
Towards a Computational Account of Knowledge,

Action and Inference in Instructions

(Extended Notes)

Matthew Stone
Department of Computer Science and

Center for Cognitive Science
Rutgers, the State University of New Jersey

mdstone@cs.rutgers.edu

Abstract

I consider abstract instructions, which provide indirect descriptions of
actions in cases when a speaker has key information that a hearer can
use to identify the right action to perform, but the speaker alone cannot
identify that action. Principled generation of abstract instructions requires
a system to assess the inferences about action a user will draw from an
instruction. I sketch a framework for specifying, computing, and accessing
those assessments in natural language generation.

1 Motivation

This work investigates the inferences hearers need to draw from utterances in
dialogue in order to choose appropriate actions to take in the world. Long-
studied examples of indirect speech acts [Gri75, Sea75] not only call attention
to these inferences, but bring home the remarkable fact that speakers rely on
hearers to make them.

(1) a It’s cold in here.
b Close the window!

Thus, under the right circumstances, a hearer has not understood (1a) without
drawing the inference to the implicit instruction for action (1b).

It is a mistake to regard such inferential expectations as marginal—as
mere polite indirection, for example. For one thing, the utility of inference
is pervasive: dialogue proceeds most efficiently when contributions accom-
plish some actions explicitly while selectively omitting others as inferable.
[Wal93, GC94, CCC95, You97, DJMT98] offer arguments and models for this.
Take the question-answer pair in (2a) and (2b), through which the proposal in
(2c) is communicated by inference.

(2) a What should we put in the living room?
b I have a blue sofa for $500.

1

c Let’s put this sofa in the living room.

An indirect utterance like (2b) can improve on a direct proposal like (2c) in that
the indirect utterance not only contributes the proposal itself, but also summa-
rizes the proposal’s costs (here, the cost in dollars) and its benefits (here, the
decorative benefit of a possible color match). This puts the dialogue partici-
pants in a better position to evaluate, adopt and carry out the proposal.

What’s more, adopting inference as a central mechanism for implementa-
tions for modules such as natural language generation (NLG) results both in
more streamlined architectures and in more flexible behavior. In [App85], for
instance, Appelt proposes to construct sentences by planning the hearer’s in-
terpretation of them—including the inferences to be drawn from them. The
framework treats the whole range of tasks involved in formulating a sentence
uniformly and simultaneously—and thereby exploits opportunities for synergy
among them:

(3) Remove the bolt with the wrench from the tool box.

In (3), one compact and natural sentence describes the goal of an action (re-
moval), its method (wrench), and the knowledge required to accomplish it (the
wrench’s location). The sentence planning using description (spud) system
[SD97, SW98] I describe in section 3.3 also assigns inference about interpreta-
tion a central role in generation, albeit a more constrained role than Appelt.

Despite its advantages, inference is often viewed as marginal—even
dispensable—particularly in practical NLG systems. Such systems rarely aspire
to the faithful account of agreement and coordination among participants that
make dialogue agents like [Pow77, Hou86, CPB+94] hopelessly explicit and re-
dundant without inference. Having eschewed such complexities of interaction,
they can cut corners on the way to credible output. In avoiding inference,
they then incur only the drawback of the cumbersome directness and choppy
inflexibility suggested in (4):

(4) a I propose we put my sofa in the living room. It is blue. It costs $500.
b Remove the bolt from the housing. Use the wrench. The wrench is

in the tool box.

This seems a small price for a feasible implementation. Inference is notoriously
difficult to model.

My purpose in this work is twofold. First, in section 2, I will describe how
inference is essential to explain how certain instructions, abstract instructions,
achieve the communicative goal of informing the hearer of what to do. Ab-
stract instructions require the hearer to choose an appropriate next action by
combining the information conveyed in the instruction with the hearer’s private
background knowledge. Because the speaker lacks this private knowledge, ab-
stract instructions cannot be reformulated to achieve their communicative goal
directly. For a practical system to generate instructions without inference in
these situations means abandoning a goal-directed view of NLG, with all its
advantages.

