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Abstract

Natural language generation (NLG) is first and foremost a reasoning task. In this reasoning,
a system plans a communicative act that will signal key facts about the domain to the
hearer. In generating action descriptions, this reasoning draws on characterizations both
of the causal properties of the domain and the states of knowledge of the participants in
the conversation. This dissertation shows how such characterizations can be specified
declaratively and accessed efficiently in NLG.

The heart of this dissertation is a study of logical statements about knowledge and action
in modal logic. By investigating the proof-theory of modal logic from a logic programming
point of view, I show how many kinds of modal statements can be seen as straightforward
instructions for computationally manageable search, just as Prolog clauses can. These
modal statements provide sufficient expressive resources for an NLG system to represent
the effects of actions in the world or to model an addressee whose knowledge in some
respects exceeds and in other respects falls short of its own. To illustrate the use of such
statements, I describe how the SPUD sentence planner exploits a modal knowledge base to
assess the interpretation of a sentence as it is constructed incrementally.
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1
Introduction

Natural language generation (NLG) promises to provide an exciting technology for improv-
ing the way computer systems communicate their results to users. Using NLG, systems
can customize the information they present to user and context. The Migraine system
[Carenini et al., 1994], for example, takes the user’s history and diagnosis into account to
provide medical information that more precisely matches the user’s needs. The ILEX system
[Mellish et al., 1998], meanwhile, exploits the opportunities raised by previous dialogue to
pack important and interesting information into an interactive, on-line museum tour. Using
NLG, computer expertise can also be deployed in new settings, particularly using speech.
For instance, the TraumAid system [Gertner and Webber, 1998] issues concise natural lan-
guage critiques of treatment plans in the emergency room during the initial management of
chest trauma. The Computer fix-it shop system [Biermann et al., 1993] uses voice dialogue
over phone lines to give a computer technician in the field convenient remote access to an
expert fault-diagnosis system.

When NLG succeeds in systems such as these, two factors are at work. On the
one hand, the system must have substantive and correct knowledge about its domain, so
that users could benefit from the information provided by the system. On the other, the
system must communicate that knowledge in a concise and natural form, so that users
can understand the information easily, without being distracted from their other tasks and
concerns. These two requirements apparently conflict. The more detailed and rich are
the system’s representations of the domain, the more interesting and valuable NLG would
be—but the further removed those representations are in content and organization from
natural linguistic messages.

Because of this gap, NLG is first and foremost a reasoning task. In this reasoning,
a system plans a communicative act that will signal key facts about the domain to the
hearer. This reasoning thus draws on characterizations both of the causal properties of the
domain and the states of knowledge of the participants in the conversation. This dissertation
shows how such characterizations can be specified declaratively and accessed efficiently in
generating NL action descriptions.

The heart of this dissertation is a study of logical statements about knowledge and
action in modal logic. Modal logic has been a standard tool for describing knowledge
and action for decades (see [Fagin et al., 1995] and references there), but reasoning with
these descriptions has suffered from the unique difficulties of proving modal theorems (see

5



6 MATTHEW STONE

[Wallen, 1990; Ohlbach, 1991]). By investigating the proof-theory of modal logic from a
logic programming point of view, I show how to eliminate or avoid these problems for the
kinds of modal statements we typically need in writing useful specifications of action and
knowledge in computer systems. Thanks to these results, many kinds of modal statements
can be seen as simple and straightforward instructions for search, just as Prolog clauses can.
Moreover, these results show that, while problems of reasoning about causal interactions in
the domain may be genuinely difficult, the overlay of reasoning about knowledge needed
in NLG can be accommodated with relatively little extra effort.

In the remainder of this introduction, I first motivate in more detail the problem of
reasoning in NLG for action descriptions, in section 1.1. Then I outline more fully the
results and contributions of the dissertation in section 1.2.

1.1 Reasoning in NLG

The domain action representation which an NLG module is given as input must support
a wide range of reasoning tasks elsewhere in a larger computer system. Because of these
tasks, the representations will likely exhibit a complexity and structure which is, by and
large, independent of any linguistic motivations. As I explain in this section, the discrepancy
accounts for the reasoning processes required in NLG.1

The NLG module will not be provided with the inputs one might first expect, taking
only linguistic theory into account. Inspired by linguistic semantics, for example, one
might view the domain representation underlying an instruction as a relatively simple,
high-level action description, built hierarchically from an inventory of primitive concepts.
Then NLG would just require a map from underlying concepts and structure into overt
words and surface structure, as studied formally in theoretical work on semantic head-
driven generation [Shieber et al., 1990], and as implemented (albeit in restricted form) as a
module in most practical NLG systems [Reiter, 1994]. As a case study, consider (1).

