) do not occur. Whenever
a left inference L occurs above a right inference R within a common block, there
are no obstacles to interchanging the inferences, cf. (Kleene, 1951). Observe that
the principal formula of L cannot be a side formula of R: otherwise R is (!�)
and L and R are not in a common block. Moreover, R does not impose a novelty
condition on an eigenvariable substituted at L. Otherwise R is (! 8) and L and R
are not in a common block. The interchanged derivations are constructed in one of
four patterns, depending on the number of premises of R and L. We exemplify each
pattern.

As an example where R and L each have one premise, we have the transformation
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below.

Γ;A ^ B;A;B - C;D;C _ D;∆
Γ;A ^ B - C;D;C _ D;∆ ^ !

Γ;A ^ B - C _ D;∆ ! _
)

Γ;A ^ B;A;B - C;D;C _ D;∆
Γ;A ^ B;A;B - C _ D;∆ ! _

Γ;A ^ B - C _ D;∆ ^ !

A case where L has two premises and R one is this:

Γ;A _ B;A - C;D;C _ D;∆ Γ;A _ B;B - C;D;C _ D;∆
Γ;A _ B - C;D;C _ D;∆ _ !

Γ;A _ B - C _ D;∆ ! _
)

Γ;A _ B;A - C;D;C _ D;∆
Γ;A _ B;A - C _ D;∆ ! _

Γ;A _ B;B - C;D;C _ D;∆
Γ;A _ B;B - C _ D;∆ ! _

Γ;A _ B - C _ D;∆ _ !

The other cases require weakening of derivations. If L has one premise and R two,
we have for example:

Γ;A ^ B;A;B - C;C ^ D;∆
Γ;A ^ B - C;C ^ D;∆ ^ !

D
Γ;A ^ B - D;C ^ D;∆

Γ;A ^ B - C ^ D;∆ ! ^
)

Γ;A ^ B;A;B - C;C ^ D;∆
A;B +D

Γ;A ^ B;A;B - D;C ^ D;∆
Γ;A ^ B;A;B - C ^ D;∆ ! ^

Γ;A ^ B - C ^ D;∆ ^ !

Finally, if L and R both have two premises, we have for example:

Γ;A_ B;A - C;C ^ D;∆ Γ;A_ B;B - C;C ^ D;∆
Γ;A_ B - C;C ^ D;∆ _ !

D
Γ;A_ B - D;C^ D;∆

Γ;A_ B - C ^ D;∆ ! ^

(3)

We transform it to:
D1 D2

Γ;A _ B - C ^ D;∆ _ !

where

D1 =

8>><
>>: Γ;A _ B;A - C;C ^ D;∆

A +D
Γ;A _ B;A - D;C ^ D;∆

Γ;A _ B;A - C ^ D;∆ ! ^

D2 =

8>><
>>: Γ;A _ B;B - C;C ^ D;∆

B +D
Γ;A _ B;B - D;C ^ D;∆

Γ;A _ B;B - C ^ D;∆ ! ^
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These permutations can be repeated so that in each block all applications of
left rules appear closer to the root than any application of a right rule. Because
of the possible duplication of subderivations at interchanges, we must perform the
permutations in the right order to prove termination. As in (Kleene, 1951), we induct
on degree, the number of right rules with a left rule above them in the same block.
We can always decrease the degree by one as follows: we find the highest such right
rule R and permute it above all higher left rules. This sequence of permutations
proceeds by induction on grade, the number of left rules above R in the same block.
Find the lowest such left rule (it must be adjacent to R). Permute it down, decreasing
the grade by one in each subderivation.

In the second step, we apply further permutations to this proof, so that whenever
(�!) applies, it is never the case that a left rule is applied at the conclusion of
the left subderivation. The structure of this argument is analogous to the previous
one. Again, we can reduce by one the number of (�!) inferences in the proof
with left rules concluding their left subderivation (bad (�!) inferences) by fixing
any bad (�!) inference R which has no other bad (�!) inferences above it. The
fix replaces the subderivation ending with the bad inference by another in which no
inferences are bad. It is constructed by induction on the number of left rules applied
consecutively above R. We reduce this by one at each step by permuting the lowest
rule L down. L cannot apply to the side formula of R, which is on the right, nor will
it introduce an eigenvariable violation, since R does not introduce one. So the only
potentially problematic case is when L is also (�!): permuting L down cannot
make L bad. But we know that L itself is not a bad inference, because R was chosen
highest. That means the left subderivation of L ends in an axiom or a right rule, and
all higher left rules are good. We can therefore observe that the subderivation of L
is equivalent to an LJ derivation E ending

Γ - C

we can adapt E to construct a new proof

E + ∆
Γ - C;∆

Γ;D - A;∆ Γ;D;B - ∆
Γ;D - ∆ R

Γ - ∆ L

in which R appears only above the right subderivation of L.
In constructing this final derivation, we only interchange left rules (within com-

mon blocks), so we keep all the rules in good order. We thus obtain a permuted
proof D0 corresponding to an LJ proof. 2

LMM eliminates impermutabilities associated with the requirement that (! _)
select one of the two disjuncts to be proven once and for all. For example, the LJ
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proof (4) requires the (_ !) rule to apply lower than the (! _) rule.

B _ A;B - B
B _ A;B - A _ B! _

B _ A;A - A
B _ A;A - A _ B! _

B _ A - A _ B _ ! (4)

These rules may be applied in any order in LMM, as the derivation in (5) witnesses.

B _ A;B - A;B B _ A;A - A;B
B _ A - A;B _ !

B _ A - A _ B ! _
(5)

However, not all impermutabilities of LJ are gone. Recasting the proof (2) in
LMM yields the proof (6):
8>>>><
>>>>:

fB _ A;B;C - B
B _ A;B - C � A;C � B!�

fB _ A;A;C - A
B _ A;A - C � A;C � B!�

B _ A - (C � A); (C � B) _ !

B _ A - (C � A) _ (C � B) ! _

- B _ A � (C � A) _ (C � B) !� (6)

Exploiting the new permutability, we can delay (_ !) until after (! _). Nev-
ertheless, because the (!�) rules discard the alternative formulas on the right, it
remains impossible to permute the application of (_ !) above the (!�) rules in
LMM.

These remaining LMM impermutabilities establish the scopes in the proof which
isolate the consequences of assumptions. Since these scopes are an essential feature
of intuitionistic logic, a different tack is required to devise a proof system without
these impermutabilities. It is to this problem that we now turn.

3.3 Path Annotations
Having isolated the intuitionistic discipline of scope in the structure of (!�) and
(! 8) rule, we will now make that discipline of scope explicit.

To represent scopes, we use strings built from a distinguished infinite alpha-
bet of annotations to label terms and formulas. By convention, letters from the
beginning of the Greek alphabet (�; �; etc.) represent eigenvariables that may ap-
pear in annotations; letters from the middle (�; �; etc.) represent strings of such
eigenvariables.

We adapt sequents to describe the scope of first-order terms and formulas as
follows. Each sequent has the form

Σ . Γ - ∆

Each formula occurrence in Γ and ∆ is labeled with an annotation term that specifies
the scope of the formula. (These terms are written with superscripts.) The scope
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of first-order terms is specified by the indexing context Σ. Σ is a list of pairs x : �
assigning an annotation to each first-order variable that appears free in the sequent.
The scope of a compound term is determined by this assignment to free variables:

Definition 1 t is a Σ-term of index � if and only if for every free variable x that
occurs in t, Σ assigns x : � and � is a prefix of �.

By imposing appropriate manipulations to these annotations, we obtain a proof
system that creates and matches scopes without discarding formulas from sequents.
For example, (!�) creates a new scope by introducing a new annotation variable
� that cannot appear in the end-sequent; the antecedent is made and the consequent
derived in the new scope.

Σ . Γ;A�� - B��;A � B�;∆
Σ . Γ - A � B�;∆ !�

In contrast to LMM, the rule preserves all the right formulas from the end-sequent
in the subderivation. Likewise, (! 8) introduces a new scope by a transition �,
assumes a new first-order eigenvariable a restricted to the new scope, and puts its
side-formula there:

Σ; a : �� . Γ - A[a=x]��;8xA�;∆
Σ . Γ - 8xA�;∆ ! 8

The corresponding left rules offer the possibility of a change in scope. At (�!),
given the scope � of the principal formula, we may consider deriving the antecedent
and introducing the consequent at any longer string ��:

Σ . Γ;A � B� - A�� ;∆ Σ . Γ;A � B�;B�� - ∆
Σ . Γ;A � B� - ∆ �!

Recall that this is in keeping with the structural discipline on the left in LJ and
LMM, which preserve formulas on the left across transitions into nested scopes.
For (8 !), the transition is to a nested scope may makes available the first-order
term which instantiates the bound variable.

Σ . Γ;8xA�;A[t=x]�� - ∆
Σ . Γ;8xA� - ∆ 8 !

The rule has a proviso that the term t substituted for the variable x must be a Σ-term
of index ��, to ensure that variables are only instantiated to appropriately defined
terms. (The (! 9) rule imposes an analogous constraint.)

The rule for initial sequents is now:

Σ . Γ;A� - A�� ;∆
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Σ . Γ;A� - A�� ;∆

Σ . Γ;A ^ B�;A�;B� - ∆
Σ . Γ;A ^ B� - ∆ ^ !

Σ . Γ - A�;A ^ B�;∆ Σ . Γ - B�;A ^ B�;∆
Σ . Γ - A ^ B�;∆ ! ^

Σ . Γ;A _ B�;A� - ∆ Σ . Γ;A _ B�;B� - ∆
Σ . Γ;A _ B� - ∆ _ !

Σ . Γ - A�;B�;A _ B�;∆
Σ . Γ - A _ B�;∆ ! _

Σ . Γ;A � B� - A�� ;∆ Σ . Γ;A � B�;B�� - ∆
Σ . Γ;A � B� - ∆ �!

Σ . Γ;A�� - B��;A � B�;∆
Σ . Γ - A � B�;∆

!�y

Σ . Γ;8xA�;A[t=x]�� - ∆
Σ . Γ;8xA� - ∆

8 !z

Σ; a : �� . Γ - A[a=x]��;8xA�;∆
Σ . Γ - 8xA�;∆

! 8y

Σ; a : � . Γ;9xA�;A[a=x]� - ∆
Σ . Γ;9xA� - ∆

9 !y

Σ . Γ - A[t=x]�;9xA�;∆
Σ . Γ - 9xA�;∆

! 9z

Figure 3: Explicitly-scoped, cut-free sequent calculus for minimal logic, LMP. y For
(! 8), (9 !) and (!�), a and � must not appear in the conclusion. z For (8 !),
there is a proviso that t be a Σ-term of index ��; for (! 9) that t be a Σ-term of
index �.

The remaining rules mirror their classical and LMM counterparts. The full system
is given in Figure 3 as a calculus named LMP because the annotations denote paths
to positions in the proof.

Consider the proofs of (1) and (2) in LMP. Making the scopes of the LMM proof
(6) explicit with annotations gives the proof (7):



20 MATTHEW STONE

8>>>><
>>>>:

n
.B _ A�;B�;C�� - B��; : : :

.B _ A�;B� - C � A�;C � B�; : : :
!�

n
.B _ A�;A�;C�� - A��; : : :

.B _ A�;A� - C � A�;C � B�; : : :
!�

.B _ A� - (C � A)�; (C � B)�; : : :
_ !

.B _ A� - (C � A) _ (C � B)�; : : :
! _

. - B _ A � (C � A) _ (C � B) !�

(7)

This proof has the same structure as (6), and the same scopes are created. Now
these scopes are also named: � names the scope introduced by the lower (!�)
rule, �� and �� name the scopes introduced by the different assumptions of C.

As indicated by the ellipses, there is no dereliction of formulas on the right in
(7). This allows rules to be permuted above (!�) and (! 8). (8) illustrates this
by moving the (!�) rules down below the application of (! _).

.B _ A�;B�;C�� ;C�� - B��; : : : .B _ A�;A�;C��;C�� - A��; : : :

.B _ A�;C��;C�� - A�� ;B��; : : :
_ !

.B_ A�;C�� - A��; (C � B)� !�

.B _ A� - (C � A)�; (C � B)�; : : : !�

.B _ A� - (C � A) _ (C � B)�; : : :
! _

. - B _ A � (C � A) _ (C � B) !�

(8)

Because of these permutations, we can no longer isolate subproofs of (8) as recording
all and only the inferences performed in a particular scope.

Meanwhile, an LMP proof corresponding to the LJ proof (1) appears in (9).

. : : : ;C�� - C��

. : : : ;A�� - A��

. : : : ;A�� - A _ B��! _
. : : : ;B�� - B��

. : : : ;B�� - A _ B��! _

. : : : ;B_ A�� - A _ B�� _ !

.C � B _ A�;C�� - A _ B�� �!

.C � B _ A� - C � A _ B� !�

. - (C � B _ A) � (C � A _ B) !�

(9)

Note that the (�!) rule application involves a change of scope. The antecedent C
of the conditional can only be established at scope extending ��, because the axiom
that establishes it uses the assumption of C at ��. Thus, the conclusion B_A of the
conditional is established only at scope ��. Because the (�!) rule refers to the
annotation �, the (�!) rule cannot be permuted below the preceding (!�) rule.
When the (!�) rule applies, � cannot appear on the sequent.

There is thus an asymmetry in LMP. It is possible to permute rules higher in
the proof, even though the rules do not make use of the assumptions introduced
there. But it is impossible to permute rules lower in the proof than the introduction
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of assumptions that they do use. This asymmetry will be eliminated by adapting
Herbrand’s theorem to LMP, in section 5.1.

This asymmetry is the basis of the syntactic proof of soundness for LMP. Among
the rules that occur above an (�!) or (8 !) rule in an LMP proof, there will be
all the rules that do depend on the assumption being made—those that should be
there according to the structural regime of scope—as well as some that don’t belong
because they don’t depend on the assumption being made. All those that don’t
belong can simply be permuted down to the scope where they do belong. The proof
resulting from these permutations essentially matches LMM figures.