2

Box 1:

Figure 1: A window where a user might act.

Second, in section 3, I will sketch a computational model of these inferences
based on modal logic programming. A modal first-order logic of knowledge pro-
vides a language in which specifications and queries about choices of action an
agent can make have a natural form involving existential quantifiers and hypo-
thetical implications. The logic programming proof procedure for this language
allows these queries to be posed and evaluated against these specifications with
predictable search. To plan and validate abstract instructions in NLG, we can
therefore create a modal specification of the private information of the hearer
and the shared information in the context and perform an incremental assess-
ment of sentence interpretation using logic programming queries. With its
emphasis on expressive languages and predictable search, this model suggests
that accounts of inference in dialogue need not rest on contrived representations
or incur unpredictable and unmanageable computational complexity. Thus, a
principled account of abstract instructions may soon be a practical one.

2 Examples

Consider a dialogue agent whose task is to assist a user in completing ad-
ministrative forms correctly. For concreteness, we presume that the process is
mediated by a graphical interface which allows the form to be filled out and
submitted electronically. At a certain stage, the user might be confronted with
some form, including (among other things) the entry box schematized in Fig-
ure 1. Suppose the user has asked for instruction about what to do next. The
form might make (5) a correct response for the dialogue agent to provide:

(5) Enter your user ID in box 1.

We can easily imagine the user successfully carrying out this instruction, and
the dialogue naturally moving on to address other aspects of the form.

This brief scenario masks a range of complexities, starting with the user’s
action itself. The simple description of (5) notwithstanding, the user’s response
to the instruction in fact consists of a sequence of concrete steps in which the
user moves the mouse to intended locations, and presses intended buttons and
keys. We can also regard such actions as organized into broader routines, such
as routines to select an intended text box or to type an intended string of

3

characters, which are fleshed out regularly into intended component actions
with mouse and keyboard. This organization might help to account for the
choices that the user takes together or reports together; and it might usefully
delineate our requirements for knowledge representation.

Either characterization of action places the same key requirement on the
user carrying out the instruction. In deciding what to do, the user must select
a particular action for specific effects that the user knows and intends that
action to have. In carrying out an action like (5), for instance, this might mean
selecting a primitive like pressing j next, or a routine like typing jdoe, because
the user knows a way these actions will contribute to the user’s ID (jdoe, say)
being in box 1.

We see now how (5) requires inference for the user. (5) cannot be regarded
as a name for a particular concrete action: the user’s interface does not come
equipped with a name button which automatically ensures that whoever presses
its gets their name entered in box 1. In this respect, we can contrast (5) with
an alternative such as (6) which might correspond directly to a concrete action
for the user.

(6) Type jdoe at the cursor.

Obviously, in the case of (5), the user must work backward from the effect
specified in the instruction to identify concrete actions which accomplish that
effect. In fact, once we fix a framework for representing these concrete actions,
we can be quite precise about the knowledge that the user brings to bear in this
process. For example, if the user knows a routine to enter a box in a string, it
suffices that the user knows her user ID as a string i, and knows which box b is
box 1. Using this knowledge, the user should be able to work out that applying
the routine to i and b will enter her user ID in box 1.

If interpreting (5) requires inference for the user, then generating (5) requires
the system—or at least its designers—to anticipate this inference. The inference
itself is inextricably tied to the content the system needs to provide to the user.
There might be times when an instruction can be issued in a way that specifies
a concrete action directly, as in (6). For example, a system might produce
(6) instead of (5), if it knew that the user’s ID was jdoe. However, it seems
unlikely that the system will know the user’s ID when it plans an instruction
like (5). For one thing, if the system has the necessary information, it ought to
be capable of entering what is needed on its own! So from the system’s point of
view, the instruction is abstract ; it determines a concrete action which the user
will be able to identify in advance, but which the speaker cannot yet identify.
Since the system only knows how to describe the action indirectly, the user’s
interpretation of the instruction must rely on inference.