(1) a

LOCKED

OPEN

b Turn handle to locked position.
c TURN(HANDLE, LOCKED)
d (((IMPERATIVE (PRESENT TURN))

(THE HANDLE))
(TO (THE (LOCKED POSITION))))

On the simplest realization of this view, the action in (1b) would be represented underlyingly
as schematized in (1c). (For proposals postulating such underlying simplicity, see [Schank

1Nigel Ward motivates rich input and detailed reasoning in NLG by a complementary argument, based on
the subtle functional and grammatical decisions that the generator must make [Ward, 1994].
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and Abelson, 1977; Jackendoff, 1990].) But even the more subtle articulation of the
semantics of (1b) as in (1d)—interpreted in a sophisticated ontology like Dynamic Montague
Grammar [Groenendijk and Stokhof, 1990a]—reflects the same linguistic characterization
of inputs to generation.

Unfortunately, the kind of action representation illustrated in (1c) or (1d) is unlikely to
be available in an interesting, large system. The domain reasoner is likely to represent what
happens in action with characterizations that are much more detailed than these formulas
suggest. At the same time, the domain reasoner is likely to omit features of these formulas
that specify how actions depend on the shared state of the environment and the shared goals
of the conversationalists. I describe these two differences in turn.

1.1.1 Reasoning to omit detail

If the system is to be a reliable and interesting giver of advice, it will need a precise
characterization of the actions it instructs. How else will it be able to precisely assess
the consequences of its instructions, or clarify the instructions to the user after followup
questions? To take just one example, one might expect the system to be able to display
a computer animation of a human carrying out the intended action, to help indicate what
action was expected (or perhaps to confirm that the action was possible). This problem,
which has been studied for many years at Penn [Webber et al., 1995; Webber, 1998], draws
attention to the many details that the representations in (1) suppress.

In executing this instruction, the figure first approaches the handle, and positions a hand
to grasp the handle and then draw it through a smooth, continuous motion. Most likely,
the figure grabs with the right hand, palm out and thumb down, so as to curl the fingers
around the back of the handle. Then, moving from the shoulder with elbow high, the
figure will rotate the handle smoothly around its pivot, until the handle settles or stops at its
locked position—as judged by varying exertion against the rotary friction and the visible
orientation of the handle with respect to its position marker.

Obviously, when it comes to the precise characterization of actions such as these, an
animated agent will require an action specification with many more parameters than are
found in a term like (1c). The specification must settle features like the kind and placement
of grasps and the future intentions that constrain the position and motion of the agent, as
well as the beginning and endpoints of the action, any object affected, and so forth. The
identification of such features is a long and ongoing research effort [Webber et al., 1995;
Douville et al., 1996; Levison, 1996], which involves establishing not only what parameters
are needed but what sources of information—general knowledge about agents, actions and
objects; sensed properties of objects before the action; and feedback obtained during action
execution—are required to determine appropriate values for those parameters.

These many parameters will not show up in a natural and concise instruction, any more
than they will show up in high-level concepts like (1c). Low-level details will frequently be
omitted. But it would be a mistake to look for a single cut that determined once-and-for-all
which features of actions are too low-level ever to appear in NL instructions and which
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features of actions are sufficiently high-level to belong in any NL instruction. People’s
instructions exhibit great variability in what they make explicit.

For example, the maintenance manuals for the fuel system on the F-16 represent a
highly-edited corpus of very stylized instructions. The manuals are rigidly structured,
separately identifying needed equipment and personnel, presenting actions to carry out,
describing favorable results and warning about unfavorable ones. Each operation is de-
scribed extremely precisely; in the military, these instructions count as orders and cannot
be disobeyed. Instructions in this corpus may explicitly specify at least five parameters
for motion actions; the instructions in (2) illustrate how different features of an action are
described explicitly in different cases.

(2) a Lift assembly at hinge.
b Disconnect cable from receptacle.
c Rotate assembly downward.
d Slide sleeve onto tube.

