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Summary

Modal logicsoffer natural, declarativerepresentationsfor describing both themodul ar
structureof logica specificationsand theattitudesand behaviorsof agents. Theresults
of this paper further the goal of building practical, efficient reasoning systems using
modal logics. The key problem in moda deduction is reasoning about theworldin a
model (or scope in a proof) at which an inference rule is applied—a potentialy hard
problem. This paper investigates the use of partia-order mechanisms to maintain
constraints on the application of modal rulesin proof search in restricted languages.
The main result is a simple, incremental polynomial-time agorithm to correctly
order rules in proof trees for combinations of K, K4, T and $4 necessity operators
governed by a variety of interactions, assuming an encoding of negation using a
scoped constant L. This contrasts with previous equationa unification methods,
which have exponential performance in general because they simply guess among
possible intercalations of modal operators. The new, fast agorithm is appropriate
for use in a wide variety of applications of moda logic, from planning to logic
programming.

Content area: Reasoning Techniques—deduction, efficiency and complexity.

1 Introduction

The necessity operator of modal logic provides a natural declarative construct for
specifying both content and search control: it can be used to describe change over
time, to specify attitudes of agents like knowledge and belief, or simply to enforce
modularity in complex specifications (Moore, 1985; Halpern and Moses, 1985;
Giordano and Martelli, 1994). Automatic interpretation of modal specifications
reguires efficient reasoning mechanisms for modal logic. Despite recent advances
by (Wallen, 1990; Ohlbach, 1991), efficient modal reasoning remains elusive. This
paper identifies important new opportunities for performing tractable inference in
modal logic. These results show for the first time how automatic systems for
program synthesis, planning, and logic programming can use modal logic as a
practical representation.

1Thanks to Mark Steedman for extensive comments and Tandy Warnow and Dale Miller for
helpful discussion. Thiswork was supported by an NSF graduate fellowship, and an IRCS graduate
fellowship, as well as NSF grant IRI95-04372, ARPA grant N6601-94-C6043, and ARO grant
DAAHO05-94-G0426. This paper has been submitted to the Journal of Logic and Computation. May
12,1997.



2 MATTHEW STONE

Asreviewed in section 2, the key difficulty in modal reasoning isto capture the
scope discipline on the use of formulas in modal proofs. Attempting to prove a
necessity truth, or to reason from a possible truth, creates a scope in adeductionin
which only other necessary truths can be used. Classic descriptions of these scopes,
asineg. (Chellas, 1980), lead to an explosion in the search space for automated
deduction. Systems using Hilbert-type axiom systems manage scope by a proto-
col that transfers valid inferences step-by-step from top-level into nested scopes,
Gentzen-type sequent calculi perform all inference in each scope inside a contigu-
ous region of a proof. These treatments of scope force proof-search agorithms
to guess among alternatives before they have the information to determine which
alternatives are possibly relevant. Some difficulties can be avoided by translating
modal formulasinto classical logic using the worlds and accessibility relations of
Kripke semantics for modal logic (Kripke, 1963), but explicitly deriving full proofs
of accessibility between worldsis still often unmanageable.

This paper investigates another description of modal inference. This system,
pioneered by (Fitting, 1972; Smullyan, 1973; Wallen, 1990; Ohlbach, 1991), assigns
aproof-theoreticabstraction of scopeexplicitly toformulas. Each formulaislabeled
by a string recording the sequence of embedded operators along the path to the
scope where the formula holds. By allowing the label of a formulato be partially
instantiated by unification asthe formulais used during proof search, thisprocedure
avoids the most severe drawbacks of deduction in earlier systems. However, this
method involves complex and expensive equational unification processes which
limit its practical use.

In this paper, | show how significantly better results can be achieved for K,
K4, T and $4 modal logics by encoding negation and possibility in terms of a
scoped propositional constant L. With this encoding, O becomes the only modal
connective: the encoding creates O-only languages. By analyzing the unification
problemsfor proofsin O-only languages, | show that solutions respect the order in
which terms representing scopes areintroduced. In K, K4, T, and $4, this constraint
resolvesall essential ambiguitiesin unification of paths of accessibility. Unifiability
can therefore be determined in polynomial time; moreover, the constraints encoun-
tered at any point in proof search can be represented by a partial-order mechanism
that avoids the need to backtrack among aternative unifiers. The same strategy
generaly applies in logics with multiple modalities, athough the correctness of
this strategy requires constraints on the interactions between modal operators. The
path-based explicitly-scoped proof system plays an integral role in the statements
and proofs of these results.

The organization of the rest of the paper is as follows. In the next section, |
give an introduction to the proof theory of modal logic, its motivations, pitfalls
and complexities. In section 3, | present the main proof-theoretic observation that
underliesmy results. A constraint algorithm exploiting this observationis presented
in section 4. In section 5, | finish by considering the impact of these algorithms
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for arange of practical problems, including the synthesis of functional programs,
temporal reasoning and automatic planning, and reasoning about agents.

2 Proofsin Modal Logic

A variety of formal systems describe the proofs of modal logics; the choice of
proof system can have a profound impact on the difficulty of automatic proof
construction. The last decade has seen key developments in such systems, with
the result that modal deduction can now be shown to satisfy the advantageous
metatheory of classical logic in many respects, so that research and experiencewith
classical deduction now transfers to modal logic. These results are important and
deserve to be more widely known, but claims for their significance—"“modal logic
is now as a result just as tractable from a deductive point of view as is ordinary
first-order logic” (Bibel, 1993), p.167—have been mideadingly optimistic. The
purpose of this section is to review these results briefly, to connect the intuitions
behind new proof systems with the intuitions behind old ones, and to highlight the
distinctive complexities that remain in moda deduction and how those relate to
standard characterizations of the complexity of modal deduction. The reader may
consult (Mints, 1992) for a more thorough introduction to modern modal proof
theory and (Gallier, 1986) for an introduction to the connections between proof
theory and automated deduction.

| begin in section 2.1 with an informal example intended to motivate modal
scoping mechanisms and to introduce a key theme: how the meaning of modal
operators comes from assumptions about the relationships among the scopes these
operatorsintroduce. Section 2.2 provides the inevitable technical necessities about
language and notation, and introduces the different proof systems for modal logic
concretely. Section 2.2.1 reviewsthefamiliar axiomatic method for modal inference
and its computational limitations. Section 2.2.2 describes structurally-scoped proof
systemsinthe styleof Gentzen, and theroleof impermutabilitiesof inferenceinthese
systems in hindering automated deduction. Next, in 2.2.3, explicitly-scoped proof
systems are introduced by way of a ground system, which isthen lifted to a system
using unification in 2.2.4. In this system, explicit scoping and unification frees
search engines from the unnecessary commitment inherent in structurally-scoped
proof methods or relational trandations to classical logic. The lifted, explicitly-
scoped system will be our focus for the remainder of the paper.

As section 2.3 shows, the success of this system in supporting techniques from
classical theorem-provingis offset by the fact that the unification procedureit relies
onto resolve scopesisintractablebothin principleandin practice. Theintractability
of scope unification is a local problem that compounds the global intractability,
implicitin PSPACE-compl etenessresults(Ladner, 1977; Halpernand M oses, 1985),
that proofs of propositional modal logic must in some cases be unreasonably large.
While globa problems with the possible size of proofs are familiar from ordinary
first-order deduction without equality, thislocal problem has no analogue there. In
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fact, it islikely to be amore serious problem in practice. Even for asmall putative
modal proof—containing one step for each symbol in the theorem to be derived—it
can beintractable to find a unifier that correctly assigns scopes to rules. Moreover,
the ambiguitiesinvolved arise as a result of the equational theory governing scope
terms, and are therefore difficult to avoid by judicious reformulation of logical
statements (of the sort familiar to Prolog programmers).

2.1 Motivation

Formulas in first-order classical logic specify information about ordinary entities,
whileformulasin more expressive |ogicscan a so constrain how such informationis
to beused in reasoning. Many proposalsfor such expressivelogics start, informally,
by imposing a notion of scope on deductions. The force of this notion of scope
is that two formulas must lie in the same scope to be combined in reasoning.
Scopal restrictions on the use of formulas in inference play two important roles
in knowledge representation. First, the expressive power helps describe complex
domains concisely and correctly. For example, a scoped specification can describe
agents propositional attitudes, by ensuring that two facts will be combined only
when they describe the content of asingle attitude of asingle agent. Each formula's
scope records the agent and attitude it describes. Similarly, a scoped specification
can describe multiple moments in time, by guaranteeing that only facts true at the
same time can be combined in inference. Thetime at which afact holds determines
its scope. Second, the expressive power of imposing scopes in proofs offers a
method to ensure that scoped specifications are modular and reusable. 1n a scoped
language, when a body of knowledge forms a module, its logical interactions can
be limited to factsin the same or compatible modules. On this view, the scope of a
formula depends on the modulein which it resides.

The different proposals of (Halpern and Moses, 1985; Morgenstern, 1987,
Balim et a., 1991; McCarthy and BuvaC, 1994) offer methods to realize various
notions of scopes in deductions in a computational setting. Although formalized
differently (and to different degrees), the key feature of each is an operator that
defines scopes in deductions in which the use of formulasis restricted—varioudy,
necessity, quotation, boxes, and contexts—along with rulesthat govern the transfer
of formulas from one scope to another. These features achieve strikingly similar
effects across the different formalisms. It follows that reasoning about scopesis a
central problem in implementing any of them.

A concrete example, adapted from (McCarthy and Buvac, 1994), illustrates the
motivation for and the behavior of scopes in proofs. We will use it to introduce
modal logic asaparticular scoped representation, but at the same timeto emphasize
that practical applications of modal logic depend on the availability of flexible
range of reasoning principles. That iswhy the discussion of modal proof systemsin
section 2.2 is parametrized for different modal operators and reasoning principles
right from the start.
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Example 1. Genera Electric and the Navy have different ideas about what
the price of a component is. GE establishes base list prices for each component
separately. Navy specifications refer to prices that include not only the cost of the
individual component but also the cost of other equipment, such as spare parts, that
the Navy will purchase along with it. To determine the price of a component in
the Navy’s specification, we start with its list price, and add the list price for its
specified spare components. To formalize this, one might choose a representation
like this:

1 VXpyq ([LIST] price(x, p) A [SPEC] spares(x,y) A [LIST] price(y, q) D
[SPEC]price(x, p+ Q)

In this formula, [LIST]A indicates that A is to be proved in a special scope where
only the information in the company’s catalogue can be taken into account (and
likewise [sPeC] for the Navy's specifications). Similarly, we can represent that GE
and the Navy may have different, partial information about what is in the list and
the specification, by introducing operators [GE] and [NAVY]: [GE]JA indicates that A
isto be proved taking only GE’s information into account.

One way to model the operators [LIST], [SPEC], [GE] and [NAVY] is as necessity
operators in modal logic. As section 2.2 substantiates, if [LIST] iS a necessity
operator, a modal proof of [LIST]A in the simplest modal logic, K, is precisely a
proof of A that takes only other [LIST] formulasinto account.

The expressive power of scoped representations becomes particularly attractive
when werelate the information that can be used in different scopes. For purposes of
practical inferencesin real applications, this streamlines the statement of common-
alities, facilitating maintenance and reuse. For knowledge representation, this may
make possible a range of natura inferences, including important inferences about
nested scopes, that would be difficult or impossible to describe otherwise.

For example, since both the list and the specification in the above example
represent kindsof accounting information, many parallel inferencesmay berequired
both in the scope of [LIST] and in the scope of [SPEC]. These common inferences
motivate an operator [ACCT] for specifying factsabout pricethat list and specification
share. One simple example might be thefact that prices are measured in dollars:

(2 Vxp [ACCT]| (price(x, p) O dollar-value(p))

For such statements to play their intended role in reasoning, we need a way to to
transfer results from one scope to another. To draw inferences about the units in
which list and specification record prices using (2), we need to be able to infer
[LIST]A and [SPEC]A when we have [ACCT]A.

An operator [BOTH] that records information that GE and the Navy share will
also be needed to capture commonalities in [GE] and [NAVY]. It might be used, for
example, to record that the two organizations are aware of the method of calculating
prices described by (1):
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©)] Vxpyq [BOTH] ([LIST] price(X, p) A [SPEC] spares(x, y)A
[LisT] price(y, ) D [sPEC]price(X,p + d))

Again, to use (3) as intended, we need a way to infer [GEJA and [NAVY]A from
[BOTH]A.

With operators that interact this way, we can present needed generalizations
once, with an intuitive annotation that succinctly describes the range of contextsto
which the facts apply. They also give useful separate roles to the operators and to
the first-order components of formulas like [LIST]price(x, p) and [SPEC]price(X, p).
This illustrates how a scoped representation can be more natural and convenient
than a corresponding complex first-order representation, such aslist-price(x, p) and
spec-price(x, p), for which common generalizations like the measurement of price
in dollars must be spelled out explicitly and separately.

With modal operators, this kind of reasoning can be described formally and
investigated mathematically by introducing axiom schemas that can be applied in
constructing proofs. For example, the (INC) axiom relating O; to 0 by inclusion:

(INnC) OAD 0;A

can capture the import of the [BOTH] and [AcCT] modalities; (INC) can relate [BOTH]
to the [GE| and [NAVY] operators and [ACCT] to [LIST] and [SPEC].

A different strategy for relating operators relies on establishing relationships
between outer scopes and more deeply nested scopes. The need for this strategy in
onedirectionisaready present with (3). To use (3) aswe would use (1), we need a
way to infer A from [BOTH]A. The need for thisstrategy in the other direction arises
in modeling the hypothetical reasoning of agents. For example, suppose what the
Navy knowsis specified asin (4).

4 [NAVY] [LIST] price(fx22-engine, 3600) A
[NAVY] [SPEC| spares(fx22-engine, fx22-fan-blades)

That is, the Navy knows it needs FX22 fan blades with its FX22 engine, and the
Navy has GE's list price as $3.6 million. From this, and (3), we might expect to
be able to conclude that the Navy could determine its specification price if it knew
the list price for FX22 fan blades. This requires hypothetical reasoning about the
reasoning of the Navy. The fact that must be derived is:

(5) Vp [NAVY] ([NAVY] [LIST] price(fx22-fan-blades, p) D
[NAVY] [SPEC] price(fx22-engine, 3600 + p))

We would like to derive (5) as a consequence of (3), but our goa has the form
[NAVY] [NAVY] price(x, p), with a double embedding. Our strategy is appeal to an
inference from [NAVY]A to [NAVY][NAVY]A—what the Navy knows, it knows that it
knows. This inference expresses a different, natural relationship between scopes.
We continue by establishing



TREE CONSTRAINTS FOR NECESSITY 7

(6) [NAVY] [NAVY] [LIST] price(fx22-engine, 3600) A
[NAVY] [NAVY] [NAVY]spares(fx22-engine, fx22-fan-blades) A
[NAVY] [NAVY] [GE|price(fx22-fan-blades, p)

The first two must be obtained indirectly from (4), by the same inference about
nested scopes. We get the third because it is assumed in proving the implication.
This establishes the resullt.

This discussion shows that we need two additional axiom schemasto formalize
this reasoning in modal logic: (VER) and (P1):

(VER) (veridicality) OADA
(P1) (positiveintrospection) 0O;A D O;0A

End example.

