
Describing Sets with Covers and Sets of Ordinary Assignments

Matthew Stone
Department of Computer Science and Center for Cognitive Science

Rutgers University
110 Frelinghuysen Road, Piscataway NJ 08854-8019

mdstone@cs.rutgers.edu

Abstract

A range of research has explored the problem of generating referring expressions that uniquely
identify a single entity from the shared context. But what about expressions that identify sets of
entities? In this paper, I adapt a state-of-the-art semantics for plural descriptions—using covers to
abstract collective and distributive readings and using sets of assignments to represent dependencies
among references—to describe a search problem for set-identifying expressions that largely avoids
the computational explosions inherent in computing or searching over the power set representation
of salient collections.

1 Introduction
Natural language interaction lends itself to tasks like generalization, abstraction, comparison, and sum-
marization which call for SETS of objects to be identified using definite referring expressions. How are
such referring expressions to be constructed in natural language generation (NLG)? This is a difficult
problem, and a relatively fresh one. This paper is devoted to delineating the challenges involved and
exploring, in a preliminary way, one possible approach.

I begin in this introduction by situating my formulation of the problem of identifying collections
within the broader context of the NLG task (section 1.1). It is important to recognize, in the face of the
complexity and richness of NLG, that identification is but one of many generation processes that might
result in NL descriptions of sets. I introduce the distinctive complications of identifying sets in sec-
tion 1.3 by comparison with the problem of identifying singular discourse entities in NLG—a problem,
which, as section 1.2 reviews, has been the focus of extensive prior work. While the details of these
complications depend on the model of NP interpretation and the organization of the search space for
referring expressions, the basic problem is simple: there are TOO MANY SETS.

The remainder of the paper proposes an algorithm for the construction of plural noun phrases
that avoids explicit calculation or search over the exponential space of collections of salient enti-
ties. The algorithm depends on two independently-motivated observations from formal semantics,
described in section 2. The first is a COVER semantics for plural predication, a simple scheme
of implicit quantification by which diverse lexical meanings can apply to collections [Gillon, 1987,
Verkuyl and van der Does, 1991, Schwarzschild, 1994, Schwarzschild, 1996]. The second is an AS-
SIGNMENT SET semantics for reference to plurals, which provides a way to evoke and describe col-
lections with variables that range only over individuals [van den Berg, 1993, van den Berg, 1996]. To-
gether these observations suggest the treatment of set identification explored in section 3. The assign-
ment set semantics justifies interpreting plurals with constraint networks over individuals; the cover se-
mantics allows us to enforce collective constraints in these networks in a particularly simple way. By
preserving or conservatively adapting the representations of singular referring generation in this way,



the new algorithm defuses a number of potential combinatorial explosions that would otherwise arise
with reference to sets.

While this proposal seems suitable for identification of sets of objects in practical NLG systems, its
efficiency and effectiveness in many respects depend on the lexical semantics of possible descriptors.
A systematic study of lexical semantics and plural descriptions remains for the future, then—so long as
the characterization of set identification in NLG, which I outline next, retains its force.

1.1 Setting
Descriptions of sets obviously have much in common with expressions that describe a single entity
from the shared context. In particular, adopting the standard view of NLG as goal-directed activity
[Appelt, 1985, Dale, 1992, Moore, 1994, Moore and Paris, 1993], singular and plural descriptions agree
both in the kinds of intentions that they can achieve and the stages of generation at which they can be
formulated. We cannot expect a single process to be responsible for set descriptions across all intentions
or stages of NLG.

For example, as with a singular description, a description of a set may appeal to properties that play
a role in the argument the speaker is trying to make, and may therefore address goals above and beyond
simple identification of discourse entities. (See [Donellan, 1966, Kronfeld, 1986] on the distinction.)
[Green et al., 1998a, Green et al., 1998b] show how such descriptions may be represented and formu-
lated in NLG at a high-level process of content or rhetorical planning. Their representations and algo-
rithms are neutral as to whether a description picks out a set or a single object—capturing both the plural
of (1a) and the singular of (1b), for example:

(1) a three newspapers that carry only national news
b the number of readers of the Post-Gazette

At the same time, plurals and singulars are alike in offering resources for reference—such as pro-
nouns, one-anaphora or aggregated expressions—that bypass explicit description altogether. In stark
contrast to descriptions like (1) that reflect high-level goals for NLG, the use of these resources may be
quite closely dependent on the surface form being generated and so could reflect a relatively late decision
in the generation process [Dale and Haddock, 1991, Reiter, 1994, Dalianis, 1996].

These complexities notwithstanding,we can expect many descriptionsof sets, like descriptionsof in-
dividuals, to be formulated from scratch to achieve purely referential goals during the SENTENCE PLAN-
NING phase of NLG, between content planning and surface realization [Rambow and Korelsky, 1992,
Reiter, 1994]. For, internal representations of sets—most likely simple lists of individuals, perhaps aug-
mented with more abstract information recounting their derivation from processes of matching, cluster-
ing or search—are no more likely than internal representations of singulars to identify referents uniquely
based on information in the shared context. Indeed, internal representations of plurals and singulars alike
frequently may be unintelligible to a human interlocutor or not directly realizable as natural language.
It is this process of referring expression generation for sets of entities during sentence planning that this
paper addresses.

