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Abstract

A range of research has explored the problem of generating referring expressions that uniquely
identify a single entity from the shared context. But what about expressions that identify sets of
entities? In this paper, | adapt a state-of-the-art semantics for plural descriptions—using coversto
abstract collective and distributivereadings and using sets of assignmentsto represent dependencies
among references—to describe a search problem for set-identifying expressionsthat largely avoids
the computationa explosionsinherent in computing or searching over the power set representation
of salient collections.

1 Introduction

Natural languageinteraction lendsitself to taskslike generalization, abstraction, comparison, and sum-
marization which call for SeTs of objectsto be identified using definite referring expressions. How are
such referring expressions to be constructed in natural language generation (NLG)? Thisis a difficult
problem, and a relatively fresh one. This paper is devoted to delineating the challenges involved and
exploring, in apreliminary way, one possible approach.

| begin in this introduction by situating my formulation of the problem of identifying collections
within the broader context of the NL G task (section 1.1). It isimportant to recognize, in the face of the
complexity and richness of NL G, that identification is but one of many generation processes that might
result in NL descriptions of sets. | introduce the distinctive complications of identifying sets in sec-
tion 1.3 by comparison with the problem of identifying singular discourse entitiesin NL G—aproblem,
which, as section 1.2 reviews, has been the focus of extensive prior work. While the details of these
complications depend on the model of NP interpretation and the organization of the search space for
referring expressions, the basic problem is simple: there are TOO MANY SETS.

The remainder of the paper proposes an algorithm for the construction of plural noun phrases
that avoids explicit calculation or search over the exponential space of collections of salient enti-
ties. The agorithm depends on two independently-motivated observations from formal semantics,
described in section 2. The first is a COvER semantics for plura predication, a simple scheme
of implicit quantification by which diverse lexica meanings can apply to collections [Gillon, 1987,
Verkuyl and van der Does, 1991, Schwarzschild, 1994, Schwarzschild, 1996]. The second is an As-
SIGNMENT SET semantics for reference to plurals, which provides a way to evoke and describe col-
lections with variables that range only over individuals[van den Berg, 1993, van den Berg, 1996]. To-
gether these observations suggest the treatment of set identification explored in section 3. The assign-
ment set semanticsjustifiesinterpreting pluralswith constraint networks over individuals; the cover se-
mantics allows us to enforce collective constraints in these networks in a particularly simple way. By
preserving or conservatively adapting the representations of singular referring generation in this way,



the new algorithm defuses a number of potential combinatorial explosions that would otherwise arise
with reference to sets.

Whilethis proposal seems suitablefor identification of setsof objectsin practical NLG systems, its
efficiency and effectiveness in many respects depend on the lexical semantics of possible descriptors.
A systematic study of lexical semantics and plural descriptionsremains for the future, then—so long as
the characterization of set identificationin NLG, which | outlinenext, retainsitsforce.

11 Setting

Descriptions of sets obviously have much in common with expressions that describe a single entity
from the shared context. In particular, adopting the standard view of NLG as goal-directed activity
[Appelt, 1985, Dae, 1992, Moore, 1994, Moore and Paris, 1993], singular and plural descriptionsagree
both in the kinds of intentionsthat they can achieve and the stages of generation at which they can be
formulated. We cannot expect a singleprocessto be responsiblefor set descriptionsacrossall intentions
or stages of NLG.

For example, aswith asingular description, a description of a set may appeal to propertiesthat play
aroleinthe argument the speaker istrying to make, and may therefore address goal s above and beyond
simple identification of discourse entities. (See [Donellan, 1966, Kronfeld, 1986] on the distinction.)
[Green et d., 19983, Green et al., 1998b] show how such descriptions may be represented and formu-
lated in NL G at a high-level process of content or rhetorical planning. Their representations and algo-
rithmsare neutral asto whether a description picksout aset or asingle object—capturing both the plural
of (1a) and the singular of (1b), for example:

(1) a threenewspapersthat carry only national news
b thenumber of readers of the Post-Gazette

At the same time, plurals and singulars are alike in offering resources for reference—such as pro-
nouns, one-anaphora or aggregated expressions—that bypass explicit description altogether. In stark
contrast to descriptionslike (1) that reflect high-level goalsfor NLG, the use of these resources may be
quiteclosely dependent on the surface form being generated and so could reflect arel atively late decision
in the generation process [Dale and Haddock, 1991, Reiter, 1994, Ddianis, 1996].

Thesecompl exitiesnotwithstanding, we can expect many descriptionsof sets, likedescriptionsof in-
dividuals, to beformulated from scratch to achieve purely referential goalsduringthe SENTENCE PLAN-
NING phase of NLG, between content planning and surface realization [Rambow and Korelsky, 1992,
Reiter, 1994]. For, internal representationsof sets—most likely simplelistsof individuas, perhaps aug-
mented with more abstract information recounting their derivation from processes of matching, cluster-
ing or search—are no morelikely thaninternal representationsof singularstoidentify referents uniquely
based oninformationinthe shared context. Indeed, internal representationsof pluralsand singularsalike
frequently may be unintelligible to a human interlocutor or not directly realizable as natural language.
It isthisprocess of referring expression generation for sets of entities during sentence planning that this
paper addresses.