In general, we may invoke avariety of axiomsto augment the basic modal logic
K to better match modal operators and the common-sense notionsthey are meant to
model. In addition to the axioms (INC), (VER) and (Pi) introduced above, the axioms
(coN) and (N1) are widely used:

(CON) (consistency) S0i(AA —A)
(N1) (negative introspection) —0;A D O;—0;A

(Aswe shall explain subsequently, these additional two axiomsare not immediately
compatible with the framework developed in this paper.) For example, the combi-
nation of (CoN) and (PI), known as KD4, has been argued to give rise to a sensible
model of belief, because a normative agent’s beliefs are consistent (in keeping with
(coN)), and because an agent believes it believes any proposition it believes (in
keeping with (P1)). The combination of (VER) and (P) known as $4, provides a
model of knowledge, because whatever an agent knows is true (in keeping with
(VER)). The modeling of the attitudes of agentsin modal logics begins with (Hin-
tikka, 1962); subsequent work is reviewed in (Lenzen, 1978); (Fagin et al., 1995)
offersarecent introduction and case studies. Not surprisingly, the choice of which
axioms should be used to describe different kinds of attitudes are controversial. For
example, it may be appropriate to incorporate (N1) into models of belief or knowl-
edge over finite domains—giving KD45 and S5 respectively; it may not always be
appropriate to incorporate (CON) into models of belief—giving K4. Modalities are
called D when governed just by (CoN); T isfor (VER).

2.2 TheRange of Modal Proof Systems

This paper will consider a family of first-order modal languages, £, 1. Lyt IS
parametrized by a set of m paired operators of necessity, 0;, and possibility <;, for
finite integer m; and by atheory T specifying relations between operators in terms
of (INC), (VER) and (P1) axioms. As usual, we presume a signature describing the
arity of functions and predicates, and thus a set of atomic formulas of the form
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p(t1, ..., t,). Schematizing such formulas as P, the formulas of L[ 1 are described
as A by the following grammar:

A:=P|ANA|ADA|AVA|-A|TGA| O A VXA IXA

Informal manipulations, wewill keep to the concise OJ; notation, but wewill continue
to usethe [NAME] notation seeninthe example, in contextswhere necessity operators
are profitably assigned intelligible and legible names. Note that although some of
these connectives may be defined in terms of others, we will refrain from doing so
as we will be interested not only in this language as a whole, but in fragments of
the language which can not express those definitions. Two fragments of particular
importance are the propositional fragment, which omits the quantifiers, and the
O-only fragment, which omits negation and all of the <.

The usua definitions of free and bound variables carry over to modal logic.
Alt/x] denotes the result of substituting t for x in A, with bound variables in A
renamed when the same variable appears freein t, to avoid capture. (We will treat
formulas differing only in the names of bound variables as identical.) In alowing
termsto be substituted freely inside O; A and A, weimplicitly adopt theincreasing
or cumulative domain constraint for modal logics, which allowsformulasin nested
scopes to refer freely to objects introduced outside. Objects introduced in nested
scopes need not be available outside. Note however that many of the proof theoretic
devices presented in this section can be modified straightforwardly to handle the
alternative varying and constant domain systems.

2.2.1 Hilbert Systems

Inference in modal logic is most succinctly and intuitively characterized by Hilbert
Systems. In these systems, a proof is sequence of formulas where each formula
is either an instance of an axiom, or derivable from earlier formulas by the action
of simple inference rules. For the simplest propositional modal logic (K, from
(Halpern and Moses, 1985)), there are three axiom schemas:

Al. Any tautology of classical propositional logic
A2. OAAD(ADB) D OB
A3. <>iA = ﬁDi—'A

These are combined by two rules of inference:

R1.(modusponens) FromAand A D Binfer B.
R2.(necessitation) From Ainfer O;A.

Principles relating scopes are accommodated by ssimply by adding the appropriate
additional axiom schemas.

It is relatively straightforward to see how this proof system imposes a scope
discipline onthe modal operators, so that in any scope, logic can be used to combine
al and only information explicitly asserted there. In this system, each formulain
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a proof is a theorem that holds in the real world, at root scope. Conclusions
cannot depend on additional assumptions madefor the sake of argument; therule of
necessitation should only apply to theorems. When a formulain a proof takes the
form O;A, it predicates A of the ith more-deeply nested scope. Any tautology can
be established in any nested scope, by introducing it at root scope as an instance of
axiom A1, and then applying R2 to introduce the necessary nestings. Axiom A2,
together with the rule of modus ponens, allows the action of modus ponensin nested
scopes. As aresult, nested scopes are closed under logical consequence, the same
way the root scope is. On the other hand, A2 and R2 are the only logical means
of introducing formulas of the form 0O;A. To derive a contingent conclusions of
the form ;A (for example in the consequent of an implication), we must combine
explicit assumptions of the form 0;A (made for example in the antecedent of the
implication) with the action of A2.

Hilbert Systems seem intuitive, and their use can sometimesfacilitate mathemat-
ical study of modal systems, for example in proofs of soundness and completeness.
However, Hilbert Systems are computationally unattractive. A key difficulty isthat
Hilbert Systems lack the subformula property common to proof systems used in
efficient classical theorem-proving methods. The subformula property guarantees
that if aresult I' is provable in a system, then there is a proof of " in the system
in which only instantiations of subformulas of I are used. In generd, the use of
axiomsand modus ponensruns counter to the subformulaproperty, becauseit forces
the deduction of a formula B from a formula A to appeal to an explicit derivation
of a more complicated formula, A O B. In modal logic, in virtue of the nested
application of modus ponens (using A2), the more complicated formula that must
be derived to carry the inference forward—O(A O B)—is even more indirectly
related to premise (OA) and conclusion (OB).

In theorem-proving, the subformula property is crucial for controlling search,
because it allows a search engine to rule out options for extending a proof as soon
as those options would introduce non-subformulas. Such methods of ruling out
options are vital in alowing a theorem-prover to detect failure in one branch of
proof search and move on to another. The subformula property also streamlines
theorem-proving by enabling a variety of methods for improving space usage by
structure-sharing (Boyer and Moore, 1972).

2.2.2 Sructurally Scoped Sequent Calculi

A modal proof system that does satisfy the subformula property is shown in Fig-
ure 1. This proof system extends the sequent calculus of classical logic with rules
governing modal operators; the modal rulesare governed by parameterswhich vary
in order to encode rel ationships between scopes. This sequent calculus represents a
sound and complete inference system for the same semantics as the Hilbert System
characterizes. it is an equivalent system. However, this system respects the sub-
formula property, because reasoning can be performed directly inside the scope of
modal rules, without the mediation of rules like necessitation (R2) or axioms like
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consequential closure (A2).

Proofsin this system are trees built in accordance with the inference rulesin the
figure. Thelabel of anodein aproof-treeisasequent of theformlr —= A, where
I and A are multisets of formulas; this represents a derivation of the digunction
of the A formulas, using the I" formulas as assumptions. The label of the root of a
proof is called its end-sequent.

Any instantiation of the axiom rulel’, A — A Aisaproof (so a conclusion
A and any other facts can be derived from an assumption of A and any other facts).
Given proofs D; and D, with end-sequents 7y, — Ay and M, — A, for any

F1—>A1
r—A

that instantiates a (unary) inference rule of figure 1, the tree

_ D1
F— A

isaproof; for any
40N N0
r—A

that instantiates a (binary) inferencerule, the tree

D1 Dy
r—A

isaproof. There are no other proofs. Although it is convenient to define proofs
by this top-down characterization, it is typically more natural to read proofs from
bottom up, as a record of proof-search for an end-sequent. Read thus, each rule
decomposes the outer connective in a distinguished formula in the end-sequent,
caled the principal formula of the rule. Thisyields new, typically smaller search
problems: the immediate subformulas of the principal formula, the side formulas
of the rule application, occur in the end-sequents of D; (and D,) in place of the
principal formula. As written in figure 1, the inference rules also carry over the
principal formulafrom the end-sequent to higher sequents. This convention allows
formulasto be used repeatedly in proofs (without it, a structural rule of contraction
is required), but since the duplicated formulas clutter proofs | will occasionally
suppress them.

An informal justification of how this system creates and maintains scopes in
proofs is as follows. Each sequent appears in a scope that corresponds to its
position in the proof tree. In the proof, applications of (— O;) and (& —) mark
the boundaries between scopes. The entire subproof above each applicationismore
deeply nested in scope, by the application of one O; operator. The (O0; —) and
(— <) rules represent applying necessary information in the current scope. In
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___ axiom
LA— AA

LAABAB— A
AAB — A
r— AAB,AA I — AAB,BA
r— AAB,A
rAVBA— A T,AVBB—A
AVB — A
r—- AVB,ABA
r— AVB,A
rA>DB—AA T,ADBB—A
rADB—A
rA— ADB,BA
r— ADB,A
r-A—AA
r-A—A
MA— -AA
r— -AA
(r7 DiA)Di_UA - A_><>i
MOA— A
M=% — A (OA AN~
r— OAA
o= —= A (GA D)™
r— OAA
(I, OA) =0 A —= A%~
rOA — A
VXA AL/X] —= A
rLYXA — A
r — Ala/x], VXA A
F— VxAA —vi
r,3ax.A Aa/x] — A
MLIxA— A 31
r— Alt/x], Ix.A A
F— 3xAA

N —

V —

—V

O—

—D

—

V —

11

Figure 1: Structurally-scoped, cut-free sequent calculus for modal logic. 1 For

(— V¥),and (3 —), amust not appear in the conclusion.
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some cases these rules may introduce boundariesaswell: in somelogics, necessary
information can be applied only in nested scopes.

Therestriction that only necessary information can be used in nested scopes—or
that necessary information can only be used in nested scopes—is achieved by filter-
ing the formulasin the sequent at scope transitions. This filtering is accomplished
by operators ", —%, ©—, and —° that relate sequents above and below modal
rules. Theintent of filtering functionsisthis: Only those formulasthat describe the
nested scope survive the transition from below the application of (— 0;) to above
it. Abovethe trangition, surviving formulas are modified to reflect their strength in
the new, nested scope. The filtering functions are thus the distinctive feature of the
structurally-scoped modal proof system.

Filtering functions vary in a way that indirectly encodes the relationships be-
tween scopes as given in Hilbert Systems by axioms (INC)—(P1). For K modalities,
we take scopes at face value: necessary formulas are formulasthat apply with ordi-
nary force in nested scopes. Thus, the (— O) and (& —) trangitions eliminate all
assumptions except those of the form OA and eliminate al (potential) conclusions
except those of theform GA. Inthe nested scope we remove the outer O on assump-
tions and the outer <& on conclusions. How do we apply necessary information in
K? K scopes need not be cons stent—necessity does not imply possibility—so we
allow necessary information to be brought to bear only as a side effect of creating a
scope using (— O) and (& —). Thus, for K, we dispense with (O —) and (— <)
rules.

Positive introspection and inclusion are modeled by changesin the (O —) and
(& —) filters. To achieve the effect of (P1), surviving assumptions appear both as A,
so they aretruein the current scope, and as DA, so they will be truein future nested
scopes.  Surviving conclusions likewise appear both as A and as CA. In $4, OA
implies A, so in $4 the same effect is achieved by passing just DA and GA. When
(INC) relates modality i and modality j, it impactsthe transition into a O; scope. On
the one hand, any O; formula will be at least as strong entering a U; scope as it
is entering a O; scope. This means ensuring that the results of usual filter for T
scopes appear above the trangition. At the same time, the O; formula must also be
as strong entering the O; scope as any U; formulawould be. This means applying
the usual T filter to the O; formulas and ensuring that the results are also available
in the nested scope.

Veridicality ismodeled by changesinthe (— O) and (& — ) filters. With veridi-
cality, necessary assumptions can be used and possible conclusions demonstrated
in the current scope. Since there isno change in scope, the formulas above the rule
application are the same asthose below: the (— 0O) and (& — ) filtersfor the (VER)
logics, T and $4, are identities.

A formal description of these filtering functionsfollows, for completeness. (As
theformal presentation playslittlerolein what follows, the uninterested reader may
safely skip ahead to the examples of structurally-scoped proofs.) We assume that
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m o= r—on

K none {AIOAEeT}

T r {AIOAeT}

K4 none {AIGAcT}U{TDAGAcT}
AT {OAGDAEeT}

m A—><>im' A<>im'—>

K  none {A|GIA € A}

T A {A|CA € A}

K4 none {AICA€ A} U{GAICAE A}
A A {CiAIGIA € A}

Figure 2: Primitive rules governing changes between scopes in structurally-scoped
modal logics.

each O isassigned a primitive type m from among K, T, K4, and $4, and that the
modalities are related by a partial order > such that i > j whenever we have the
incluson 5;A D O;Afor al formulasA. We start with the primitivefunctions shown
infigure 2, which show how to ater the sequent to build in particular modal theories.
Notethat when theentry inthetableisnone, sequent ruleswhich invokethe val ue of
that entry do not apply in the logic—regardless of what inclusions are available. To
determine an appropriate overall change for 0; we combine the primitive functions
with the effects of inclusions, according to the following definition:

rDi—> — rDimi—>
A—><>i — A—><>|m'
r—>|:|i — U]Zh];ﬂ(r_”:‘]) U UJZI(F_HjJ l)

A~ = Usijg(D97)U szi(roj )

Example 2. Figures 3, 4 and 5 show proofs in this system of three sequents
involving asingle $4 modality:

O(a> Ob) — 0O0(a>D b)
O(a D> Ob) — O(a D Ob)
O(aD> Ob) — a> 0O0Ob

The theorems involve necessary assumptions that may be used in three different
scopes. not nested, once nested, and twice nested.

The key difference between the different proofsis the scope (and thus the order)
in which the lower (O —) rule applies. This rule is highlighted by a box in
the proofs. In the first proof, this rule lies inside two nested scopes—above both
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b—-b
a—a UOb—b
aa>0Ob—b
a,0(a>db)—b
O(@>0b)—adhb 0
O(aD> Ob) — O(aD> b) O
O(aD Ob) — 0OO(a>D b)

O —

Figure 3: Example theorem 1 in astructural system.

b—-b
Ob—b
a—a Ob—0b
a,a> 0Ob — Ob
a,0(aD> Ob) — Ob
O(aD> Ob) — a> Ob .0
O(a> Ob) — O(a D> Ob)

O —
— O

Figure 4: Example theorem 2 in astructural system.

applications of (— O). Inthe second, it lies inside one—above one application of
(— 0). Inthethird, it isused at root scope.

The scoped location of this application of (O —) is crucial in each case to
allowing the proof to be completed. All threeproofsrely onan application of (O —)
whose | eft branch consists of theaxiom link a — a. This(D>—) application must
be performed in the scopein which aisintroduced. On the one hand, the rule cannot
be used before a is assumed—and thus before the nested scope is introduced from
the formulato be proved. On the other, this assumption, once made, is contingent:
it can be used as an assumption only in the scope in which it isintroduced, and will

b—-b O
Ob—b — O
Ob — Ob — O

a—a Ob— 0O0Ob
a,a> Ob — 0O0Ob
a,0(aD> Ob) — OOb
O(aD> Ob) — a> O0Ob

O—

Figure 5: Example theorem 3 in astructural system.
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not pass the filtering of higher (— O) rules. End example.

The significance of the relative positions of rules in a proof represents a prob-
lematic departure from classical logic. In classical sequent calculi, rules can be
freely interchanged, as long as the structure of formulasis respected and quantifier
rules continue to introduce new variables as necessary (Kleene, 1951). Exploiting
this property in search is a key feature of classica theorem provers. For example,
tableau (Smullyan, 1968) and matrix (Andrews, 1981; Bibel, 1982) theorem-proving
methods can be seen as optimizations of sequent calculi which eliminate this re-
dundancy. The difficulty that arises in the absence of free permutabilitiesis this.
Automated deduction engines must build sequent proofs from the root up, but can
only determine whether a move is helpful by matching atomic formulas at |eaves.
Since rules must be introduced in the right scope—at the right time—automated
methods must be prepared to apply arule beforethey know whether the application
will even be needed! The regime for imposing scope on proofs means that proofs
can no longer be constructed in a goal-directed manner.