1.2 Framework
A range of research has explored the simpler problem of generating referring expressions that
uniquely identify a single entity from the shared context, including [Dale and Haddock, 1991,
Dale and Reiter, 1995, Horacek, 1996, Stone and Doran, 1997]. This section introduces this research,
following [Dale and Haddock, 1991] most closely. Although these proposals differ in their details, they
share a common perspective and common data structures which make any extension to descriptions of
sets quite challenging. In particular, the operations they use to search and update sets of possible refer-
ents for expressions would be swamped, if applied directly to alternative SET referents, by the enormous

2



number of such sets.
These approaches represent a description as a set of CONSTRAINTS. Each constraint is an atomic

formula with free variables that specifies the requirement that some lexical meaning contributes to the
description; the variables are placeholders for the discourse entities that the description identifies. For
example, the referring expression the rabbit in the hat corresponds to the set of constraints in (2); the
variable x abstracts the rabbit we intend to refer to, while the variable y abstracts the hat:

(2) {rabbit(x),hat(y), in(x,y)}

The interpretation of such a description is modeled using the notion of a CONTEXT SET. The context
set for an entity r and a description L gives the set of entities that are at least as salient as r at the point
in the discourse where L appears. For simplicity, we assume a single context set S for all salient entities
and leave the dependence on the position of L implicit. Informally, to uniquely identify r in context, a
generator must construct a description that is known in context to be true of r and not of any other entity
in S (these entities are called r’s DISTRACTORS). To model the possible resolutions that the hearer might
entertain for an incomplete (ambiguous) description of r, a generator will use the elements of S known
in context to satisfy that description.

To formalize this model, we need to make it explicit that the description L consists of a set of con-
straints Ri(x) formulated in terms of a tuple of variables x = 〈x1, . . .,xk〉; L is intended to refer SIMUL-
TANEOUSLY to a TUPLE of referents r = 〈r1, . . . ,rk〉. (I adopt the notation throughout that v is a tuple
and vi is component i of v.) Assuming a single context set for individuals, we can adopt a pointwise
definition of context sets for tuples:

(3) S(r) := {a : ai ∈ S}

There is room for a more subtle definition of context sets for tuples to better encode the internal and
external attentional dynamics of referring expressions, but (3) suffices for present purposes.

The interpretation I(L) of a description of r is the set of salient tuples in the context that satisfy the
description. I(L) is defined in (4a), using [C]p to indicate that p is known in the current context. The
uniqueness condition required for the description to identify r is that its interpretation is compatible only
with r—as in (4b).

(4) a I(L) := {a ∈ S(r) : [C]Ri(a) for all Ri(x) ∈ L }
b I(L) = {r}

Implementations approximate I(L) using CONSTRAINT SATISFACTION heuristics from Artificial Intel-
ligence [Mackworth, 1987]. A CONSTRAINT NETWORK for a description L determines a tuple C which
specifies a generous set of possible values Ci for each variable xi in L. The network recognizes L as refer-
ring uniquely when each Ci is the singleton set {ri}. (Note that since the network is approximate, there
may be descriptions L for which the interpretation I(L) is a singleton but which are not recognized as
uniquely referring by the constraint network.) Typically, C is computed by an efficient heuristic consis-
tency test that refines an initial vector D of possible values (or DOMAINS) for variables by comparison
with the constraints Ri(x)—or rather, the set of commonly known satisfying tuples R i giving values for
variables free in Ri(x). Whereas the sets S(r) and I(L) may grow exponentially in the size of the de-
scription L, the constraint network can be represented and updated in polynomial space and time. We
can denote the constraint network for description L on initial values D as N(L,D). The usual case, where
the domain Di for each variable is just the context set S, we can abbreviate as N(L).

In this formalism, the task of constructing a description to identify some entity r can be formulated
as a state-space search problem. Each state is a tuple Σ as in (5):

(5) Σ : 〈L, x = 〈x, . . .〉, r = 〈r, . . .〉, N(L)〉

3



Figure 1: A scene

The state consists of a description L, the free variables of description x (which include a distinguished
head variable x), the intended values for the free variables r (including the head referent r for x), and the
consistent values for the free variables, as represented heuristically by a constraint network N(L). The
initial state Σ0 is built on an empty description E:

(6) Σ0 = 〈E, 〈x〉, 〈r〉, N(E)〉

Goal states are those where N(L) uniquely identifies r—with r represented as the unique consistent val-
ues for x.

At any state Σ, the grammar and knowledge base define a set of constraints of the form p = R(x;y)
that can be added to the description—R is some domain relation, x names old variables from L while
y names fresh variables. The availability of such a constraint is a function of the shared status of some
fact R(r;s) in the knowledge base and a function of an available syntactic relation for combining p with
L which coindexes some of the variables of p with variables of L. The new state Σ⊕〈p,s〉 obtained by
incorporating p into the description not only updates the constraints and constraint networks, but also
extends the variables by y, and extends the intended referents by s:

(7) Σ⊕〈p,s〉 := 〈L∪{p}, xy, rs, N(L∪{p})〉

Thus any algorithm for identifying single entities by description carries out a search process in this
space; it starts at Σ0 and repeatedly explores states Σ⊕K accessible from the current state Σ until it
arrives at a goal state. While this characterization of description generation as search exposes the log-
ical problem the generator faces, in practice the search is often managed quite simply: for example,
[Dale and Haddock, 1991] select transitions among states according to a greedy heuristic based on the
number of values remaining in the constraint network, while [Dale and Reiter, 1995] select alternatives
by exploring different kinds of constraints in a fixed order.

1.3 Problems of Plurality
In linguistic semantics, the traditional view of reference to pluralities, found for example in
[van Eijck, 1983, Kamp and Reyle, 1993], is that discourse referents sometimes take on sets or sums
of individuals as values and that explicit operators of distributivity mediate predication over individu-
als within those sets. If we adopt this perspective, several problems arise immediately in extending the
kind of NLG approach sketched in section 1.2 to generate plural expressions that identify sets of salient
objects. These problems can be illustrated by considering the scenario illustrated in Figure 1 and the
referring expressions in (8).

(8) a the black pigs in the stalls

4



b the pigs in the open stalls
c the pigs in the stalls

Suppose the stalls are denoted s1 through s6 according to their order from left to right in the picture, so
that, for example, stalls s1, s2 and s3 are closed and s4, s5 and s6 are open. Similarly, represent the animals
in stalls as a1 through a6, so that for example, a2 is the sheep, a6 is the cow, and a1, a3, a4 and a5 are
pigs. Call the other black pig a7 and the other white pig a8. These symbols allow us to describe the pigs
identified in (8): (8a) and (8b) are alike in identifying the set {a4,a5}while (8c) identifies {a1,a3,a4,a5}.