3.3.1 Labels, semantics, and negation
The annotations of LMP reflect dual intuitions. We have emphasized how anno-
tations represent of the introduction of formulas and terms at different syntactic
scopes in an LMM proof. The other intuition derives from the semantic interpreta-
tion of minimal logic formulas in Kripke models for modal logics (Kripke, 1965).
For minimal logic these intuitions coincide, but for negation there is a possible
discrepancy.

According to the semantic intuition, the labels corresponds to the points in
the model at which formulas are true or false and at which individuals exist. In
Kripke models, these points are worlds related by a transitive and reflexive binary
relation R of accessibility. Each annotation represents a path of accessibility from
the real world, reached by the empty path, to some other possible world. Paths
of accessibility are a natural alternative to accessibility relations. Given R, we
can construct a set of transitions such that whenever wRw0, there is a transition �
such that w� = w0, and vice versa; see (Ohlbach, 1991). Here, the paths are strings
because accessibility is transitive and reflexive: there is a single step of accessibility
corresponding to each pair of steps, or to no step at all.

A further constraint on intuitionistic Kripke models is that atomic formulas true
at a world w remain true at all worlds accessible from w. Similarly, an individual
that exists at world w continues to exist at all worlds accessible from w. These
constraints account for why the left annotation on initial sequents is to be a prefix
of the right annotation, and for why the index of a substituted term is to be a prefix
of the annotation of the formula into which it is substituted.

The remaining sequent rules implement classical reasoning over the recursive
clauses defining truth of formulas. Implication is a good example. A � B is true at
a world � exactly when for all transitions x to a world accessible from �, if A is true
at �x then B is true at �x. Regarding C� as an abbreviation of C is true at world �,
the classical inferences governing this definition is:

Γ;A�� - B��;A�� � B��;8x(A�x � B�x);∆
Γ - A�� � B��;8x(A�x � B�x);∆ !�

Γ - 8x(A�x � B�x);∆ ! 8

The (!�) inference rule of LMP imitates this exactly, replacing 8x(A�x � B�x)
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by its equivalent A � B� and harmlessly omitting the intermediate step and the
intermediate side formula.

The use of semantics for intuitionistic and modal deduction has been explored
extensively, but has rarely been investigated from a purely proof-theoretic point
of view. Inference rules for intuitionistic logic inspired by classical inferences are
first given in (Smullyan, 1973); except for negation the rules are analogous to those
here—apart from Smullyan’s use of the condensed format of tableaux with uniform
notation. (Smullyan’s system is, in turn, a refinement of Fitting’s use of integer
prefixes in tableau deduction (Fitting, 1969; Fitting, 1983).) Wallen studies trans-
lation deduction in (Wallen, 1990); although the underlying mechanism mirrors
Smullyan’s, Wallen’s presentation of it incorporates not only uniform notation and
translation, but also matrix method search, unification, and structure-sharing. This
complicates the task of applying Wallen’s methods to other strategies for representa-
tion and proof search (for example the uniform proof search needed in abstract logic
programming languages (Miller et al., 1991)). Both authors relate their systems
directly to Kripke models, leaving open how similar systems might be used for
proof construction and program synthesis. Subsequent research (Ohlbach, 1991;
Ohlbach, 1993; Auffray and Enjalbert, 1992; Debart et al., 1992; Jackson and Re-
ichgelt, 1987; Aitken et al., 1994) has explored the general use of similar techniques
across a variety of modal systems, but has continued to present semantic proofs of
correctness and to emphasize the use of particular theorem-proving techniques for
first-order classical logic, particularly resolution.

Negation offers a venue in which to distinguish proof theoretic intuitions from
these semantic ones. In LMM, sequent rules for intuitionistic negation can be given
directly, as below:

Γ - A;∆
Γ;:A - ∆: !

Γ;A -

Γ - :A;∆! :

Alternatively, :A can be rendered A � ?, where ? is a distinguished proposition
with the following behavior:

Γ;? - ∆?

Wallen (Wallen, 1990) uses the first formulation. His translation corresponds to
the use of the two sequent rules below.

Σ . Γ - A�� ;∆
Σ . Γ;:A� - ∆: !

Σ . Γ;A�� - ∆
Σ . Γ - :A�;∆! :

These rules correspond to the usual truth conditions for ? in Kripke models: at no
world is ? true.

In the presence of these rules, the only proof of some sequent

Σ . Γ;Γ� - ∆
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may come from proving A and :A from formulas in Γ�. The same problem arises
if the ? rule is realized with the formulation:

Σ . Γ;?� - ∆?

These possibilities disrupt the proof-theoretic invariants which we will use to estab-
lish the correspondence between LMP and LMM.

One way to describe what goes wrong is this. These two presentations of
negation are constructed so as to avoid making the decision of which formula in a
sequent is being derived by contradiction. Such lack of commitment is generally
advantageous in search—this paper in fact is concerned with delaying the similar
choice of the scope in which rules are used. For reasoning about scope, however,
this treatment of negation is problematic because a complete proof need never
resolve this ambiguity. Such proofs lack a crucial piece of information necessary
to reconstruct an intuitionistic natural deduction. For example, consider the proof
below:

A� - A��;C�;B��

A�;:A�� - C�;B�� : !

A� - C�;:A � B� !�

A� - (C _ (:A � B))�! _

- A � C _ (:A � B) !�

From root up, we first decompose formulas on the right, and then obtain an initial
sequent by applying (: !); the inference extends the annotation�� of the principal
formula by the empty string (but any other extension would also give a proof). This
can only correspond to a natural deduction in which the contradiction of A and :A
is used to infer B. But nothing about the sequent proof indicates this: for all this
proof says, the contradiction could be used to show C.

From a proof-theoretic perspective, the rule below is more appropriate:

Σ . Γ;?� - A�� ;∆?

It maintains scope in negation. It corresponds not to ordinary Kripke semantics
but to fallible Kripke semantics (Veldman, 1976). This semantics allows ? to be
true at some worlds, provided that every other atomic formula is also true at those
worlds. Fallible semantics was developed to enable constructive completeness
proofs for intuitionistic logic; so it is not surprising that it comes up again here
where constructive reasoning about proofs is also required.

This proof theory and its fallible semantics is quite close to minimal logic,
which treats ? as an ordinary proposition. For example, the rule can be simulated
straightforwardly by recursively translating each goal formula A (ie. any positive
subformula of a formula on the right of the sequent, or any negative subformula
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on the left) into the disjunction ? _ A, and thereafter treating ? as an ordinary
proposition. In view of this translation, the analysis in the remainder of this paper
will be concerned with minimal logic only.

3.4 Proof-theoretic results
This section provides a direct, proof-theoretic justification of LMP: We establish that
the annotations are nothing more than a proof-theoretic device for indicating scope in
an intuitionistic deduction. Labels on formulas ensure syntactically that a classical
proof system—with arbitrary permutabilities of rules, subject only to eigenvariable
conditions—respects intuitionistic information-flow: that facts assumed as part of
proving some formula only contribute to establishing that formula.

3.4.1 Some basic results
We begin with some invariants on the form and function of annotations in LMP
proofs. The main point is to validate the basic properties of the design of LMP—that
annotation variables may be regarded as naming individual inferences that change
scope (Lemma 3) and that all the scopes of inferences in the proof lie in a tree whose
nodes are uniquely labeled by these names (Lemma 4).

As a preliminary, we obtain a first result that suggests intuitively how annotations
restrict information-flow in proofs. Recall that a left formula can only be used in
the axiom rule of LMP when it is annotated with a prefix of some right formula. In
fact, induction shows that a left formula cannot be used anywhere in an LMP proof
unless it is annotated with a prefix of some right formula in the end-sequent. Thus,
when nested scopes are represented by longer annotations, annotations will ensure
that assumptions introduced inside a nested scope can not be used outside.

Lemma 2 (irrelevance) Let D be an LMP proof of height h of

Σ . Γ;Γ� - ∆

where for every formula A� in Γ�, there is no formula B� in ∆ such that � is a prefix
of �. Then D can be transformed into a proof with height no more than h of

Σ . Γ - ∆:

Proof. By induction on the structure of proofs. At axiom links, the labels on Γ�
will not match those of the key right formula A�� of the axiom, so the left formula
A� must be from Γ.

Supposing the claim true for proofs of height n or less, consider proofs of height
n + 1. The rules (_ !), (^ !), (9 !), (! _), (! ^), and (! 9) do not alter
annotations, so extending the induction hypothesis is straightforward. For example,
suppose D ends in

Σ . Γ;Γ�;A ^ B�;A�;B� - ∆
Σ . Γ;Γ�;A ^ B� - ∆ ^ !
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Applying the induction hypothesis gives a proof with one of the following two
conclusions, depending on whether � is a prefix of the annotation of any formula in
∆:

Σ . Γ - ∆ or Σ . Γ;A ^ B�;A�;B� - ∆:

In the first case this derivation suffices; in the second, the needed derivation is
constructed by finally applying (^ !) again.

Even though they may extend annotations, (8 !), (! 8) and (!�) are not
much harder. Thus, suppose D ends in

Σ; a : �� . Γ;Γ� - A[a=x]��;8xA�;∆
Σ . Γ;Γ� - 8xA�;∆ ! 8

Observe that if no formula in Γ� is annotated with a prefix of �, no formula in Γ� is
annotated with a prefix of ��: by the eigenvariable condition, � does not occur in
Γ�. Accordingly, the induction hypothesis applies to the immediate subderivation
to give a derivation of

Σ; a : �� . Γ - A[a=x]��;8xA�;∆:

Apply (! 8) to this.
Finally, suppose D ends in

Σ . Γ;Γ�;A � B� - A�� ;∆ Σ . Γ;Γ�;A � B�;B�� - ∆
Σ . Γ;Γ�;A � B� - ∆ �!:

If �� is not a prefix of any ∆ annotation, then the induction hypothesis applies to
the right subderivation to give a proof of

Σ . Γ0 - ∆:

where Γ0 includes Γ and, if appropriate, A � B�. This suffices. Otherwise, �� is a
prefix of some annotation of ∆, so if no formula in Γ� is annotated with a prefix of
any ∆ annotation, then the same is true of A�� ;∆. Thus, induction gives proofs:

Σ . Γ;A � B�;B�� - ∆ and Σ . Γ;A � B� - A�� ;∆:

Combine these by (�!). 2
As in other sequent systems, we can rename eigenvariables in a proof so that no

two rules in a proof introduce the same one.

Definition 2 (pure variable proof) A proof tree in LMP is a pure-variable proof
tree if and only for every symbol a occurring as the eigenvariable in an application
of the rules (! 8), (!�) or (9 !), a does not occur both free and bound in any
formula in the proof tree, and a only occurs in the subtree rooted at the sequent
constituting the premise of the rule. (Note: Here a ranges over eigenvariables
introduced in terms or on annotations.)
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Lemma 3 (pure variable proofs) Any LMP deduction with end-sequent Σ.Γ -

∆ can be converted to a pure-variable proof of the same sequent, simply by replacing
occurrences of variables with new variables (cf. (Gallier, 1986), 312).

Proof. (sketch) The proof can be adapted from that for other sequent systems (see
for example (Gallier, 1986), 274–276 and 312–313). One first shows that given
an LMP derivation D with end-sequent Σ . Γ - ∆ in which the variable b does
not occur bound and the variable a does not occur at all, the derivation D[a=b]
obtained by substituting a for every occurrence of b in D is an LMP derivation of
Σ[a=b] . Γ[a=b] - ∆[a=b]. This is a straightforward induction on the height of
proofs, in which the indexing contexts and annotations add no additional complexity.
The main result is established by induction on the number of applications of (! 8),
(!�), and (9 !) in the derivation. One applies the induction hypothesis to obtain
pure variable proofs corresponding to subderivations above the applications of these
rules closest to the root, then exploits the substitution property to ensure that the
eigenvariables in different subderivations are distinct. 2

According to renaming, any eigenvariable is introduced exactly once onto a
right formula, and according to irrelevance, annotations on left formulas can match
the annotations of right formulas without loss of generality. Together, this means
that each annotation eigenvariable always appears after the same sequence of other
eigenvariables: it is always used the same way, to represent the same scope.

Definition 3 (unique prefix property) A set of annotations has the unique prefix
property if and only if for any pair ��� and �0��0 in the set, � = �0.

Lemma 4 (tree annotations) For any LMP derivation D of height h with end-
sequent

Σ . Γ - ∆

where the annotations in the end-sequent have the unique prefix property, there is a
derivation D0 of height no larger than h with end-sequent

Σ . Γ0 - ∆

where the formulas in Γ0 are a subset of those that occur in Γ and the annotations
appearing throughout D0 have the unique prefix property.

Proof. By Lemma 3, we may assume D is a pure variable proof. By Lemma 2,
we can obtain a shorter derivation D0 from D in which the annotation of left
formulas are always prefixes of the annotations of right formulas. By induction,
we can show that any derivation D0 so constructed, whose end-sequent has the
unique prefix property, has the unique prefix property. For initial sequents, this is
immediate. So suppose some rule application results in a sequent with the unique
prefix property. If it is a left rule, the unique prefix property must extend to the
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immediate subderivations: left rules will not result in new prefixes because they
would be irrelevant. Likewise, although immediate subderivations for right rules
may incorporate additional prefixes, these prefixes must involve fresh symbols.
Thus, the unique prefix property also extends to immediate subderivations of right
rules. Hence, the induction hypothesis applies to show that subderivations have the
unique prefix property in their entirety. Then the fact that the proof is a pure variable
proof means eigenvariables are introduced once only, so that no different prefixes
are introduced for the same eigenvariable in the separate subderivations. Thus the
whole proof has the unique prefix property. 2

The fact that eigenvariables on annotations in deductions have unique prefixes is
significant both for demonstrating that the annotation mechanism is correct and for
constructing algorithms to work on annotations. As we shall see presently, it allows
the annotations in LMP proofs to be put in correspondence with positions in LMM
proofs. In (Auffray and Enjalbert, 1992; Debart et al., 1992; Otten and Kreitz, 1996),
the unique prefix property is used to construct specialized equational unification
algorithms for equations in translation theorem-proving; in (Stone, 1997a) it plays
a role in deriving constraint algorithms for translation theorem-proving.