2.2.3 Explicitly-scoped Sequent Calculi

To overcomethislimitation, we must represent rulesin anotation that can giverules
the sameinterpretation no matter where those rules appear in the proof. We achieve
this by labeling each formulaA in aproof with adistinguished term ;. that represents
the scope of theformula. In so doing, we capture the scope of each rule application
in thelabels of itsprincipal and side formulas. The technigque goes back to Fitting's
use of prefixes (Fitting, 1972), and has since been considerably refined (Smullyan,
1973; Fitting, 1983; Wallen, 1990; Ohlbach, 1991; Auffray and Enjalbert, 1992).
An explicitly-scoped sequent calculusis presented in figure 6.

In the calculus of figure 6, each sequent takes the form

2o — A

The formulasin " and A are labeled with strings from a distinguished alphabet of
scope variables—terms composed from scope variables out of an associative binary
operation of concatenation with left- and right- identity e. (I will write annotation
variables «, 3, etc.; | will use y, v etc. to represent strings.) Further, a multiset of
auxiliary premises 2 is associated with each sequent, and specifies the types of the
freescope and first-order variablesin the sequent; | will call  atyping context. (The
> notation is common in programming language theory to identify premisesused in
typing.) For a scope variable—which represents a transition of one level of nesting
of some modal operator—the type records which operator it is. For a first-order
variable—introduced by aquantifier rule at some scope—thetyperecordsthe string
representation of that scope. Thus, X isamultiset of pairsof theform« : i for scope
variablesand x : p for first-order variables. The informationin Z can be combined
to derive judgments that complex scope representations and first-order terms take
particular types. For scope terms, the judgment = > v : i indicate that v describes a
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p=v axiom
SoT. A — AA

ST, AN B AS BE —= A
SoT,AABF — A

ST — AABYAYA ST —= AABH B A
ST — AABE A

SeT,AVBY, A — A SsT,AVB,BY — A
SeT,AV B — A

SeT —= AV B4, A, B, A
SeT — AVBL,A

SeT,ADBY — A A SoT,ADBHB: — A
SoT,ADB: — A

SoT,A* —= AD BB, A
ST — AD B, A

ST, -A —= AL A
Sol,—AF — A

oA —= AL A
SeT — A" A

Seroli Xo[, DAY AT — A
oL OAY — A

Soactisl — OAL A A
SoT — OALA o

Seoii Tel —= OALATAN
|
SoT — OALA

Zoalicl, QA A —= A
SoT,OA — 48 Oi—l

Sotip So VXA ALK — A

V —

—V

O—

—D

a1 —

—

O, —

Tol, VXA — A V-
Za:rpusl — Ala/X*, VXA A .
I — VXA A — V+
Za: e IxA Ala/x* — A .
o, IXAY — A 3 —+
Totip Il —= Alt/x)*, IXALA .

SeT — IXALA

Figure 6: Path-based, explicitly-scoped, cut-free sequent calculus for modal logic.
T For (— 0j), (¢ —), o must not appear in the conclusion. i For (— V), (3 —),
a must not appear in the conclusion.
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Sopciv i (AXy)

Zopti OADOA (INC)
PR

(INGt)

0AD A (VER)
el

(VER)

Sepii Zewvii 0A D O,GA (P)
S opuv i

(GO

Figure 7: Deriving thejudgment Z > v : |.

trangition that modality i matches; such judgments are derived according to therules
shown in Figure 7, which realize axioms (INC), (VER) and (Pi) asrules of inference
amalgamating and reclassifying terms. Similarly, judgments of theform> vt : 4
indicates that the first-order term t is available in scope y, and are determined by
the following definition:

Definition 1 Xt : x if and only if for every free variable x that occursint with an
assignment x: v € X, v isa prefix of p.

The explicitly-scoped cal culus imposes the same scope discipline as the earlier
systems by its manipulation of terms. The rules for the connectives of ordinary
first-order logic identify the scopes of principal and side formulas. The axiom rule
in this system requires the labels of formulas to match, as well as the formulas
themselves. Thus, an atomic conclusion can be established in a nested scope only
in virtue of an assumption introduced into that scope by some lower modal rule:
The (0; —) and (— <) rules apply aresult in a nested scope by appending an
additional term v~ to the label of the side formula. These terms are constrained
to match the strength of the principal formula by imposing ajudgment Z v v : i.
Meanwhile, the (— O;) and (&7 — ) rulescreate anew nested scope by appending a
new variable (representing the next type of nesting) to the label of the side formula.
Since the new variable introduced at a (— O;) rule does not appear in any scope
fixed to that point, necessary assumptions will have to be instantiated by this new
variable for the new scopeto figurein an axiom. This strategy for isolating nested
formulasfrom outer formulasis subtler but ultimately similar to the strategy used in
the structurally-scoped sequent calculus. Finally, to ensure that first-order termsdo
not escape their scopes, we require the judgment Z >t :  when (— 3) and (V —)
are applied in scope ¢ with instantiation t.

Because of its explicit scoping, this new system is somewhat more expressive
than either of the two previous modal proof systems. The correspondence between
them is stated as follows: there is a derivation with end-sequent ' — A in the
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structurally-scoped sequent calculus of figure 1 if and only if there is a derivation
with end-sequent ) > T — A in the explicitly-scoped sequent calculus (ie., every
assumption and conclusion is labeled with ¢).

Thisresultistypically established by showing that the explicitly-scoped cal culus
is aso sound and complete for the usual semantics of modal logic (Kripke, 1963).
Recall that a modal frame consists of a set W of worlds and binary relations R, for
each pair of operators 0J; and <;; the axiom schemas correspond to propertieswhich
the relations must satisfy (e.g., for (VER), reflexivity; for (PI), trangitivity). The
truth of aformulais relativized to a world w; in particular, O;Aistrue at w if and
only if Alistrue at every v such that Ri(w,Vv). Since the explicitly-scoped system
labels formulas with the point where they are to be evaluated, and manipulates
those scopes using logical rules analogous to quantifiers, it is obviously quite close
to the semantics. In fact, the annotations can be thought of as paths of accessibility
between possible worlds. Ohlbach has devised a model-theory for modal logic that
takespathsasprimitive: theideaisto replaceevery relation R with aset of functions
AF; such that R(u, v) if and only if 3f € AF;.v = f(u). For this model-theory, the
explicitly-scoped sequent calculus is nothing more than the trandation of modal
logicinto classical logic given by the semantics (Ohlbach, 1991; Ohlbach, 1993).

Nevertheless, the explicitly-scoped calculus offers a number of advantages for
deduction over reasoning with a traditional semantics—so called reified methods
for modal deduction (Moore, 1985; Jackson and Reichgelt, 1987; Frisch and Scherl,
1991). First, it is more expressive: equations between terms can encode axioms
about necessity which cannot be captured using first-order axiomsabout accessibility
relations (van Benthem, 1983; Ohlbach, 1993). (We will not consider such cases
here.) Second, it is more efficient. Encoding scopes as terms and reasoning by
equality makes proofs more compact and search more constrained than reasoning
about relations. As we shall see in the next section, equational unification makes
it relatively simple to work with partially-specified paths of accessibility; working
simply and efficiently with worlds and partially-specified proofs of relatedness is
much moreinvolved. Such advantagesarewell-known from general usesof equality
in theorem-proving (Plotkin, 1972).

Moreover, the use of an explicitly-scoped calculus need not be regarded as a
semantic method, despite the apparent similarity. (Stone, 1996) considers intu-
itionistic logic, where the proofs of a structurally-scoped sequent calculus derive
independent interest because of their interpretation as programs (Howard, 1980),
and shows that an explicitly-scoped sequent calculus describes exactly the same
proofs as the structurally-scoped system. By this result (which is stronger than
mere equivalence of provability or semantics), that explicitly-scoped calculus can
be considered a purely proof-theoretic optimization. Further, as in this paper, the
explicitly-scoped calculus can be studied fruitfully as a proof-theoretic object in its
own right (see (Schmidt, 1996) for another example).

Example 3. Consider again the three theorems of exampletwo. Proofsidentical
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aﬁabi: a8 o axiom
— . —_—
_SB% axiom Diﬁ = — — D
pa*” — a sa*?, 0b*” —= b 5
>a*? a> Ob* —= pP
-a7,0(as 0b) — b7
>O(a > Ob) — a> b*” 0
>O(a D> Ob) — O(aD b)® O

»O(aD Ob) —= OO(aD b)

Figure 8: Example theorem 1 in an explicitly-scoped system.

_ ng p,:_af o axiom
>a”, S O-
— (o3 (&34 (&3
a =« axiom >a%, d0b* — b O
pa® — a® >a®, O0b* —= Ob”
O—
>a%,a > Ob* — Ob”
>a®,0(a> Ob) — Ob°
>0(aD Ob) — a D Ob” O

>O(aD Ob) — O(aD Ob)
Figure9: Example theorem 2 in an explicitly-scoped system.

in structure to those presented earlier can be worked out in the explicitly-scoped
calculus, by adding appropriate labels to formulas throughout the proofs. Such
proofsare presented in figures 8, 9 and 10. Note how the labels encode the scopes
of the different (O —) applications. In figure 8, the side formula of the lower
(O —) gets o3, indicating the double nesting; likewise, in figure 9, it gets «; and
infigure 10, the empty string. Aswith the structurally-scoped system, these (O —)
rules cannot be permuted down across the remaining (— O) rules. Otherwise, they
would violate the eigenvariable condition that says that when a scope is introduced
by a(— 0O) rule, it cannot appear anywhere in the sequent. On the other hand, in
the explicitly-scoped system, the proof can still be constructed if the (O — ) rules
are permuted higher. The assumption of a, in whatever scope, remains available on
the left of the sequent until the leaves of the proof tree. End example.

2.2.4 AlLifted System

Using general proof-theoretic techniques (asin eg. (Lincoln and Shankar, 1994)),
the explicitly-scoped sequent calculus can be lifted to use unification. The use
of unification streamlines search in two ways. First, the choice of instantiated
terms is delayed until formulas containing them appear as axioms. This is of
course when information becomes available about which values might be useful.
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af = af :
T — e 2iom

>a, Ob —= b*”

— O
_€= € giom rabb—0b" 4
pa — a >a, 0Ob — O0b .
>a,a> Ob — O0b
>a,0(a> Ob) — 00D

>O(aD> Ob) —= a> 0OO0b

Figure 10: Example theorem 3 in an explicitly-scoped system.

Second, requirements for variables to be new are replaced by the use of Herbrand
(or Skolem) terms. Herbrand terms contain as subterms all values that would have
to appear on the sequent where the variable was introduced, taking into account
possible permutations. By ruling out circular termsby an occur-check in unification,
we ensure that a variable can be chosen in place of the Herbrand function and
the proof reordered so that the variable is new. This eliminates the remaining
impermutabilities of the calculus.

Figure 11 shows the final, lifted system, LEO, which the remainder of this
paper addresses. In this system, the inference rules describe not proofs but smply
derivations or proof-attempts. Each derivation is associated with a set of equations
which must be solved to obtain a proof.

More precisely, each sequent is of the form:

5/5;C/C el — A

(asaways, formulasin I and A are labeled by terms explicitly indicating scope).
Because terms and variables are introduced globally, the typing context must grow
throughout the proof: X represents an input context, while X' represents an output
context enriched to describe the new variables and termsintroduced in the subproof
above. Similarly, we accumulate a list of equations indicating constraints on the
values of variables. C is the input list of equations and C' is the output list of
equations. Note that binary inferences propagate thislist first to the right subproof,
and second to the left subproof. Later sections will exploit the overall ordering
of equations that results, in which equations from left subproofs always follow
equations from right subproofs.

Each formulain a sequent is associated with alist of free variables schematized
by a subscript X in the inference rules of figure 11; quantifier and modal rules
which introduce a variable add the variable to this list. Herbrand terms involve
function symbols associated uniquely with quantifiers and modal operators (as
indicated by subscripting); we build a Herbrand term as a placeholder for a fresh
eigenvariable by applying this function symbol to the list of free variables on the
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axiom

$/%C/C, A=B,u=v>T,Ay — By, A
5/ C/C v T, (AAB)Y, AY BY — A
5/3,C/CoT,(AAB) — A
¥/ C/C'eT — (AAB)K ALA  3/¥.C/Col — (AABK.BA
5/37.C/C">T — (AAB),A
2/ C/C e T, (AVB)}. Ay —= A 3/ C/C'ol,(AVB).BY —= A |
5/37.C/C"sT,(AVB)} — A
Z/2;C/C eI — (AVB)L ALBYLA
5/3,C/C>T — (AVB)L.A
¥/2C/C e T (AD By —= AL A 5/3C/CoT (ADBK.BY —A
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S/ CJC T, (-Af — A
Z//ZH; C//C// b r,Aét( . (—|A)§‘(7A .
S/ CJC > T — (AL, A
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5/5;C/C v T, (OAL — A
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5,X:1/2,C/C o T —> (OiA), AL, A
S/T.C/CeT — (CAA Ol
Z a(X) 11/, C/C b T (Cul AT — A
5/3C/C T, (CinAk — A '
Z,u:p/ZC/C e T (VXA (AlU/X])y,, — A
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Zh(X) : /T3 C/C o T —= (ANX) /X% (Fx A A
5/5,C/C s T — (VXA A -
S, h(X) 1 u/Z;C/C » T, (FxA)L, (Ah(X)/X)s — A
5/3;C/C o T, (IxA)k — A
Zu:p/3C/C e T —= (AlU/X)%,, (IXA), A
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Figure1l: Lifted path-based, explicitly-scoped, cut-free sequent cal culusfor modal
logic, LED. { The variables u and x may not appear in .
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[i/y=aBrb¥ —p"
[y = a/xy = af,af = xva®h —= & [y =aB> (00 —= b7
[, /% = af,af = xva*?, (ad> Ob)X — b*7?

/; /% = aB,ap = x>a*’,0(aDd Ob) — b7

/Xy =af,af =x>0(@a>d0b) — (a>d b)ozp'

[i/%y = aB,af = x>0(ad 0b) — (Oz(ad b))

/i /Xy =aB,af =x>0(ad 0Ob) — O,0s(aD b)
Figure 12: Example theorem 1 in the lifted system.

formula. The resulting system is necessarily rather dense in notation, but operates
straightforwardly.
A proof of T — Alispair consisting of a derivation with end-sequent

/5 /CoT —= A

where every formulain I and A is labeled with ¢, together with a substitution §—a
finite map from scope variables to scope terms and from first-order variables to
first-order terms—satisfying certain conditions. As usual, we write tf to describe
the action ontermt of theterm homomaorphisminduced by . Further, we abbreviate
by > the set of modal assignments of theformad : i fora : i1 € X and « aHerbrand
term—24 thus gives the types of exactly the ground scope transitionsintroduced in
the proof. In thisnotation, the conditions § must satisfy arethefollowing. First, for
every declaration of afirst-order variable x : ¢ in X and for every Herbrand term
twitht: v in X and td a subterm of xf, we must have that »¢ is a prefix of p6.
This ensures that the values of first-order variables respect the scopes where the
variables are introduced. Second, for every declaration of amodal variable x : i in
>, we can derive 26 > xd : i using the inference rules of figure 7. This ensures that
the transitions made at modal rules respect the strengths of the modal statements.

The correctness theorem for this system statesthat T — A is provablein the
lifted system if and only if it is provable in the ground system. When presented
in the style of Herbrand’s theorem for classical logic, asin (Lincoln and Shankar,
1994), the proof gives explicit transformations between the derivations of the two
systems (cf. also (Frisch and Scherl, 1991)).