If this inference is not anticipated, the result will be a blind system, which
pays no heed to whether it gives its users instructions they know how to carry
out. Imagine a setting in which user IDs, unbeknownst to the public, also serve
as administrative index keys, or in which interface items are given internal
identifiers. Then a blind system could offer (7), baffling its users, when it
should provide the unproblematic (5).

4

Box 1: User ID

Figure 2: An alternative window.

(7) Enter your administrative index key in widget 55a8.

There are further advantages to making the anticipated inference explicitly
available to the dialogue system, not just an implicit part of the system’s design.
It then becomes possible to automatically adjust the formulation of instructions
to accommodate the different knowledge of different users at different times.
One illustration of this is just to change the prompts in the interface. Figure 2
suggests an alternative labeling for the window of Figure 1. In a large form
containing Figure 2, when the user asks what to do next, it becomes possible
for the system to reply:

(8) Complete box 1.

With the new label, it becomes part of the common ground that box 1, when
completed, will contain the user’s ID. The user can therefore select the same
concrete action to satisfy (8) as to satisfy (5). Of course, in a large form contain-
ing Figure 1, (8) is almost entirely unhelpful. Without the added background,
box 1 could be completed by anything.

An explicit representation of inference also enables more flexible interaction.
For example, people often signal their failure to understand or accept others’
contributions to dialogue by asking a question in response. For a system to reply
appropriately to such a followup question, the system must relate the question
to the information the system’s utterance was intended to convey [LC92, Moo94,
Loc95, Loc94]. Information conveyed inferentially is no exception. Here are two
ways the user might respond to (5):

(9) a How do I enter my user ID somewhere?
b How will my user ID be stored?

With an explicit representation of the inference required to interpret (5), the
system can recognize from (9a) that the user lacks some of the background
knowledge required to carry out the instruction. This is the first step in selecting
the appropriate additional background and formulating a reply to present it to
the user. Meanwhile, that explicit representation could also suggest to the
system that (9b) does not address the user’s ability to carry out the instruction
(for which no means of storage is required), but raises another objection—
concern over whether the action is sufficiently secure, perhaps. Obviously, an

5

appropriate response to this concern would require the system to present very
different information from background on how to use interfaces.

3 Specifying and Accessing Inferences

Section 2 described abstract instructions—a general class of utterances whose
generation and interpretation require inferences about knowledge and action.
Abstract instructions arise when the speaker has key information, from which
the user can infer what to do next, but the speaker also lacks key information,
and cannot formulate an explicit, direct statement of which action to choose.
This section sketches how these inferences can be specified (section 3.1), carried
out (section 3.2), and accessed in NLG (section 3.3), using first-order multi-
modal logic programming.

3.1 Modal representations

First-order multi-modal logic extends the syntax of first-order classical logic by
introducing propositional operators of necessity and possibility. These opera-
tors extend classical logic in a very general way. Formulas in first-order classical
logic characterize ordinary entities once-and-for-all. In contrast, the necessary
formulas of modal logic provide characterizations of entities that take only re-
stricted information into account. For example, a temporal modal logic might
use [n]p to introduce a characterization p that takes into account only what will
be true after the next action takes place. Meanwhile, an epistemic modal logic
might use [k]p to indicate that p takes into account only the information that
an agent knows. (Thus, I write necessity operators in the form [name].) To
characterize a conversation from the point of view of a dialogue agent, we can
use three modal operators: [s] for what the system knows, [u] for what the user
knows, and [cg] for the content of the common ground in the conversation.1

We will combine these epistemic modal operators with a formalization of
action inspired by the situation calculus to describe agents’ ability [Moo85,
Sto98a]. We introduce terms for situations and actions (executed, we assume,
by the user); we write do(s, α, s′) if situation s′ can result if action α occurs in
situation s. Recall from section 2 that in deciding what to do, the user must
select a particular action for specific effects that the user knows and intends
that action to have. Suppose the effect is a predicate E of situations; we can
now elaborate this condition as (10), using the ontology of the situation calculus
and modal logic.