What kind of semantic representation underlies these descriptions, on a theory like [van Eijck, 1983,
Kamp and Reyle, 1993]? We use upper-case variables like X, Y , etc., to range over (discourse referents
for) collections, and we use the operator of DISTRIBUTIVITY defined in (9) to lift a predicate P that
describes ordinary individuals to a predicate DP that describes collections:

(9) DP := λX.∀e(e ∈ X ⊃ Pe)

That is, DP is true of X only if P is true of all the elements of X.
Now, we naturally regard black, pig, open, stall and the property of being in some place as proper-

ties of individuals only. The property of having something inside, however, is perhaps best treated as
a property that is generally COLLECTIVE, applying to sets directly. Here any pig happens to be in the
stalls in virtue of some stall it’s in, but if you see a figure in the trees there may be no tree you see the fig-
ure in—a collective treatment could account for this, if a collection of entities defined a container that
included both the space each defined individually as well as the space between them. Assuming this
analysis, then, the noun phrases of (8) are modeled using the following constraints on X and Y :

(10) a {(Dblack)(X),(Dpig)(X),(Dλp.in(p,Y))(X),(Dstall)(Y)}
b {(Dpig)(X),(Dλp.in(p,Y))(X),(Dopen)(Y),(Dstall)(Y)}
c {(Dpig)(X),(Dλp.in(p,Y))(X),(Dstall)(Y)}

Constraints like (10) raise computational problems over constraints like (2) for every aspect of our
account of referring expression generation. For one thing, the representation of salient alternatives in
terms of context sets is intractable. By analogy with context sets for singular entities, the context set for
a collection P should give the set of COLLECTIONS that are currently as salient as P. Explicit represen-
tation of such a context set is hopeless for all but the most salient collections—Figure 1, for example,
introduces more than sixteen thousand collections, just with its six stalls and eight animals.

Even if we accept, for the moment, these profligate context sets, the characterization of referent iden-
tification in terms of constraint satisfaction is inadequate for collections. Take (8c) and its associated
constraint L given in (10c). Following the definition of interpretation in (4a), I(L) gives the tuples 〈P,Q〉
where P is a set of pigs, Q is a set of stalls, and each pig in P is in Q. Far from specifying a unique tuple,
I(L) is compatible with dozens of collections of pigs and stalls from the scene. Yet (8c) can be used
felicitously—to designate all four stalled pigs (and, plausibly, all six stalls), the most inclusive of possi-
ble interpretations. Evidently, we must reformulate the uniqueness condition of (4) into a MAXIMALITY

condition, and adapt our intermediate representation of interpretations accordingly.
The combinatorics of collections not only could blow up the representation of each state in searching

for a description—it could also explode the number of successor states at any point in search. Adding a
new constraint to the description may involve selecting a related collection of entities to describe simul-
taneously. For example, according to the search step outlined in (7), in going from the pigs to the pigs
in the stalls, we would select some set of stalls that the pigs we intend to describe are inside, and fold in
the goal of identifying that set of stalls. Again, there may be an inordinate number of such sets.

Informal analysis of the examples in (8) suggests that this choice need not be made immediately in
this way, however. Note that the referring expressions in (8a) and (8b) identify the same pigs, but one

5



expression refers to all of the stalls while the other refers to just the open stalls. Both expressions might
sensibly be viewed as possible refinements of (8c) which narrow down the set of pigs to the intended
set. In so doing, they may (or may not) narrow the set of stalls that the description is INTENDED to
identify. In this way, the demands of search in the case of plural referring expressions motivates not
only the development of better representations INSIDE search states but also the formulation of more
flexible relationships BETWEEN search states.

1.4 Solution Sketch
In this paper, I propose an extension of the framework presented in section 1.2 which can address these
problems in a linguistically-motivated way. In fact, the extension is quite direct—in some sense it in-
volves more of a REINTERPRETATION of the constraint representation for referring expressions than a
REDEFINITION of the representation. Here is the basic idea.

We continue to assume a description L with free variables x, and to associate L with a constraint
network specifying values C for the variables x. However, instead of regarding C as describing ALTER-
NATIVE resolutions for an AMBIGUOUS referring expression, we regard each Ci as the COLLECTION

that the description associates with xi.
To illustrate, take (8c) the pigs in the stalls. We can interpret this as the constraint network of (11):

(11) ({pig(x), in(x,y),stall(y)},〈Cx = {a1,a3,a4,a5},Cy = {s1,s2,s3,s4,s5,s6}〉)
The network associates the variable x with the entities {a1,a3,a4,a5}; the network therefore interprets x
as a plural reference to these four pigs. Similarly, by associating y with {s1,s2,s3,s4,s5,s6}, the network
interprets y as a plural reference to all six stalls.

This reinterpretation of a constraint network like (11) requires a corresponding change in the treat-
ment and interpretation of constraints. For, as indicated already in (10) and reflected in the values for
variables in (11), the constraints not only describe collections distributively but in some cases describe
them collectively. But (11) does not appeal to explicit operators for distributive or collective predication.
Instead, my proposal will be as follows: an individual value for a variable xi maintains its membership
in Ci in the presence of a collective constraint R whenever it belongs to a SUBSET M of Ci which partici-
pates directly in R (with sets of possible values of other variables). In other words, the constraint R must
COVER the possible values for variables. For example, in (10), relationships of the form in({ai},Cy)
may be used to cover both Cx and Cy, and hence to show that Cx and Cy satisfy the in constraint.

The assumption that lexical constraints apply to collections by covering and the assumption that plu-
ral reference can be represented in terms of variables with individualvalues both have a strong grounding
in formal semantics, which section 2 outlines. The computational consequences of these assumptions
are worked out in section 3. First, section 3.1 describes the operation of covering-constraint networks.
With this interpretation of variables and constraints, the addition of an additional constraint triggers a
relaxation process in which values for variables are discarded when they do not contribute to any tu-
ple in a corresponding constraint, while tuples from constraints are discarded when some elements of
their component sets fall outside the possible values for corresponding variables. The need for compact
representations of constraints poses a special challenge, as described in section 3.2.