1.2 Framework

A range of research has explored the simpler problem of generating referring expressions that
uniquely identify a single entity from the shared context, including [Daeand Haddock, 1991,
Dale and Reiter, 1995, Horacek, 1996, Stone and Doran, 1997]. This section introduces this research,
following [Dal e and Haddock, 1991] most closely. Although these proposalsdiffer in their details, they
share a common perspective and common data structures which make any extension to descriptions of
sets quite challenging. In particular, the operations they use to search and update sets of possiblerefer-
entsfor expressionswould be swamped, if applied directly to dternative SeT referents, by the enormous



number of such sets.

These approaches represent a description as a set of CONSTRAINTS. Each constraint is an atomic
formula with free variables that specifies the requirement that some lexical meaning contributesto the
description; the variables are placeholders for the discourse entities that the description identifies. For
example, the referring expression the rabbit in the hat corresponds to the set of constraintsin (2); the
variable x abstracts the rabbit we intend to refer to, while the variable y abstracts the hat:

2 {rabbit(x), hat(y),in(x,y) }

Theinterpretation of such a descriptionismodeled using thenotion of aCONTEXT SET. The context
set for an entity r and a description L gives the set of entitiesthat are at least as salient asr at the point
in the discourse where L appears. For simplicity, we assume asingle context set Sfor all salient entities
and leave the dependence on the position of L implicit. Informally, to uniquely identify r in context, a
generator must construct a description that is knownin context to be true of r and not of any other entity
in S(theseentitiesarecalled r’'sDISTRACTORS). To model the possibleresolutionsthat the hearer might
entertain for an incompl ete (ambiguous) description of r, a generator will use the el ements of Sknown
in context to satisfy that description.

To formalize this model, we need to make it explicit that the description L consists of a set of con-
straints R (x) formulated in terms of atuple of variablesx = (xq, ..., %); L isintended to refer sSiMuL-
TANEOUSLY to a TUPLE of referentsr = (ry,...,rg). (I adopt the notation throughout that v is a tuple
and v; is component i of v.) Assuming a single context set for individuals, we can adopt a pointwise
definition of context sets for tuples:

(3) Sr):={a:aq €S}

There is room for a more subtle definition of context sets for tuples to better encode the internal and
external attentional dynamics of referring expressions, but (3) suffices for present purposes.

Theinterpretation | (L) of adescription of r isthe set of salient tuplesin the context that satisfy the
description. I(L) isdefined in (4a), using [C] p to indicate that p is known in the current context. The
uniquenesscondition required for thedescriptionto identify r isthat itsinterpretationiscompatible only
withr—asin (4b).

4 a I(L):={aedr):[c]R(a)fordl R(x)eL}
b I(L)={r}

Implementations approximate | (L) using CONSTRAINT SATISFACTION heuristics from Artificia Intel-
ligence[Mackworth, 1987]. A CONSTRAINT NETWORK for adescription L determines atuple C which
specifiesagenerous set of possiblevaluesC; for each variablex; inL. Thenetwork recognizesL asrefer-
ring uniquely when each C; isthe singleton set {r; }. (Note that since the network is approximate, there
may be descriptions L for which the interpretation | (L) is a singleton but which are not recognized as
uniquely referring by the constraint network.) Typicaly, C iscomputed by an efficient heuristic consis-
tency test that refines an initial vector D of possiblevalues (or DOMAINS) for variables by comparison
with the constraints R; (x)—or rather, the set of commonly known satisfyingtuplesR i giving valuesfor
variables free in R (x). Whereas the sets S(r) and I (L) may grow exponentialy in the size of the de-
scription L, the constraint network can be represented and updated in polynomial space and time. We
can denotethe constraint network for descriptionL oninitial valuesD asN(L, D). Theusual case, where
the domain D; for each variableis just the context set S, we can abbreviate as N(L ).

In thisformalism, the task of constructing a description to identify some entity r can be formulated
as a state-space search problem. Each stateisatuple X asin (5):

(5) (L x=(X...),r=(r...,N(L))



Figure 1. A scene

The state consists of a description L, the free variables of description x (which include a distinguished
head variablex), the intended valuesfor the free variablesr (including the head referent r for x), and the
consistent values for the free variables, as represented heuristically by a constraint network N(L). The
initial state g isbuilt on an empty description E:

(6) Zo=(E, (x),(r),N(E))

Goal states are thosewhere N(L) uniquely identifiesr—with r represented as the unique consistent val -
uesfor x.

At any state 3, the grammar and knowledge base define a set of constraints of the form p = R(x;y)
that can be added to the description—R is some domain relation, x hames old variables from L while
y names fresh variables. The availability of such a constraint isafunction of the shared status of some
fact R(r;s) in the knowledge base and a function of an available syntactic relation for combining p with
L which coindexes some of the variables of p with variablesof L. The new state > @ (p, s) obtained by
incorporating p into the description not only updates the constraints and constraint networks, but also
extendsthe variables by y, and extends the intended referents by s:

) Zo(p,s) == (Lu{p}, xy,rs,N(LU{p}))

Thus any algorithm for identifying single entities by description carries out a search processin this
space; it starts at 2o and repeatedly explores states > @ K accessible from the current state = until it
arrives at agod state. While this characterization of description generation as search exposes the log-
ical prablem the generator faces, in practice the search is often managed quite simply: for example,
[Dale and Haddock, 1991] select transitions among states according to a greedy heuristic based on the
number of values remaining in the constraint network, while[Dale and Reiter, 1995] select dternatives
by exploring different kinds of constraintsin afixed order.