3.4.2 LMP is complete
We first consider how any LMM proof can be converted into an LMP proof, by
adding appropriate annotations throughout. The crux of the argument is how an-
notations are extended by instantiation with appropriate terms in applications of
(�!) and (8 !). Here is the idea. In LMM, the logical scope of a rule application
R is given by its position in the proof. This position is identified by the sequence
of (!�) and (! 8) rules that occur on the path from the root to R. In particular,
all rule applications above an application of (!�) or (! 8) in LMM fall into its
scope. In LMP, scope is given by the annotation that labels a formula—but the
eigenvariables in this annotation correspond one-to-one with the rule-applications
in the LMM proof. Thus, in translating applications of (�!) and (8 !) from
the LMM proof, the annotations will be extended to the full LMP annotation that
corresponds to their scoped location in the LMM deduction.

Some notation describing the addition of annotations to sequents will facilitate
the presentation of this result. For any annotation string � and any multiset of
formulas ∆, ∆� will denote the sequent consisting of a formula occurrence A� for
each formula occurrence A of ∆. If ∆ is the right hand of a sequent in the LMM
proof, in the scope in the proof associated with the LMP annotation �, ∆� will be the
right hand of the corresponding sequent in the LMP proof. Meanwhile, for any map
� associating a (possibly different) annotation string with each formula occurrence
in a sequent Γ, Γ� will denote the sequent containing a formula occurrence A�(A)

for each formula occurrence A of Γ. A left side of a sequent Γ in an LMM proof
may correspond to any Γ� in the corresponding LMP proof. The alternatives reflect
ways of adding formulas on the left in the different scopes in which the � scope is
nested in the LMM proof.
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Completeness is now stated as follows:

Theorem 1 (completeness) Given any LMM deduction with end-sequent Γ - ∆.
Then for any annotation string �, any function � assigning prefixes of � to formulas
in Γ, and any indexing context Σ assigning prefixes of � to the free variables of Γ
and ∆, there is an LMP deduction of

Σ . Γ� - ∆�:

Proof. By induction on the structure of derivations in LMM. For LMM axioms, an
LMP axiom can be constructed using the fact that � assigns to A on the left some
prefix � of the annotation of A on the right, �.

The cases for _, ^ and (9 !) are straightforward. Given an LMM derivation
ending in the application of one of these rules, apply the induction hypothesis to the
immediate subderivations: this gives LMP deductions to which the corresponding
LMP rule applies. For example, for (! _) the LMM derivation ends:

Γ - A;B;A _ B;∆
Γ - A _ B;∆ ! _

The corresponding LMP proof ends:

Σ . Γ� - A�;B�;A _ B�;∆�

Σ . Γ� - A _ B�;∆� ! _

The subderivation is obtained by the induction hypothesis from the subderivation
of the LMM derivation.

For the rules (�!) and (8 !), we ensure that the annotation of right formu-
las � appears as the annotation of side formulas in applications of these rules in
constructing the LMP proof. Thus, suppose D ends in (�!), as follows:

Γ;A � B - A;∆ Γ;A � B;B - ∆
Γ;A � B - ∆ �!

Apply the induction hypothesis to the first subderivation with � and �, and to the
second derivation with � and a function �0 exactly like � except that �0(B) = �.
This gives derivations of

Σ . Γ�;A � B�(A�B) - A�;∆� and Σ . Γ�;A � B�(A�B);B� - ∆�

Since �(A � B) is a prefix of �, these two derivations can be combined by LMP
(�!) to yield the needed overall derivation.

Similarly, suppose D ends in (8 !), as follows:

Γ;8xA;A[t=x] - ∆
Γ;8xA - ∆ 8 !
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Apply the induction hypothesis to the subderivation, with � and the function �0

exactly like � except that �0(A[t=x]) = �. This gives a derivation of:

Σ . Γ�;8xA�(8xA);A[t=x]� - ∆�:

Because every free variable in Σ is decorated with a prefix of �, any term t must be
a Σ-term of index �. So the side condition on substitutions for (8 !) in LMP is
satisfied; applying the rule gives the needed derivation.

Likewise, for the case of an LMM derivationD ending in (! 9), free variables
are all associated with prefixes of � by Σ, so any term t is a Σ-term of index �. But
as right formulas, both 9xA and A[t=x] are to be annotated with �. Thus the LMP
(! 9) rule applies to the derivation obtained by the induction hypothesis from the
immediate subderivation of D. The resulting derivation ends:

Σ . Γ� - A[t=x]�;9xA�;∆�

Σ . Γ� - 9xA�;∆� ! 9

Finally, for the rules (!�) and (! 8), observe that ∆ is eliminated when the
annotation of the principal formula is extended. (This is why it suffices to consider
translations in which all right formulas receive the same annotation.) Specifically,
suppose the LMM deduction ends in

Γ;A - B
Γ - A � B;∆!�

Apply the induction hypothesis to the immediate subderivation, with �0 = �� for
some new �, and �0 like � except �0(A) = �0. This gives a derivation D ending in:

Σ . Γ�;A�� - B��:

This can be weakened by the formulas in ∆�, so as then to derive the needed:

D + ∆�

Σ� . Γ�;A�� - B��;∆�

Σ� . Γ� - A � B�;∆� !�

Likewise, if the LMM deduction ends in

Γ - A[a=x]
Γ - 8xA;∆! 8

apply the induction hypothesis to the immediate subderivation, with �0 = �� for
some new �, and Σ0 extending Σ by the assignment a : ��. This gives a derivation
D. Construct in LMP the needed derivation:

D + ∆�

Σ�; a : �� . Γ� - A[t=x]��;∆�

Σ� . Γ� - 8xA�;∆� ! 8

2
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3.4.3 LMP is sound
Inversely, every LMP proof can be transformed into an LMM proof. Because of
the different ways scopes are represented in the two systems, the transformation in-
volves reorganizing the proof so that right formulas with compatible annotations end
up together in the same scoped region of the proof. In particular, the transformation
gives a way of reordering applications of proof rules so that only what must ap-
pear above any application of (!�) and (! 8) actually does appear there. When
applications appear in this order, an invariant of annotations can be exploited to
demonstrate that the subproof above each (!�) and (! 8) rule constitutes a proof
of its right side-formula. Thus the transformed proof instantiates only LMM infer-
ence figures. Overall, the method recalls Schellinx’s proof-theoretic justification of
the embedding of intuitionistic logic into linear logic (Schellinx, 1991).

In considering just a single application P of (!�) or (! 8), there is a simple
characterization of which other rule applications permute below P.

Lemma 5 (permutability) Let D be an LMP derivation containing an application
P of (!�) or (! 8), which introduces the eigenvariable � in the annotation. Let
R denote any other rule application in D above P, and let � be the annotation of
the side formula of R. Then R permutes with P if and only if � does not contain �.

Proof. If � contains �, then permuting R below P will violate the eigenvariable
condition for �. This takes care of the only if case.

For the if case, consider first which pairs of rules might fail to permute. There
are only five possibilities: (�!)=(!�), (�!)=(! 8), (8 !)=(! 8), (8 !
)=(9 !) and (! 9)=(9 !). They arise only when eigenvariable conditions will be
violated by the permuting of rules. (The proof transformations needed to achieve
the permutation in all other cases are just the transformations from (Kleene, 1951)
illustrated in the proof of Lemma 1.) For each of these non-permuting examples,
it can be shown that the annotation introduced by the lower rule is a prefix of the
annotation introduced by the higher rule. For impermutabilities (�!)=(!�) and
(�!)=(! 8), the appearance in the annotation of the symbol � introduced lower
is the source of the impermutability. For quantifier impermutabilities, the source of
the impermutability might be the appearance of the lower eigenvariable, a, in the
substitution term, t. Nevertheless, in these cases, the side condition that the term t be
a Σ-term of appropriate index applies. This ensures that the annotation of the lower
rule appears on the annotation of the higher rule, in virtue of its association with
the eigenvariable in the indexing context. Incidentally, also as a result of this side
condition, the configuration that would give rise to a (! 9)=(! 8) impermutability
(which would otherwise be expected) cannot be given a legal annotation.

Given these observations, the claim can be established by an induction on the
structure of LMP derivations. The measure for the induction is the number of
applications of rules above P and below R. The base case we have just shown.
Assume that when an application is no more than n steps above P, it permutes



INTUITIONISTIC SCOPE 31

below P just in case the annotations of its side formulas do not contain �. Consider
the case of a rule application, R, n + 1 steps above P. Let Q be the rule application
immediately below R. If R permutes below Q do so: this reduces by one the
distance between R and P, and permits the application of the induction hypothesis.
If R does not permute below Q, consider whether Q permutes below P. If not, by
the induction hypothesis the side formulas of Q must contain �. But then, by the
observations of the preceding paragraph show that R, which does not permute below
Q, must contain � as well. Otherwise, the induction hypothesis applies to Q and P,
to give a deduction in which R is only n rule applications above P (because Q has
been permuted below P). Apply the induction hypothesis to this derivation. 2

The following consequence of the permutability lemma is at the heart of the
soundness of LMP.

Lemma 6 Let D be a deduction in LMP of

Σ . Γ - C;∆

such that: C is of the form 8xA or A � B; C is the principal formula of the lowest
rule application P in D where the eigenvariable � is introduced on annotations;
and no higher rule application in D permutes below P. Then either

Σ . Γ - ∆

is an axiom or we can construct a deduction D0 from D which shows:

Σ . Γ - C:

Proof. Right rules change annotations only by adding eigenvariables. Because
eigenvariables may be considered distinct (by obtaining a pure variable proof as in
lemma 3), and because addition of another eigenvariable to an annotation indicates
incompatibility with � (by the unique prefix property, as in lemma 4), we may
assume that no descendants of ∆ are labeled with annotations that contain � in D.
Now, consider an axiom link in D

Σ0 . Γ0;A� - A�� ;∆0

where �� does not contain �. Then neither A� nor A�� is a side formula of any rule
in D. Such a rule by lemma 5 on permutability could permute below P. Therefore,
A� must be already in Γ and A�� in ∆: we start from an axiom.

Otherwise, every application of an axiom inD involves a right formula annotated
with a string containing �. So each right formula is a descendant of C, not of any
formula in ∆. Meanwhile, each left formula in an axiom is either annotated with a
string that contains �—in which case it too is a descendant of C—or with one that
does not—in which case it is in fact a formula in Γ. Accordingly, we can obtain a
proof of C by erasing all descendants of ∆ everywhere in D. 2
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In order to turn this result into a method of converting LMP proofs into LMM
proofs, we need to show that we can permute the rules in the proof so that all
implications and universals in the proof lie simultaneously under only the necessary
rules. This will ensure that each such rule involves a proof of its side formula, and
hence that the proof can be described by LMM rules.

Theorem 2 (soundness) From any LMP deduction D a deduction D0 can be con-
structed with the following property. For any subderivation D00 of D0 ending in
(!�) or (! 8), no rule applied above in D00 can be permuted below. By applying
lemma 6 recursively to D0, we obtain an LMM proof.

Proof. The proof is by induction on the number of times rule applications of
(!�) and (! 8) occur on any path from a leaf of the derivation to the conclusion.
The base case, when the derivation contains no such formulas, is immediate.

Suppose the claim holds for proofs where 8 or � formulas occur at most n
times from a leaf to the root. In any derivation where formulas occur at most n + 1
times, it suffices to replace the subderivations ending in (!�) and (! 8) with
appropriately reordered variants. Accordingly, we consider a derivation D ending
in a rule application R with principal formula C at

Σ . Γ - C;∆

with C a universal or an implication with depth n + 1. Let � be the annotation
eigenvariable introduced.

Let D1 denote the derivation obtained by first applying the induction hypothesis
to the immediate subderivation, and then permuting below R all rules that permute
below every application of (!�) and (! 8) in the proof. The possibility of
such permutations can be established as in lemma 1 by a double induction first on
the degree—the number of inferences which refer to an annotation eigenvariable
introduced at a (!�) or (! 8) rule in the proof but with a rule above them that
does not—and then considering the highest inference with something above it that
should be below it, on the number of such inferences above it (the grade).

InD1, R may be applied to C several times with modified end-sequents, because
of these permutations:

Σ1 . Γ1
- C;∆1

We can eliminate each as follows. Suppose there is some subproof of D1 above
it, with 8 and � depth n, that looks like this:

Σ0 . Γ0 - D�;∆

with D a universal or implication, where � does not contain �. Applying lemma
6 and lemma 2 of irrelevance gives a proof where Γ0 is restricted only to formulas
containing� only—not�. Permutability dictates that all these formulas are therefore
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elements of Γ1. Likewise, D� is an element of ∆1. Accordingly, we can use (a
weakened version of) this shorter proof instead of the proof involving C in D1.

Otherwise, in every such formula D� above R, � contains �. This entails that
the rule applications above R are precisely those that cannot be permuted below R.
The preceding result now applies to show that either

Σ1 . Γ1
- ∆1 or Σ1 . Γ1

- C:

Substituting whichever proof exists into D1 gives the needed derivation. 2

4 A Broader View of Deduction and Explicit Scope
This section puts LMP in context with alternative theorem-proving work. As
discussed in section 4.4, the use of LMP seems generally compatible with a variety
of complementary techniques for improving proof search based on observations
about size and branching of proofs (Dyckhoff, 1992; D’Agostino and Mondadori,
1994; Herbelin, 1994); some effort is required to state these observations in a
common language.

The bulk of this section (4.1–4.3) is devoted to contrasting LMP with other
labeled systems from a proof-theoretic point of view. LMP offers an explicit
representation of scope in intuitionistic proofs based on the position of rules in the
proof. Another strategy is to adopt an explicit representation of scope based on the
content of sequents. With scoping based on content, labels represent the packets of
assumptions from which a formula in the proof must be derived. The idea has been
explored semantically in (D’Agostino and Gabbay, 1994) and proof-theoretically in
(Bittel, 1992; Bittel, 1993).