As section 3.3 shows, these constraint techniques enable a a state-space definition for set identifica-
tion that exactly mirrors the singular state-space of section 1.2. This definition just generalizes the goal
for description so that identification is complete when the constraint interpretation of a referring expres-
sion matches the speaker’s intended interpretation. However, it is better to diverge from the singular
treatment by relaxing the speaker’s intentions as described in section 3.4, so that the description need
not fix intended referents of all variables in advance. This allows new constraints to narrow the intended
referents for those variables when convenient; a constraint network, describing the entities that speaker
could still plan the description to pick out, can be used to find new descriptors that do not rule out those
elements that the speaker DOES explicitly intend to identify.

6



The result is a natural response to the problems of plurality introduced in section 1.3. By maintaining
only sets of referents, rather than sets of sets of referents, this algorithm maintains a compact represen-
tation of context and interpretation. By representing the speaker’s intended interpretation dynamically,
this algorithm maintains the needed flexibility in intermediate states. Finally, by initializing the values
of variables to the full set of salient referents, subsequently narrowing referents based on constraints,
and stopping as soon as hearer’s and speaker’s interpretations agree (regardless of the cardinality of ref-
erents), the algorithm implements a maximization interpretation of plural reference.

2 Plurals in Formal Semantics
2.1 Covers
The discussion of (8) alluded to two ways that linguistic predicates can describe collections. D ISTRIBU-
TIVE predicates, like Dpig, characterize collections based on properties of the individuals involved.
COLLECTIVE predicates describe collections that jointly participate in some relation. A clear example
is met in (12).

(12) The workers met.

(12) is naturally understood as claiming that the workers engaged in a single joint meeting. Many de-
scriptions of sets, such as (13), can be made true either distributively or collectively.

(13) The workers lifted the cabinet.

This sentence could describe a single event in which the workers jointly lifted the cabinet, or it could
describe a series of events in which each worker individually lifted the cabinet. We can represent this as
an explicit ambiguity using the distributive operator (and a lexical semantics for lift that applies indif-
ferently to individuals or collections of individuals). Letting W denote the set of workers and c denote
the cabinet, the alternative readings would be represented in (14).

(14) a lift(W,c)
b (Dλx.lift(w,c))W

By contrast, the treatment of plural predication suggested in section 1.4 is inspired by the idea, ex-
plored by [Gillon, 1987, Verkuyl and van der Does, 1991, Schwarzschild, 1994, Schwarzschild, 1996],
that collective and distributive readings of plurals represent only the extremes in a larger space of read-
ings based on a flexible decomposition of a plural into constituents. The motivation for this view comes
from examples such as (15):

(15) Rogers, Hammerstein and Hart wrote musicals.

This sentence is true, but only in virtue of the joint action of Rogers and Hammerstein in writing some
musicals and the joint action of Rogers and Hart in writing other musicals. As a matter of fact, the three
never wrote a musical individually or as a single team, so both the collective and distributive readings
represented in (16) are false.

(16) a (Dwrite-musicals){rogers,hammerstein,hart}
b write-musicals({rogers,hammerstein,hart})

Similar examples illustrate that relations intermediate between distributive and collective can be
used in definite plural descriptions. For example, imagine a context in which the speaker is contrast-
ing a first rail system, in which a single track runs along each route, with a second, in which pairs of
tracks run side-by-side. The speaker may go on with:

(17) The parallel tracks between cities let traffic move in both directions simultaneously.

7



The noun phrase the parallel tracks between cities may pick out exactly the tracks in the second rail
system. Of course, there is no suggestion that those tracks form one collection all of whose elements are
parallel to one another; it suffices that the tracks cluster into subgroups whose elements are parallel.

The new algorithm follows Schwarzschild’s proposal most closely. Schwarzschild argues that we
establish that a linguistic predicate applies to a plural argument by recovering a salient cover of that
argument from the context. A cover here means a set of pluralities whose union or sum is the overall
plural argument. That is, a cover for S is a family S with S =

S
S.

Given the cover, the overall plural predication holds just in case the basic property denoted by the
predicate is true (collectively) of each of the sets in the cover. Formally, predicate R applies to S on
cover S just in case if S′ ∈ S then S′ ∈ R . For example, the sets consisting of Rogers and Hammerstein
and of Rogers and Hart form the salient cover of Roger, Hammerstein and Hart in (15); the example is
true because each of the sets in this cover directly enjoys the property of having written a musical.

In the case of definite reference to a collection S, we can regard the tuples in any predicate R as
defining the appropriate salient cover S of S for plural predication. The tuples involved in using R to
identify S are part of the shared context. In this case, we must simply find S ⊆ R with S a cover of S.
(Things would be more difficult if we were considering descriptions that provide the hearer with NEW

information about the collection S.) Generalizing this to relations of multiple arguments, we can say
relation R characterize a tuple of sets S just in case there is an F ⊆R with Sn =

S{Fn : F∈F } for each
n. This formalizes the covering interpretation of constraints suggested earlier and adopted in section (3).

2.2 Sets of Assignments
The use of individual values for plural variables follows van den Berg’s treatment of dependent plurals
in dynamic semantics [van den Berg, 1993, van den Berg, 1996]. Van den Berg’s central observation
is that discourse can both set up and maintain dependencies between the individuals in one set and the
individuals in another.

(18) a Every man loves a woman.
b They prove this by giving them flowers.

In (18) for example, the first sentence introduces a set of men and a set of women, where each man in the
one set is related to a woman in the other set (by love); the second sentence builds on that relationship,
indicating another connection (of giving) between each man and the corresponding woman.