1.3 Problemsof Plurality

In linguistic semantics, the traditional view of reference to plurdities, found for example in
[van Eijck, 1983, Kamp and Reyle, 1993], is that discourse referents sometimes take on sets or sums
of individuasas values and that explicit operators of distributivity mediate predication over individu-
alswithinthose sets. If we adopt this perspective, severa problems arise immediately in extending the
kind of NL G approach sketched in section 1.2 to generate plural expressionsthat identify sets of salient
objects. These problems can be illustrated by considering the scenario illustrated in Figure 1 and the
referring expressionsin (8).

(80 a theblack pigsinthestals



b  thepigsinthe open stals
c thepigsinthestdls

Suppose the stallsare denoted s, through sg according to their order from | eft to right in the picture, so
that, for example, stallss;, s, and sz are closed and s4, S5 and sz are open. Similarly, represent theanimals
in stalls as a; through ag, so that for example, a; is the sheep, ag isthe cow, and a;, az, a4 and as are
pigs. Call the other black pig a; and the other white pig ag. These symbolsallow usto describe the pigs
identifiedin (8): (8a) and (8b) areaikeinidentifyingtheset {a4, as} while(8c) identifies{as, as, a4, as}.

What kind of semantic representation underliesthese descriptions, on atheory like[van Eijck, 1983,
Kamp and Reyle, 1993]? We use upper-case variableslike X, Y, etc., to range over (discourse referents
for) collections, and we use the operator of DISTRIBUTIVITY defined in (9) to lift a predicate P that
describes ordinary individualsto a predicate PP that describes collections:

9) PP :=\X.ve(ec X D Pe)

That is, PP istrueof X only if P istrue of all the elements of X.

Now, we naturally regard black, pig, open, stall and the property of being in some place as proper-
ties of individuals only. The property of having something inside, however, is perhaps best treated as
a property that is generally COLLECTIVE, applying to sets directly. Here any pig happensto be in the
stallsinvirtue of somestall it'sin, butif you seeafigurein thetreesthere may be notree you seethefig-
ure in—a collective treatment could account for this, if a collection of entities defined a container that
included both the space each defined individually as well as the space between them. Assuming this
analysis, then, the noun phrases of (8) are modeled using the following constraintson X and Y

(10) a {(°black)(X), (Ppig)(X), (PAp.in(p,Y))(X), Cstall)(Y)}
b {(®pig)(X), (PAp.in(p,Y))(X), (Popen)(Y), (Pstall) (Y)}
¢ {(®pig)(X),(PAp.in(p,Y))(X), (Cstall)(Y)}

Constraintslike (10) raise computational problems over constraintslike (2) for every aspect of our
account of referring expression generation. For one thing, the representation of salient alternativesin
terms of context setsisintractable. By ana ogy with context setsfor singular entities, the context set for
acollection P should give the set of COLLECTIONS that are currently as salient as P. Explicit represen-
tation of such a context set is hopelessfor all but the most salient collections—Figure 1, for example,
introduces more than sixteen thousand collections, just with its six stallsand eight animals.

Evenif we accept, for the moment, these profligate context sets, the characterization of referent iden-
tification in terms of constraint satisfaction is inadequate for collections. Take (8c) and its associated
constraint L givenin (10c). Following the definition of interpretationin (4a), I (L) givesthetuples (P,Q)
where P isaset of pigs, Qisaset of stalls, and each pigin P isin Q. Far from specifying auniquetuple,
I(L) is compatible with dozens of collections of pigs and stalls from the scene. Yet (8c) can be used
felicitously—to designateall four stalled pigs (and, plausibly, all six stals), the most inclusive of possi-
bleinterpretations. Evidently, we must reformul ate the uniqueness condition of (4) intoaMAXIMALITY
condition, and adapt our intermediate representation of interpretations accordingly.

The combinatoricsof collectionsnot only could blow up the representation of each statein searching
for adescription—it could also explode the number of successor states at any point in search. Adding a
new constraint to the description may involve selecting arelated collection of entitiesto describe simul-
taneously. For example, according to the search step outlined in (7), in going from the pigsto the pigs
in the stalls, we would select some set of stallsthat the pigswe intend to describe areinside, and fold in
the goal of identifying that set of stalls. Again, there may be an inordinate number of such sets.

Informal analysis of the examplesin (8) suggests that this choice need not be made immediately in
thisway, however. Notethat the referring expressionsin (8a) and (8b) identify the same pigs, but one



expression refersto all of the stallswhilethe other refers to just the open stalls. Both expressions might
sensibly be viewed as possible refinements of (8c) which narrow down the set of pigs to the intended
set. In so doing, they may (or may not) narrow the set of stalls that the description is INTENDED to
identify. In this way, the demands of search in the case of plura referring expressions motivates not
only the development of better representations INSIDE search states but also the formulation of more
flexible relationships BETWEEN search states.

1.4 Solution SKketch

In thispaper, | propose an extension of the framework presented in section 1.2 which can address these
problemsin a linguistically-motivated way. In fact, the extension is quite direct—in some sense it in-
volves more of a REINTERPRETATION of the constraint representation for referring expressionsthan a
REDEFINITION of the representation. Here isthe basic idea.