For example, the labeling of (!�) by content goes as follows. According to
the labeling scheme, assume that the principal formula (A � B) already depends
on some packet of assumptions �. The rule introduces a new assumption A, which
therefore gets a new atomic label, say �. A new conclusion B must then be derived
using the combination of � and �, written � � �. This labeling is implemented by
the using the following sequent rule (with an eigenvariable condition for �):

Σ . Γ;A� - B���;A � B�;∆
Σ . Γ - A � B�;∆ !�

Systems based on position and systems based on content have very different
intuitions behind them. It might therefore be suspected that the systems have very
different behavior—and that labeling by content might be easier to prove correct
because of its closer correspondence with the ordinary sequent rules. The reality
is more subtle. In fact, some compromise of intuitions is required to turn scoping
by content into an efficient theorem-proving method. These compromises leave
the method in a surprisingly close formal correspondence to scoping by position.
Scoping by position may even be regarded as the basic method on which others are
variants.
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To back this up, we observe first in section 4.1 that our encoding of positions as
strings with LMP was not the only possibility. The same inference rules and proof
techniques techniques apply if we encode positions using sets. We then show in
section 4.2 how the labels of (D’Agostino and Gabbay, 1994) can be justified by
interpreting them as abbreviations of these sets. The labels of (Bittel, 1992; Bittel,
1993) offer a different kind of abbreviation for these sets, as outlined in section 4.3.

4.1 Set structure for annotations
In this section, we adapt the rules of LMP by treating annotations as sets or multisets
rather than strings. Like the string labels in LMP, these labels name the rules
applied on a path to a particular scoped position in a structurally-scoped proof.
Unlike string labels, however, these labels provide only partial descriptions of
positions in structurally-scoped proofs. They do not specify the order in which
rules are to apply. These new labelings are possible because this order can be
reconstructed from the labeling of rules. Rules that change labels represent points
of transition in the structurally-scoped proof, between the position represented by
one set and the position represented by an augmentation of it. We shall see that
labels obtained by sequences of such augmentations in an explicitly-scoped proof
continue to correspond uniquely to a tree of (structurally-scoped) rule-applications.

To describe the modification to use sets or multisets is straightforward. To
foreshadow the connection with (D’Agostino and Gabbay, 1994), we introduce the
notation � � � to represent the combination of scopes � and �. To define string
labels, we take � to be an associative concatenation with identity �:

� � � = � � � = � � � (� � �) = (� � �) � �

To obtain multisets, we add commutativity to these equations:

� � � = � � �

Sets are also governed by the equation of idempotence:

� � � � � = � � �

Once we have written out the system using this � notation, as in Figure 4, we can
use the same rules to describe labeled deduction for different equational theories.
(8 !) illustrates this. The rule is:

Σ . Γ;8xA�;A[t=x]��� - ∆
Σ . Γ;8xA� - ∆ 8 !

Depending on the equational theory in force, the extended scope � � � represents
either concatenation of � and �, with string labels; or the multiset union of � and �,
with multiset labels; or the set union of � and �, with set labels. The side condition
that t respect the scope � � � is also rephrased in neutral language:
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Definition 4 t is a Σ-term of index � if and only if for every free variable x that
occurs in t, Σ assigns x : �0 and for some �, �0 � � = �.

We will refer to the system in Figure 4 with set or multiset labels as LMS.
Like string annotations, set and multiset annotations can be motivated both from

the syntax of intuitionistic proofs and as an encoding of intuitionistic semantics.
In particular, set annotations implement the topological semantics of intuitionistic
logic, where formulas are evaluated with respect to the open sets of a topological
space; see (Troelstra and van Dalen, 1988b), chapter 13. To account for set an-
notations, we interpret annotations as representing open sets in these models and
interpret � as set intersection.

The labeling of initial sequents matches the truth conditions of atomic formulas
in topological models, as follows. Each atomic formula A is assigned an open set
[[A]] as its semantic value. A is true in a topological model at an open set q exactly
when q � [[A]]. An assumption that A is true at q thus allows the conclusion that A
is true at any q \ r, as given in the rule for initial sequents.

A � B is true in a topological model at q exactly when B is true at all open
subsets of q where A is true. This condition is equivalent to the condition that for
any open set r, if A is true at q \ r then so is B. This corresponds to the proof rule
for implication.

Topological semantics gives classical semantics to conjunction, as reflected in
the LMS proof rule. The general definition for the semantics of disjunction in
topological models is complicated, and involves decomposing a set of evaluation
into a union of other sets. Rather than encoding this definition explicitly, LMS uses
the classical proof rule for disjunction to simulate it.

A direct proof of correctness for LMS can be constructed exactly along the lines
of sections 3.4.1–3.4.3. An outline of this argument follows. The key difference
is the statement and proof of the tree annotation lemma, since the unique prefix
property cannot be defined in LMS (and a “unique subset property” would be false).

As before, we get an irrelevance result for LMS; it is shown by the same
induction given in section 3.4.1, with subset substituted for prefix. We also get a
theorem that supplies pure variable proofs for LMS.

The tree annotation result must now go as follows.

Lemma 7 (tree annotations) Let D be an LMS derivation of height h with end-
sequent

Σ . Γ - ∆

and suppose there is a pair of symbols � and � such that no annotation in the
end-sequent contains both � and �. Then there is a derivation D0 of height no
larger than h with end-sequent

Σ . Γ0 - ∆
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Σ . Γ;A� - A��� ;∆

Σ . Γ;A ^ B�;A�;B� - ∆
Σ . Γ;A ^ B� - ∆ ^ !

Σ . Γ - A�;A ^ B�;∆ Σ . Γ - B�;A ^ B�;∆
Σ . Γ - A ^ B�;∆ ! ^

Σ . Γ;A _ B�;A� - ∆ Σ . Γ;A _ B�;B� - ∆
Σ . Γ;A _ B� - ∆ _ !

Σ . Γ - A�;B�;A _ B�;∆
Σ . Γ - A _ B�;∆ ! _

Σ . Γ;A � B� - A��� ;∆ Σ . Γ;A � B�;B��� - ∆
Σ . Γ;A � B� - ∆ �!

Σ . Γ;A��� - B���;A � B�;∆
Σ . Γ - A � B�;∆

!�y

Σ . Γ;8xA�;A[t=x]��� - ∆
Σ . Γ; (8xA)� - ∆

8 !z

Σ; a : � � � . Γ - A[a=x]���;8xA�;∆
Σ . Γ - 8xA�;∆

! 8y

Σ; a : � . Γ;9xA�;A[a=x]� - ∆
Σ . Γ;9xA� - ∆

9 !y

Σ . Γ - A[t=x]�;9xA�;∆
Σ . Γ - 9xA�;∆

! 9z

Figure 4: A more general explicitly-scoped cut-free sequent calculus for minimal
logic, LMS. y For (! 8), (9 !) and (!�), a and � must not appear in the
conclusion.
z For (8 !), there is a proviso that t be a Σ-term of index � � �; for (! 9) that t be
a Σ-term of index �.
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where the formulas in Γ0 are a subset of those that occur in Γ and no annotation in
D0 contains both � and �.

Proof. We assume D is a pure variable proof. By irrelevance, we can obtain a
shorter derivation D0 from D in which the annotation of left formulas are always
subsets of the annotations of right formulas. By induction, we can show that, in any
D0 with this property, no annotation contains both � and � unless the annotation
of some formula in the end-sequent does. This is immediate at axioms. Suppose
the claim is true of derivations of height n, and consider a derivation of height n+1
in whose end-sequent no annotation contains both � and �. If the derivation ends
in a left rule, no annotation will contain both � and � in the end-sequent of its
immediate subderivations: these combinations could not occur on the right, so a
left rule introducing such combinations would be irrelevant. Likewise, although
immediate subderivations for right rules may include larger sets of annotations,
these sets will extend existing sets by fresh symbols different from � and � by
the pure variable property. Thus, the absence of annotations combining � and �
extends to the end-sequents of immediate subderivations of right rules. Hence, the
induction hypothesis applies to show that � and � never occur as elements of the
same annotation throughout the whole proof. 2

The proof of completeness given in section 3.4.2 now carries over directly to
LMS: here, too, the scoped geometry of LMM proofs determines what scope is
needed in rule applications that extend annotations. In LMS, right formulas can be
annotated with any set �, and left formulas with arbitrary subsets of �:

Theorem 3 (completeness) Let D be an LMM deduction with end-sequent Γ -

∆. Then for any set annotation �, any function � assigning subsets of � to formulas
in Γ, and any indexing context Σ assigning subsets of � to the free term variables of
Γ and ∆, there is an LMS deduction of

Σ . Γ� - ∆�:

Likewise, a proof of soundness for LMS can be formulated in terms of two
lemmas as in 3.4.3. As with LMP, we use the Σ-term condition which relates
substituted terms and formula annotations—formulated in terms of subsets not
prefixes—to give a permutability lemma for LMS:

Lemma 8 (permutability) Let D be an LMS derivation containing an application
P of (!�) or (! 8), which introduces the eigenvariable � in the annotation. Let
R denote any other rule application in D above P, and let � be the annotation of
the side formula of R. Then R permutes with P if and only if � does not contain �.

This result extends to an intermediate lemma:

Lemma 9 Let D be a deduction in LMS of

Σ . Γ - C;∆
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such that: C is of the form 8xA or A � B; C is the principal formula of the lowest
rule application P in D where the eigenvariable � is introduced on annotations;
and no higher rule application in D permutes below P. Then either

Σ . Γ - ∆ is an axiom

or we can construct an LMS deduction D0 from D which shows:

Σ . Γ - C:

This is because LMS shares the three critical properties used before to constrain
axiom links in the deduction D. First, the right sequent rules are formulated to
change annotations by only adding eigenvariables. Second, separate variables must
be distinct (by the pure variable proof lemma). Third, no formulas derived from ∆
formulas in D are labeled with annotations that contain �. This third property is
now an indirect consequence of the new lemma 7 on tree annotations. Consider any
rule application R whose principal formula is a descendant of a ∆ formula with its
original annotation, and which causes the addition of another eigenvariable � to this
annotation on its side formulas (with ∆ on the right, this is the only way annotations
of descendants of ∆ might change). Because of the eigenvariable condition, no
annotation in the end-sequent of the immediate subderivations of R contains both �
and �: lemma 7 applies to show that no formula in the entire deduction is labeled
with both � and �.

Applying this result recursively, as earlier, demonstrates the completeness of
LMS.

4.2 Abbreviating set annotations
Consider a labeled system with set annotations, just as in the previous subsection,
except with the following revised rules for� and 8:

Σ . Γ;A� - B���;A � B�;∆
Σ . Γ - A � B�;∆ !�

Σ . Γ;A � B� - A�;∆ Σ . Γ;A � B�;B��� - ∆
Σ . Γ;A � B� - ∆ �!

Σ; a : � . Γ - A[a=x]���;8xA�;∆
Σ . Γ - 8xA�;∆ ! 8, a, � new

Σ . Γ;8xA�;A[t=x]��� - ∆
Σ . Γ;8xA� - ∆ 8 !, t Σ-term of index �

This calculus also describes intuitionistic proofs. Because the new (!�) and (! 8)
rules encode a transition from scope � to scope ��� on their right side formulas, the
rules continue to describe the scoped location at which � is introduced. This allows
the representation of this scope to be abbreviated to � on the left side formula of
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the (!�) rule, and in the indexing of the new term a of the (! 8) rule. Because
of this abbreviation, we call this system LMA.

The arguments presented previously can be easily adapted to establish that LMA
is a correct calculus for the syntactic representation of scope in intuitionistic proofs.
We can show LMA complete by the argument of theorems 1 and 3. For, LMA
retains the (�!) and (8 !) rules that allow formulas to be labeled with the current
scope as structural scope is made explicit; as the argument requires, the labels of
left formulas remain subsets of the labels of right formulas, even with the new right
rules.

We can show LMA sound by transforming its labels to match the labels of
LMS. This transformation simply folds out the abbreviation undertaken at (!�)
and (! 8) rules.

Theorem 4 Every LMA derivation can be transformed into an LMS derivation, by
a change in labeling.

Proof. The transformation involves a partial mapping � taking atomic annotation
symbols � to sets of annotation symbols �(�). The translation �(�) of an LMA
annotation term � will be (the �-concatenation of) the union of �(�) for all � in �.
We ensure that �(�) = �(�(�)) and � 2 �(�).

We translate an LMA sequent using such a map � to relabel left formulas and
indexing contexts; Γ� abbreviates the multiset of formulas with an occurrence of
A�(�) for each occurrence of A� in Γ, and similarly Σ� . We use a function � to relabel
right formulas: For each occurrence A� on the right �(A�) is a formula A� with
�(�) � �; ∆� denotes the action of � on the formulas in ∆. Given any such � and �,
and an LMA derivation with end-sequent Σ . Γ - ∆, we can construct an LMS
derivation of Σ� . Γ� - ∆� . The proof is by induction on the structure of LMA
derivations.

The conditions on � and � preserve the correctness of axiom and substitution
rules because if � � � then �(�) � �(�) and if also �(A�) = A�0

then �(�) � �0.
The remainder of the construction is to derive a labeling of the side formulas of the
inference rules so as to satisfy LMS figures and allow the induction hypothesis to
be applied.

For (!�) and (! 8), this goes as follows. The inference introduces an
annotation eigenvariable � on a principal formula whose revised annotation is �.
We relabel the subderivation by �0 where �0(�) = ��� and otherwise �0 agrees with
� (assuming without loss of generality because � is new that �(�) is undefined).
For the new right side formula A��� we set �(A���) = A���. The result instantiates
LMS figures.

For (�!) and (8 !), the inference involves annotations �, � and � � �. In
both cases, we extend � to relabel the side formula B��� as B�(���). To complete the
relabeling, for (�!) we can extend � to �0 in the left subderivation so that the side
formula A� gets �0(A�) = A�(���) in place of �. Meanwhile, for (8 !), we simply
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observe that a Σ-term of index � must be a Σ�-term of index �(�) and hence index
�(� � �).

The correspondence for remaining inference rules is immediate. 2
LMA represents another take on topological semantics. The LMA implication

rule corresponds to the model-theoretic condition that A � B is true at an open set q
exactly when B is true at q\ r for any open set r where A is true. This is yet another
equivalent to the conditions on implication presented earlier.