Example 4. Proofs in the lifted system of our three $4 theorems appear in
figures 12, 13 and 14. The figures present uniform proofs (Miller et al., 1991),
asanillustration of how the lifted system facilitates systematic, goal-directed proof
search. In all three proofs, we proceed by performing all possible left rules, so as
to decompose the formula to be proved into the atomic goal b*”. We then apply
right rules strategically to the assumption O(a D Ob) so asto match theliteral bin
the assumption with the goal. This generates an equation xy = «/3 and a new goal
aX. This godl is established by matching it against the assumption of a in the right

O —
—D
— O
— O
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/i /3y = apfvb¥ — b’
[ixy=aB/xy=af,a=xca —=a [,/xy=af> (00X —= b7

./ = ap.a = x»a" (a5 OB — b o
/i /% = aB.a = x»a,0(ad 0b) — b7 ~0
[.]% = aff,0 = x» ", 0(a 5 0b) — (b)" -
/iy =ab,a=x>0(@dbb) — (ad Ogh)” —~ O
[i/Xy=aB,a=x>0(ad 0b) — O,(aD Ogb)
Figure 13: Example theorem 2 in the lifted system.
[i/}y=afeb —=b"
[y =aB/xy=ape=xva—=a [ /x=afe(O0bX — b7 5
/;/Xy:aﬁ,a:XDa,(aDDb)x_"baﬁ 0 —
/i /¥y =aB,e=axva0(@>d0b) — b7 0
[+ =af,c=xva 0(ad 0b) — (Ozh)° O
[i/xy=aB,e=xvra0@d0b) — O,0b 5

/i /Xy =ap,e=x>0(ad 0b) — (ad 0,0zb)
Figure 14: Example theorem 3 in the lifted system.

subtree of each proof. In the lifted system, the different theorems can be proved
using rules in the same order—because of the permutabilities, only this order need
be considered in proof search. The different scopes of rules are represented by the
values of variables and are determined by unification. Here, the lower application
of (O —) isscoped by the value of x. Asalways, the scopeisidentical to the scope
of the assumption of a: either ¢, «, or «3. End example.

2.3 TheProblem
Using this system, modal inferenceis astractable as classical logicin thefollowing
sense: just asin classical logic, proof search can be carried out modul o permutations
of rules, using unification. Inparticular, unification rather than explicit choicecan be
used to determinethe scoped | ocations at which modal operatorsmust beintroduced.
However, theseresultsdo not make modal logic practical, becausethe unification
involved isnot ordinary unification, but string unification. General algorithmsexist
for such problems (see (Schulz, 1993) and references therein). These procedures
typically extend transformation-based algorithms for ordinary unification (Martelli
and Montanari, 1982) by guessing inclusion relations between initial free variables
in equal strings and possibly backtracking. Existing modal inference systems use
nondeterministic equational unification algorithms of this sort (Debart et al., 1992;
Otten and Kreitz, 1996). These methods are extremely expensive.
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For example, in constructing the proofs shown in figures 12, 13 and 14, asearch
engine will likely begin by constructing the right branch, and solving the equation
xy = «af in dl cases. For this problem, string unification agorithms will return
unifiers corresponding to the three different solutions exhibited in the three proofs.
Which possibility isneeded is resolved only when the next axiom is reached and the
final equation processed. Branching among the possible unifiersis prohibitive (it is
easy to see the number may be exponential inthelength of the stringsbeing unified).
Yet there is also no effective way to exploit unifiability as a constraint. Because of
the backtracking internals of equational unification algorithms, they frequently fail
to solve systems of equations more efficiently than would a backtracking program
that called the algorithm in sequence on each equation in the system.

Aswe shall seein this section, resolving scopes in modal deduction by unifica-
tion isin fact an intractable problem. Before presenting this result, |1 observe that
this problem is quite different in nature and origin from the well-known space com-
plexities of modal logic. Although classical propositional logic is co-NP complete,
Ladner (Ladner, 1977) and Halpern and Moses (Halpern and Moses, 1985) have
shown that a number of propositional modal logics, including all those considered
here, are PSPACE-complete. The proof that these logics are PSPACE-hard relies
on describing large objects concisaly using modal theories. Such descriptions apply
the same formula across a number of scopes in a modal proof; when statements of
possibility create different scopes, a proof may have to proceed by applying neces-
sary information in each. First-order quantifiers provide a good point of reference
in interpreting these results about quantifiers over worlds. In first-order logic, the
number of instantiations of auniversal statement needed to complete a proof cannot
be bounded at all. This makes first-order logic undecidable.

Because what mattersfor the proof is the sheer number of instantiations, modal
provability can be PSPACE-complete even when resolving scopes by unification
is easy. For example, since K variables can only be instantiated to single terms,
scope equations for K can be solved using ordinary (linear-time) unification. But
K provability is PSPACE-complete. Moreover, as in first-order logic, the number
of instantiations and size of proof depends greatly on the logical theory, and often
much better bounds can be easily derived—arguably in most cases of interest. Pro-
log programmers can analyze theories to ensure efficient proof-search; (Kanovich,
1990) reports an application of a PSPA CE-complete deduction system for intuition-
isticlogic inwhich proof size correspondsto the number of interacting subtasks and
is rarely problematic. When bounds on proof-size are known for a given theory,
general PSPA CE-completeness results have nothing to add. However, complexity
results for unifying scopes continue to apply. In fact, the complexity of scope uni-
fication is likely to pose the most significant obstacle to the use of modal logic in
practical applications, because aternatives for unifying scopes arise because of the
very axiomsfor relating scopes that make modal 1ogic attractive as a representation
in the first place.
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Itisalso noteworthy that the complexity of resolving scopesby unification cannot
be established by the usual encodingsof hard problemsusing string unification, such
as those presented in (Kapur and Narendran, 1986; Kapur and Narendran, 1992).
These encodings repeat variablesin different contexts to enforce constraints. Such
repetitions are unavailable because of the unique prefix property on occurrences
of variables in equations between modal scopes (cf. (Wallen, 1990; Auffray and
Enjabert, 1992)). For each scope variable or Herbrand term y (other than ¢) there
isaterm =, such that each occurrence of 1 in an equation isin aterm of the form
m,.pv; 7, 1Stheunique prefix associated with . The unique prefix property means
that the equations that arise in proof search describe a tree in which variables and
Herbrand terms occur uniquely; equating terms means identifying the nodes the
terms designate. In fact, the unique prefix property may be imposed on ground
proofs as well without loss of generality. Too see why thisis, observe that we can
obtain a new ground proof from any other ground proof by of substituting a fresh
scope eigenvariable « for al and only those occurrences of a scope variable 5 that
are preceded by agiven prefix 1.

The unique prefix property makes reasoning about annotation equations much
easier than reasoning about string equations in general. A polynomial amount of
information specifies the tree corresponding to any unifier; therefore, annotation
equations have only a finite number of most general solutions, which is not guar-
anteed in the general case. Moreover, since an efficient algorithm can determine
whether a set of strings are equal under a polynomial size substitution, the problem
of resolving scopes by unification isin NP,

Nevertheless, the problem is hard.

Theorem 1 InLED, the problem of determining whether thereisa proof containing
a given derivation asitsfirst component is NP-hard.

Proof. We proceed by reduction from three-partition, a standard NP-complete
problem defined as follows (cf. (Garey and Johnson, 1979) p. 96). We are given a
finite set A containing 3m elements, a positive integer B and a size function s such
that B/4 < s(a) < B/2for each a € A, and such that >~,c, S(a) = mB. We areto
determine whether A can be partitioned into mdigoint sets such that the sizes of the
elements of each set sum to B.

We proceed in two steps. The first is to construct a unification problem that
corresponds to the instance of three-partition; the second is to describe a modal
sequent T — A such that aproof attempt for T — A givesrisetothisunification
problem.

First, the unification problem is this. For each element a € A, we construct a
string Q, of the form X,C,Ya. Xa and Y, are strings containing m(B + 1) variables;
C, is a string containing s(a) constants. We also construct a string G containing
m successive sequences of B variables Z followed by a constant K;. All of the
variables in X,, Ya and Z; are digtinct, as are all of the constants in C, and K;.



26 MATTHEW STONE

The typing context will contain i : 1 for each, assigning each to a T modality 1
(governed by the introspection axiom 0;A O A). The unification problem isthe set
of equationsQ, = Gforeacha € A.

Three-partition is NP-complete in the strong sense, which means there is a
polynomial pinthelength of the problem specification such that the problem remains
NP-compl ete when the values of the bound and the size function are bounded by p.
Our encoding depends on this, because we represent the sizes(a) of each element as
astring of length s(a). Sincewe can bound s(a) by a polynomial in thelength of the
three-partition instance, the length of the unification problem is also a polynomial
in the length of the instance.

The unification problem has a solution if and only if the original three-partition
problem has a solution. Suppose there is a solution #. Note that each variable
can be bound to a string containing either zero or one constant, and that all the
constants of the Q, must appear in G. Since there are mB constants in the Q, and
mB variablesin G, each variable in G must be bound to exactly one constant, and
each constant appears exactly once in Gf. Now look at Z;. If Z§ contains any
of the constants from Q,, it must contain all of them, because the constants in Q,
are adjacent, and Z; is bordered by the beginning of the string, or by K; constants.
Thus, the needed partition is given by taking for each i the set of elements of A
whose constants appear in Z#. Meanwhile, suppose the three-partition problem
has a solution. Naming the elements of each § S, S2 and S3, we can construct a
unifier  such that GO = Qg Qg, Qs K1 . .. Qg Qs,,Qs,.Km. Solutionhood ensures
that we can let 0 = Qg, Qg,Qs,: Weassign thejth variablein Z to the jth constant
in Qg,Qs,Qs,- Now let I(a) be the prefix of Q, in this string, and let r(a) be the
suffix of Q,, and let p(a) be the length of I(a). To complete §, we assign the first
p(a) variablesin X, to |(a) and the remainder the empty string; we assign the last
p(a) + s(a) variablesin Y, to the empty string, and the remainder tor(a).

Now, thesecond step: designing aproof attempt which givesriseto thisproblem.
We assign a distinct proposition letter p, for each element a of A. We prove the

formula
A= (O?Dl)m /\ Pa
acA

(The notation Xy represents a formula in which ¢ is preceded by k nested <
operators, and similarly for O; and sequences of operators.) Each <; introduces
a fresh variable, while each 0O, introduces a Herbrand term with a unique head
function constant. Thus, proving this formula ensures that each p, is established
in a scope denoted by the string G. For each a, we include available the following
assumptioninT:

B+1 B+1
DT( + )Oi(a)DT( + )pa

Each axiom makes available an assumption of p, in ascope that can be represented

by Q,, asthe O; and <; operators will introduce the correct sequence of variables
and distinct constants represented as Herbrand terms. Now proving I — A
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generates a proof attempt in which each goal p, in scope G is matched with the
assumption of p, in scope Q,. Thisis precisely the unification problem considered
above. m

3 0O-only Logic and Variable Introduction

Therecent proof systemsreviewed in section 2 make possible streamlined deduction
procedures, but their efficiency is limited by the inherent ability of modal theories
to express hard problems. Building a proof requires choosing the right intercal ation
of modal operators among an exponential number of possibilities; in some cases,
such choices make for intractable search problems. To support efficient, sound and
complete inference, modal specifications must avoid the expressive features that
giverise to these problems.

This section identifies possibility and classical negation as the problematic fea-
turesof modal logic. Intheabsence of possibility and negation—in 0O-only logics—
a smple rule suffices to determine the order of moda Herbrand terms in unifiers:
When either & must nest in 3 or 5 must nest in «, the one that nests is the one
that is introduced later in the proof. This theorem is presented in section 3.1. The
restriction on negation is not as dire asit may seem, as shown in section 3.2: in K,
K4, T and $4, negation can be encoded using a scoped constant L. The effect of
thisencoding isto transform certain alternativesfor unifying scopes into alternative
axiomatic links in proof search, so that the remaining scope aternatives can be
managed efficiently.

Why doesthe invariant on the introduction of termshold? The formal argument
is given in section 3.1, but informally, the invariant is combined effect of two
properties of O-only proofsin LEO. First, the terms representing the scope of a
formulacan only grow through the application of modal rules. Accordingly, al the
termslabeling the scope of aformulawill appear inthelabel of any formuladerivable
fromit. Thisisaproperty of the equational theory and typing rules governing scope
paths, and can fail in accounts of additional axiomatic relationshi ps between scopes.
For example, adding the (N1) axiom CA D OOCA to HA givesthe system S5inwhich
a necessary formula (irrespective of its own label) can be applied in any scope
whatsoever.

Second, when O alone appears in the proof, variables are introduced on anno-
tations precisely when annotations change in left rules, while Herbrand terms are
introduced on annotations only when annotations change in right rules. Thisfails
if possibility is added to the language. Moreover, only the left O rule allows new
variable positions to be transferred to the right of a sequent from the left. But the
left O rule leaves these positions on the left of the sequent also. In contrast, the
sequent rule for classical negation ssimply moves aformulafrom right to left.

Together, these two conditions propagate variables so that the first occurrence
of avariablein an equation appearsin aleft term. Fromthis, we can conclude using
induction that each left term can only be unified with the corresponding right term
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using a ground string of Herbrand terms introduced earlier in the proof. Herbrand
terms, meanwhile, are introduced only on right terms, so thereisno way for anewer
Herbrand term to represent a scope in which an older oneis nested. This constraint
rules out or resolves search ambiguities such as those investigated in section 2.3.

3.1 Theorem on Variable Introduction

The proofs of this section require three easy corollaries of the smple structure of
LEO.

Lemma 1 (weakening) For any LED derivation D with end-sequent
>/3:C/C o — A
we can obtain another LEO derivation D’ with end-sequent
5/ C/C oI, " —= A

by adding the formulasl™ to theleft-hand side of each sequent in D; we can likewise
add additional conclusionsto A.

Lemma 2 (contraction) For any LEDC derivation D with end-sequent
5/3:C/C o, A, Ay — A
we can obtain another LEO derivation D’ with end-sequent
>/3:C/C o Ay — A

by eliminating one occurrence of Al on the left throughout D; we can likewise
eliminate duplicate formulas from A.

Lemma 3 (monotonicity) For any LEO derivation D with end-sequent
>/3,C/CsT — A

for any set Z; containing only elements of 3 and list C; containing only elements of
C, we can obtain a derivation (like D) with end-sequent:

51/5h:C/Ch e T —= A

where: X} containsall the elements of Z; and only elements of 2’; and C) contains
all the elements of C; and only elements of C'.

Proof. Straightforward induction on the structure of derivations. m
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Lemma 4 (smplicity) For any LEO derivation D, there is another D" with the
same end-sequent such that every rule-application in D’ has a different principal
formula or different side-formulas from every lower rule-application.

Proof. We can eliminate any higher application identical to some lower one using
the contraction lemma: observe that the side formulas of the lower application are
available by preservation, and thus the side formulas of the higher application are
duplicates. m

Let C be alist of annotation equations resulting from a LEC proof attempt D,
numbered in increasing order. (Recall that equations in C generated by axiomsin
right branches of a proof precede those on left branches) Denote the term in C;
coming from the right formula of the ith axiom asr; and that coming from the left
formulaas|;. We have the following definition:

Definition 2 D has the variable introduction property if and only if every variable
x that isintroduced by a (O —) rulein D and occursin some termr; also occursin
some | for somej < i.

The variable introduction theorem states the key observation true of al derivations
in LEO, regardless of whether there is a solution to the list of equations associated
with them.

Theorem 2 (variableintroduction) Given any LED derivation D with end-

sequent
5/5;C/C el — A

we construct a derivation D’ with end-sequent
>/3":.C/C' o —= A

where X contains only elements from %', C” contains only elements from C', and
I contains only elements from I', and where D’ enjoys the variable introduction

property.
Proof. Consider a proof attempt D with end-sequent:

5/5';C/C v — A

We say aformulaA* islinked in D if A occursin ™ and there is some formula B”
in A such that p isaprefix of v. If A* occursin [ but is not linked, we say A is
unlinked in D. If an occurrence of an equation | = r appearsin C' but not in C, we
say D givesriseto C.