1[Fit83, FM98] provide good technical introductions to modal proof, while [FHMV95] is
an introduction to modal logic in AI. We assume an idealization of conversation in which [s]
[u] and [cg] satisfy these axiom schemes:

[s]p ⊃ p [u]p ⊃ p [cg]p ⊃ p
[s]p ⊃ [s][s]p [u]p ⊃ [u][u]p [cg]p ⊃ [cg][cg]p

[cg]p ⊃ [s]p [cg]p ⊃ [u]p

6

(10) In situation s, there is an action α about which the user knows, that
E is true in any situation s′ resulting from doing α in s.

This corresponds to the formula in (11).

(11) ∃α [u] ∀s′ (do(s, α, s′) ⊃ E(s′))

Consider the problem of interpreting instruction (5) by reasoning about
knowledge and action. Informally, we used these premises to characterize the
shared background on which this reasoning depends.

(12) a The user knows her user ID as a string.
b The user (jointly with the system) knows which is box 1.
c The user can enter a string in a box.

(13) provides the corresponding formalizations, drawing on the definition of
ability in (11) and making explicit the shared status of this information.

(13) a [cg] ∃i [u] (userid(u, i)∧ string(i))
b ∃b [cg](box(b) ∧ number(b, 1))
c [cg] ∀sib (string(i) ∧ box(b) ⊃ ∃α [u] ∀s′ (do(s, α, s′) ⊃ in(i, b, s′)))

Meanwhile, to anticipate the interpretation of the instruction, the system
needs the conclusion that it is part of the common ground that the user can
enter her user ID in box 1; we draw on (11) to formalize it thus:

(14) [cg] ∃ibα [u] (userid(u, i)∧ box(b) ∧ number(b, 1))∧
[u] (∀s′ (do(s, α, s′) ⊃ in(i, b, s′)))

The semantics of modal logic will ensure that (14) always holds when (13) does;
the logic programming proof system for modal logic we explore in section 3.2
provides a way of demonstrating this automatically.

3.2 Modal logic programming

Logic programming languages embody simple, specific search procedures for
building proofs. At each step in logic programming search, the goal is to find a
way to use the available assumptions to establish a specific query. If the query
is complex, its logical structure directly determines the available alternatives
for search. Thus, logical symbols in queries can be seen as instructions for
decomposing and transforming the search problem that the interpreter faces.
Similarly, the atomic formulas that an assumption can be used to derive—the
head (or heads) of that assumption—serve as indexes that regulate whether
an assumption can be applied. And the logical structure of the assumption
provides an instruction for creating a set of new search problems whenever the
assumption is used.

This general perspective on logic programming has been formalized and an-
alyzed under the framework of abstract logic programming languages [MNPS91].
Mathematically, this formalization begins by establishing a correspondence be-
tween search problems posed to the logic programming interpreter and sequents
in a proof calculus.

7

A sequent is an expression of the form Γ - ∆ where Γ and ∆ are fi-
nite multisets of formulas. For the purposes of proof, a sequent represents the
judgment that if all of the assumption formulas in Γ are true, then some of
the conclusion formulas in ∆ must also be true. A sequent proof is a tree of
sequents of a distinguished form. The leaves take the form Γ, A - ∆, A—so
that some assumption is directly matched against some conclusion. The interior
nodes instantiate inference figures, which relate proof problems of larger logical
formulas to proof problems for constituent formulas. For a simple example, the
figure for a conjunctive conclusion is:

(15)
Γ - A,∆ Γ - B,∆

Γ - A ∧B,∆

Read upward, it says that you can conclude that A ∧ B (or ∆) must be true
(on assumptions Γ) provided that you can conclude that A (or ∆) must be true
(on assumptions Γ) and provided that you can conlude that B (or ∆) must be
true (on assumptions Γ).