Van den Berg argues that these dependencies are best formalized by dispensing with set-valued dis-
course referents altogether. Instead, he proposes to model plurality indirectly by representing the state
of the discourse as a set of assignments. When a set of assignments G is in force, a discourse referent
x picks out a set G(x) defined by {g(x) | g ∈ G}. An atomic relation such as p(x,y) is always applied
collectively to the sets of individuals related to its arguments under the current set of assignments.

Now, van den Berg accounts for distributive contexts by allowing the assignments G in force to be
partitioned and quantified over, leading to a narrowed set of values for discourse referents—perhaps just
a single individual. This is accomplished by an operator ∆x p that distributes over the value of discourse
referent x in evaluating the truth of p. Formally, ∆x p is true at G just in case for each element u of G(x),
p is true at {g ∈G : g(x) = u}.

To illustrate, suppose (18a) sets up a set of assignments of the form 〈x→ m,y→ w〉 where man m
loves woman w. Then we get the right interpretationfor they give them flowers (as in (18b)) by translating
it as in (19):

(19) ∆x give-flowers(x,y)

The distribution over assignments takes into account the dependency of y on x, so that (19) is true only
if m gives flowers to w for each assignment 〈x→ m,y→ w〉.

8



As outlined in section 1.2, a singular constraint network N(L) is an approximation to a set of tu-
ples I(L); I(L) can just as well be regarded as a set of ordinary assignments of individuals to variables.
Section 1.4 proposed, and section 3 adopts, a constraint network interpretation of plural referring expres-
sions where variables again take on singular values. If such a network is to be regarded as an approxi-
mation to some plural interpretation, it must be an interpretation such as van den Berg’s which involves
sets of ordinary assignments. (Of course, we would expect this interpretation to be reformulated using
cover-operators rather than distributivity operators.) Van den Berg’s success in representing discourse
using such sets of ordinary assignments helps justify what might otherwise seem an unprincipled or in-
adequate representation for plurality.

An important question for future research is how well constraint network representations of assign-
ments can encode the dependencies among discourse referents illustrated by (18). Constraint algorithms
generally involve a collapse of dependencies in assignments by using independent values for variables.

3 Data Structures and Algorithms
This research allows us to see a constraint network like (11) (repeated as (20a)) as a natural heuristic
approximation to the interpretation of a plural description like (8c) (repeated as (20b)).

(20) a ({pig(x), in(x,y),stall(y)},〈Cx = {a1,a3,a4,a5},Cy = {s1,s2,s3,s4,s5,s6}〉)
b the pigs in the stalls

I now develop a detailed computational account showing how we can manipulate plural descriptions
in generation using such constraint representations. Naturally, the first ingredient of this account is a
constraint-satisfaction heuristic that accounts for cover-constraints on collections.

3.1 Collective Constraints
Let us start by considering a constraint network over a pair of variables x and y. Suppose the possible
values for x are Cx and the possible values for y are Cy, and we have a single constraint R(x,y) which is
interpreted as a set R of pairs of collections {R = 〈Rx,Ry〉}.

To interpret the constraint computationally, we need a scheme to restrict the sets Cx and Cy for com-
patibility with a covering interpretation of R(x,y). First, we construct a set of tuples l(R ,〈Cx,Cy〉) that
LIMITS R(x,y) to Cx and Cy:

(21) l(R ,〈Cx,Cy〉) := {〈Rx,Ry〉 ∈ R : Rx ⊆Cx,Ry ⊆Cy}

In words, l(R ,〈Cx,Cy〉) contains the tuples of R that relate subsets ofCx to subsets ofCy. Call the limited
relation T . We construct narrowed sets of values for x and y that TEST out consistent with T —sets
t(Cx,T ,1) and t(Cy,T ,2) defined in (22).

(22) t(C,T ,n) := {u ∈C : for some T ∈ T ,u ∈ Tn}

Again, in words, t(C,T ,n) restricts C to the elements of n-components of T relationships. So, then,
t(Cx,T ,1) consists of those elements of Cx that are part of a subgroup of Cx that enjoy an R relationship
to a subgroup of Cy. Meanwhile, t(Cy,T ,2) consists of those elements of Cy that are part of a subgroup
of Cy that a subgroup of Cx enjoys an R relationship to.

The key observation here is that T implicitly defines an R -cover of 〈t(Cx,T ,1), t(Cy,T ,2)〉. To
see this, consider any tuple R ∈ T . We must have Rx ⊆ t(Cx,T ,1) (and likewise for y). For, given any
element u ∈ Rx, by (21), we have u ∈Cx and therefore by (22) we have u ∈ t(Cx,T ,1) (using Rx itself as
the needed witness Tn). Meanwhile, of course, there can be no u ∈ t(Cx,T ,1) without some R ∈ T and
u ∈ Rx.

Abstractly, it is convenient to generalize the notation introduced in (21) and (22) to handle relations
of arbitrary arity. The relevant definitions are given in (23).

9



Algorithm: Plural Relaxation
Input: Initial variable values C′

Initial relations {R i}
Output: Final variable values C′

Final relations {R i}

Steps: do { C← C′

loop over R i {
R i← l(R i,C′)
C′ ← t(C′,R i) }

} until C′ = C

Figure 2: Constraint processing for plurals

(23) a l(R ,C) := {R ∈ R : for each variable n of R , Rn ⊆Cn}
b t(C,R ) := 〈C′1, . . .C′k〉, where each C′i = t(Ci,R , i) if i is a variable of R (and Ci otherwise).

These notions induce a constraint-satisfaction heuristic for plural constraints that mirrors the relax-
ation algorithm for singular constraints. The algorithm is given in Figure 2. The algorithm works by
eliminating possible values for variables (and eliminating relevant tuples from the constraints) until a
fixed-point is reached. Since some value for a variable must be discarded on each iteration through the
main loop, there can be no more iterations than candidate values (roughly the product of the size of the
context set and the number of variables). Note that the overall polynomial complexity of a singular re-
laxation algorithm cannot be guaranteed without some assumptions about the representation of the con-
straint sets R i—since these relate sets, not individuals, they may require a number of tuples that grows
exponentially in the size of the context set. For input constraints L = {Ri(x)} and initial values D (or
the context set S by default), we use P(L,D) (or just P(L)) to refer to the PLURAL constraint network
computed by this algorithm.