Induction on the structure of LEO proof attempts shows that there is a proof
attempt D’ corresponding to D satisfying the conditions of the statement of the
lemma, and where one of two further properties holds of each unlinked A* in D.
Either (1) D’ givesrise to no equation |; = r; in which x is a prefix of I; and A*
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does not occur in the end-sequent of 7’; or (2), the end-sequent of 7’ includes A*,
and D’ contains afirst left use of p—in other words D’ gives rise to some equation
lj = r; where p isaprefix of I; and . isnot a prefix of any right equation term r;
withi < j. The intuition behind these conditions is that any problematic formula
that starts out “unlinked” in D should “fal off” of 7’.

For the base case, we start from an instance of the axiom rule:

>/5:C/C,A=B,u=v>T,Af — BLA
We construct the axiom:
>/5:C/C,A=B,pu=vvT, Ay — BLA

Here ', consists of theformulas D" of I such that either D7 islinked in the axiom
or i is aprefix of . Axioms introduce no variables, so any axiom satisfies the
variableintroduction property. The equationsand typingsare unchanged. Unlinked
formulas whose annotations are not prefixes of ¢ do not appear in any left equation
term. They are correctly eliminated in the new derivation. The labels of the other
unlinked formulas appear first on the left here, because by definition their labelsare
not prefixes of v.

Now suppose the claim is true for derivations of height h or less, and consider
derivations of height h+1. The five right rules that do not alter annotations are
straightforward. In each case, we apply the induction hypothesis to the immediate
subderivation(s), observethat theprincipal and sideformulasareavailableinthe new
derivation(s), and apply the right rule to the new results. The induction hypothesis
and the monotonicity lemma ensure that the resulting derivation meets the needed
conditions. Thistakes care of casesfor (— A), (— V), (—D), (— V),and (— 3).

The five left cases that do not alter annotations are somewhat more involved.
(Therulesare (A —), (V =), (D—), (V —), and (3 —).) We consider the case of
(D—) in detail as akey illustration. Consider a derivation D endingin (O—), as
below:

'/ C/C s T, (AD B — AL A 5/5,C/C'»T,(ADB)L B — A

5/, C/C">T.(AD B)f — A o

The same multiset of formulas A appears above the rule-application in the right
subderivation and below the rule-application. Hence the unlinked formulas in the
whole derivation are al unlinked in right subderivation. We apply the induction
hypothesis to the right subderivation; we thereby eliminate or find first left uses
for al these unlinked formulas. In particular, if our principal formula(A D B)% is
unlinked, either we will eliminateit and its side formulain the subderivation, or we
will find afirst left use for al formulas labeled by a prefix of «. If we eliminateit,
we obtain a new subderivation, in which the end-sequent is of aform

Z/Zl;C/Cll>F1 — A
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in which neither (A D B)% nor its subformula appears. The monotonicity lemma
ensures that =; contains only elements of " and that C, contains only elements of
C”, so the new subderivation satisfies the needed conditions.

Otherwise, we have two cases (principa formula linked, principal formula
unlinked but preserved in the right subderivation) with parallel structure. We apply
the induction hypothesis to the left subderivation—observing that it applies only to
those unlinked formulasin the overall derivation that are not labeled by prefixes of
©. Weapply theweakening lemmato each new derivation and the unlinked formul as
that appear in the other new derivation but not in it. The two subderivations then
agree on a multiset ', of formulas that survive. These two derivations can be
combined into the needed overall derivation using (O— ), as below:

21/22; Cl/C21> rz,(AD B); — A;,A Z/Zl; C/Cll> Mo, (AD B);, Béé — A

—
Z/Zz; C/C21> Mo, (AD B); — A

The annotations of formulas weakened onto either subderivation are first used in
equations on the left in this overall deduction, by the induction hypothesis (these
annotations have a first left use in one subderivation and no use in the other).
Meanwhile, for any unlinked formula C, where v occurs in equations from both
new subderivations, v has afirst left use—even with v a prefix of y, if applicable.
For, inthe new B subderivation, thereisafirst equation-terminvolving » on theleft;
this term will precede all equation-terms involving » from the A subderivation as
well. The monotonicity lemmaagain ensuresthat 2, and C, contain only elements
of ¥ and C".

Two cases remain. First, suppose the proof attempt endsin (— 0;):

S, a(X) i/ C/C o T — (O AL A A
5/5,C/C o T — (CiAkA

— O

Observe that the unlinked formulasin theimmediate subderivation are exactly those
that are unlinked in the overal derivation. For, consider any unlinked formula B”
in the overall derivation. By definition, v isnot aprefix of 1. Thus, the only way
we could could have v a prefix of pa(X) isif v = pa(X). Now, a(X) isaunique
Herbrand function application associated with this occurrence of the formula CA.
Since labels are preserved or extended by all sequent rules, by monotonicity, if
v = pa(X) then B must be a descendant of a lower occurrence of Ay, By the
simplicity lemma, we may assume thisisnot so without loss of generality.

So the induction hypothesis applies to the subderivation with the same unlinked
formulas. Applying (— 0O) to the result (as below) gives a derivation with the
needed properties:

Z,Oz(X) : i/zli C/Cll> M — (DiaA)%A;L(a(X)’A
2/21;C/Ci>T1 — (O, AL A

— O
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Finally, consider (O; —):

X1/ C/IC e T (GALAL — A 4
5/5.C/C o T, (BA) — &

i —

Here x isafresh scope variable, different from other variables and Herbrand terms.
In the immediate subderivation, A, is unlinked, because ;:x cannot be the prefix
of the annotation of any A formula. Apply the induction hypothesis. If Al
disappears, the subderivation suffices. Otherwise, use the new subderivation to
construct a derivation ending:

2,X:i/5;C/Cie Ty, (OiAK AL — A 4
2/2C/C e Ty, (LA — A

—

Here, ux—along with all surviving unlinked formulas—appears|ast on aleft equa-
tion, by the induction hypothesis. Thus the overal deduction has the variable
introduction property and witnesses the needed properties of the unlinked formulas.
|

The variable introduction property represents a strong constraint on equations,
as the following result shows.

Lemma 5 (substitution ordering) Suppose D isa LEDO proof attempt that enjoys
the variable introduction property, and suppose the end-sequent of D is

/5 /CoT —= A

Let § be a substitution that unifies the strings in each equation of C (whether or not
6 respects the typings in %). Then for any variable x appearing in C, first used in
l;, x0 is a string of Herbrand terms, and if xf contains Herbrand term c there is a
Herbrand termfin sometermr; suchthati < jandff = c.

Proof. By induction on the number of equationsin C.

In the base case, there are no equations and nothing to show.

Suppose the proposition is true for the firsti — 1 equations of C and consider a
solution § for thefirst i equations of C. Naturally, ¢ isasolution to the firsti — 1
equations, so by the induction hypothesis, variables introduced in the last i — 1
equations are bound to earlier Herbrand terms. But the proposition on variable
introduction asserts that any variablesof r; all occur earlier. Thereforer;f isastring
of Herbrand terms; § must associate any new variable in |; with some of them; and
li# can contain no new Herbrand terms. m

With these two results, we can establish the main result:

Theorem 3 (constant ordering) For any proof D, ¢ in LEC thereis a proof 7', 6
where D’ enjoys the variable introduction property and satisfies the substitution
ordering property.
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Proof. By the variable introduction theorem, we can construct a D’ satisfying
the variable introduction property from D. The only difficulty is to show that in
obtaining the smaller D" we have not eliminated any premises needed to show that
6 respects types. Since ¢ unifies the scope equations imposed in D, and a subset
of these equations are imposed in D', ¢ also unifies the scope equations imposed
in D'. By the substitution ordering lemma, ¢ assigns strings of Herbrand terms to
each scope variable (that appears in the equations of D’). Every scopal Herbrand
term and variable # mentions is introduced in 7’ and therefore assigned identical
typesin D and D'. And, as for first-order variables, eliminating typing premises
only eliminates typing requirements. It follows from thisthat 7', 0 isaproof. m

In O-only logics, a number of proof strategies allow al modal Herbrand terms
to be represented as constants that are distinguished before unification (even though
they technically are function applicationswith freevariables). The mating theorem-
proving method doesthisviamultiplicities (Andrews, 1981; Bibel, 1982). Uniform
proof search (Miller et al., 1991; Miller, 1994), an abstraction of backward chaining,
does this by applying left rules only when right rules are not applicable. Modal
Herbrand functions must be unified only when applications of (— O) must be
permuted lower in the proof and collapsed; thisis never needed in uniform proof
search because right rules already apply as early as possible.

These techniques alow the definition of an ordering on Herbrand constants in
advance of solving unification equations:

Definition 3 () Let the equations corresponding to a proof attempt be ordered as
before, and let ¢ and d be arbitrary constants appearing in these equations. ¢ C d
if and only if

1. c'sfirst occurrenceisintermCi; and d'sisinterm Cj; withi < j, or
2. Both c and d'sfirst occurrences are in term E;, in which ¢ precedes d.

C isatotal order on constants. Moreover, the substitution ordering property entails
that for any solution 6 for C, if (7.C)f is a proper substring of (74d)d, then c C d.
For thiscan occur only if d followsc in the same term in some equation, or d appears
in aterm after some variable x such that xf includes c.

3.2 Encoding Negation
In general, we can describe —AasA O | usingapropositional constant | governed
by the inference below:

o, 14 —= A

If A isthe original formula, we denote by A' the result of recursively replacing
its subformulas —-B by B O L and its subformulas OB by OB > 1) O L.
(Wereturnto ground, explicitly-scoped modal sequent calculi. Lifting theserulesis
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straightforward; presenting thelifted versions, distracting.) Theencoding' describes
a correspondence between proofs. The original rule-instances:

S, A — A A
Sol, A — A

a1 —

match encoded rule-instances:

SeMAD L —= AN SeT,AD LA 10— A

O—
SelL,AD LF — A

The right subproof is an instance of the new _L rule. Meanwhile, the encoding puts

rule-instances:
o A —= A A

SoT — —AA

— -

in correspondence with patterns:

Se AN —= AD LA 18 A

—D
ST — AD LA A

Sincethe L ruleisin fact the only rule that can establish L on theright and it can
establish anything, the addition of L on the right does not change the provability of
the end-sequent of the immediate subderivation. The new constant L is unscoped.
Becauseit can establishany A, it breakstheinvariant used inthevariableintroduction
theorem.

However, for K, K4, T and $4 scopes, it in fact suffices to introduce a scoped
constant L governed by therule:

S, Lh —= A A

Theuseof thisruleisclearly sound, because it isaspecialization of themoregeneral
unscoped L rule. The completeness of the ruleis a consequence of the fact that any
provablesequent in K, K4, T and S4 hasaproof where all modal rules extend scopes
by strings of eigenvariablesintroduced lower. Under this circumstance, whenever
we establish L# on the left, there will in fact be some formula A* on the right.
Therefore no generdity is lost by the scoped | rule. However, with the scoped L
rule, the variable introduction theorem goes through, and the hence the agorithms
of section 4 may be correctly applied.

| present presently aformal proof of correctness of the encoding of K, K4, T and
S proofsusing ascoped constant L. But first | want to show that thereisno magic
involved in the trandation. In the original proof, there are ambiguities in which
scope constants are nested under which. The trandation does not eliminate these
ambiguities. Instead, it recodes them at the level of proof search as ambiguitiesin
whichruleinferring L isused to deduce which conclusion of L. Inaccordancewith
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the constant ordering theorem, the scope constants introduced by whichever ruleis
used first appear first.
The proof search in $4 for the sequent below illustrates this point:

OOOA, OCOB —= O(AAB)

There are two kinds of proof. In the first, we first apply sequent rules to establish
OA”, then establish OB*“. From this follows A*? and B*” and hence (A A B).
The other proof is similar, but we instantiate 0B”, and then A°~.

The trandation of this sequent is:

OO0(0AD 1L)D> 1), 0(0(0B>1L)D> 1) —OAABDL)D L
Consider proof search now. We reduce the end-sequent by (— D) to
O(0(CAD1)D> 1),0(0(0B> L) D L),0(AABD L) — L

At this point, we may use either the A-formula or the B-formulato establish 1. If
we use the A-formula, we can ssimplify to:

O(0(0BD> 1) D 1),0(AABD 1),0A" — 1°
Now we use the B-formula:
O(AABD 1), 0A", OB — |7

Finally, we use the negation of possibility at «3, and the remainder of the proof
becomes clear:
OA”, OB —= AA B’

It is clear how this proof corresponds to the original proof with A first. We can
likewise find atrandated proof with B first. Note that by trandating the deduction
problem we have introduced a number of new dead-ends for proof search, corre-
sponding to early instantiation of the negation of possibility. Here these can be
quickly dispensed with, since early on there are no possibilities for establishing A
or B. Astrandation of possibility and negation proliferates, we will obvioudly start
to need faster mechanisms for identifying and ruling out these new alternatives.
Trand ation of negation using thescoped L ruleisnot without itspitfalls, butisis
correct. Informally, what underliesits correctnessis the following observation. K,
K4, T and $4 proofsneed never instantiate necessary formulasat arbitrary accessible
annotations. In T and $4, this is because the current annotation can always serve
as awitness possibility at which to apply a necessary formula. In K and K4, this
is because there need not be such a possibility, and hence such instantiation would
actually be incorrect. This is a property of the scopes in these particular logics.
Note that in KD and KD4 logics, which support consistency but not veridicality,
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one sometimes must instantiate necessary formulas at new, arbitrary accessible
points.

Thisinformal observation fallsout formally asfollows. Suppose D isdeduction
inan explicitly-scoped ground sequent systemfor £, 1, withend-sequent>I” — A.
Consider any rule-applicationof (0 —) or (— <) inD. Therule extendsthemodal
annotation of the principal formula i by a string o, where ¢ is a string of modal
variables introduced at lower (— O) and (& —) rulesin D. This observation
is a consequence of the sequent rules, which extend the typing contexts only by
declarations of variables and only at (— O) and (& —) rules; and of the rules of
figure 7, which only combine the terms declared in X into longer strings. Because
of the unique prefix property (cf. section 2.3), we can assume that po in fact
annotates some lower formula. Then, because lower formulas are preserved as
logical rulesare applied, 1o must be thelabel of someformulaon the sequent itself.
So whenever we apply a necessary formula, we apply it in a scope that is already
under consideration.

We exploit this observation in the following lemma.

Lemma 6 (encoding negation) To any proof D with end-sequent T — A in the
ground, explicitly scoped system of figure 6, there corresponds a proof of 't — A!
using the scoped L rule.

Proof. We define a trandation T(D, E, F) recursively on the structure of D; the
end-sequent of D must be > > T — A, where every I' annotation and every E
annotation is a prefix of some A or F annotation—E specifies additional formulas
toadd to ", F additional trandated formulasto add to A.

We consider & and — rules explicitly. (The other cases are straightforward in
light of these cases.) If D ends by applying (— —) with principa formula-A* and
subderivation D', T(D, E, F) is:

T(D',E, (F, L")
SSTLE — AAD LA F

—D

Observe that, even in a system with a contraction rule instead of preservation, the
presence of | * ensures that the annotation of the I" side formulaA* is OK.

If D ends by applying (= —) to principa formula-A* and subderivation 7',
T(D,E,F)is

T(D',E,F) SeltEADL: 1# — ALF

O—
SeTLEAD 17 — ALF

By assumption, ;. appears on some A or F formula, so the right subderivation
is an instance of the scoped L rule. (Since no new left formulas appear in the
subderivation, the trandation applies there.)