A logic programming search problem can be represented as a sequent be-
cause the program can be represented with the assumptions Γ and the goal or
query can be represented with the conclusion(s) ∆. The action of the interpreter
in transforming search problems can then be seen as the construction of a proof
in a restricted sequent calculus—for example, breaking down a conjunctive goal
into two separate subgoals in a logic programming interpreter corresponds to
an application of the sequent rule of (15). The rules of the logic programming
calculus are specialized so as to model the constrained search entertained by the
logic programming interpreter. The key result required to show the correctness
of a logic programming language in this framework is then to show that the
restricted sequent calculus permits a derivation of a goal exactly when the goal
is provable in a general sequent calculus for the logic.

[Fit83] presents a number of modal sequent calculi. (Strictly speaking, he
presents tableau calculi, a notational variant of sequent calculi.) A calculus such
as his prefixed tableau calculus is required to implement a logic programming
language with programs that specify partial information, including the pro-
gram with existential quantifiers proposed in (13). A version of this calculus,
specialized for logic programming search, is developed in [Sto98b].

The resulting logic programming interpreter derives (14) from (12) as fol-
lows. It begins by decomposing the goal: it introduces a worldw representative
of the common ground, introduces variables I , B and A for individuals that
exist at w, and (treating the first conjunct) introduces an additional world w′

representative of what the user knows at w. The goal now decomposes into
atomic formulas userid(u, I), box(B) and number(B, 1), which are established
at w′ by matching against the corresponding components of the background
clauses and solving the resulting simple constraints on values of variables and
on possible worlds. Next (treating the second conjunct), the interpreter in-
troduces a new world w′′, introduces a fresh situation cs′ at w′′ to interpret
the universal quantifier, and assumes do(s, A, cs′). The goal is now in(I, B, cs′)
at w′′; we match against the clause describing the user’s general knowledge of
entering strings in boxes (again solving a simple resulting constraint on worlds

8

and variables). This yields three more atomic modal goals—string(I), box(B)
(at some variable world x), and (s, A, cs′) at w′′—which are dispatched in turn.
In fact, for this simple query and simple program, logic programming proof
search is completely deterministic.

A key feature of the logic programming calculus is its modular treatment
of modal connectives. A necessary goal [x]g can be seen as a modular goal
because, in modal logic, only program clauses of the form [x]p can contribute
to its proof. Under certain constraints on modal semantics (met here), mod-
ularity also brings locality: a goal [x](p ⊃ g) introduces a local assumption p
that can only contribute to the proof of g. At the same time, an indefinite
program [x](p ∨ q) introduces a local ambiguity that may be restricted to the
proof of some modular goal [x]g. This modularity is part and parcel of correct
modal reasoning—it is part of what it means for modal formulas to take only
restricted information into account. But modularity is useful in its own right,
to constrain logic programming search and describe the modular structure of
logical specifications [Mil89, GM94].

3.3 Modal queries in sentence planning

Sections 3.1 and 3.2 have shown how inferences about knowledge and action can
be specified and derived. It remains to be seen how these conclusions might
actually be accessed in sentence planning. In this section, I suggest one answer,
inspired2 by the spud system for sentence generation [SD97, SW98].

spud adopts a view of sentence generation as goal-directed activity, like
[App85, Dal92] before it. On this view, the task of the generator is to use
the words and constructions of the language to design a message that fulfills a
set of communicative intentions. spud works with two kinds of intentions in
particular: intentions to uniquely identify the entity designated by a referring
expression, and intentions to establish a proposition as part of the content of
the conversation. spud fulfills these intentions incrementally, using a grammar
in the LTAG formalism [JLT75, Sch90] to add units of meaning and syntax
word-by-word into an incomplete sentence. Thus, unlike [App85], spud does
not attempt the exhaustive search of the grammar performed in unrestricted
planning.

The spud algorithm is outlined in Figure 3. The steps of this algorithm
refer to abstract notions—ambiguity of reference, information conveyed, ap-
propriateness and specificity of descriptors—whose implementation depends on
an approach to meaning and interpretation based on inference in logic pro-
gramming. In this approach, the meaning of a sentence is represented in the
same terms as the background modal specification of conversational state. Key
stages of NLG reason about sentence interpretation by constructing and eval-
uating logic programming queries in which these meanings are combined with
background information. What follows describes this approach in more detail.