(D’Agostino and Gabbay, 1994) describe a labeled deductive system for propo-
sitional intuitionistic logic without disjunction whose labeling matches LMA. They
motivate this system neither as an abbreviated representations of paths through
proofs nor as a translation method for topological models, but rather as a direct
encoding of intuitionistic sequent rules. For example, in (!�), � represents the
sequent from which A � B is to be proved, and then � � � represents the sequent
from which B is to be proved. The assumption of A at � indicates that � represents
the formula A. In fact, d’Agostino and Gabbay observe that this intuition allows
the eigenvariable condition on (!�) to be simplified. All assumptions of A are
identical, so it suffices to have a single A-characteristic atomic label � used exactly
when A is assumed.

We have just seen one way to extend the labeling of (D’Agostino and Gabbay,
1994) to capture full intuitionistic logic and to obtain a proof system with the
advantages for proof search of classical logic. Such an extension does not seem
compatible with the intuition d’Agostino and Gabbay propose, however. Consider
applying d’Agostino and Gabbay’s intuition to disjunction. Encoding the basic LJ
(_ !) sequent rule directly might give something like this:

Σ . Γ;A _ B� ;A� - C���;C�;∆ Σ . Γ;A _ B�;B� - C���;C�;∆
Σ . Γ;A _ B� - C�;∆ _ !

Its application would be subject to conditions that � be a subset of �, that � be
A-characteristic, and that � be B-characteristic. Because the rule affects multiple
formulas in the end-sequent simultaneously, it is obviously a significant departure
from ordinary sequent-calculus with an uncertain impact on proof search.

On the other hand, we might attempt to exploit classical reasoning for disjunc-
tion, as in LMM (and LMA):

Σ . Γ;A _ B� ;A� - ∆ Σ . Γ;A _ B�;B� - ∆
Σ . Γ;A _ B� - ∆ _ !

This actually yields incorrect results if we only require atomic labels of assumptions
to be characteristic of those assumptions. For example, A � B _ C does not entail
(A � B) _ (A � C) intuitionistically. Yet we have the following labeled proof in
which � is A-characteristic:
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: : : ;A� - A�; : : :
: : : ;B� - B�;C�; : : : : : : ;C� - B�;C�; : : :

: : : ;B_ C� - B�;C�; : : :
_ !

A�;A�;A � B _ C - B�;C�; : : :
�!

A�;A � B _ C - B�;A � C; : : : !�

A � B _ C - A � B;A � C; : : : !�

A � B _ C - (A � B) _ (A � C) ! _

(10)

Thus, it is crucial for extending the proposal of (D’Agostino and Gabbay, 1994)
that assumptions have fresh labels regardless of the content of those assumptions.
This underscores that the proof-theoretic meaning of labels is to record the identity
of the inferences at which assumptions are made. This proof-theoretic meaning
underlies the simple syntactic proof of correctness for LMA building on those for
LMS and LMP. This contrasts with the infinitary and nonconstructive proof of
correctness in (D’Agostino and Gabbay, 1994), which is ultimately semantic in
nature.

4.3 �-terms as set annotations
Bittel (Bittel, 1992; Bittel, 1993) defines a proof-theoretic method for eliminating
impermutabilities in intuitionistic logic which uses labels inspired by �-terms. Bit-
tel’s proposal encodes assumptions from which a conclusion is derived by the free
variables in the �-term that labels the conclusion. Thus, for example, Bittel’s rule
for (!�) can be written as the following sequent rule:

Γ; x : A - M : B;∆
Γ - �x:M : A � B;∆!�

The rule has a side condition that x not appear free in the end-sequent.
We can distill the mechanism behind Bittel’s system by representing only the

free variables and discarding the remainder of the �-term. This reveals quite a close
connection with LMA. If the set of free variables of �x:M is �, and the set of free
variables of x is �, then the set of free variables of M is � � �—provided x occurs
in M. More precisely, if the set of free variables of M is some set �, then the set of
free variables of �x:M is � � �. So Bittel’s (!�) rule can be reconstructed:

Γ;A� - B� ;∆
Γ - A � B���;∆!�, � new

The difference between Bittel’s system and LMA lies in the fact that Bittel’s
system is designed to represent exactly the assumptions from which a conclusion is
derived. LMA allows a formula to be labeled with the names of assumptions that do
not directly contribute to its proof. This difference is visible already in the (!�)
rule; it recurs in Bittel’s axiom rule and in the other right rules of Bittel’s system.
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Bittel’s axiom identifies the labels of assumption and conclusion:

Σ . Γ;A� - A�;∆

Other right rules are modified to label their principal formula with the union of the
annotations of their side formulas. For example, for (! ^), we need:

Σ . Γ - A�;A ^ B���;∆ Σ . Γ - B� ;A ^ B���;∆
Σ . Γ - A ^ B��� ;∆ ! ^

For technical reasons, an explicit rule of contraction on the right is also required.

Σ . Γ - A�;A� ;∆
Σ . Γ - A��� ;∆ C

(In the �-calculus, this rule corresponds to a new term constructor for implicit case
analysis.) Let LMT denote the system with the left rules of LMA plus right and
axiom rules modified in this way; the T records the original status of annotations as
terms.

To show LMT sound, we can give an inductive construction. We start with an
LMM proof with end-sequent Γ - ∆, a function � labeling formula occurrences
in Γ, and an indexing context Σ. The construction produces a labeling �0 of formula
occurrences in ∆ and a proof in LMT of Σ . Γ� - ∆�0

. At axioms, �0 sends the
right linked formula A to the � image of its left match, and sends the remaining
formulas to the empty set. The case of (! ^) is representative of inductive steps in
this construction: we apply the induction hypothesis to obtain proofs of

Σ . Γ� - A�;A ^ B�0

;∆� and Σ . Γ� - A�;A ^ B�0

;∆�0

By weakening these derivations and applying the contraction rule as necessary, we
can obtain derivations of

Σ . Γ� - A�;A ^ B��� ;∆�0

and Σ . Γ� - A�;A ^ B��� ;∆�0

where �0(C) = �(C) � �0(C) except for the principal and side formulas of the (! ^)
inference. These derivations can be composed using the LMT (! ^) inference.

To show this complete, we can transform its labeling into the labeling of LMA.
We need only change the labels of right formulas; we inductively associate each
right formula A� with the appropriate new annotation � with � � �, in the obvious
way.

4.4 Intuitionistic proof search: some comparisons
In section 1.3, we motivated one difficulty in intuitionistic proof search, caused
by the need to order rule applications to reflect scope. We have now seen several
syntactic methods that recast proof rules so as to reduce the impact of order using
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explicit labeling of scope. In section 5.1 we shall see how to extend explicitly-scoped
systems using Herbrand terms and unification so as to eliminate the impact of order
altogether. This represents a solution to a major problem in automatic derivation
of intuitionistic proofs. It is far from the only problematic feature of intuitionistic
proof search, however. Related work that addresses these other problems must still
be adapted to the present framework. We sketch the issues involved in this section.

The first problem concerns bounding the size of proofs. Propositional intuition-
istic logic can be shown decidable, and decision algorithms for it devised, using
such bounds. In (Dyckhoff, 1992), Dyckhoff presents a sequent calculus from which
these bounds follow naturally; this system limits the number of times a formula is
decomposed along each path in a structurally-scoped proof to one, by eliminating
contraction and avoiding preservation of principal formulas of inferences. As the
following argument suggests, what underlies Dyckhoff’s results is the fact that

A intuitionistically entails B � C � (A � B) � C (11)

In any one intuitionistic scope, as in classical propositional logic, there is nothing
to be gained from decomposing a formula more than once. This in itself does
not guarantee that intuitionistic propositional proofs have bounded size, however,
because premises of the form (A � B) � C can be instantiated in any scope �
to create a new scope ��. Fact 11 says that this is necessary only once in each
scoped path: since A holds at scope ��, then for every scope ���, A � B is
true there exactly if B is true there. Dyckhoff’s calculus encodes this directly
using a structural discipline of scope. Articulated explicitly as here, it should
also be possible to incorporate this constraint into an explicitly-scoped system, and
thereby obtain an explicitly-scoped decision procedure for intuitionistic logic. The
explicitly-scoped system would retain a possibility of goal-oriented proof search
and hence a possibility of faster failure than proof search in Dyckhoff’s calculus.

A second problem is to ensure that the calculus gives proofs a compact form.
Sequent calculus proofs without cut are often required to include redundant subtrees.
This point is emphasized in (D’Agostino, 1992) where it is shown that cut-free clas-
sical propositional sequent proofs cannot polynomially simulate truth-tables. These
redundancies are addressed by matrix methods of proof (Andrews, 1981; Bibel,
1982) and tableaux with analytic cuts (D’Agostino and Mondadori, 1994). Labeled
methods have been extended to these frameworks in (Wallen, 1990; D’Agostino
and Gabbay, 1994)—but on a semantic rather than a proof-theoretic basis. Because
cut-elimination can be proved purely syntactically, we can now anticipate finding
a proof-theoretic basis for these techniques, in light of the present work, and then
adapting these techniques where appropriate to synthesize proofs in intuitionistic
natural deduction and analyze intuitionistic proof search.

A third problem, given that inferences can now be applied in any order, is to select
a perspicuous or efficient order for applying them. Algorithms for proof search with
particular orders of inference can be given as refinements of the full sequent calculi.
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For example, in (Herbelin, 1994), a restriction on uses of (�!) is exploited to
obtain a bijection between normal simply-typed �-terms and sequent proofs. Logic
programming, meanwhile, can be presented in terms of sequent calculi in which
right rules must be applied before left rules whenever possible (Miller et al., 1991).
This order of rule application is embodied in restricted focusing sequent calculi
in (Andreoli, 1992; Miller, 1994); the proofs obtained are called uniform. These
disciplines for restricting proof search have so far been formulated in structurally-
scoped sequent calculi; thus while they can reduce branching in proof search, they
cannot by themselves enable proof search for full intuitionistic logic to proceed in a
goal-directed manner as in an explicitly-scoped calculus. The intuitions behind these
refinements remain applicable in explicitly-scoped systems, however. For example,
we return to the question of the application of these techniques to explicitly-scoped
calculi for intuitionistic logic in section 5.1.

There remains the problem of selecting the right discipline of explicit scope for
a particular application, from the four we have seen: LMP, LMS, LMA, LMT. One
ground for comparison is the complexity of reasoning with the appropriate equa-
tional theory of terms. Bittel’s LMT might seem best on these grounds: Bittel shows
that LMT can be implemented using annotations with free structure and ordinary
unification. This implementation is problematic, however, in that it prevents the
system from lifting compactly to use unification as do the others. In fact, Bittel uses
a lifting procedure that does not eliminate quantifier impermutabilities but allows
substitutions to be made appropriate to the particular order in which quantifier rules
are used—a strategy analogous to (Voronkov, 1996). Meanwhile, for the strings of
LMP, the situation is in fact much better than it might appear. (Stone, 1997a) shows
that the string equations resulting from an LMP proof can be solved in polynomial
time using a constraint algorithm that avoids the need to backtrack among alterna-
tive equational unifiers. There is thus some reason to think that LMP is not only the
most basic system, but also the most efficient one.

5 Proof-theoretic Extensions and Applications
In sections 3 and 4, we considered a variety of systems that allow intuitionistic
proofs to be constructed in a more liberal order than a typical, structurally-scoped
calculus. We motivated the need for such systems in section 1 with two applications
that depend on the scope discipline of intuitionistic proofs: the analysis of automatic
proof search for logic programming and the automatic synthesis of functional pro-
grams. This section returns to these applications and establishes their connection
to the results of sections 3 and 4, using some additional proof-theoretic results. We
begin in 5.1 by presenting a Herbrand theorem for LMP and sketching its relevance
for logic programming. We continue in 5.2 with an algorithm to extract �-terms
from lifted LMP deductions, and sketch its role in program synthesis.
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5.1 Lifting LMP
Recall from 3.3 that LMP represents only a halfway point in the development of
a calculus in which rules may appear in any order. LMP allows propositional
rules that could occur low in a structurally-scoped proof to be delayed to a higher
point; but it does not always allow propositional rules that could occur high in a
structurally-scoped proof to be advanced to a lower point—this was illustrated in
proofs (8) and (9). This difference is a result of the eigenvariable condition on
annotations and first-order terms imposed by (!�), (! 8) and (9 !) figures.

But in 2.2, we have already observed that there is a general syntactic device
for eliminating these eigenvariable conditions: the use of Herbrand terms in place
of eigenvariables (Lincoln and Shankar, 1994). Herbrand terms are representa-
tions of eigenvariables whose constituency, not position in the proof, specifies an
appropriate order in which eigenvariables are to be introduced. At the same time
as it eliminates the quantifier impermutabilities in a calculus, the use of Herbrand
terms allows instantiations of quantifiers to be delayed until sufficient information
becomes available. A variable is used in place of a substituted first-order term and
its value is determined using unification.

This section develops and applies a sequent calculus refinement of LMP that
uses Herbrand terms and unification. We call this new calculus LMU. The calculus
implements dynamic Skolemization in the style of (Lincoln and Shankar, 1994).
Dynamic Skolemization annotates formulas in proofs with the information needed
to construct any Herbrand terms when quantifier-like rules apply, instead of rewriting
formulas to a special functional form containing Herbrand terms before proof search
begins. Dynamic Skolemization is appropriate because any functional form for
intuitionistic logic would have to go beyond the ordinary syntax of formulas—for
example to encode the intuitionistic difference between A � 9xB(x) and 9x(A �
B(x)). (But see (Fitting, 1996) for one way to do this.)

In our notation for dynamic Skolemization, each formula is subscripted by a list
of terms H that must occur in the sequent before any inference could decompose
that formula. The list of terms is maintained so as to include the instantiations
made in deriving the formula (since it would be impossible to arrive at the formula
without making those instantiations). This suffices for LMP because it has only
eigenvariable impermutabilities. However, in general, the list must also be updated
to include additional terms based on the propositional impermutabilities of the logic.
For example, (Lincoln and Shankar, 1994) describe the additional bookkeeping
required to maintain these terms for first-order linear logic (Girard, 1987) with its
panoply of impermutabilities (Andreoli, 1992; Galmiche and Perrier, 1994; Tammet,
1994).