TREE CONSTRAINTS FOR NECESSITY 37

If D ends by applying (& —) to ;A" with subderivation ', T(D, E, F) is:

T(D',E, (F,O(AD L)H,AD Lr, | 1))
Ta:iclVED(AD 1)D 1# — AD 1# AYF
SeMLED(AD 1) D 1# —= O(AD L), ALF So1h—= ALF
SeTUED(AD 1) D LA, — ALF

—D

O—

Thefina step followsfrom the assumption that i« appears on some A or F formula;
aswith (— —), even with contraction replacing preservation, the root invocation of
T satisfies the needed invariant.

Finally, if D endsin an application of (— <) to O;A* with subderivation 7,
T(D,E,F)is.

T(D',(E,0i(AD L)*,AD L#7) (F,1#)) I L1+ —= ALF, LH
SoTLE D(AD L)X, AD L — ALF, 17
S>TUE O(AD L) — ALF, L#
S>TUE— ALD(AD LA F

O —

—D

The key step here is to establish that o occurs on some A formula. But o isa
string of eigenvariablesintroduced by lower modal rules, by our observation. Thus,
by the unique prefix property of annotations, o must be the annotation of some
formulaused lower—which remainsin A because of preservation. m

4 Constructing Treesfrom Constraints

With the constant ordering theorem, we have established an invariant that eliminates
one source of nondeterminismin theunification of scope equations. Given Herbrand
terms « and 3 which appear on scope terms that must be equal, the one that is
introduced first into the proof must appear first in the unified term. However, even
in O-only proofs, scope equations may still have an exponential number of unifiers;
the constant ordering theorem leaves open how strings of Herbrand terms should be
partitioned among matching variables. We have already seen a concrete example
of this, in the unification problem common to the proofs of figures 12, 13 and 14:
Xy = «f3. Inorder to complete those proofs, we need to be able to assign any of the
possible prefixes of a3 to x. So there are still too many possibilities for brute force
search.

This section develops a constraint algorithm that finds representative unifiers
for aset of equations efficiently, and which allows additional equations to be added
incrementally. This agorithm relies on viewing the set of equations as describing
atree in terms of smple relationships between nodes. These constraints are op-
erationalized as simple, local rules. The rules enforce constraints by making the
smallest possible changes to the structure of the tree and to the representation of
variablesand constants withinit. We develop the algorithm in three steps, deferring
sometechnical complicationsso that the essentials of the algorithm can be presented
asaccessibly aspossible. In4.1, we present and analyze abasic version of the algo-
rithm which solves constraints over asingle modal operator; weillustrate the action
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of this algorithm on the proofs of figures 12, 13 and 14 in 4.2. The complications
come in 4.3, where it is observed that inclusion axioms may introduce hard prob-
lems even into variable ambiguities. Accordingly, in 4.4 we consider restrictions
on interaction axiomsto rule out the problematic cases observed in 4.3, and provide
a constraint solver for multimodal logics under these restrictions which uses the
algorithm from 4.1 as a subroutine.

4.1 Monomodal Languages
Our strategy will be to recast the unification problemsfor K, T, K4 and $4 in terms
of constructing atreeto satisfy three types of constraints:

1. Thereationu < v, meaning that uisan ancestor of vinthetreerepresentation
(corresponding to the constraint that = ,u beaprefix of =,vasastring equation).

2. Therdationu £ v, meaning that u is not an ancestor of v.
3. Therelation u = v, meaning that the parent of u is an ancestor of v.

The encoding depends on the assumption introduced in the last section that equality
of Herbrand terms can be determined in advance of unification, as in the matrix or
uniform proof methods. The encoding consists of a way to describe annotations
and substitutions, a way to impose equalities between annotations, and a way to
manage the domain constraints on the values of first-order variables. The encoding
is described and justified as follows.

Subgtitutions. The set of images of prefixes of equations under ¢ describes a
tree by the unique prefix property. We associate each scope Herbrand term or logic
variable u is mapped to anode in the tree O.

To derive a substitution from a tree, we identify each node n in the tree with
some canonical symbol ¢ such that n = €. By reading the canoncial symbolsaong
the path in the tree from the root to 0, we obtain the value of 7,u under 6; the path
from the node V representing =, to U (not including V itself) therefore encodes ué.

A first set of constraints ensures that Herbrand terms are mapped to themselves
under this induced substitution. We impose on t constraints of the form d £ ¢
whenever ¢ C d (asearlier C refersto the order of introduction of Herbrand terms
in the proof). Since C is a total order, these constraints ensure that any pair of
Herbrand termsare associated with distinct nodesin the tree. The constant ordering
theorem allows us to impose this constraint on trees and substitutions without |oss
of generality. For, the constant ordering theorem saysthat it isindeed impossiblein
any solution 6 for a path (74d)6 to be aprefix of (7.c)0 whenc C d.

We may now assume that the symbol identifying each node nint isthe unique
Herbrand term c for which € = n (if one exists). This ensuresthat cf takestheform
xc. To ensure that x is the empty string, we add further constraints. To describe
the node for constant ¢ with prefix =, we find the node u representing =. and add
the constraint u <; ¢, meaning that cisachild of u. u < v—meaning u is a proper
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ancestor of v—can be defined as the conjunction of u < vandv £ u. Thenu <, v
can be defined as the conjunction of u < vand v = u. With this constraint, € must
be the unique node on the path from the node representing = to C.

A similar constraint manages the values of variables. To introduce a node for
variablev with prefix 7., we find the node u representing =, and we add a constraint
appropriate to the logic: u <; vfor K, u < vfor K4, u < vfor SAand u <, vfor
T. u <<3 v—meaning visu or achild of u—can be represented as the conjunction
ofu<vandv=u.

Asalfinal step, we should stipulate arbitrary symbolsto correspond to each node
in the tree to which no Herbrand term is assigned. In fact, however, the constant
ordering theorem ensures that any substitution that solves the equations includes no
such arbitrary symbols. This step is therefore superfluous; the constraints identified
thus far describe only trees t that encodes possible solution substitutions of values
to variables.

Equations. The equations themselves that § must solve are likewise realized as
simple constraintson t. To equate = u and =V, we add the constraintu = v—u = v
is equivalent to the conjunction of u < vandv < u.

Domain congtraints. Modal constraintson first-order unification are represented
by associating a node u; with each first-order variable or term t. Each first-order
Herbrand term f is introduced at some scope 4, as recorded in an typing pair f : .
Because the arguments of f are introduced from the same formula as f at wider
scope, the arguments will be associated with prefixes of . Thus, W is just the
node corresponding to ;. Meanwhile, each first-order variable x is associated with
a new node ux which represents the least-nested scope in which the value of x is
defined. The typing pair x : x is represented by the constraint uy < v, if visthe
node corresponding to x. This constraint may also be represented as an equation,
given access to 4 variables: for uy, < v weintroduce anew variablel, and add the
equation uyly = v. The variable I has a unique occurrence in the resulting set of
equations. For proofs analyzing unification problems in terms of equations, it will
be convenient to adopt this representation and give domain constraints and scope
equations the same treatment.

Now, to impose the correct domain constraints, we simply extend any ordinary
first-order unification algorithm so that when first-order termst and sare unified, the
corresponding nodes u; and us are constrained to be equal. 1f modal variablesappear
as arguments of first-order Herbrand terms, they can aso be unified by imposing
equality constraints. When the overall unifier iscomputed, the domainsof definition
of al unified termswill refer to the same, correct nodes in the tree; and necessary
constraints on the values of variableswill be respected. m

The problem of unifying annotations is therefore equivalent to the problem of
solving aset of smpletree constraints. | now present an efficient algorithm to solve
this problem. The algorithm extends the tree construction algorithm of (Aho et a.,
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1981), which handles < and £.2 In the algorithm, the node corresponding to a
variable or constant u is represented as the least common ancestor of a distinct pair
of leaves u; and up, denoted (uy, Uy). The tree is constructed by grouping leaves
into sets according to the constraints. A set of digoint sets is constructed for each
depth in the tree; nodes in the same set at depth n indicate leaves that must be
descendants of the same node at depth n in any tree that solves the constraints. In
this process, we need only consider N levels of partitions, where N is the number
of leaves of the tree. If atree satisfying the constraints exists, a tree satisfying the
congtraints exists that has only branching nodes—because all constraints refer to
least common ancestors, which must be branching nodes. So the tree has depth at
most N. Correspondingly, should we discover the need to merge two cells at depth
N, we will know that the constraints have no solution.

Given a set of constraints C, algorithm A computes a tree by applying the
following rulesfor merging partitions:

1. Initial. All leaves are in the same cell at depth O.

2. (i,j) < (k). Ifi andj arein the same cell at depth n, theni, j, kand | arein
the same cell at depth n.

3. (i,)) £ (k1. Ifi,]j, kand | arein the same cell at depth n, theni andj arein
the same cell at depth n+1.

4. (i,j) = (k). If i and j arein the same cell at depth n+1, theni, j, kand | are
in the same cell at depth n.

These rules respect the following natural property:

Lemma 7 (sanity) Ifi and j are in the same cell at depth n+1 (because of a proof
of length h), theni and j are in the same cell at depth n (because of a proof of length
at most h).

Proof. By induction on the length of the proof that i and j arein the same n+1 cell.
|

Accordingly, A endsby building an internal node at depth n+1 for each non-unit
cell there, and making it achild of theinternal node at depth n whichitisasubset of.
(The sanity lemma ensures that there will be at |east one such node; the digointness
of partitions ensures that there will be at most one.) Leaves attach to the greatest
depth nonunit cell to which they belong.

Theorem 4 (correctness) Any treet so constructed satisfies the constraint set C.

2Bewarned: (Aho et al., 1981) use u < v with the opposite sense | do; their notation conflicts
with the present intuitionthat thetree represents a coll ection of pathsfrom theroot to leaves, ordered
by the prefix relation.
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Proof. Asin(Aho et d., 1981), by consideration of constraints. For example, for a
constraint (i,j) = (k, 1), let Sbethe partition associated with (i, j) int. Rule 4 must
havefired, puttingi, j, kand | in the partition of the parent of (i,j). Since (k, I) must
be a descendant of this node, the constraint is satisfied. m

We prove that the algorithm is complete by means of alemma:

Lemma 8 (descendants) Let t be any tree satisfying constraint set C, and let Sbe
a cell at depth n containing more than one leaf. Then thereisanode b int of depth
n such that every leaf in Sis a descendant of b.

Proof. Asin (Aho et al., 1981), by induction on the number of steps of rule-
applicationin constructing partitions. For example, consider astep for (i, j) = (k,I)
causing i, j, kand | to be in the same cell at depth n. By induction hypothesis, there
isanode b; a depth n+1 in t which dominates all leavesini and j’s cell in S at
depth n+1. Moreover, nodesin t at depth n must dominate the unmerged cells of
i,j, k,and | in S Now we can show that it must be a single node that dominates
all of them: the parent by int of node b;. Sincet satisfies the constraints, (k. 1) isa
descendant of the parent of (i, j) int; sinceb; < (i,j),bo < (k) int. m

In fact, the proof of the descendants lemmais straightforwardly extended to the
following least commitment property. Let T be any set of trees satisfying constraint
set C. Initializealgorithm A with nodesi and j inthe same cell at depth d according
to any relation r(i, j, d) which holds only if every treein T assigns (i, ) to anode
at depth d or greater, and run algorithm A to completion. Then for any cell in S
containing more than one leaf at any depth n, thereisin every treein T some node
b of depth n such that every leaf in Sisadescendant of b.

Theorem 5 (completeness) If algorithm A returns no tree, no tree satisfies the
constraints.

Proof. The procedure succeeds unless two nodes are in the same partition at depth
N—inwhich case we terminate the algorithm and report failure. By the descendants
lemma, this means that any solution has two nodes together at depth N—so any
solution has depth greater than N. But we've already observed that if there is a
solution, there is a solution with depth at most N, so in this case there must in fact
be no solution. m

Algorithm A can be performedin time O(MNlogN), where M is the number of
constraints and N is the number of leavesin thetree. Cells arerepresented using a
union-find algorithm (Hopcroft and Uliman, 1973); each cell stores not only a set of
nodesbut also aset of productionsthat may betriggered when thisset ismerged with
another set. Considering only the shorter list when two cells are merged ensuresthat
only O(MlogN) productions are considered in merges of cells at any given depth
inthe tree.

If a proof attempt D contains K rule-applications, this means that algorithm
A contributes time O(K*logK) toward constructing a unifier under which D is a



42 MATTHEW STONE

proof. There can be no more modal constants and variables than rule applications,
since each has its origin in some rule application, so N is O(K). Likewise, there
are O(K) first-order variables, which can be unified by imposing a linear number
of equalities between terms by standard algorithms (Martelli and Montanari, 1982).
Thereare O(K) equalities between scopesimposed by axioms. However, thesmple
presentation of algorithm .4 above requires adding O(K?) constraintsto enforce the
distinctness of constants.

This runningtime can be brought down to O(K? log K) by aspecialized represen-
tation of thedistinctnessconstraints. Only thedistinctness constraintscorresponding
to the C-least constant pair in a cell need be triggered at each step. The other dis-
tinctness constraintswill only duplicate their effects. 1f we can identify the relevant
constraints, we can ensure that only O(K) production-firings are needed to keep
constants distinct. But the C-least constant pair in each cell is easily maintained,
since C isgiven and inspection of the rules showsthat a pair (cy, ;) aretogether in
any cell dominating c; and any other |eaf.

In algorithm A, constraints corresponding to additional equations can be added
dynamically, because the trees this algorithm produces make the least possible
commitment. Thisis a consequence of the (generalized) descendants lemma. The
only commitments the algorithm makes are that strings =,u and =,v share a prefix
of agiven length. That is, if u;, Uy, v1, and v, are members of a common cell at
depth k in the tree, we know the value of 7 u and =,v share a prefix of length at
least k. Other features of the tree, for example the ancestor or command relation of
prefixes =,u and 7,v, may be changed if possible by merging the appropriate cells
later. Now, because of the descendants lemma, we know that any nodesin the same
cell at depth k in algorithm A are children of some node of depth k in every tree
that satisfiesthe constraints. That meansthat if algorithm .4 constructsa unifier that
assigns myu and 7,v a common prefix of length k, every unifier assigns ~,u and v
acommon prefix of length at least k.

4.2 An Example

Let us return to the simple example of figures 12, 13 and 14. We start with the
equation xy = a/3. In $4, this corresponds to the following constraints, if (ry,r2)
names the root (or real world):

(r1,r2) <i (aa,02) (a1, 02) < (b1, B2)

(r,r2) < (X2, %) (X1, %2) < (Y, Y2) (Y1, ¥2) = (1, 52)
The algorithm computes the tree shown in figure 15. The first <, constraint causes
a1 and «a; to merge at depth 1; then the second <, constraint causes /31 and 3, to
merge under a; and « at depth 2; finally, the = constraint mergesy, and y, with
thiscell at depth 2. At this point, the tree satisfies all the constraints, and solvesthe
needed equation. Note that x is provisionally identified with the root, in keeping
with the algorithm’s policy of leaving the endpoints of path variables as close to the
root as possible.
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Figure 15: Treefor xy = af3.

Recall that we had to impose one of three equations on x to finish the proof:
x =1 X= «, 0r Xx = «f. Each of these can be imposed by adding additional
constraints to the problem in progress. The first causes no further merges; the
second merges X3, X; and «; at depth 1; the third merges x;, X, and /3; at depths 1
and 2.

4.3 Problematic Interactionsin Multimodal Languages

Efficient multimodal deduction requires some limitations on introspection axioms,
because some combinations introduce ambiguities that allow hard problems to be
encoded into unifications of modal indices. These ambiguities are not associated
with the problem of determining what types a string has. As the following result
shows, the type interactions in the multimodal language remain quite simple.

Lemma 9 (subset lemma) If o : j isderivable, and o’ is a nonempty string con-
taining only symbols that appear in o, then o’ : j isalso derivable.