I begin with the representation of sentence meaning. The grammar is de-
signed to deliver the content of each sentence in two parts: the presupposition

2
spud itself cannot yet generate (5), because the implementation makes some assumptions

about discourse referents which (5) does not satisfy.

9

• Start with a tree with one node (e.g., s, np) and one or more
referential or informational goals.

• While the current tree is incomplete, or its references are am-
biguous to the hearer, or its meaning does not fully convey the
informational goals (provided progress is being made):

– consider the trees that extend the current one by the ad-
dition (using LTAG operations) of a true and appropriate
lexicalized descriptor;

– rank the results based on local factors (e.g., completeness
of meaning, distractors for reference, unfilled substitution
sites, specificity of licensing conditions);

– make the highest ranking new tree the current tree.

Figure 3: An outline of the spud algorithm

Px—an open formula containing free occurrences only of the variables in the
sequence x—which places a requirement on the context and the assertion Nx—
another open formula containing only occurrences of variables in the sequence
x—which contributes new information to the evolving discourse.

The use of the term presupposition follows the theoretical perspective of
[vdS92] that presuppositions are anaphors that are resolved against an evolving
model of discourse. This view modulates the received view of a presupposition,
from Frege and Russell, as a statement of the uniqueness conditions under
which a sentence refers successfully. For example, the received view famously
represents the uniqueness condition as the presupposition (16b) of (16a):

(16) a The King of France is bald.
b ∃x(kof(x) ∧ ∀y(kof(y) ⊃ x = y))
c kof(x)
d bald(x)

The anaphoric view replaces the formula (16b), with its logical complexity, by
the formula (16c) and a complex process of resolution against the context. Re-
solving (16c) requires not only showing that the logical condition is satisfied in
the common ground but also providing a discourse referent from the context
that can serve as the value for the variable x. For (16c), the uniqueness derives
from the fact that the speaker and the hearer must agree on how the presuppo-
sition is resolved; thus this resolution of presupposition parallels the resolution
of other anaphoric elements in the sentence.

This view of the resolution of presupposition also explains why the asser-
tions of sentences contain free variables. Variables in the assertion provide a
way of recovering and commenting on the values of variables evoked by the pre-
supposition. For example, the assertion of (16a) can be represented as (16d):
once we find a value k for x by resolving the presupposition, we can take x to

10

refer to k in adding the assertion to the context.
For (5), we can analyze the instruction in terms of presupposition and as-

sertion as if its meaning is you should take the action of entering your user ID
in box 1. That is, the presupposition is (17).

(17) a action α enters user ID i of yours in box b numbered 1
b P (α, i, b)≡userid(u, i)∧ box(b)∧ number(b, 1))∧

∀s′ (do(s, α, s′) ⊃ in(i, b, s′))

The assertion is (18)

(18) a you should do action α
b o(α)

Having laid out the representation of meaning, we turn to logical queries
that use this representation to assess sentence interpretation. We begin with
the interpretation of presupposition.

(19) a A possible resolution of the presupposition Px is a proof of
[cp]∃xPx.

b A presupposition is resolved successfully when there is a unique
(maximally salient) possible resolution.

It is clear why (19) appeals to the modal operator [cp]—this implements the
requirement that only the shared common ground can be taken into account in
resolving a presupposition. (In cases of accommodation where presupposition
and common ground seem to disagree [Lew79], we can follow Lewis in assuming
it is the content of the common ground that is adjusted, not the requirement
imposed by the presupposition.) The narrow scope of ∃x in (19), meanwhile,
indicates that the resolution requires us to find mere discourse referents to sat-
isfy the presupposition—not concrete entities in the world, as would be required
if the quantifier was given wide scope. The difference is relevant in (5): the sys-
tem knows there must be an action α that enters the user’s name, but does not
know a specific action that does so. The proof outlined in section 3.2 effectively
provides a possible resolution of the presupposition (17); nothing changes when
we dispense with the introduction of worlds for [u]p and prove p instead. As
we observed that there was no nondeterminism in search, we can see that this
proof is in fact a successful resolution as well.