Informally, since the algorithm is conservative about discarding values for variables, all values that
actually satisfy the constraints survive the execution of the algorithm. Among other things, this ensures
a maximality interpretation for noun phrases modeled using this algorithm. To justify this formally, con-
sider the computation of P(L,C′). Denote by F the final variable values output. Suppose V is tuple of
sets with two properties: first, for each R i and for each u ∈ Vj, there is a tuple R ∈ R i with u ∈ R j and
moreover Rk ⊆ Vk for each variable k governed by R i; second, Vj ⊆C′j . This means that V represents
a possible solution to the constraints given by L over the domains C′. Under these assumptions, it fol-
lows that Vj ⊆ Fj . To show this, it suffices to show that any time our two conditions on Vj hold at the
beginning of the inner loop of the algorithm, they hold at the end of the loop. So assume the conditions
are true at the beginning, and let’s consider the conditions at the end. Consider u ∈ Vj and its witness
tuple from the hypothesis, R. Since Rk ⊆Vk⊆C′k, R∈ l(R i,C

′) too. This establishes the first condition.
Moreover, since Vj ⊆C′j, and u ∈ R j , u ∈ t(C′j, l(R i,C′), j). This establishes the second condition.

3.2 Representing Constraints
The operations of (23) and the algorithm of Figure 2 provide an abstract framework for computing the
interpretation of plural noun phrases. In some cases, the simple representations that these definitions
suggest may be suitable for direct use in implementation. For example, inherently distributive predicates
and relations, like pig, black, stall and open, can be represented compactly as a list of tuples. There will
not be inordinately many tuples because each tuple relates only singleton sets. In the example scene of
Figure 1, for example, we could enumerate:

(24) a pig = {{a1},{a3},{a4},{a5},{a7},{a8}}
b black = {{a4},{a5},{a6},{a8}}
c stall = {{s1},{s2},{s3},{s4},{s5},{s6}}
d open = {{s1},{s2},{s3}}

10



However, it will not always be so easy. Take the property of having something inside, for example.
This is a collective property—and a collection Y has an entity X inside as long as the space collectively
carved out by Y includes the space taken up by X. Listing this relation is hopeless; in Figure 1, we can
pick, for instance, any set Y including s1 and find that in({a1},Y) holds.

In this case, the right strategy seems to be to reason about general containment tractably by main-
taining an intermediate relation of IMMEDIATE CONTAINMENT which I will call in∗(x,y). This relation
holds between a singleton X and a collection Y when Y contains X but no subset of Y contains X. We
can list tuples for in∗ in the scene of Figure 1 straightforwardly:

(25) {〈{a1},{s1}〉,〈{a2},{s2}〉,〈{a3},{s3}〉,〈{a4},{s4}〉,〈{a5},{s5}〉,〈{a6},{s6}〉}

(In fact, the non-overlapping occupation of three-dimensional space by solid objects might be expected
to keep this relation concise in general.)

Now we can adopt a meaning postulate to relate the constraint in(x,y) to the constraint in∗(x,y):

(26) in(x,y)≡ ∃c.in∗(x,c)∧c⊆ y

This equivalence ensures that 〈p,q〉 ∈ l(in(x,y),〈Cx,Cy〉) just in case 〈p,c〉 ∈ l(in∗(x,y),〈Cx,Cy〉) and
c ⊆ y ⊆ Cy. More importantly, t(Cx, in(x,y),x) = t(Cx, in∗(x,y),x); similarly, t(Cy, in(x,y),y) = Cy as
long as the in∗(x,y) relation is not empty on 〈Cx,Cy〉 (in which case t(Cy, in(x,y),y) is also empty). So,
we have a natural way of using our concise relation in∗ as a proxy for updating a constraint network
using the explosive relation in.

Clearly, this construction depends on the meaning of in; different constructions will be needed to
encode the lexical semantics of different words. As a question of cognitive science, we might expect
that the lexical concepts that people avail themselves of in identifying objects to one another admit an
efficient computational treatment. However, whether the present framework allows such representations
in general remains an important question for future research.

3.3 Search for Referring Expressions
By exploiting the representations for lexical constraints suggested in section 3.2 and the algorithm of
section 3.1 for keeping track of the interpretation of a plural referring expression, we can carry over the
presentation of referring expression construction as a search task from section 1.2 directly to the plural
setting. This section outlines this result.

In the plural referring expression search task, each state takes the form

(27) Σ : 〈L,x,V,P(L)〉

L is a description providing a set of constraints on the free variables listed in x. V is a tuple of sets
recording the intended referents of the description: Vi gives the collection that the description aims to
identify with xi. Finally, P(L) is a plural constraint network, maintained as in sections 3.1 and 3.2, which
describes the entities that the description could refer to—and, indeed, that the description would refer
to if uttered in its current (possibly incomplete) form.

Again, the initial state is constructed from an empty description E and an intention to identify a set
Vx as the value of a variable x:

(28) Σ0 : 〈E,〈x〉,〈Vx〉,P(E)〉

And again a goal state is one in which the constraint network P(L) associates each variable xi with Vi as
its set of possible values: this is the case where the constraints identify the intended values for each of
the variables in the description.

A transition from one state to another is accomplished by adding a constraint to the description, and at
the same time possibly taking on new variables and corresponding new intended referents. We continue

11



to assume that the grammar and knowledge base provide these constraints in the form p = R(x;y), where
syntactic combination determines some coindexation between arguments of R and the existing variables
x of the description.