Proof. By induction on the height of derivations of typing judgments. For (AX:)
and (VERy), there is nothing to prove, since only atomic strings are involved. For
(INCt), we derive o : j fromo : i. Apply the induction hypothesis to the derivation
of o :itoshow ¢’ : i. Then reapply (INC;) to show o’ : j. For (PI;), o has the form
pr andwederiveo : jfromy :jand v : j. Each symbol o in o’ appearseither in i
or v, S0 by applying the induction hypothesis to the appropriate subderivation, we
may derive « : j. The new proofs, one for each symbol in ¢, may be combined in
the appropriate order by successive applications of (Pl;). m

Instead, the problematic ambiguities of multimoda deduction arise in logical
theories which force a modal path to have several different types because of the
different formulas which must apply along the path. As a characteristic example,
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consider the following interaction axioms:

[Y|AD [YT] A [Y]AD [YF A
[Y*]AD[Y*] [Y*]A [Y*]ADA
[Y*] AD[Y] A

These axiomsrelate K modalities YT and YF to a more specific K modality Y and to
a still more specific 4 modality Y*. The following theory provides an illustration
of an associated ambiguity:

[Y] [Y*]C A [Y*] ([YFfCD[Y*]B) A [YT]BD A

To prove A, we backchain against [YT] B D A, introducing constant . Applying
the second clause introduces a two variable string uv that must match « and a new
goal C to be proved in scope us. The first clause introduces variables yz that reach
this scope. Thus, the proof attempt for A givesrise to equations:

uw = a,yz=ug
These equations are governed by the typing context:
U:Y* VIY* yIY, Z:Y* o YT,BYF
There are two solutions:

{u:OZ?V:ﬁ’y:O{?Z:ﬂ}
{u:67V:a7y:67Z:6}

In these solutions, the variable y must be bound to exactly one of « and 3. In
a monomodal language, there is no problem with such ambiguities in values, as
long as different values of a variable have the same length, the only way to forcea
particular resolution of the ambiguity isto impose an equation that specifies exactly
which value the variable should have. These explicit equations can be included
straightforwardly into a set of constraints. In the multimodal language, we have
a more general method of forcing such ambiguities to be resolved. Since o has
type YT and 5 hastype YF, we can think of y as encoding a boolean variable whose
value is determined by the type of the string unified with y. 1f we add additional
conditionsfor establishing C, themultimodal language could allow ustoimpose new
equationsthat test which kind of valuey has. Interaction axiomsallow these teststo
impose dig unctive constraints on the values of several variablesat once. We obtain
thefollowing result by following this strategy of describing possible ass gnments of
valuesto avariableusing types, and by using typesto impose digunctive constraints
on those values:

Theorem 6 Itis NP-hard to determine whether there is a solution to the equations
resulting from a proof attempt in a O-only modal where $4 and K modalitiesinteract
by unrestricted (INC) axioms.
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Proof. By reduction from 3-SAT. In 3-SAT, we are given a set of digunctions,
each containing three propositional literals (letters or negations of letters). The
problem isto determinewhether thereis an assignment of true or false to the | etters
under which each digunction istrue. Aswith the proof of Theorem 1, we describe
the proof in two steps, giving first a set of equations corresponding to the 3-SAT
instance, then a proof search problem that gives rise to these equations.

The string equations first construct a string o constrained so that its possible
values encode assignments of truth-values to proposition letters. Meanwhile, each
disunction is associated with a string ¢; which unifies with o if and only if the
digunction istrue on the assignment o represents. Thus, the unification problemis
completed by equating o with each ¢;.

In particular, the encoding uses the following definitions of modalities. For
each proposition letter y, we have modalities YT, YF, Y and Y* related by the axiom
schemata described in the previous example. An additional $4 modality * has
inclusions to al of these modalities. For each digunct i, we introduce add a K
modality | with inclusion axioms to the modal types corresponding to the cases
when i istrue. For instance, if theith digunctis(uV vV y), we get:

(MADTTAAMADIVAA)A(]AD YT A)

Given these inclusions, we can represent 6; by a string uit;v;, where u;, t; and v; are
fresh variables governed by the typings:

U =%, o, v ™

For any string o that contains no constants of type I, ¢; is unifiable with o if and
only if o isastring containing a constant whose type characterizes an assignment,
specifying truth or falsehood for aliteral, under which theith digunctionistrue.
To construct asingle, overall assignment string, we repeatedly invoke the equa-
tions of the preceding example. If oy_; isan assignment to thefirst k-1 proposition
letters, we can extend the assignment to the kth letter by adding the equations:

MaUkVk = ok_10k, MY Zk = MialkSk
Under the typing context:
Ma %, Mo ™, Uc:Y* %, VeI Y % Vil Yio Zel Y% ol YTk, Bit YFg

For the reasons described above, my,y, includes the string oy_; as the value of my,,
followed by either oy or g asthevaueof y,. This establishes an assignment « and
completes the construction of a unification problem that correspondsto the 3-SAT
instance.

We now present alogical theory I' where proof search forT —> G givesriseto
this equational unification problem. The theory refersto propositions Ay, By and C,
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for each variable y and a proposition D; for each conjunct i. For the first variable,
we add Ay O G. For consecutive variablesy and z, add statements of the following
form:

FIIYT (A D YT G AT YT (YA G D [Y*] By) AT (YT By D Ay)

For thelast variable, for which thereisno successive z, replace A, with the conjunc-
tion of the D;. Finaly, for each digunct i, add:

iUl

In thistheory, the proof attempt for G givesrise to the unification problem observed
above. The successive proofs for Ay, B, and C, chain together to construct an
assignment as outlined in the example; the need to prove each D; in the ultimate,
nested scope introduces equations é; = 0. m

The practical relevance of this result is unclear, as the axioms involved in
this congtruction are rather pathological. Example 1, involving the Navy and
GE, is atypical example of a useful modal representation that exercises a variety
of introspection axioms on related modalities without introducing the kinds of
pathologies that Theorem 6 exploits—a point which we justify more carefully
presently. Because of the rarity of problematic examples, the response of (Debart
et a., 1992; Badoni et al., 1993) would seem natural: they provide a complete
solution and to trust that programmers will never unwittingly hack hard problems
into O manipulations. However, since algorithm A exploits an invariant that no
longer holds in this domain, it is problematic to make it complete for these cases
without spoiling its performance for easy problems. The next section adopts a
different approach: it gives broad syntactic conditions on the interaction axiomsfor
modalities and axioms about those modalities that ensure that unification of modal
paths remains easy.

4.4 Restrictions for Multimodal Languages
Problems arise in multimodal 1anguages when the same variable may be unified
with constants of different types under different unifiers. Under these conditions,
variables can take on binary values, and a constraint algorithm that computes a
simplest unifier becomes impossible.

| have found that the theories needed for many practical applications have
syntactic characteristics that eliminate such ambiguities. This section explorestwo
such characteristics. Inthefirst, typing conditionsinfact reducetolength conditions;
thisisrepresentative of typingin planning representations. I1nthesecond, conditions
can be satisfied by relaxation; thisis representative of typing in logic programming
representations.

44.1 Typing by Length Constraints
We first observe that a smple but useful syntactic restriction of homogeneity on
the multimodal language allows algorithm A to be used directly. The restriction
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starts from a distinguished negative modality Oy . Thetheory T specifying relations
between modal operators is homogeneous just in case it contains an inclusion
0; A D Oy Afor every modality O;. Further, the sequent I — A to be proved
ishomogeneousjust in case the " formulas have P-syntax and the A formulas have
N-syntax according to the definitions below:

Pi:= A|PVP|PAP|NDP|GOP|VYxP|3IxP
N:i= A|NVN|NAN|PDN|OyN|VXN]|3IxN

(A schematizes over atomic formulas.) Thus, any modality may appear in positive
positions, but only Oy may appear in negative positions.

If T — A is homogeneous, then all modal Herbrand terms in the proof must
represent arbitrary Oy transitions. If also T is homogeneous, then each of these
Herbrand terms match variables of any modal type whatsoever. The different types
of modal operators may therefore be specified completely in terms of the length
of sequences of Oy operators they match. There are only four possibilities for
introducing anode for variable v with prefix =, depending on whether the variable
matches sequences of Oy variables of length 0 and length 2. (In any demonstration
that the variable matches a sequence of length 2, we must have applied (Pi;); we can
repeat the step to match any longer sequence.) To represent the variable, therefore,
we find the node u representing =, and add: (1) u <; v (only length 1); (2) u < v
(only length 1 or greater); (3) u < v (any length); and (4) u <<1 v (only length 1 or
less). Thus, we again obtain a sound and complete specification of the unification
problem by incorporating first-order and distinctness constraints as in section 4.1.
Algorithm .A computes a solution or reports that none exists in time O(K? log K).

4.4.2 Typing for Least Commitment
A different kind of restrictionisto enforceastrict uniformity in solutionsthat allows
a unifier to be constructed by local modifications of a prospective solution. The
central notionsinvolvedinthisrestriction arethose of forced modalitiesand separate
modalities. Given atheory T specifying relations between modal operators, we say
amodality i isforced if i isnot governed by (P1), or equivalently that ¢ : i cannot be
derived. By extension, we say constants and variables are forced when they can be
assigned aforced modality as atype. Forced variables are the ones that may insist
on binary values. Modality i is separate fromj (under T) if for every typing context
2, there are no terms ¢ and d for which we can derivec :i,d : j,andcd : i. The
significance of separate modalitiesisthis. Given variablesu of typei and v of type
j with i separate from j, thereis at most one solution of any equation uv = o. For
suppose we had uf a proper prefix of ud’ for two unifiers# and ¢’. Then v has a
nonempty overlap d with u¢’; by the subset lemmad:j. Andnow ué :i,d: jand
ufdd = ué’ : i. Separate modalities are to be distinguished from digoint modalities:
i and j aredigoint if thereisno context > and term ¢ for whichc:iandc:j.

We apply forcedness and separateness in three auxiliary notions. First, amodal-
ity i issimpleif i isseparate fromi. A ssimple modality lookslike aK modality even
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taking possible inclusions into account. Second, a modality i is clean if whenever
0;A D ;A for forced j, then j is separate from i. A clean modality can never
be responsible for ambiguities in the number and identity of forced constants on a
string: it either aways matches none or aways matches exactly one. Finally, given
the goal of provingl" — G, modality i isunambiguousif G isaG-formulaand I
isamultiset of D-formulas, according to the following grammar:

G = P|IGVG|GAG|DDG| G | ¥XG | IXG
D := P|DVD|DAD|GDOD|0iDjp | 0:D[k#i] |VxG|3IxG
Disii= P | DisV Di73| DisA Di,S| GD Dis | VXx.G | Ix.G

Oy D [i separate fromk, each j in Sdigoint fromk] |

Ok Di s [K Smple]

(P schematizes over atomic formulas.)) An unambiguous modality is one whose
interactions might be problematic in general, but happen not to be, given the ma-
nipulations of modalitiesin the particular logical theory in question.

Given interactions T and desired end-sequent ' — G, we will require every
modality to be either clean or unambiguous. Intuitively, because of the role of
separateness in the definitions, by imposing the restriction, we ensure that the
forced Herbrand terms do not vary across unifiers. In turn, this ensures that forced
variables have the same values across all unifiers; ambiguous forced variables are
impossible. It isaconsequence of thisthat equations have simplest solutions—not
just in terms of lengths of values of variables but also in terms of the constants
that appear on the values of variables. Thisresult isin fact stronger than the least
commitment result for monomodal languages. Formally, we have:

Theorem 7 (agreement) Let 6 and 0" be two substitutions that solve the equations
arising from O-only proof search for ' — G with interactions T, where every
modality is either clean or unambiguous. Then for every forced Herbrand term c,
7uuf containsc if and only if (7,u)d’ does.

Proof. By induction on the number n of equations. For the base case, there are no
equations, no Herbrand terms, and nothing to prove.

Suppose the claim is true for the first n — 1 equations and consider solutions ¢
and ¢’ for the first n equations. Apply the induction hypothesis to show ¢ and 6’
agree on the forced Herbrand termsin the the first n — 1 equation, and consider the
nth equation, E. By thevariableintroductiontheorem, E hastheformIX = rc, where
| and r contain only termswhich appear earlier, Xis asequence of new variablesand
C is a sequence of new Herbrand terms. From the induction hypothesis, we know
that the same forced Herbrand terms appear on |6 and 16’, and likewise for ré and
ré’: so Ef hasthe same suchtermsasE¢’. If E isan equation representing adomain
congtraint we are done: thereisaunique new variable x and hence no new prefixes.

For other equations, we show by contradiction that there cannot be a Herbrand
term c, a forced modality j such that ¢ : j , and a variable x of type i such that
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C appears in (myX)6 but not in (7«X)6#’. Suppose otherwise, and consider the first
counterexample; we have two cases according to whether i isclean or unambiguous.

Supposei isclean. Thenj isseparate fromi, and sincec : i and c : ] we cannot
havee :i. Soiisforced. Thismeansxd’ includesaforced Herbrand term c’, which
precedes ¢ since ¢ does not appear in (7xX)d'. By the constant ordering theorem, ¢
must precede cin (mxx)d also. But xé cannot include both ¢’ and ¢, sincej isseparate
fromi. And 748 cannot contain C’: if S0, some earlier variable would contain ¢’ on
one substitution but not the other, and we know c isfirst. Thus, if i is clean, our
assumptions about ¢ are incoherent.

Suppose i is unambiguous; this ensures that x is followed by a string vz where
zisavariable of type h with i separate from h, and V is a sequence of n variables
vk each of simple type My digoint from h. Why is this? The sequence of variables
following x is constrained by the sequences of modalitiespermittedin D;, formulas,
the only aternative vz is for the equation to end before any z. But since ¢ does not
appear in (7xx)§’ and appearsinré, x cannot befinal. Nor can any v, befinal: since
each matches exactly one Herbrand term, any (xxV)# must contain forced Herbrand
terms that (7,xV)0’ does not.

So, given this string of variables xvz, we compare (xvz)d with (xvz)6’. Observe
that v,6’ = c since v1¢’ must be forced and c is the first forced Herbrand term from
xé not to appear in x§’. Continuing, we find V4’ = €, for some string of n Herbrand
terms €, and z¢' begins with some constant d. By separateness, d cannot appear in
X6, s0 it must appear afterward. By digointness, d cannot appear in Vf, so it must
appear later still. But V8 must include n constants following ¢; d must be one of
them. Thisisabsurd: we conclude that no counterexample can exist. m

Theorem 8 (least commitment) Given a set of equations U arising froma 0O-only
proof attempt for I — G without possibility or negation, and with every modality
clean or unambiguous. Then if E has a solution, it has a solution ¢ such that if ¢
appearson (wyu)d then c appears on (,u)é’ for any other solution ¢’

Proof. The proof to arelation < between unifiers; § < ¢’ holdsif and only if any ¢
that appearsin (x,u)é aso appearsin (w,u)f’. Thisrelation iswell-founded, since
each unifier assigns values to only afinite number of variables, and those values are
finite strings. Thus, it suffices to show that for any two unifiers ¢’ and 6" thereisa
unifier  withd < ¢’ and 9 < ¢".

We show this by induction on the number of equationsin U; we show simultane-
oudly that for any u, (ryu)é = (ryu)é’ N (ryu)é”. Thatis, under ¢, (ryu) contains
exactly the constants it has both under ¢’ and under §”, in the order dictated by the
constant ordering theorem.

For the base case, zero equations, there is nothing to show.