Finally, we turn to the assertion. In assessing sentence interpretation, the
system will have to determine whether the sentence (with assertion Ax and
presupposition Px) will license the inference to some particular proposition q.
To make that assessment, the system can envisage the consequences of commu-
nicating the sentence. That is, the system restricts attention to developments
of the situation compatible with what the system knows, as represented by the
content of [s]. The system supposes further that the content of the sentence
has been communicated. Since the sentence content links to whatever discourse
referents are evoked by the presupposition, that content can be represented by
∀x (Px ⊃ Ax). The system’s supposition is thus that [cg] ∀x (Px ⊃ Ax)
holds. Then, in that hypothetical context, the system tests whether q can also

11

be taken as part of the common ground. These operations correspond to the
query

(20) [s] ([cg] ∀x (Px ⊃ Ax) ⊃ [cg]q)

So proving (20) suggests that the inference to q is licensed.
In the case of (5), the key inference is that the user knows what she should

do next: ∃α [u] o(α). Thus we apply (20) to (5) as (21).

(21) [s] ([cg] ∀αib (P (α, i, b)⊃ o(α)) ⊃ [cg]∃α [u] o(α))

(21) is straightforwardly provable. After matching the goal o(α) against the
hypothesized inference rule, the proof simply repeats the argument given in
section 3.2 that the user knows what will enter her name in box 1.

4 Conclusion

Enter your user ID in box 1 is a very simple instruction. Yet it places an
almost paradoxical requirement on a system issuing it. The system means this
description to identify an action to the user. Thus, to be confident in the
instruction, the system must know that the user can select the right action
using the description. Yet, normally the system will not know what the user
will enter to fulfill the directive. In this sense, the system cannot know what
the user will do.

Reconciling these requirements depends on the system’s representing differ-
ent states of knowledge explicitly and reasoning about them correctly. I have
suggested one possible such reconciliation, based on using logic programming
inference in first-order multi-modal logic to evaluate semantic interpretation.

Acknowledgments

This paper draws heavily from my dissertation [Sto98b], with all the input that
entails, particularly from my advisor Mark Steedman and committee members
Aravind Joshi, Rich Thomason, Bonnie Webber and Scott Weinstein. This
presentation benefits from input of audiences at the University of Edinburgh,
University of Brighton and AT&T Labs Research, and was made possible by a
postdoctoral fellowship from RUCCS and the organizers of ICOS-1.

References

[App85] Douglas Appelt. Planning English Sentences. Cambridge University
Press, Cambridge England, 1985.

[CCC95] Jennifer Chu-Carroll and Sandra Carberry. Response generation in
collaborative negotiation. In Proceedings of ACL, pages 136–143,
1995.

12

[CPB+94] Justine Cassell, Catherine Pelachaud, Norm Badler, Mark Steed-
man, Brett Achorn, Tripp Becket, Brett Douville, Scott Prevost,
and Matthew Stone. Animated conversation: Rule-based genera-
tion of facial expression, gesture and spoken intonation for multiple
conversational agents. In SIGGRAPH, pages 413–420, 1994.

[Dal92] Robert Dale. Generating Referring Expressions: Constructing De-
scriptions in a Domain of Objects and Processes. MIT Press, Cam-
bridge MA, 1992.

[DJMT98] Barbara Di Eugenio, Pamela W. Jordan, Johanna D. Moore, and
Richmond H. Thomason. An empirical investigation of proposals
in collaborative dialogue. In Proceedings of COLING-ACL, 1998.

[FHMV95] Ronald Fagin, Joseph Y. Halpern, Yoram Moses, and Moshe Y.
Vardi. Reasoning About Knowledge. MIT Press, Cambridge MA,
1995.

[Fit83] Melvin Fitting. Proof Methods for Modal and Intuitionistic Logics,
volume 169 of Synthese Library. D. Reidel, Dordrecht, 1983.