The semantic condition which determines whether a particular relation is appropriate is reformu-
lated to reflect the cover semantics for plural predication. To choose R(x;y) we must find a set of tuples
S which stand in the relation R(x;y) according to shared knowledge, and which cover the intended ref-
erents of the description. Formally, for each old variable x j constrained by R(x;y), we must have

(29) Vj =
S{R j : R ∈ S}

The selection of these tuples S allows us to determine appropriate intended referents for the new vari-
ables y introduced by the constraint. For each yi, we define V ′i =

S{Ri : R ∈ S}. Thus under these
conditions we can describe the new state Σ⊕〈p,V′〉 obtained by adding the constraint p (intended to
refer to V′) to Σ as in (30).

(30) Σ⊕〈p,V′〉 := 〈L∪{p},xy,VV′,P(L∪{p})〉

To get a flavor for the structure of this search space, consider the black pigs in the stalls—example
(8a), interpreted as before against Figure 1. We can now trace a path through the search space which
yields this successful description.

The path begins with an initial state in which we have not yet added any constraints to the description,
but we intend to use the variable x to identify the black pigs in the stalls—the set B defined as {a4,a5}.
The empty description induces a constraint network in which x may take on any value in the context set
S. So we have:

(31) 〈E,〈x〉,〈B〉, [x = S]〉

The next step adds the constraint pig(x) corresponding to the lexical item pigs; the result is to narrow
the possibilities for x in the constraint network to just the set of pigs in the context set. We get:

(32) 〈{pig(x)},〈x〉,〈B〉, [x = {a1,a3,a4,a5,a7,a8}]〉

Now we can add the constraint in(x,y) corresponding to the word in—choosing as the intended ref-
erence for y the set of stalls Z, namely {s1,s2,s3,s4,s5,s6}. At this stage the constraint processing rules
out the two pigs a7 and a8 that aren’t in anything. The result is:

(33) 〈{pig(x), in(x,y)},〈x,y〉,〈B,Z〉, [x = {a1,a3,a4,a5},y = S]〉

When next we add the constraint stall(y) corresponding to the word stalls, the variables, values and
constraint networks are updated as expected, narrowing down y to the stalls:

(34) 〈{pig(x), in(x,y),stall(y)},〈x,y〉,〈B,Z〉, [x = {a1,a3,a4,a5},y = Z]〉

Finally, we can add the constraint black(x) (corresponding to the word black) to yield a description that
in fact identifies its intended referents:

(35) 〈{black(x),pig(x), in(x,y),stall(y)},〈x,y〉,〈B,Z〉, [x = B,y = Z]〉

3.4 Making Search Flexible
The derivation of the black pigs in the stalls which is sketched in (31)–(35) illustrates the structure of
search space for plural descriptions—for better and for worse. A particular difficulty is the nondetermin-
ism involved in choosing intended referents for fresh variables in constraints—for example, in selecting
the set Z to serve as the value for y in the constraint in(x,y) introduced into state (33). The alternative

12



description the pigs in the open stalls shows that we could have ended up with a concise referring ex-
pression while selecting the different set Z′ = {s4,s5,s6} in place of Z.

In fact, we can now see how large a fanout in the search space accompanies the choice of the con-
straint in(x,y). We can choose any set Y and any set of tuples S of the in relation, as long as {a4,a5}=
S{Rx : R ∈ S} and as long as Y =

S{Ry : R ∈ S}. Given our interpretation of the in relation, we can
choose for Y any subset of the context set S containing s4 and s5. The two particularly notable values
for Y , Z and Z′, are just the tip of the iceberg. For an efficient implementation, it seems problematic to
select one of these values for Y at random, without any knowledge of the role Y—and constraints placed
on Y—could play in a completed description.

Suppose we rethink the representation of intended referents in the search space as follows. We give a
partial specification I defining intended collections only for the subset of the variables in the description
that we are committed to. In many cases, that may mean specifying only the overall referent featured in
the initial referential goal and evoked by the head noun of the referring expression. The remainder of the
intended referents we compute as whatever salient entities happen to be compatible with the description
and with reference to I, using a constraint network. That is, we compute V as P(L,I)—leading to the
representation of states of (36).

(36) Σ = 〈L,x,I,P(L,I),P(L)〉

The description refers successfully when each variable x is associated with the same set Vx in both the
constraint network P(L,I) and the constraint network P(L). Again this simply means that the hearer’s
interpretation of the referring expression is the speaker’s intended interpretation.

Now, how do we determine semantically whether a new constraint R(x;y)—interpreted by a set of
tuples R —represents a viable addition to the description in some state Σ? It is no longer necessary to
find S ⊆ R such that Vx =

S{Rx : R ∈ S} for each old variable x involved in the constraint. We may
have

S{Rx : R ∈ S}⊂Vx, if we are prepared to narrow down the entities we might refer to with variable
x in the interest of elaborating an overall description that is more concise. Of course, we cannot rule out
any elements specified in I—either directly, because they do not satisfy R(x;y), or indirectly, because
R(x;y) and some other constraints together rule out reference to them. It transpires that the way to test
the applicability on this approach of a constraint p = R(x;y) is by computing a new constraint network
V′ = P(L∪{p},I) and ensuring, wherever I assigns a value to x, that Ix ⊆ V ′x.

If this test admits a new constraint p = R(x;y), the new state obtained by adding p to the description
in state Σ is computed as in (37).

(37) Σ⊕ p := 〈L∪{p},xy,I,P(L∪{p},I),P(L∪{p})〉

Note that we have gone from Σ⊕〈p,V′〉 to Σ⊕ p. No specification of new intended referents is required
in this account, since these are determined implicitly by constraint propagation!

Let us compare the search space with this more flexible representation with the basic search space
defined in section 3.3. Consider again the black pigs in the stalls. The initial state is now:

(38) 〈E,〈x〉,〈B〉, [x = B], [x = S]〉

We add pigs to get:

(39) 〈{pig(x)},〈x〉,〈B〉, [x = B], [x = {a1,a3,a4,a5,a7,a8}]〉

We add in to get:

(40) 〈{pig(x), in(x,y)},〈x,y〉,〈B〉, [x = B,y = S], [x = {a1,a3,a4,a5},y = S]〉

Adding stalls gives:

13



(41) 〈{pig(x), in(x,y),stall(y)},〈x,y〉,〈B〉, [x = B,y = Z], [x = {a1,a3,a4,a5},y = Z]〉

Now we can add black, describing x, to give a completed description as encoded by the state (42).