We continue to assume a description L with free variables x, and to associate L with a constraint
network specifying values C for the variables x. However, instead of regarding C as describing ALTER-
NATIVE resolutions for an AMBIGUOUS referring expression, we regard each C; as the COLLECTION
that the description associates with x;.

Toillustrate, take (8c) the pigsin thestalls. We can interpret thisasthe constraint network of (11):

(11) ({pig(x),in(xy),stall(y)}, (Cx= {a1,as,a4,@5},Cy = {S1,%, 53,54, 55,56 }))

Thenetwork associatesthe variablex with the entities { a, a3, a4, as } ; the network therefore interprets x
asaplurd reference to thesefour pigs. Similarly, by associatingy with {s;, , S3, S4, S5, Ss}, the network
interpretsy asaplural referenceto al six stalls.

Thisreinterpretation of aconstraint network like (11) requires a corresponding change in the treat-
ment and interpretation of constraints. For, as indicated already in (10) and reflected in the values for
variablesin (11), the constraints not only describe collections distributively but in some cases describe
them collectively. But (11) doesnot appeal to explicit operatorsfor distributiveor collective predication.
Instead, my proposa will be as follows: an individual value for avariable x; maintainsits membership
inG; inthe presence of acollective constraint Rwhenever it belongsto a suBseT M of C; which partici-
patesdirectly in R (with sets of possiblevalues of other variables). In other words, the constraint R must
COVER the possible values for variables. For example, in (10), relationships of the form in({a},C,)
may be used to cover both C, and C, and hence to show that C, and C, satisfy the in constraint.

Theassumptionthat lexical constraintsapply to collectionsby covering and the assumption that plu-
ral reference can berepresented intermsof variableswithindividual valuesboth have astrong grounding
in forma semantics, which section 2 outlines. The computational consequences of these assumptions
are worked out in section 3. First, section 3.1 describes the operation of covering-constraint networks.
With this interpretation of variables and constraints, the addition of an additional constraint triggers a
relaxation process in which values for variables are discarded when they do not contribute to any tu-
ple in a corresponding constraint, while tuples from constraints are discarded when some elements of
their component setsfall outside the possible valuesfor corresponding variables. The need for compact
representations of constraints poses a special challenge, as described in section 3.2.

As section 3.3 shows, these constrai nt techniques enabl e a a state-space definition for set identifica-
tion that exactly mirrorsthe singular state-space of section 1.2. This definition just generalizesthe goa
for description so that identificationis complete when the constraint interpretation of areferring expres-
sion matches the speaker’s intended interpretation. However, it is better to diverge from the singular
treatment by relaxing the speaker’s intentions as described in section 3.4, so that the description need
not fix intended referents of all variablesin advance. Thisallowsnew constraintsto narrow the intended
referents for those variables when convenient; a constraint network, describing the entitiesthat speaker
could still plan the description to pick out, can be used to find new descriptorsthat do not rule out those
elements that the speaker DOES explicitly intend to identify.

6



Theresultisanatural responseto the problemsof plurality introducedin section 1.3. By maintaining
only sets of referents, rather than sets of sets of referents, this algorithm maintains a compact represen-
tation of context and interpretation. By representing the speaker’s intended interpretation dynamicaly,
this algorithm maintains the needed flexibility in intermediate states. Finally, by initializing the values
of variables to the full set of salient referents, subsequently narrowing referents based on constraints,
and stopping as soon as hearer’ s and speaker’ sinterpretations agree (regardless of the cardinality of ref-
erents), the a gorithm implements a maximization interpretation of plural reference.

2 Pluralsin Formal Semantics

2.1 Covers

Thediscussionof (8) alluded to two waysthat linguistic predicates can describe collections. D ISTRIBU-
TIVE predicates, like Ppig, characterize collections based on properties of the individuals involved.
CoLLECTIVE predicates describe collectionsthat jointly participatein somerelation. A clear example
ismetin (12).

(12) The workers met.

(12) is naturally understood as claiming that the workers engaged in a single joint meeting. Many de-
scriptions of sets, such as (13), can be made true either distributively or collectively.

(13) The workers lifted the cabinet.

This sentence could describe a single event in which the workers jointly lifted the cabinet, or it could
describe a series of eventsinwhich each worker individually lifted the cabinet. We can represent thisas
an explicit ambiguity using the distributive operator (and a lexical semantics for lift that appliesindif-
ferently to individualsor collections of individuals). Letting W denote the set of workers and ¢ denote
the cabinet, the aternative readings would be represented in (14).

14) a lift(W,c)
b (PAxlift(w,c))W

By contrast, the treatment of plural predication suggested in section 1.4 isinspired by the idea, ex-
plored by [Gillon, 1987, Verkuyl and van der Does, 1991, Schwarzschild, 1994, Schwarzschild, 1996],
that collective and distributive readings of plurals represent only the extremesin alarger space of read-
ings based on aflexible decomposition of aplural into constituents. The motivationfor thisview comes
from examples such as (15):

(15) Rogers, Hammerstein and Hart wrote musicals.

This sentenceis true, but only in virtue of the joint action of Rogers and Hammerstein in writing some
musicals and the joint action of Rogers and Hart in writing other musicals. Asa matter of fact, thethree
never wrote amusical individualy or as a single team, so both the collective and distributive readings
represented in (16) are false.