Now, suppose we have constructed such a ¢ for the first n — 1 equations, and
consider equation n, E, which involves k additional variables. As before, for each
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X © 1, construct the value x;# inductively as follows:
X0 = ((Ixg...%)0" N (Ixg...%)0") minus (IX; . ..%_1)0

X0 either only contains Herbrand terms from x;¢’ or only contains Herbrand terms
fromx;0”. Otherwisetherewould beaHerbrand termathat appearsin (Ix; . . . Xi_1)¢
but not (Ix;...x%-1)0" and a Herbrand term b that appears on (Ix;...x_1)0" but
not (Ix;...%_1)d, and where moreover a and b appear in both (Ix;...x;)¢ and
(Ix1...%)#. This means that a precedes b in the 6’ solution but b precedes a in
the ¢’ solution—in conflict with the constant ordering theorem. So aslong as ¢ is
nonempty, the subset lemma shows that x;0 has type 1. Meanwhile, if x¢ is empty
then 1 cannot be forced. If I isforced, the value of x§’" shares the forced Herbrand
termswith x;6”; thisfollowsby the previousresult. Thesewill appear on x;#. Again,
Ef istheintersection of E#’ and EA”, and 6 solvesE. m

4.4.3 Relaxation for Least-Commitment Multimodal Languages

This section outlines a relaxation algorithm for computing modal matches that
repeatedly performs algorithm A and modifies the result to make progress toward
typechecking. This progress is achieved using a straightforward procedure that
computes the next-larger well-typed modal match for a particular equation. The
arguments of section 4.4 show why an overal smplest global solution exists and
are easily adapted to show why local improvementstoward it are always possible.

We begin by presenting an algorithm for computing small well-typed modal
matches. In principle, we will need to match the left term | and right term r of
an equation. The value of r and the match for the variables and constants from |
that appear in earlier equations will already be determined; this fixes a fina string
of Herbrand terms from r that are unaccounted for. We need only match the final
string of new variables in | against these constants, subject to any constraints on
the values of those variables that we have aready identified. Thus, we have the
followingtask: wearegivenastring v of variablesand a string € of Herbrand terms,
and a base substitution 6y with Vdy = €. The problem is to find a unifier  where
for each variable v;, vi# is well-typed and (Vi )@ is as short as possible while still
including (7y Vi )fo as a prefix. Asin the proof of theleast commitment theorem, an
argument from intersecting substitutions shows that if any match exists, one match
assigns fewer Herbrand terms to each prefix than any other; so we describe # asthe
least match above 6y of V against &—Im(6,, V, C). Observe that 6 restricted to the
firsti variables must be the least match above 0, of =, v; against (7, vi)é. Otherwise
we could use ¢ and the smaller prefix match to construct an smaller match on the
whole string.

Thus, we characterizelm(6o, 7y, Vi, €) asfollows. No match existsunless (Vi )6
is a prefix of € If this prefix condition is met, let d be the longest string of
constants matching the type of v; such that thereisa . where € = ﬂa andad_; =
Im(6o, 7y, 1) |f nosuch d exists, there must beno match. Otherwise, Im(6o, 7, Vi, €)
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is the substitution that sends vi to d and otherwise agrees with 6,_1. Given 6,
this characterization can be operationalized directly as a dynamic programming
algorithm that maintains a table of Im(6o, 7, 1) values for prefixes = of v and
prefixes . of C.

This procedure can be combined with algorithm A to construct unifying trees
for multimodal languages. The combination, algorithm B, goes as follows:

Construct constraints for the input equations U and the domain restrictions on
first-order variables as in algorithm .4 and propagate the consequences of those
congtraints. Then, while changes occur: consider the equations in order until some
sequence of variableslies|ower than their next least match against the constants to
which they are bound; perform merges of cellsin A so as to bump those variables
up into the least match configuration; and recompute .4. Whenever some sequence
of variables has no next least match, fail.

Theorem 9 (correctnessand completeness) If algorithm B produces a tree, it is
the least solution to itsinput equations U and the associated domain constraints; if
thereisa solution, B producesit.

Proof. Any tree that agorithm B produces corresponds to a correct unifier 6 of U.
The fact the tree is afixpoint of agorithm .4 means that a substitution that solves
U and satisfies the domain constraints can be extracted from the tree. Since the
algorithm terminates only when every sequence of variables matches a path of the
appropriate type, this substitution respects the types of variables and constants.

Moreover, any other correct unifier ¢’ assignsno prefix = astring =6’ shorter than
7f0; and if B returnsfailure, there is no unifier. We establish this using a somewhat
stronger claim and induction on the number of equationsk so far solved.

Call arelationr conservativefor U whenr(x, z’, n) entailsthat 6 and ='6 share
acommon prefix of length nin any solution § of U. Asremarked in section 4.1, the
proof of correctness of algorithm .4 can be adapted to show that if A isinitialized
with leaves of nodes put in common cells according to a conservative relation
and run to completion, then the output relation includes the input one but remains
conservative. Given any conservative relation that solves the first k equations, we
will show that the new relation induced by bumping up a sequence of variables X
from equation k+1 to match € (by match #) aso includes the old one and remains
conservative.

We use the claim to show by induction that input a conservative relation for U,
algorithm B returns a conservative relation that includes the input and represents a
solution to the first k equations. For O equations, thereis nothing to show. Suppose
theclaimistruewhen running B on k— 1 equationsand consider solving k equations.
Following algorithm B, we first use thisinduction hypothesisto solvethefirst k— 1
equations and extend the input relation conservatively. Then, we bump up the
variables in the kth equation as dictated by the least match; by the claim, also
extends the relation conservatively. We continue this process as needed until afixed
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point is reached or until we discover the need to place a variable impossibly deep
in the tree. Since the relations remain conservative, we lose no solutions. As no
variable can be bumped past depth N in the tree, we must reach afixed point which
givesaleast solution extending theinput relation for the k+ 1 equations, if asolution
exists.

We are |eft with the claim that including the match of X against € by ¢ keepsthe
relation conservative. Consider anarbitrary solutioné’ inwhich Xismatched against
some different string d. Because the d terms must appear in the first k equations,
which have been solved conservatively, d must include at least the constants of € in
order. Further, d must contain exactly the same forced constants that appear in C, by
the agreement theorem. We now know enough about the string € and the match ¢’
against d to construct amatch of X against & at least assmall as#’, by intersection (as
intheleast commitment theorem). Thus, if no match against € exists, therecan beno
other solution to the earlier equationswhich allowsamatch in thisequation; so local
progressis complete. Meanwhile, since we compute § as the least match against C,
we can conclude 6 is smaller than ¢ as needed, so local progressis conservative. m

Algorithm B runsin timeworst case O(N*), where N isthe number of variables
and constants in U. The analysis given earlier is general enough to show that
the multiple invocations of A require total time only O(N?logN). Meanwhile,
agorithm B requires no more than O(N?) iterations to converge (otherwise some
node must be bumped to depth N+1), and in each iteration there are at most O(N)
nodes to check. There are two kinds of checks, we shall see that these have
different complexities. The first case, the easy case, is when the input substitution
6o is identical to the output substitution 4. All but the last of the O(N) checks
that we perform fall into this class, since they introduce no changes. In the other
case, we compute a new ¢ different from 6. Thus, if the time of an easy check
is f(N) and the time of a hard check is g(N), agorithm B takes O(N?logN +
N3f(N) 4 N?g(N)). To compute the time each check takes, observe that successive
variables must originate in the same formula occurrence. Thus the maximum
number k of successive variables needed to be matched in each equation is bounded
statically by the complexity of axioms. For current purposes, k can be considered
constant. Likewise, since the possible interactions between modalities must be
specified in advance (and hence can be computed in advance), we may assume
that the relationship between the type of a constant and the type of a variable can
be computed in constant time. Meanwhile, the string of constants matched has
worst-case length O(N). In principle, given these bounds on the input, computing ¢
requiresfilling atable of size O(kN), where each entry may require checking O(N)
earlier entries. So g(N) is O(N?). On the other hand, if the table is filled in by
demand and the input match 6, is well-typed, we access (and compute) only O(k)
entries of the table. The easy checks thus require time O(N). Thus, we conclude
that algorithm 5 has worst-case complexity O(N*).
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5 Conclusion and Applications

Previousresearch on efficient deduction in modal |ogic devised an explicitly-scoped
calculus describing modal provability. The calculus has nice formal properties but
checking the axioms link in the proof represents an intractable problem. This paper
has identified a new invariant for deduction problems in modal logic, and shown
how thisinvariant leads to fast algorithms for correctly applying axioms in modal
proofs. Presentations of modal logic in terms of scope equations thus provide both
atheoretical tool for analyzing proofsand proof search in new ways and apractical
tool for implementing fast deduction.

Adding scope to logical representations is an important goal for this paper has
developed tractable solutions. The algorithms described here apply in a variety
of domains that call for natural means of describing modular inference, time, and
agents. To conclude, | briefly sketch the role of the three algorithms from sections
4.1, 4.4.1 and 4.4.3 in developing practical applications of deduction.

5.1 Automatic Synthesis of Functional Programs

Intuitionistic theorem proving and the related problem of automated synthesis of
functional programs represents a natural domain in which to apply the constraint
algorithm from section 4.1. The problem and application relies on the following
observations. Functional programs can be characterized in terms of the types of
their inputs and the types of their outputs. These types can in turn be represented as
formulasin alogical language: the formulap = g represents the type of functions
from objectsof typepto objectsof typeq. Thecorrespondence between propositions
and types—known asthe Curry-Howardisomorphism (Howard, 1980)—at the same
time identifies programs with proofs. For example, application of a function to an
argument is recorded in the inference from the type p = q of the function and the
type p of the argument to the type q of the result. This parallel underlies a number
of systems for the synthesis of functional programs (Martin-Lof, 1982; Constable
et al., 1986).

In the type p = ¢, = denotes the implication of intuitionistic logic, where the
assumption p must be used only to derive g. This scope discipline can in fact be
characterized by a correspondence between intuitionistic formulas and proofs and
formulasand proofsof amodal logic, $4 (Godel, 1986; Rasiowaand Sikorski, 1953;
Maehara, 1954). The correspondence is achieved by trandating an intuitionistic
formulap to an S4 formulaT(p) asfollows:

A) = OA A atomic
pAg) =T(p)AT(Q)
pva =T(p)VTQ)
\5:» q) = O(T(p) D T(a))
3
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The correspondence between programs and proofs also holds in explicitly scoped
proof system based on semantic trandation, such as the one this paper has in-
vestigated (Stone, 1996). Explicitly-scoped S4 deduction, together with the basic
O(N?1og N) congtraint algorithm described in section 4.1, can thus be used to derive
proofs and programs.

5.2 Congtraint Reasoning for Branching Time

The constraint technique proposed in section 4.4.1, meanwhile, appliesin avariety
of problems in temporal and causal reasoning, including typical ways of deriving
particular predictions about the future on the basis of causal generalizations. The
use of constraints to represent the ordering of intervals and events is a well-known
technique in Al (Sacerdoti, 1975; Allen, 1983; Dean and Boddy, 1988), but has
focused on linear models of time, where al events must ultimately be temporally
ordered. Al theorists, however, have often preferred to work in terms of branching
models of time, such as the situation calculus (McCarthy and Hayes, 1969). The
algorithm described in section 4.4.1 can be taken as a description of a range of
cases where efficient constraint methods can check consistency of conjunctions of
ordering constraints between points in branching-time causal reasoning.

The ontology for causal theories consists of a homogeneous theory (cf. section
4.4.1) involving a pair of modal operators () and 0. The negative operator is ();
(O Prepresentsthat P istrue after the next event occurs. Without further constraints
on this operator, time can branch. Persistence of effects is captured by the modal
operator O; O P represents that P holds, and will continue to hold until further
notice. Thus, O is described by the axioms OP O P, OP D 0O0OP and OP O OP.
Meanwhile, the predicate ha gives a way to talk about the occurrence of actions:
haistrueif the next event will include an action that can be characterized as an a.

This setup allows us to represent a prediction as a moda deduction with end-
sequent R H — G. Risthe causal theory of the world, expressed in termsof ),
O and h; H is a series of statements describing future events;, and G is a formula
ensuring that some prediction holds after aseries of events. Such deductions encode
ahomogeneous problem aslong as O isonly needed in positive positions, to alow a
proposition established at one timeto be propagated forward in timein asingle step
of instantiation to the later time when the proposition is needed. Thisisthe typical
case in planning, prediction and explanation in Al. Because of the smplicity of the
deductive framework, the results of section 4.4.1 can be used to solve the modal
equations in these deductions efficiently—in time O(N? log N).

(Infact, the proof theory of simple modal |anguages can continueto beleveraged
inan interesting way even inthe presence of defeasibleinertia(Stone, 1997a). Using
defeasible argumentation (Pollock, 1992; Dung, 1993) permits proofs to retain a
smple form that omits the digunctive and negative conditions needed to handle
inertiain classical logic (Schubert, 1990; Reiter, 1991).)
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5.3 Executing Specifications of Agents

Finally, we return to the example of section 2.1: executing modal specifications of
agents. The specification described in 2.1 is representative of a broad and useful
class of formal theories in which the multimodal constraint algorithm of section
4.4.3 applies. In this class, we specify a set of S4 modalities interacting with
one another, and a set of K modalities interacting with one another, but have no
interactionslinking thetwo kindsof modalities. | will call these S4/K specifications.

Recall that section 4.4 identified restrictions on multimodal reasoning: Every
modality is required to be either clean or unambiguous, according to a technical
definition characterizing the modal interactions T and the sequent I — A to be
proved. In thetechnical language of section 4.4, the K modalities are clean because
they are smple; the S4 modalities are clean because they have no inclusions to
forced modalities. For S4/K specifications, no further restrictions on interactions
or formulas are needed to ensure that scope equations are easy to solve by the
techniques of section 4.4.3. Nevertheless, S4/K specifications describe the key
reasoning problems needed for specifications like the Navy/GE specification of
section 2.1.

In the Navy/GE example, the S4 family consists of operators [GE| describing
GE's knowledge, [NAVY] describing the Navy’s knowledge, and [BOTH] describing
the organizations shared knowledge. The K family consists of operators[LIST] de-
scribing GE'slist, [sPEC] describing the Navy's specification, and [AcCT] describing
accountsin general.

The $4 family allows for efficient specifications not just of agents knowledge
but aso of their common knowledge. Common knowledge is a crucial component
of coordination and agreement (Fagin et a., 1995). Inclusion axioms model shared
knowledge in the GE/Navy example of section 2.1: the modality [BOTH] in the
example was subjected to inclusion axioms [BOTH]A D [NAVY]A and [BOTH]A D
[GE]A. Theseinclusionsallow any nesting of [NAVY] and [GE| operatorsto be derived
from a single [BOTH] operator. Thus [BOTH] in fact describes common knowledge
to GE and the Navy.

The K family of operators provides a complementary tool to structure specifi-
cations. Following (Giordano and Martelli, 1994; Baldoni et al., 1993), K modal
operators in some cases provide a good description of modularity in logic pro-
grams. Aswith the [LIST], [SPEC] and [AcCT] modalities in the Navy/GE example,
modal operators can allow concepts to be described as distinct (like [LIST]price and
[SPEC]price) while compactly describing bodies of knowledge that apply uniformly
to both concepts. Infact, as(Schild, 1991) shows, asimilar use of K modal operators
can provide a genera encoding of terminological knowledge.

Thanks to the constraint algorithms described in section 4.4.3, specifications
combining these features can be designed like Prolog programs to offer both effi-
cient execution and declarative semantics. For, logic programs have a restricted
syntax and a restricted proof procedure that ensures that problematic scope ambi-
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guities never arise. Without scope ambiguities, modal logic programs will define
search problems whose nondeterminism depends solely on the number of aterna-
tive clauses that could establish a goal, just asin Prolog programs. (Stone, 1997b)
extends the general framework from (Miller et al., 1991) to develop a modal logic
programming language, DIALUP, using the partial-order mechanisms described in
section 4. DIALUP provides a concrete environment in which to explore the algo-
rithms described in this paper and the efficient specifications of agents they make
possible.
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