(42) 〈{black(x),pig(x), in(x,y),stall(y)},〈x,y〉,〈B〉, [x = B,y = Z], [x = B,y = Z]〉

But we can ALSO add open to describe the stalls—thereby narrowing both our intended and our antici-
pated reference for y. The result is another completed description: the pigs in the open stalls.

(43) 〈{pig(x), in(x,y),open(y),stall(y)},〈x,y〉,〈B〉, [x = B,y = Z′], [x = B,y = Z′]〉

The fact that we are no longer required to guess intended referents in advance (from a potentially expo-
nential space) makes this revised search problem much more computationally attractive.

4 Conclusion
Any algorithm for constructing identifying descriptions of sets of discourse entities must avoid making
an inventory of the possible sets of of discourse entities. This paper has suggested reinterpreting and
extending the algorithms and data structures of singular referring expression generation to pluralities.
Using covers to abstract collective and distributive readings—and using sets of assignments to represent
plural references—yields a search problem for set-identifying expressions which largely mirrors that
for singulars, and which avoids computation and search over sets of collections. Along the way, I have
pointed out a number of further problems for plural computational lexical semantics raised by this avenue
of research.

Acknowledgments
This paper benefits from discussions with Roger Schwarzschild and with the generation working group
of the University of Edinburgh, and was made possible by a postdoctoral fellowship from RuCCS.

References
[Appelt, 1985] Appelt, D. (1985). Planning English Sentences. Cambridge University Press, Cam-

bridge England.

[Dale, 1992] Dale, R. (1992). Generating Referring Expressions: Constructing Descriptions in a Do-
main of Objects and Processes. MIT Press, Cambridge MA.

[Dale and Haddock, 1991] Dale, R. and Haddock, N. (1991). Content determination in the generation
of referring expressions. Computational Intelligence, 7(4):252–265.

[Dale and Reiter, 1995] Dale, R. and Reiter, E. (1995). Computational interpretations of the Gricean
maxims in the generation of referring expressions. Cognitive Science, 18:233–263.

[Dalianis, 1996] Dalianis, H. (1996). Concise Natural Language Generation from Formal Specifica-
tions. PhD thesis, Royal Institute of Technology, Stockholm. Department of Computer and Systems
Sciences.

[Donellan, 1966] Donellan, K. (1966). Reference and definite description. Philosophical Review,
75:281–304.

[Gillon, 1987] Gillon, B. (1987). The readings of plural noun phrases in english. Linguistics and Phi-
losophy, 10(2):199–299.

[Green et al., 1998a] Green, N., Carenini, G., Kerpedjiev, S., Roth, S., and Moore, J. (1998a). A media-
independent content language for integrated text and graphics generation. In CVIR ’98 – Workshop
on Content Visualization and Intermedia Representations.

14



[Green et al., 1998b] Green, N., Carenini, G., and Moore, J. (1998b). A principled representation of
attributive descriptions for generating integrated text and information graphics presentations. In Pro-
ceedings of International Natural Language Generation Workshop, pages 18–27.

[Horacek, 1996] Horacek, H. (1996). A new algorithm for generating referring expressions. In ECAI
8, pages 577–581.

[Kamp and Reyle, 1993] Kamp, H. and Reyle, U. (1993). From Discourse to Logic: Introduction to
ModeltheoreticSemantics of Natural Language, Formal Logic and Discourse RepresentationTheory.
Kluwer, Boston.

[Kronfeld, 1986] Kronfeld, A. (1986). Donellan’s distinction and a computational model of reference.
In Proceedings of ACL, pages 186–191.

[Mackworth, 1987] Mackworth, A. (1987). Constraint Satisfaction. In Shapiro, S., editor, Encyclopedia
of Artificial Intelligence, pages 205–211. John Wiley and Sons.

[Moore, 1994] Moore, J. (1994). Participating in Explanatory Dialogues. MIT Press, Cambridge MA.

[Moore and Paris, 1993] Moore, J. D. and Paris, C. L. (1993). Planning text for advisory dialogues:
capturing intentional and rhetorical information. Computational Linguistics, 19(4):651–695.

[Rambow and Korelsky, 1992] Rambow, O. and Korelsky, T. (1992). Applied text generation. In
ANLP, pages 40–47.

[Reiter, 1994] Reiter, E. (1994). has a consensus NL generation architecture appeared, and is it psy-
cholinguistically plausible? In Seventh International Workshop on Natural Language Generation,
pages 163–170.

[Schwarzschild, 1994] Schwarzschild, R. (1994). Plurals, presuppositions, and the sources of distribu-
tivity. Natural Language Semantics, 2:201–248.

[Schwarzschild, 1996] Schwarzschild, R. (1996). Pluralities. Kluwer, Dordrecht.

[Stone and Doran, 1997] Stone, M. and Doran, C. (1997). Sentence planning as description using tree-
adjoining grammar. In Proceedings of ACL, pages 198–205.

[van den Berg, 1993] van den Berg, M. H. (1993). Full dynamic plural logic. In Bimbó, K. and Máté,
A., editors, Proceedings of the Fourth Symposium on Logic and Language, Budapest.

[van den Berg, 1996] van den Berg, M. H. (1996). Generalized dynamic quantifiers. In van der Does,
J. and van Eijk, J., editors, Quantifiers, Logic and Language. CSLI.

[van Eijck, 1983] van Eijck, J. (1983). Discourse representation theory and plurality. In ter Meulen,
A., editor, Studies in Modeltheoretic Semantics, GRASS 1. Foris, Dordrecht.

[Verkuyl and van der Does, 1991] Verkuyl, H. and van der Does, J. (1991). The semantics of plural
noun phrases. Preprint, ITLI, Amsterdam.

15