(16) a (Pwrite-musicals){rogers hammerstein, hart}
b write-musicals({rogers hammerstein, hart} )

Similar examples illustrate that relations intermediate between distributive and collective can be
used in definite plural descriptions. For example, imagine a context in which the speaker is contrast-
ing afirst rail system, in which a single track runs along each route, with a second, in which pairs of
tracks run side-by-side. The speaker may go on with:

a7 The paralldl tracks between cities|et traffic move in both directions simultaneously.
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The noun phrase the parallel tracks between cities may pick out exactly the tracks in the second rail
system. Of course, there isno suggestion that those tracks form one collection all of whoseelementsare
paralle to one another; it suffices that the tracks cluster into subgroups whose elements are parallel.

The new algorithm follows Schwarzschild’s proposal most closely. Schwarzschild argues that we
establish that a linguistic predicate applies to a plural argument by recovering a salient cover of that
argument from the context. A cover here means a set of pluralities whose union or sum is the overall
plural argument. That is, a cover for Sisafamily S with S=JS.

Given the cover, the overdl plural predication holds just in case the basic property denoted by the
predicate is true (collectively) of each of the setsin the cover. Formally, predicate R appliesto Son
cover Sjustincaseif S € Sthen S € R . For example, the sets consisting of Rogers and Hammerstein
and of Rogers and Hart form the salient cover of Roger, Hammerstein and Hart in (15); the exampleis
true because each of the setsin this cover directly enjoysthe property of having written amusical.

In the case of definite reference to a collection S, we can regard the tuplesin any predicate R as
defining the appropriate salient cover S of Sfor plural predication. Thetuplesinvolvedin usingR to
identify Sare part of the shared context. In this case, we must simply find S C R with S a cover of S.
(Things would be more difficult if we were considering descriptions that provide the hearer with NEW
information about the collection S) Generalizing this to relations of multiple arguments, we can say
relationR characterizeatupleof setsSjustincasethereisanF CR withS, = J{F,: F € F } for each
n. Thisformalizesthe covering interpretation of constraintssuggested earlier and adopted in section (3).

2.2  Setsof Assignments

The use of individua vauesfor plural variables follows van den Berg's treatment of dependent plurals
in dynamic semantics [van den Berg, 1993, van den Berg, 1996]. Van den Berg's central observation
isthat discourse can both set up and maintain dependencies between the individualsin one set and the
individualsin another.

(18) a Every manlovesawoman.
b  They provethisby giving them flowers.

In (18) for example, thefirst sentenceintroducesa set of men and aset of women, where each maninthe
one set isrelated to awoman in the other set (by love); the second sentence builds on that relationship,
indicating another connection (of giving) between each man and the corresponding woman.

Van den Berg argues that these dependencies are best formalized by dispensing with set-valued dis-
course referents altogether. Instead, he proposesto model plurality indirectly by representing the state
of the discourse as a set of assignments. When a set of assignments G isin force, a discourse referent
x picks out a set G(x) defined by {g(x) | g € G}. An atomic relation such as p(x,y) is always applied
collectively to the sets of individualsrelated to its arguments under the current set of assignments.

Now, van den Berg accounts for distributive contexts by allowing the assignments G in force to be
partitioned and quantified over, leading to anarrowed set of valuesfor discoursereferents—perhapsjust
asingleindividua. Thisisaccomplished by an operator Axp that distributesover the vaue of discourse
referent x in evaluating the truth of p. Formally, Axp istrueat Gjust in case for each element u of G(x),
pistrueat {g e G:g(x) = u}.

To illustrate, suppose (18a) sets up a set of assignments of theform (x — m,y — w) where man m
loveswomanw. Thenweget theright interpretationfor they givethemflowers(asin (18b)) by translating
itasin (19):

(29 Ay give-flowers(x,y)

The distribution over assignmentstakes into account the dependency of y on x, so that (19) istrue only
if mgivesflowersto w for each assignment (x — m,y — w).
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As outlined in section 1.2, a singular constraint network N(L) is an approximation to a set of tu-
plesi(L); I(L) can just aswell be regarded as a set of ordinary assignments of individualsto variables.
Section 1.4 proposed, and section 3 adopts, a constraint network interpretation of plural referring expres-
sions where variables again take on singular values. If such anetwork isto be regarded as an approxi-
mation to some plura interpretation, it must be an interpretation such as van den Berg’swhichinvolves
sets of ordinary assignments. (Of course, we would expect thisinterpretation to be reformulated using
cover-operators rather than distributivity operators.) Van den Berg's successin representing discourse
using such sets of ordinary assignments hel ps justify what might otherwise seem an unprincipled or in-
adequate representation for plurality.

An important question for future research is how well constraint network representations of assign-
ments can encode the dependenciesamong discoursereferentsillustrated by (18). Constraint algorithms
generaly involve a collapse of dependenciesin assignments by using independent values for variables.

3 Data Structures and Algorithms
This research allows us to see a constraint network like (11) (repeated as (20a)) as a natural heuristic
approximation to the interpretation of aplura description like (8¢) (repeated as (20b)).

(200 a  ({pig(x),in(x,y),stall(y)}, (Cx= {a1, 83,84, a5},Cy = {S1,%,S3, 54,5, 6 }))
b thepigsinthestalls

| now develop a detailed computational account showing how we can manipulate plura descriptions
in generation using such constraint representations. Naturally, the first ingredient of this account is a
constrai nt-sati sfaction heuristic that accounts for cover-constraints on collections.