To maintain the list H, rules that formerly involved a free choice of terms are
revised. Logic variables are substituted for bound variables, and a record of the
use of the logic variable is made by appending it to the label H on the formula.
The values of logic variables are later constrained at axioms by unification. For
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example, we have for (�!):

: : : . Γ;A � B�
H

- A�x
H;x;∆ : : : . Γ;A � B�

H;B�x
H;x;

- ∆
: : : . Γ;A � B�

H
- ∆ �!

(The ellipses anticipate further revisions required under dynamic Skolemization.)
Having maintained the list H, dynamic Skolemization reformulates the remain-

ing quantifier-like rules so as to build an appropriate term. This is done by combining
this list H with a name for the principal connective of the inference. The name,
which we indicate by a subscript, is viewed as a function symbol and H as its
argument. Thus, the action of (!�) in LMU can be schematized thus:

: : : . Γ;A�(gH)
H

- B�(gH)
H ;A �g B�

H;∆
: : : . Γ - A �g B�

H;∆ !�

The function symbol associated with the implication is g, the list of instantiations
H, and the new Herbrand term representing an arbitrary transition of accessibility
is gH. The use of a name associated with the symbol is a slight departure from
(Lincoln and Shankar, 1994); they use a unique name for each rule-application.
The difference involves adding to their proof a simple step to eliminate redundant
eigenvariable introductions by exploiting the preservation of principal and side
formulas on sequents in LMP.

Again following (Lincoln and Shankar, 1994), we make the role of unification
in assigning values to logic variables an explicit part of the sequent calculus. Now,
given the use of Herbrand terms to eliminate scope, the lifetime of a variable can
extend beyond the subproof where it are introduced. Each sequent therefore includes
an input substitution U, which encodes the constraints in force and the unifications
performed up to the point in proof search where the sequent arises; and an output
substitution V, which encodes the constraints in force and the unifications performed
up to the point in proof search where the proof of that sequent has been completed.
Effectively, V specializes U so as to respect the constraints imposed by axioms in
the proof of the sequent.

A distinction between input and output indexing contexts on sequents is required
for the same reason. Each sequent includes a input specification Σ of the scopes
of terms already introduced when the sequent is first encountered in proof search,
and an output indexing Θ that specifies not only these scopes but also the scopes of
terms introduced as part of proving the sequent. Overall, sequents are written

U; Σ=V; Θ . Γ - ∆

to reflect their dependence on inputs U and Σ and production of outputs V and Θ.
As an illustration of how these new labels of sequents combine with dynamic

Skolemization, we can give the example of (9 !) and (! 9) in full. First (9 !):

U; Σ; gH : �=V; Θ . Γ;9gxA�
H;A[gH=x]�H

- ∆
U; Σ=V; Θ . Γ;9gxA�

H
- ∆ 9 !
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(9 !) introduces a new Herbrand term gH determined from the list of instantiations
H and the name g of the quantifier occurrence. This new Herbrand term is confined
to the scope � with which the principal formula is labeled; the input indexing to the
subderivation therefore includes the specification gH : �.

Second, (! 9):

U; Σ; y : �=V; Θ . Γ - A[y=x]�H;y;9xA�
H;∆

U; Σ=V; Θ . Γ - 9xA�
H;∆ ! 9

Here, y is a fresh logic variable. Note that because unification determines the value
of y, it is the unification step and not the (! 9) rule that must determine whether
the value assigned to y respects the scope � of the formula where y is introduced.
Accordingly, the rule adds an indexing y : � to Σ.

This leaves only the revision of initial sequents left to be explained. We have:

U; Σ=V; Σ . Γ;B�
H

- A�
I ;∆

where V is any most general unifier more specific than U and having the following
properties:

1. V(A) and V(B) are identical as terms;

2. V(�) is identical as a string to V(�x) for some fresh logic variable x; and

3. for any term variable y—where Σ assigns � to y, and some Herbrand function-
application hY is a subterm of V(y)—the following holds: for any term hZ—
associated by Σ with some annotation �—such that V(hZ) = V(hY), V(�) is a
prefix of V(�).

Computation of V calls for string unification; nevertheless annotation equations are
sufficiently simple that the existence of a solution to a set of annotation equations
in polynomial time for many search strategies (Stone, 1997a).

LMU is summarized in Figure 5. The construction of LMU instantiates the gen-
eral procedure for the construction of optimized sequent calculi described in (Lincoln
and Shankar, 1994). The proof of correctness given in (Lincoln and Shankar, 1994)
applies immediately to LMU, once we establish the correctness of implementing
the indexing check by enforcing condition (3) on substitutions. To establish this,
we first observe that Lincoln and Shankar’s correspondence between proofs in the
optimized calculus and proofs in the ground calculus is quite close. In particular, the
introductions of Herbrand function applications equal to hY under the output sub-
stitution V of an LMU proof correspond to some single rule application introducing
the eigenvariable a in an LMP proof. Meanwhile, the assignment of t to y by V in
the optimized proof indicates that the term corresponding to t should be substituted
at the rule application in the ground proof corresponding to the introduction of y.
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U; Σ=MGU(MGU(U;A;B); �x; �); Σ . Γ;B�
H

- A�
I ;∆�

U; Σ=V; Θ . Γ;A ^ B�
H;A�

H;B�
H

- ∆
U; Σ=V; Θ . Γ;A ^ B�

H
- ∆ ^ !

U; Σ=W; Φ . Γ - A�
H;A ^ B�

H;∆ W; Φ=V; Θ . Γ - B�
H;A ^ B�

H;∆
U; Σ=V; Θ . Γ - A ^ B�

H;∆ ! ^

U; Σ=W; Φ . Γ;A _ B�
H;A�

H
- ∆ W; Φ=V; Θ . Γ;A _ B�

H;B�
H

- ∆
U; Σ=V; Θ . Γ;A _ B�

H
- ∆ _ !

U; Σ=V; Θ . Γ - A�
H;B�

H;A _ B�
H;∆

U; Σ=V; Θ . Γ - A _ B�
H;∆ ! _

U; Σ=W; Φ . Γ;A � B�
H

- A�x
H;x;∆ W; Φ=V; Θ . Γ;A � B�

H;B�x
H;x

- ∆
U; Σ=V; Θ . Γ;A � B�

H
- ∆ �!

U; Σ=V; Θ . Γ;A�(gH)
H

- B�(gH)
H ;A �g B�

H;∆
U; Σ=V; Θ . Γ - A �g B�

H;∆ !�

U; Σ; y : �z=V; Θ . Γ;8xA�
H;A[y=x]�z

H;y;z
- ∆

U; Σ=V; Θ . Γ;8xA�
H

- ∆ 8 !

U; Σ; gH : �(hH)=V; Θ . Γ - A[gH=x]�(hH)
H ;8ghxA�

H;∆
U; Σ=V; Θ . Γ - 8ghxA�

H;∆ ! 8

U; Σ; gH : �=V; Θ . Γ;9gxA�
H;A[gH=x]�H

- ∆
U; Σ=V; Θ . Γ;9gxA�

H
- ∆ 9 !

U; Σ; y : �=V; Θ . Γ - A[y=x]�H;y;9xA�
H;∆

U; Σ=V; Θ . Γ - 9xA�
H;∆ ! 9

Figure 5: LMU, a unification-based presentation of LMP. The only proviso is (�)
that MGU must supply a unifier (with occurs check) at axioms that assigns labels to
quantifiers and terms in accordance with Σ.
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Because of this regularity, condition (3) ensures that the term substituted in the
ground proof at the site corresponding to y is in fact a term of appropriate index.
This is just because Herbrand function applications appear in V(y) at the positions
corresponding to any eigenvariables that appear in the ground term. Now, Herbrand
function applications may appear in V(y) without corresponding to eigenvariables:
they may appear nested inside arguments to other Herbrand function applications.
However, these additional checks will not rule out any unifiers of appropriate index.
For suppose Σ contains hY : � and gZ : & where V(gZ) is a subterm of V(hY).
V(u) must contain V(gZ) for some variable u free on the formula from which h is
introduced. By condition (3), the annotation V(&) is a prefix of the annotation V(�)
associated with u. But the logical rules ensure that � is a prefix of �. Hence, V(&)
must be a prefix of V(�).

Theorem 5 (correctness) Let Γ and ∆ be any multisets of labeled formulas which
do not contain Herbrand functions or variables. Then there is a deduction in LMP
of

Σ . Γ - ∆

if and only if there is a deduction in LMU of

U; Σ=V; Θ . Γ - ∆

for some U, V, and Θ.

Proof. As outlined in (Lincoln and Shankar, 1994), pages 284–287. The only if
direction is established by an induction on proofs in the ground system (in this case,
LMP) which shows that the rule ordering of the ground proof and the substitutions
made in the ground proof describe an analogous proof in the lifted system (in
this case, LMU). The if direction is established by showing that the bindings of
values to variables, any propositional impermutabilities inherited from the ground
system (LMU has none), a condition that formulas precede their subformulas, and
transitivity will induce a strict partial order on the rule-applications in any proof
in the lifted system. An induction on the structure of lifted proofs establishes that
permutations of inferences convert any lifted proof to another proof in which the
ordering of rule-applications matches this induced partial order.

Substituting eigenvariables for Herbrand terms and appropriate values for logic
variables gives a new proof where eigenvariable conditions are satisfied—with one
exception due to the use of names for symbols rather than inferences in LMU.
We may have cases where one (!�), (! 8) or (9 !) rule introduces the same
variable as a lower one (such occurrences are unordered by Lincoln and Shankar’s
conditions). Such cases are dispatched as follows. The principal and side formulas
of the two rule applications must be identical. Because of the preservation of
formulas in sequents in LMU and LMP, the side formulas of the lower application
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are available in the sequent when the higher rule applies. Therefore, we can exploit
the admissibility of contraction and simply eliminate the higher inference. 2

LMU has completely free permutabilities; reasoning about the order of introduc-
tion of quantifiers and implications is factored into the occur-check in unification. To
illustrate this, we return to the LMP proof of (C � B_A) � (C � A_B) given in (9).
The corresponding proof in LMU is obtained simply by using variables in place of
ground instantiations at (�!)—assuming a labeling (C � B_A) �� (C �� A_B);
it appears in (12).

; =#; . : : :;C�� - C�x

#; =#; . : : :;A�x - A��

#; =#; . : : : ;A�x - A _ B��! _
#; =#; . : : :;B�x - B��

#; =#; . : : : ;B�x - A _ B��! _

#; =#; . : : :;B _ A�x - A _ B�� _ !

; =#; .C � B _ A�;C�� - A _ B�� �!

; =#; .C � B _ A� - C � A _ B� !�

; =#; . - (C � B _ A) � (C � A _ B) !�

(12)

Here # is a substitution of � for x. Proof (12) has much the same form as (9), but
proof (12) represents the fact that (�!) outscopes (!�) in the binding of x to �,
not in the structure of the proof. Thus, a permuted proof in which the (�!) rule
applies lower, as in (13), is also possible.

; =#; . : : :C�� - C�x; : : :

; =#; . : : : - C�x;C � A _ B�; : : :!�

#; =#; . : : :B�x - B�� : : :

#; =#; . : : :B�x - A _ B�� : : :
! _

#; =#; . : : :B�x - C � A _ B� : : :!�

#; =#; . : : :A�x - A�� : : :

#; =#; . : : :A�x - A _ B�� : : :
! _

#; =#; . : : :A�x - C � A _ B� : : :!�

#; =#; . : : :B _ A�x - C � A _ B� : : :
_ !

=#; .C � B _ A� - C � A _ B� : : : �!

=#; . - (C � B _ A) � (C � A _ B) !�

(13)

Because the inferences of LMU proofs may appear in any order, we can choose
arbitrary regimes for ordering inferences in LMU proofs without sacrificing com-
pleteness. One possible regime, suggested in (Miller et al., 1991) and extended in
(Andreoli, 1992; Miller, 1994), is to apply left rules only when we are committed
that no right formula will be the principal formula of a higher rule in the proof,
and until then to apply right rules. This search strategy provides a general descrip-
tion of the behavior of an interpreter for a logic programming language. It allows
connectives in right formulas to be viewed as instructions for search.

This construction applies to any sequent calculus with appropriate permutabil-
ities, not just LMU. For example, we might also apply it after adapting the results
of (Fitting, 1983; Smullyan, 1973; Wallen, 1990; Ohlbach, 1991; D’Agostino and
Gabbay, 1994) to derive an explicitly-scoped sequent calculus of intuitionistic prov-
ability by purely semantic methods. However, the syntactic analysis of the proofs
obtained plays an important part of describing the logic programming language. For
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example, as observed in (Miller, 1989), LJ proofs gain a natural modular structure
from how they ensure that the assumption of A can only contribute to the proof of
B in proving A � B. We have already used syntactic methods to put LMU proofs
in correspondence with LJ proofs. LMU can therefore be used immediately to
extend the logical analysis of modules presented in (Miller, 1989) to other logical
fragments.

5.2 Extracting �-terms
As mentioned in 1.1, a major motivation for considering intuitionistic deduction is
the automatic synthesis of functional programs (Martin-Löf, 1982; Constable et al.,
1986). In the deductive approach to program synthesis, the input is a specification
of the type of a function (including constraints on the relation between its argument
and its result). The output is a function that provably has this type. Using the Curry-
Howard isomorphism (Howard, 1980), the type of the function can be specified as
a formula in intuitionistic logic and the resulting program can be extracted from the
proof of the formula. This requires the derivation not only of intuitionistic theorems
but also of intuitionistic natural deductions.

LMU’s contribution to this research program is to offer advantageous search
for proofs that correspond to intuitionistic natural deductions. Now, the proof of
correctness of LMU gave a system for permuting LMU inferences first to LMP in-
ferences and then to LMM inferences and finally to LJ inferences. Thus, performing
these permutations on an LMP or LMU deduction already gives a way to extract
�-terms. This technique is rather unsatisfactory, however, in so far as the majority
of the permutations dictated by the correctness proof will have no impact on the
�-term ultimately obtained. We now consider how to extract �-terms directly from
LMU proofs.

5.2.1 Motivation
Intuitively, a completed LMU proof specifies a collection of intuitionistic inferences
labeled with the scope in which each is to be performed.