[FM98] Melvin Fitting and Richard L. Mendelsohn. First-order Modal
Logic, volume 277 of Synthese Library. Kluwer, Dordrecht, 1998.

[GC94] Nancy Green and Sandra Carberry. A hybrid reasoning model for
indirect answers. In Proceedings of ACL, pages 58–65, 1994.

[GM94] Laura Giordano and Alberto Martelli. Structuring logic programs:
A modal approach. Journal of Logic Programming, 21:59–94, 1994.

[Gri75] H. P. Grice. Logic and conversation. In P. Cole and J. Morgan, edi-
tors, Syntax and Semantics III: Speech Acts, pages 41–58. Academic
Press, New York, 1975.

[Hou86] George Houghton. The Production of Language in Dialogue: A
Computational Model. PhD thesis, University of Sussex, 1986.

[JLT75] Aravind K. Joshi, L. Levy, and M. Takahashi. Tree adjunct gram-
mars. Journal of the Computer and System Sciences, 10:136–163,
1975.

[LC92] Lynn Lambert and Sandra Carberry. Modeling negotiation subdi-
alogues. In Proceedings of ACL, pages 193–200, 1992.

[Lew79] David Lewis. Scorekeeping in a language game. In Semantics from
Different Points of View, pages 172–187. Springer Verlag, Berlin,
1979.

[Loc94] Karen E. Lochbaum. Using Collaborative Plans to Model the In-
tentional Structure of Discourse. PhD thesis, Harvard University,
1994.

13

[Loc95] Karen E. Lochbaum. The use of knowledge preconditions in lan-
guage processing. In Proceedings of IJCAI, pages 1260–1266, 1995.

[Mil89] Dale Miller. A logical analysis of modules in logic programming.
Journal of Logic Programming, 6(1–2):79–108, 1989.

[MNPS91] Dale Miller, Gopalan Nadathur, Frank Pfenning, and Andre Sce-
drov. Uniform proofs as a foundation for logic programming. Annals
of Pure and Applied Logic, 51:125–157, 1991.

[Moo85] Robert C. Moore. A formal theory of knowledge and action. In
Jerry R. Hobbs and Robert C. Moore, editors, Formal Theories
of the Commonsense World, pages 319–358. Ablex, Norwood NJ,
1985.

[Moo94] Johanna Moore. Participating in Explanatory Dialogues. MIT
Press, Cambridge MA, 1994.

[Pow77] Richard Power. The organisation of purposeful dialogues. Linguis-
tics, 17:107–152, 1977.

[Sch90] Yves Schabes. Mathematical and Computational Aspects of Lex-
icalized Grammars. PhD thesis, Computer Science Department,
University of Pennsylvania, 1990.

[SD97] Matthew Stone and Christine Doran. Sentence planning as descrip-
tion using tree-adjoining grammar. In Proceedings of ACL, pages
198–205, 1997.

[Sea75] John R. Searle. Indirect speech acts. In P. Cole and J. Morgan, edi-
tors, Syntax and Semantics III: Speech Acts, pages 59–82. Academic
Press, New York, 1975.

[Sto98a] Matthew Stone. Abductive planning with sensing. In AAAI, pages
631–636, Madison, WI, 1998.

[Sto98b] Matthew Stone. Modality in Dialogue: Planning, Pragmatics and
Computation. PhD thesis, University of Pennsylvania, 1998.

[SW98] Matthew Stone and Bonnie Webber. Textual economy through close
coupling of syntax and semantics. In Proceedings of INLG, pages
178–187, 1998.

[vdS92] Rob van der Sandt. Presupposition projection as anaphora resolu-
tion. Journal of Semantics, 9(2):333–377, 1992.

[Wal93] Marilyn A. Walker. Informational redundancy and resource bounds
in dialogue. PhD thesis, Department of Computer & Information
Science, University of Pennsylvania, 1993. Institute for Research in
Cognitive Science report IRCS-93-45.

[You97] R. Michael Young. Generating Concise Descriptions of Complex
Activities. PhD thesis, University of Pittsburgh, 1997.

14