3.1 Collective Constraints
Let us start by considering a constraint network over apair of variables x and y. Suppose the possible
valuesfor x are C, and the possiblevaluesfor y are Cy, and we have asingle constraint R(x,y) whichis
interpreted as aset R of pairs of collections{R = (R,R)) }.

Tointerpret the constraint computationally, we need a scheme to restrict the setsC, and C, for com-
patibility with a covering interpretation of R(x,y). First, we construct a set of tuples|(R , (C,Cy)) that
LIMITS R(X,y) to C, and Cy:

2)  1(R.(CuG)) = {(ReR) ER ‘R CCuR/C Gy}

Inwords, | (R, (Cx,Cy)) containsthetuplesof R that relate subsetsof C, to subsetsof C,. Call thelimited
relation T . We construct narrowed sets of values for x and y that TEST out consistent with T —sets
t(Cx, T,1) andt(C,, T ,2) defined in (22).

(22 t(C,T,n):={ueC:forsomeTeT,ueT,}

Again, inwords, t(C, T, n) restricts C to the elements of n-componentsof T relationships. So, then,
t(Cx, T, 1) consistsof those elements of C, that are part of asubgroup of Cy that enjoy an R relationship
to asubgroup of C,. Meanwhile, t(Cy, T , 2) consists of those elements of C, that are part of a subgroup
of Cy that a subgroup of C, enjoysan R relationshipto.

The key observation here isthat T implicitly defines an R -cover of (t(Cy, T,1),t(C,, T ,2)). To
see this, consider any tupleR € T . We must have Ry C t(Cy, T, 1) (and likewisefor y). For, given any
element u € R, by (21), we have u € C, and therefore by (22) wehaveu € t(Cy, T, 1) (using Ry itself as
the needed witness T,,). Meanwhile, of course, therecan benou € t(Cy, T, 1) withoutsomeR e T and
ue Ry

Abstractly, it is convenient to generalize the notation introduced in (21) and (22) to handle relations
of arbitrary arity. Therelevant definitionsare givenin (23).
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Algorithm: Plural Relaxation Steps:  do{ c—C

Input: Initial variable values C’ loopover R {
Initial relations {R } Ri—I(R;C)
Output:  Final variable valuesC’ C'—t(C,Ri)}
Final relations {R i} buntilC'=C

Figure 2: Constraint processing for plurals

(23) a I(R,C):={ReR :foreachvariablenof R, R, CC,}
b t(C,R):=(C],...C), whereeachC/ =t(C,R ,i) if i isavariableof R (and C; otherwise).

These notionsinduce a constraint-satisfaction heuristic for plural constraintsthat mirrors the relax-
ation algorithm for singular constraints. The algorithm is given in Figure 2. The agorithm works by
eliminating possible values for variables (and eliminating relevant tuples from the constraints) until a
fixed-point is reached. Since some value for a variable must be discarded on each iteration through the
main loop, there can be no more iterations than candidate val ues (roughly the product of the size of the
context set and the number of variables). Notethat the overall polynomial complexity of asingular re-
laxation a gorithm cannot be guaranteed without some assumptions about the representation of the con-
straint sets R j—since these relate sets, not individuals, they may require anumber of tuplesthat grows
exponentially in the size of the context set. For input constraints L = {R;(x)} and initial values D (or
the context set S by default), we use P(L,D) (or just P(L)) to refer to the PLURAL constraint network
computed by thisagorithm.

Informally, since the algorithm is conservative about discarding values for variables, al values that
actually satisfy the constraints survive the execution of the algorithm. Among other things, thisensures
amaximality interpretation for noun phrases model ed using thisalgorithm. Tojustify thisformally, con-
sider the computation of P(L,C'). Denote by F the final variable vaues output. Suppose V is tuple of
sets with two properties: first, for each R j and for each u € Vj, thereisatupleRe€ R ; withu € Rj and
moreover R, C V for each variable k governed by R ;; second, V; C C}. This means that V represents
apossible solution to the constraints given by L over the domains C'. Under these assumptions, it fol-
lowsthat V; C Fj. To show this, it suffices to show that any time our two conditionson V;j hold at the
beginning of the inner loop of the algorithm, they hold at the end of the loop. So assume the conditions
are true at the beginning, and let’s consider the conditions at the end. Consider u € V; and its witness
tuplefrom the hypothesis, R. Since R C Vi C C,, Re I (R ,C') too. Thisestablishesthefirst condition.
Moreover, sinceVj C Cj, and u € Rj, u€ t(Cj,I(R ;,C), j). Thisestablishes the second condition.

3.2 Representing Constraints

The operations of (23) and the algorithm of Figure 2 provide an abstract framework for computing the
interpretation of plural noun phrases. In some cases, the simple representations that these definitions
suggest may be suitablefor direct useinimplementation. For example, inherently distributivepredicates
and relations, like pig, black, stall and open, can be represented compactly asalist of tuples. Therewill
not be inordinately many tuples because each tuple relates only singleton sets. In the example scene of
Figure 1, for example, we could enumerate:

(24) a plg: {{a]_},{8.3},{34},{&5},{&7},{38}}
b black= {{a4},{as},{ac},{as}}
¢ stall={{si},{s}, {ss},{su}. {5}, {6} }
d open={{s1},{s},{s3}}
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However, it will not always be so easy. Take the property of having something inside, for example.
Thisisacollective property—and a collection Y has an entity X inside as long as the space collectively
carved out by Y includes the space taken up by X. Listing thisrelation is hopeless; in Figure 1, we can
pick, for instance, any set Y including s; and find that in({a; },Y) holds.