Thus far, the collection of inferences is represented only by the inferences that
the proof contains. The first step in extracting a �-term from an LMU proof is to
make the inferences explicit. We will do this in the style of (Felty, 1991) by labeling
formulas with terms recording the inferences that derive them. In this presentation,
formulas on the left may be labeled with complex proof-terms built by applying
left rules; this contrasts with presentations such as that in (Gallier, 1993) where
left formulas are always labeled with variables, and substitutions are performed
at the application of left rules. This allows each sequent to record the inferences
performed in each scope.

The second step is to assemble a �-term from these scoped inferences. With
structural scope, it is possible for this assembly to proceed incrementally in lock-
step with the construction of the sequent proof. The structure of the proof matches
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the abstraction and substitution operations that need to be performed in assembling
a �-term (the specifications in (Felty, 1991; Gallier, 1993) do this). However, in
LMU, scopes do not always correspond to regions of the proof. We therefore require
a recursive traversal of the record of scoped inferences to assemble the final �-term.

Bittel’s method of extracting �-terms also involves an incremental labeling and
a postprocessing traversal (Bittel, 1992; Bittel, 1993). Bittel’s traversal procedure
is qualitatively quite similar to the one here. Our process, unlike his, exploits an in-
dependent discipline of explicit scope to streamline deduction and guide extraction.
At the same time, we account for a greater range of ordering of rules and therefore
need an additional mechanism to accumulate inferences during the construction of
proofs.

We can illustrate the issues involved by the contrast between the two proofs of
Figure 5.2.1. If f names A � C and g names B � C, these proofs both derive a
function �u:case(u of inl(v) ) f(v)jinr(v0) ) g(v0)). In the proof of Figure 5.2.1a,
this term matches the scoped structure of the proof. The lowest rule is (!�) just as
the widest scope connective is �, the next rule is (_ !) just as the next connective
is case, etc.

In LMU, it is more complicated. The (_ !) rule corresponding to the case
statement lies at the upper left, while the (!�) rule appears three times! The
annotations define the scope of connectives: scope is no longer simply a reflection
of the structure of the proof tree. To see that scope is still represented, observe that
all subproofs contain the annotation � corresponding to the one � in the resulting
term. Because these scope-annotations propagate through unification during proof
construction, the synthesis of case statements for disjunctions and casex statements
for existential quantifiers from LMU proofs will be delayed until the proof is
complete and the exact scope of connectives is determined.

This process requires a new mechanism for assembling proof-terms from sep-
arate subtrees of a proof. In the proof of Figure 5.2.1b, the right subproofs, even
though combined by (�!), each partially constrain the deduction associated with
the conclusion. One is associated with the inference inl(v) ) f(v), the other with the
inference inr(v0) ) g(v0). To handle this, the term associated with a formula must
be regarded as a partial specification of the natural deduction proof of that formula.
The need to assemble these partial specifications into complete ones reflects the
implicit role of contraction in collapsing repetitions of formulas in sequents after
permutations.

5.2.2 Recording inferences
A precise simultaneous specification of LMU and intuitionistic natural deduction is
as follows. We begin here by describing how the inferences made in an LMU proof
are recorded. We continue in 5.2.3 by describing how terms are reconstructed from
this record.

We will use variables in terms as placeholders for content that cannot be deter-
mined until scopes are fixed. Since annotations determine scope in the proof and
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=� . : : :A� - Ax : : : �=� . : : :Cx - C� : : :

=� . : : :A � C; A� - C� : : :

�=� . : : :B� - By : : : �=� . : : :Cy - C� : : :

�=� . : : :B � C; B� - C� : : :

=� . A � C; B � C; (A _ B)� - C� : : :

=� . A � C; B � C - A _ B � C

a. The LMU rendering of a usual intuitionistic logic proof; � = �=x; � = �=x; �=y.

=� . : : :A� - Ax : : : �=� . : : :B� - By : : :

=� . : : : (A_ B)� - Ax; By; C� : : :

=� . : : : - Ax; Bx; (A _ B � C)

�=� . : : :Cx - C� : : :

�=� . : : :Cx - By; A _ B � C

=� . : : :A � C - By; A _ B � C

�=� . : : :Cy - C� : : :

�=� . : : :Cy - A _ B � C

=� . A � C; B � C - A _ B � C

b. An LMU proof equal to the first up to permutations; � = �=x; � = �=x; �=y.

Figure 6: Permutations motivate partiality and a different treatment of scope.
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in the corresponding �-term, we implement this through two maps that associate
distinct variables with annotation eigenvariables. K� abstracts the term that ulti-
mately will describe the right side formula of the rule introducing annotation �; v�
will describe the label of the left side formula. Thus, every (!�) rule introducing
annotation � will be effectively assigned the anonymous proof term �v�:K�. As
described below, separate structures will determine what terms the proof says should
actually correspond to these variables.

In ordinary natural deduction, case and casex statements indicate not only scope,
but also the link between a term and the variables that represent their different possi-
ble values. Since the construction of case statements is delayed, these associations
must now be treated explicitly. We will implement them using maps from scope-
labeled formulas to variables, and thereby obtain a mnemonic that signals how the
relevance of variables may depend on the cases introduced by that formula at that
scope. In particular, fst?(A _ B�

H) and snd?(A _ B�
H) indicate the variables to be

introduced in applying the (_ !) rule to a principal formula A _ B�
H. Meanwhile,

unx?(9gA�
H) indicates the term variable to be introduced in applying the (9 !)

rule to a principal formula with label 9gA�
H. (Since LMU maintains substitutions

mapping logic variables to values, it will be necessary to apply such a substitution V
to a natural deduction term; in so doing, V must be extended to rename these special
variables, so that V(fst?(M)) = fst?(VM), etc.)

Terms for labeling formulas in sequents are constructed according to the follow-
ing grammar:

T ::= var j fst(T) j snd(T) j hT;Ti j
inl(T) j inr(T) j inx(t;T)
(TT�) j as x in T j (Tt�) j type v in T j

The superscript on applications indicates the scope of the application. The notation
as v in T corresponds to �v:T but emphasizes that this construction does not bind v;
and likewise type � in T for ��:T. (The �, case, and casex statements that indicate
scope come later.)

To encode the partial specification of terms in different parts of the proof, the
label of a formula will be a set of terms. Each element of this set will specify a
sequence of natural deduction steps which could be appropriately included in the
analyses of certain of the cases described by the proof. In describing the labels
of formulas, we allow a variable v to abbreviate the singleton fvg, and we allow
f(F1; : : :Fk) to abbreviate ff(M1; : : : ;Mk)jM1 2 F1; : : : ;Mk 2 Fkg for constructors
and destructors f.

Rules which ordinarily bind variables in proof-terms must be adjusted to accom-
modate explicit scope. This is done by registering the proof-terms of the inferences
on the sequent for later processing. There are two such repositories. First, there
is a set T of pairs of annotation terms and proof terms. In each scope, T describes
alternative terms that might be constructed, depending on the different cases that
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must be considered in that scope. T specifications are augmented at (!�) and
(! 8) applications to include the proof terms under which the right side formula
is derived. For example, suppose the sequent rule for (!�) applies with its side
formula B associated with terms F and labeled with scope ��. Then the rule extends
T as derived in the subderivation to T[f(��;M)jM 2 Fg—abbreviated T[(��;F).
The proof-terms for B are otherwise discarded; the principal formula is associated
with an anonymous term— as v� in K� : A � B�.

Second, there is a set C of triples of annotation terms, labeled formulas, and
proof terms. C contains a tuple (�;A;M) if a case analysis of the formula A,
depending on the value of M, may be required in scope �. C specifications are
augmented at (_ !) and (9 !) applications, to record the proof terms under which
the principal formula is derived. The side formulas are associated with appropriate
new variables.

C and T thus indicate how terms are to be reconstructed to replace each K�

variable: cases are introduced corresponding to appropriate elements of C and
proof terms are derived in each case corresponding to an appropriate element of
T. Now, like substitutions and indexing contexts, the specifications of C and T
grow incrementally during a proof, so that input and output values are required on
sequents. The overall form of sequents is therefore

T; C; U; Σ=T0; C0; V; Θ . Γ - ∆

(the change in substitution from U to V and the change in indexing from Σ to Θ
records the incremental evolution of state as in LMU). The formulas in Γ and ∆ are
associated with sets of proof terms (in addition to the labeling already needed from
LMU). It is convenient also to notate ∆ as L : ∆ to indicate that each formula A in
∆ is associated with a proof term L(A).

Unlike labels of scope, which allow dependencies that are not used, term labels
for right formulas must represent dependencies exactly. Thus, the axiom rule takes
the form

T; C; U; Σ=T; C; MGU(MGU(U;A;B); �x; �); Σ . Γ;F : B�
H

- F : A�
I ;� : ∆

where� : ∆ indicates that ∆ is a multiset of formulas each associated with an empty
function from cases to terms. Because dependencies are exact, term labels must be
merged by sequent rules. For example:

: : : . Γ - F : A�
H; G : A ^ B�

H;L : ∆ : : : . Γ - F0 : B�
H; G0 : A ^ B�

H;L0 : ∆
: : : . Γ - hF;F0i [ G [ G0 : A ^ B�

H;L [ L0 : ∆ ! ^

The notation L [ L0 : ∆ indicates the multiset in which each formula occurrence A
of ∆ is associated with L(A) [ L0(A).

Complete rules elaborating LMU sequents with proof-terms are given in Fig-
ure 5.2.2. Apart from the nuances about partiality and scope described above, the
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T; C; U; Σ=T; C; MGU(MGU(U;A;B); �x; �); Σ . Γ;F : B�

H

- F : A�

I ;� : ∆

T; C; U; Σ=T0; C0; V; Θ . Γ; F : A ^ B�

H; fst(F) : A�

H; snd(F) : B�

H

- ∆
T; C; U; Σ=T0; C0; V; Θ . Γ; F : A ^ B�

H

- ∆ ^ !

T; C; U; Σ=T0; C0; W; Φ . Γ - F : A�

H; G : A ^ B�

H; L : ∆ T0; C0; W; Φ=T00; C00; V; Θ . Γ - F0 : B�

H; G0 : A ^ B�

H; L0 : ∆
T; C; U; Σ=T00; C00; V; Θ . Γ - hF;F0i [ G [ G0 : A ^ B�

H; L [ L0 : ∆ ! ^

T; C; U; Σ=T0; C0; W; Φ . Γ; F : A _ B�

H; fst?(A_ B�

H) : A�

H

- L : ∆ T0; C0; W; Φ=T00; C00; V; Θ . Γ; F : A _ B�

H; snd?(A_ B�

H) : B�

H

- L0 : ∆
T; C; U; Σ=T00; C00 [ (�;A_ B�

H;F); V; Θ . Γ; F : A _ B�

H

- L [ L0 : ∆ _ !

T; C; U; Σ=T0; C0; V; Θ . Γ - F : A�

H; F0 : B�

H; G : A _ B�

H;∆
T; C; U; Σ=T0; C0; V; Θ . Γ - inl(F) [ inr(F0)[ G : A _ B�

H;∆! _

T; C; U; Σ=T0; C0; W; Φ . Γ; F : A � B�

H

- G : A�x
H;x; L : ∆ T0; C0; W; Φ=T00; C00; V; Θ . Γ; F : A � B�

H; (FG)�x : B�x
H;x

- L0 : ∆
T; C; U; Σ=T00; C00; V; Θ . Γ; F : A � B�

H

- L [ L0 : ∆ �!

T; C; U; Σ=T0; C0; V; Θ . Γ; vgH : A�(gH)

H

- F : B�(gH)

H ; as vgH in KgH : A �g B�

H; ∆
T; C; U; Σ=T0 [ (�(gH);F); C0; V; Θ . Γ - as vgH in KgH : A �g B�

H; ∆ !�

T; C; U; Σ; y : �z=T0; C0; V; Θ . Γ; F : 8xA�

H; (Fy�z) : A[y=x]�z
H;y;z

- ∆
T; C; U; Σ=T0; C0; V; Θ . Γ; F : 8xA�

H

- ∆ 8 !

T; C; U; Σ; gH : �(hH)=T0; C0; V; Θ . Γ - F : A[gH=x]�(hH)

H ; type gH in KhH : 8ghxA�

H; ∆
T; C; U; Σ=T0 [ (�(hH);F); C0; V; Θ . Γ - type gH in KhH : 8ghxA�

H; ∆ ! 8

T; C; U; Σ; gH : �=T0; C0; V; Θ . Γ; F : 9gxA�

H; unx?(9gxA�

H) : A[gH=x]�H

- ∆
T; C; U; Σ=T0; C0 [ (�; 9gxA�

H;F); V; Θ . Γ; F : 9gxA�

H

- ∆ 9 !

T; C; U; Σ; y : �=T0; C0; V; Θ . Γ - F : A[y=x]�H;y; G : 9xA�

H; ∆
T; C; U; Σ=T0; C0; V; Θ . Γ - inx(y;F) [ G : 9xA�

H; ∆ ! 9

Figure 7: Assigning proof terms in LMU deductions.
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presentation is essentially identical to that found in (Felty, 1991) and should offer
no surprises.

Observe that the various transformations that we have considered so far in this
paper can be extended naturally to apply in this calculus. (Each of these regularities
can be proved straightforwardly by examination of cases and induction on proofs, if
necessary.) For example, ifD is a derivation with proof terms, then we can obtain a
weakened derivation Λ +D by adding any multiset Λ of decorated formulas on the
left throughout D and another weakened derivation D +� : Λ obtained by adding
on the right throughout D any multiset Λ in which each formula is assigned the
empty set of terms. Moreover, from a derivation ending

T; C; U; Σ=T0; C0; V; Θ . Γ - ∆

we can construct an analogous derivation ending

T00; C00; U00; Σ00=T00; C00; U00; Σ00 . Γ - ∆

as long as T00, C00, Σ00 contain all the tuples in T0, C0 and Θ and as long as U00 always
equates terms that V equates. These facts allow derivations to be copied and reused:
thus, full permutations of inference remain possible in the calculus with proof terms,
and, in fact, permutations applied in a proof do not alter its end-sequent.