In this case, the right strategy seems to be to reason about general containment tractably by main-
taining an intermediate relation of IMMEDIATE CONTAINMENT which | will call in.(x,y). Thisrelation
holds between a singleton X and a collection Y when Y contains X but no subset of Y contains X. We
can list tuplesfor in, in the scene of Figure 1 straightforwardly:

(25) {({aa}; {s1}), ({@2}, {2}) ({@s} {ss}), ({aa}, {sa}), ({26}, {Ss}), ({ae}, {S6}) }

(In fact, the non-overlapping occupation of three-dimensiona space by solid objects might be expected
to keep thisrelation concisein general.)
Now we can adopt a meaning postul ate to relate the constraint in(x, y) to the constraint in, (X, y):

(26) in(x,y) = 3c.in,(x,c) AcCy

This equivalence ensures that (p,q) € 1(in(x,y), (Cx,Cy)) justin case (p,c) € I(in.(x,y), (Cx,Cy)) an

c Cy C C,. More importantly, t(Cy,in(x,y),X) = t(Cx,in.(x,y),x); similarly, t(Cy,in(x,y),y) = Cy as
long as thein, (x,y) relation isnot empty on (C,,C,) (inwhich caset(Cy,in(x,y),y) isaso empty). So,
we have a natural way of using our concise relation in, as a proxy for updating a constraint network
using the explosivereationin.

Clearly, this construction depends on the meaning of in; different constructions will be needed to
encode the lexical semantics of different words. As a question of cognitive science, we might expect
that the lexical conceptsthat people avail themselves of in identifying objects to one another admit an
efficient computational treatment. However, whether the present framework all ows such representations
in genera remains an important question for future research.

3.3 Search for Referring Expressions
By exploiting the representations for lexical constraints suggested in section 3.2 and the algorithm of
section 3.1 for keeping track of the interpretation of a plural referring expression, we can carry over the
presentation of referring expression construction as a search task from section 1.2 directly to the plural
setting. This section outlinesthisresult.

In the plurd referring expression search task, each state takes the form

(27) > (L,x,V,P(L))

L is a description providing a set of constraints on the free variables listed in x. V isatuple of sets
recording the intended referents of the description: V; gives the collection that the description aims to
identify withx;. Finally, P(L) isaplural constraint network, maintained asin sections3.1and 3.2, which
describes the entities that the description could refer to—and, indeed, that the description would refer
to if uttered inits current (possibly incomplete) form.

Again, theinitial stateis constructed from an empty description E and an intention to identify a set
Vy asthevalue of avariablex:

(28) 20! <E7 <X>7 <VX>7 P(E)>

And again agoal stateisonein which the constraint network P(L) associates each variable x; with V; as
its set of possiblevalues: thisis the case where the constraintsidentify the intended values for each of
the variables in the description.

A transitionfrom onestateto another isaccomplished by adding aconstraint to the description, and at
the same time possi bly taking on new variables and corresponding new intended referents. We continue
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to assume that the grammar and knowledge base providethese constraintsin theform p = R(x; y), where
syntacti c combination determines some coi ndexation between arguments of R and the existing variables
x of the description.

The semantic condition which determines whether a particular relation is appropriate is reformu-
lated to reflect the cover semantics for plural predication. To choose R(x;y) we must find a set of tuples
S which stand in the relation R(x; y) according to shared knowledge, and which cover the intended ref-
erents of the description. Formally, for each old variable x; constrained by R(x;y), we must have

(29) Vj :U{Rj IRES}

The selection of these tuples S alows us to determine appropriate intended referents for the new vari-
ables y introduced by the constraint. For each y;, we defineV/ = [J{R : R € S}. Thus under these
conditions we can describe the new state = ¢ (p, V') obtained by adding the constraint p (intended to
refer to V') to Z asin (30).

(30) Za(p, V') == (Lu{p},xy, W' P(LU{p}))

To get aflavor for the structure of this search space, consider the black pigs in the stalls—example
(8d), interpreted as before against Figure 1. We can now trace a path through the search space which
yields this successful description.

Thepath beginswithaninitial stateinwhichwehavenot yet added any constraintsto the description,
but we intend to use the variable x to identify the black pigsin the stalls—the set B defined as {ay,as}.
The empty descriptioninduces a constraint network in which x may take on any value in the context set
S So we have:

(31) <E7<X>7<B>7[X:S>

Thenext step addsthe constraint pig(x) corresponding to thelexical item pigs; theresultisto narrow
the possibilitiesfor x in the constraint network to just the set of pigsin the context set. We get:

(32) ({pig(x)}, (X), (B), [x={ay1, a3, 84,35, 87,38}])

Now we can add the constraint in(x,y) corresponding to the word in—choosing as the intended ref-
erence for y the set of stallsZ, namely {s1,Sp,S3, 54, S5, Se - At this stage the constraint processing rules
out the two pigsa; and ag that aren’t in anything. Theresultis:

(33) <{plg(x), il’](X,y)}, <X7y>7 <Bv Z>7 [X: {alva37a47 a5}7y: S>

When next we add the constraint stall(y) corresponding to the word stalls, the variables, values and
constraint networks are updated as expected, narrowing downy to the stalls:

(34) <{plg(x), in(x,y),stall(y)}, <X7y>7 <Bv Z>7 [X: {alva37a47 a5}7y: Z]>

Finally, we can add the constraint black(x) (corresponding to the word black) to yield adescription that
in fact identifiesits intended referents:

(35) ({black(x), pig(x), in(xy), stall(y) }, (x,y), (B, Z), [x= B,y = Z])

3.4 Making Search Flexible

The derivation of the black pigsin the stallswhich is sketched in (31)—(35) illustrates the structure of
search spacefor plural descriptions—for better and for worse. A particular difficulty isthe nondetermin-
isminvolvedin choosingintended referentsfor fresh variablesin constraints—for example, in selecting
the set Z to serve as the valuefor y in the constraint in(x,y) introduced into state (33). The alternative
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description the pigsin the open stalls shows that we could have ended up with a concise referring ex-
pression while selecting the different set Z/ = {s4, 5,5} in place of Z.

In fact, we can now see how large afanout in the search space accompanies the choice of the con-
straintin(x,y). We can choose any set Y and any set of tuplesS of thein relation, aslong as {as, a5} =
U{R«:Re S} andaslongasY = U{R, : R € S}. Given our interpretation of the in relation, we can
choose for Y any subset of the context set S containing s, and ss. The two particularly notable values
forY,Zand Z, arejust thetip of theiceberg. For an efficient implementation, it seems problematic to
select one of thesevaluesfor Y at random, without any knowledge of the role Y—and constraints placed
on Y—could play in a completed description.

Supposewe rethink the representation of intended referentsin the search spaceasfollows. Wegivea
partial specification | defining intended collectionsonly for the subset of the variablesin the description
that we are committed to. In many cases, that may mean specifying only the overall referent featured in
theinitial referential goal and evoked by the head noun of thereferring expression. Theremainder of the
intended referents we compute as whatever salient entities happen to be compatiblewith the description
and with reference to |, using a constraint network. That is, we compute V as P(L,|)—leading to the
representation of states of (36).

(36) > =(L,xI,P(L,1),P(L))

The description refers successfully when each variable x is associated with the same set Vi in both the
constraint network P(L, 1) and the constraint network P(L). Again this simply means that the hearer’s
interpretation of the referring expression isthe speaker’sintended interpretation.

Now, how do we determine semantically whether a new constraint R(x; y)—interpreted by a set of
tuples R —represents a viable addition to the description in some state X? It is no longer necessary to
find S C R such that Vi = J{R«: R € S} for each old variable x involved in the constraint. We may
have J{R«: R €S} C V, if weare prepared to narrow down the entitieswe might refer to with variable
xintheinterest of elaborating an overall description that is more concise. Of course, we cannot rule out
any elements specified in |—either directly, because they do not satisfy R(x;y), or indirectly, because
R(x;y) and some other constraintstogether rule out reference to them. It transpires that the way to test
the applicability on this approach of a constraint p = R(X;y) is by computing a new constraint network
V' =P(LU{p},I) and ensuring, wherever | assignsavaueto x, that Iy C V.

If thistest admitsanew constraint p = R(X;y), the new state obtained by adding p to the description
in state 2 is computed asin (37).

(37) Zop:=(Lu{p}xyl,P(LU{p},1),P(LU{p}))

Notethat we havegonefrom & (p, V') to 2@ p. No specification of new intended referentsisrequired
in this account, since these are determined implicitly by constraint propagation!

Let us compare the search space with this more flexible representation with the basic search space
defined in section 3.3. Consider again the black pigsin the stalls. Theinitial stateis now:

(38) (E,(x),(B),[x=B],x=9)

We add pigsto get:

(39) {Pig(¥)}, (X, (B), [x=BJ, [x = {a1, a3, a4, 85, a7, 3g}])

We add in to get:

(40) {pig(x),in(x,y)}, (x.Y), (B),[x=B,y =S, [x={a1,83,84,85},y = §)

Adding stallsgives:
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(41) <{p|g(X), in(va)vga”(y)}v <X7y>7 <B>7 [X: va = Z]v [X = {a17 az, aa, a5}7y: Z]>
Now we can add black, describing x, to give a completed description as encoded by the state (42).

(42) ({black(x), pig(x), in(x.y), stall(y) }, (x,y), (B), [x= B,y =Z],[x=B,y = Z])

But we can ALSO add open to describe the stalls—thereby narrowing both our intended and our antici-
pated reference for y. The result is another completed description: the pigsin the open stalls.

(43) ({pig(x),in(x,y),open(y),stall(y) }, (x,y), (B), [x= B,y = Z], [x= B,y = Z])

Thefact that we are no longer required to guess intended referents in advance (from a potentially expo-
nential space) makes this revised search problem much more computationally attractive.

4 Conclusion

Any algorithm for constructing identifying descriptionsof sets of discourse entities must avoid making
an inventory of the possible sets of of discourse entities. This paper has suggested reinterpreting and
extending the algorithms and data structures of singular referring expression generation to pluralities.
Using coversto abstract collectiveand distributivereadings—and using sets of assignmentsto represent
plurd references—yields a search problem for set-identifying expressions which largely mirrors that
for singulars, and which avoids computation and search over sets of collections. Along the way, | have
pointed out anumber of further problemsfor plural computational lexical semanticsraised by thisavenue
of research.
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