Moreover, appropriate transformations of contraction are available. A proof
whose end-sequent contains two identical formulas with identical proof-term la-
bels on the left can be simplified to a proof whose end-sequent contains a single
occurrence of this assumption.

Finally, consider cases where D0 omits part of D, but has identical formulas on
left and right in the end-sequent to D, with proof-terms labeled identically on the
left, and contains only inferences from D. This leaves open that D has the form:

T; C; U; Σ=T0; C0; V; Θ . Γ - L : ∆

whereas D0 has the form:

T; C; U; Σ=T00; C00; V0; Θ0 . Γ - L0 : ∆

In such a case, T00 � T0, C00 � C0, and L0(A) � L(A) for all A 2 ∆.
Together with the the theorems of sections 3.2, 3.4 and 5.1, these regularities

ensure that for any labeled proof

T; C; U; Σ=T0; C0; V; Θ. - F : A

where A does not contain Herbrand terms or variables and is labeled with the empty
path, there is proof

T; C; U; Σ=T00; C00; V; Θ. - F0 : A

which contains a correctly-ordered sequence of inferences corresponding to an LJ
proof and where T00 � T0, C00 � C0 and F0 � F.
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5.2.3 Reconstructing terms
Given specifications T and C and a set � of variables guaranteed to be bound in
the current scope and case, a term M : A is reconstructed by a recursive traversal
in which subterms of the form K� are elaborated. The elaboration, giving cases,
introduces the case and casex statements needed at scope �, adds the appropriate
variable bindings, and recursively reconstructs alternative actions to take at each
case. In the recursive invocation, we consider only the subsets of T and C involving
tuples with annotation terms that have a proper prefix ending in �; we abbreviate
those subsets T� and C�. These processes take for granted that the substitution V
has applied to T, C and M, and also that eigenvariables have been substituted for
Herbrand terms (as performed in showing the correctness of LMU).

The procedures of reconstruction and giving cases are specified nondetermin-
istically, because multiple reconstructions may be possible. These multiple recon-
structions arise because LMU allows some inferences to go unused and others to be
redundant. Whether such redundant proofs actually are discovered automatically
depends on the search strategy; in many cases they will not be.

Definition 5 (Reconstruction/Giving cases) One term is a reconstruction of an-
other at � (given T and C) as described by the following cases:

� For any variable x, x is a reconstruction of x at � if and only if x 2 �.

� For any term M, if N is a reconstruction of M at �, then fst(N), snd(N), inl(N),
inr(N), inx(t;N) and Nt are reconstructions at � of fst(M), snd(M), inl(M),
inr(M), inx(t;M) and Mt�, respectively.

� For any terms M and M0, if N and N0 are reconstructions at � of M and M0

respectively, then hN;N0i and NN0 are reconstructions at � of hM;M0i and
MM0�, respectively.

� For any term K�, if N gives cases at � [ fv�g for K� (given T and C), then
�v�N is a reconstruction at � of as v� in K� and ��N is a reconstruction at �
of type � in K�.

N gives cases for K� at � given T and C according to the following conditions:

� There is some formula A of the form 9gxB�
H with a tuple (�;A;M) 2 C with

unx?(A) 62 � and for which there is a reconstruction M0 of M at � (given T
and C).

N may be any term of the form:

casex(M0 of inx(a; unx?(M))) R)

where a is the eigenvariable introduced by the quantifier, and R gives cases
for K� at � [ funx?(M)g (given T and C).
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� There is some formula A of the form B _ C�
H with a tuple (�;A;M) 2 C with

neither fst?(A) 2 � nor snd?(A) 2 � and for which there is a reconstruction
M0 of M at �.

N may be any term of the form:

case(M0 of inl(fst?(A)) ) R j inr(snd?(A)) ) R0)

where R gives cases for K� at � [ ffst?(A)g (given T and C), and R0 gives
cases for K� at � [ fsnd?(A)g (given T and C).

� Otherwise, N may be any term obtained by reconstructing at � any term M
for which (�;M) 2 T, given T� and C�.

Observe that if T0 � T, C0 � T and there is a reconstruction of M at � given T0

and C0, then there is a reconstruction of M at � given T and C. This must be so if
M does not refer to K� terms, since T and C will not figure in the reconstruction of
M. Inductive reasoning then shows that for each case treated during reconstruction
of M for T0 and C0, a case binding the same variables will also be treated during
reconstruction of M for T and C; thus, although additional cases may show up in
reconstructing M for T and C, after each path the same term in T can be reconstructed
as the term reconstructed in the analogous case from T0.

It is also easy to see that the result of reconstruction corresponds to a natural
deduction proof.

Theorem 6 (correctness of extraction) Consider a proof with end-sequent of the
form

�;�; U; Σ=T; C; V; Θ. - F : A

(Such a proof describes a complete derivation.) Suppose that N is a reconstruction
of any term M 2 F for T and C at �. Then N represents a natural deduction proof
of A.

Proof. When any proof-term variable x is reconstructed in a term, it will be bound.
For this will happen only when x 2 �, but when we reconstruct starting from �,
at each recursive invocation � contains only variables whose binding operators will
surround the term being constructed.

Since every variable in N is thus correctly bound, to show that N represents a
natural deduction proof of A, it suffices to show that each variable is used with a
consistent type throughout N. This follows immediately from the construction and
deconstruction of proof-terms in lock-step with formulas in the sequent calculus,
and the existence of a unifying substitution matching the types of left and right
occurrences of variables. 2

We can also establish that a � term can always be reconstructed according to
this scheme:
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Theorem 7 (completeness of extraction) Given a deduction D with end-sequent

�;�; U; Σ=T; C; V; Θ. - F : A

Then for some M 2 F there is some reconstruction of M for T and C at �.

Proof. As observed in 5.2.2, we can transform D to a deduction corresponding
to an LJ inference, which records inferences T0 � T and C0 � C and derives terms
F0 � F.

As observed above, if there is a reconstruction of any term M in F from T0 and
C0, then there is a reconstruction of M from T and C. So it suffices to consider D0.
This has the advantage that reconstruction of D0 can proceed in lock-step with the
syntactic structure of the proof.

We show by induction on the structure of D0 the following property of proofs.
Let the end-sequent of the proof be

T; C : : : =T0; C0 : : :Γ - ∆

Let � denote the proof-term variables free in the labels of Γ formulas and suppose
some term in each of those labels can be reconstructed according to T and C at
�. Let F : A� be the distinguished formula in ∆ such that, by the force of the
transformations applied, the proof corresponds to a proof of : : :Γ - F : A�.
Then if the proof ends in a left rule then giving cases for K� at � after � given
T0 [ (�;F) and C0 succeeds; and otherwise we have M 2 F where reconstructing M
at � given T0 and C0 succeeds.

Note that the requirement placed on deductions ending in right rules entails that
placed on deductions ending in left rules. If reconstructing M at � given T0 and C0

succeeds, then no matter what further cases are introduced in elaborating cases at �
using T0 [ (�;M) and C0, we always arrive at a leaf at which the reconstruction of
M can be used.

We illustrate the key cases of the induction here. At axioms, the label F is a
label of some left formula, which by assumption can be reconstructed.

At (�!), the left subderivation ends

T; C : : : =T00; C00 : : :Γ - G : A; : : :

By the construction of D0, this derivation cannot end in a right rule (see lemma 1);
G:A is the side formula of the (�!) inference. Therefore, by the induction hypoth-
esis, there is a reconstruction of G:A given T00 and C00. Now the right subderivation
ends

T00; C00; : : : =T0; C0 : : :Γ; (FG)� : B�
H

- F0 : A0; : : :

We can now conclude that the induction hypothesis applies to this derivation. The
labels of Γ continue to have reconstructions given T00 and C00, because they extend
T and C. Moreover, since we have reconstructions for elements of F and G given
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T00 and C00, we must also have a reconstruction for an element of (FG)� there. The
induction hypothesis therefore supplies a reconstruction or case analysis of F0. Since
this is a left rule, this suffices.

At (_ !), we have two subderivations:

T; C : : : =T00; C00 : : :Γ; fst?(A _ B�
H) : A�

H
- F : A0��

H0 ; : : :
T00; C00 : : : =T0; C0 : : :Γ; snd?(A _ B�

H) : B�
H

- F0 : A0��H0 ; : : :

The induction hypothesis applies to both. Further, the condition on Γ ensures that
some element of the label G of the principal formula of the rule can be reconstructed
given T and C—and thus given T0 and C0. We must show that we can give cases for
K� given T0[(��;F[F0) and C0[(�;A_B�

H;G). Giving cases can begin by treating
the case for G at � corresponding to the free variables end-sequent. This leaves the
subproblems of giving cases for � [ ffst?(A _ B�

H)g and � [ fsnd?(A _ B�
H)g—that

this is feasible is guaranteed by the induction hypothesis.
At (!�), the subderivation ends:

T; C : : : =T00; C00 : : :Γ; v� : A��
H

- M : B��
H ; : : :

The induction hypothesis applies immediately; this shows (at least) that there is a
case analysis of K� given T00 [ (��;M) and C00 at � [ fv�g. But if this is possible,
then we can reconstruct as v� in K� at � given these records. This is just what we
need to establish for the overall derivation. 2

Figure 5.2.3 shows the application of this system to the proofs of Figure 5.2.1, and
illustrates this result. In both cases, we are left with the problem of reconstructing
the term as v� in K� given T = f(�; f(fst?(v�))�); (�; g(snd?(v�))�)g and C =
f(�;A _ B�; v�)g. We give cases for K� by finding the case v�, which reconstructs
to itself, and reconstructing the terms f(fst?(v�))x and g(snd?(v�))y for the two
outcomes of v�. Letting v = fst?(v�) and v0 = snd?(v�), we arrive, as expected, at
�v�case(v� of inl(v) ) f(v)jinr(v0) ) g(v0)).

6 Conclusion
This paper has considered an alternative proof system for intuitionistic logic, and
justified it by a syntactic argument. Although inspired by translation proof methods,
this is a distinct, more direct result. In fact, together with the soundness and
completeness theorems for classical logic, this result effectively amounts to an
alternative demonstration of the soundness and completeness of (fallible) Kripke
semantics for characterizing LJ proofs. Further, its proof-theoretic formulation
makes possible new applications of translation methods in logic programming and
program synthesis.

More generally, this work shows one way to construct efficient inference proce-
dures by developing syntactic abstractions for scope and information-flow in proofs.
This new strategy contrasts with the strategy of (D’Agostino and Gabbay, 1994) of
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D1 D2

=; f(�;A_ B�; v�)g; � . f : A � C; g : B � C; v� : A _ B� - f(fst?(v�))x [ g(snd?(v�))y : C�; : : :

=f(�; f(fst?(v�))x); (�; g(snd?(v�))y)g; f(�;A_ B�; v�)g; � . f : A � C; g : B � C - as v� in K� : A _ B � C

D1 =

=� . : : : fst?(v�) : A� - fst?(v�) : Ax; : : : �=� . : : : ; f(fst?(v�))x : Cx - f(fst?(v�))x : C�; : : :

=� . : : : ; f : A � C; fst?(v�) : A� - f(fst?(v�))x : C�; : : :

D2 =

�=� . snd?(v�) : B� - snd?(v�) : By �=� . : : : ; g(fst?(v�))y : Cy - g(snd?(v�))y : C�; : : :

�=� . : : : ; g : B � C; snd?(v�) : B� - g(snd?(v�))y : C�

a. Extracting a term from the usual proof by this system; � = �=x; � = �=x; �=y.

D1 D2

=f(�; f(fst?(v�))x)g; C; � . f : A � C - snd?(v�) : B�; as v� in K� : A _ B � C D3

=f(�; f(fst?(v�))x); (�; g(snd?(v�))y)g; f(�;A_ B�; v�)g; � . f : A � C; g : B � C - as v� in K� : A _ B � C

D1 =

=� . : : : ; fst?(v�) : A� - fst?(v�) : A�; : : : �=� . : : : ; snd?(v�) : B� - snd?(v�) : B�; : : :

=; f�;A_ B�; v�g; � . : : : ; v� : A _ B� - fst?(v�) : Ax; snd?(v�) : By; � : C�; : : :

=; f�;A_ B�; v�g; � . : : : - : : : ; fst?(v�) : A�; snd?(v�) : B�; as v� in K� : A _ B � C

D2 =

; C; �=; C; � . : : : ; v� : A _ B�; f(fst?(v�))x : Cx - f(fst?(v�))x : C�; : : :

; C; �=f(�; f(fst?(v�))x)g; C; � . f(fst?(v�))x : Cx - as v� in K� : A _ B � C; : : :

D3 =

T1; C; �=T1; C; � . v� : A _ B�; g(fst?(v�))y : Cy - g(snd?(v�))y : C�; : : :

T1; C; �=f(�; f(fst?(v�))x); (�; g(snd?(v�))y)g; C; � . : : :g(snd?(v�))y : Cy - as v� in K� : A _ B � C; : : :

b. The permuted proof. � = �=x; � = �=x; �=y.

Figure 8: Extracting � terms from the proofs of Figure 5.2.1.
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labeling formulas based on the content of the sequents from which they are to be
proved. We use symbols to name the inferences in the proof that represent a change
of scope and strings of symbols to encode the scoped position of other inferences in
the proof. By imposing constraints on these symbols that mirror to the constraints
imposed in a structural discipline of scope, we arrive at system of explicit scope
that allows rules to be used in any order. Because terms represent positions in the
proof, the terms themselves describe where the inferences belong according to the
original structure of proofs.

We see then that such procedures can have extremely simple statements and
extremely natural justifications. Moreover, as the development of a family of
systems including LMA and LMT shows, such abstractions are not tied directly to
any one semantics and can build on structure already implicit in a proof system.
This raises the prospect of applying this idea to other systems, particularly linear
logic (Girard, 1987), even in the absence of compelling classical semantics. The
task remains daunting since there must be at least three kinds of scope transition
in linear logic, corresponding to the splitting of context at (! 
), the copying of
context at (! _), and the modalization of context at (!!). These scope transitions
interact in complicated ways, as underscored by permutability studies (Andreoli,
1992; Galmiche and Perrier, 1994; Tammet, 1994). We leave this problem to future
research.
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