In all we find the object moved; (2a) identifies the point of contact with the object (where
force may be applied); (2b) identifies the beginning configuration of the object; (2c)
describes the intermediate path along which the object is moved; and (2d) describes the
final configuration of the object. Despite the precision and editing of the instructions, most
instructions omit most of these features. The examples in (2) are representative in signaling
just the object affected and one other parameter of the action. Other variants occur as
well—note in particular that even the object moved need not be explicitly provided as a
parameter, as in (3).

(3) Push in on poppet.

The variability in these natural instructions suggests that any of the parameters that the
hearer must derive to perform the action successfully—any part of the low-level record
of an action—might potentially surface as an explicit component of an NL instruction.
If many parameters are usually omitted, it is because the right value is so often obvious
in context. In such cases, by starting from the explicit description of objects, places and
actions provided in the instruction, and using shared knowledge about the possibilities for
action in the domain and about the effects that must be achieved, the hearer can (without
much effort) infer a full suite of appropriate parameters for action.

This analysis makes clear the heavy demands of inference that NLG requires. In order to
both provide an adequate level of detail and leave out the obvious, the generator must assess
what information the hearer would naturally recover from that description. This assessment
determines whether a given description suffices, or whether more detail is required. These
assessments combine reasoning about the causal relations between actions and effects in
the domain and about the sources of information that the hearer can use to identify actions.
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1.1.2 Reasoning to include detail

We have just presented one way the detail in the input to an NLG module exceeds the
detail that is desired in the output, and argued that this introduces a burden of reasoning
on the NLG module. In other respects, however, the action specification in the input may
have to be enriched during the course of NLG. One important source of elaboration of the
input action description comes in choosing a manner of identifying the needed action to the
hearer that clearly links the action to the shared features of the environment. This places a
different burden of reasoning on the NLG module.

The F-16 corpus again provides a good example of this process. In the vent system,
pipes are sealed together using a sleeve, which fits snugly over the ends of adjacent pipes,
and a coupling, which snaps shut around the sleeve and holds the sleeve in place. At the
start of maintenance, one removes the coupling and slides the sleeve away from the junction
between the pipes. After maintenance, one (re-)positions the sleeve at the junction and
(re-)installs the coupling in place around it. In the F-16 corpus, these actions are always
described using these verbs.

These choice of verb reflect not only the structure of the particular motion performed but
also general features of the design and function of the equipment. To see this, consider the
movement of the sleeve from the point of view of animation. The motion involved in sliding
the sleeve away is just the reverse of the motion involved in positioning the sleeve back.
Since the verb slide indicates smooth motion along a surface but not direction, slide seems
to describe both actions equally well. The verb position, meanwhile, is used to describe
a motion that leaves its object in some definite location, where the object can perform its
usual intended function. In the case of the sleeve, it is in position when straddling the
pipes whose junction it seals. Thus, when the manual has slide for one motion but position
for the other, the difference depends not on the properties of the motion as it might be
animated, but on what functions objects serve in which positions, and what paths keep
objects in contact with one another. Thus, selecting one description over another in NLG
may require combining details from the explicit record of the action to be performed with
background knowledge (most likely as shared by speaker and hearer). Of course, this is
true of descriptions that identify objects and places, as well as those that identify actions.
Accessing this background is another task for reasoning about knowledge and action in
NLG.

1.1.3 Action descriptions in NLG and conversational agents

As outlined in this section, an NLG module faces the following problem in constructing a
description of an action in an instruction. The NLG module is given a detailed description
of the action to perform (as computed elsewhere in the system), and is also provided with
a description of the background knowledge about the domain that the hearer shares with
the speaker (or has in private), and a characterization of the hearer’s ability to fill in details
about a described action by inference from such knowledge. Using the grammar, the NLG
module constructs a sufficient description of the action to allow the hearer to determine what
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to do. This process of construction reorganizes the content input to the NLG module, by
suppressing some features of the action description (as obvious) and by factoring in some
features of the shared knowledge (to link the description to the context), so as to obtain a
customized, concise and precise indication of what action the system expects of the user.

The ability to carry out this reorganization depends on reasoning about action and
knowledge. This inferential dependence is what this dissertation is all about. Examining
naturally-occurring instructions, such as those we have just seen for the F-16, puts the need
for such reasoning into relief. So does examining the instructions that can be constructed
automatically in a system that does not attempt it.

It was work on this latter kind of system that provided the original motivation for
this dissertation research. The system consisted of a pair of conversational agents that
interacted in a simulated environment by exchanging symbolic messages [Cassell et al.,
1994a; Cassell et al., 1994b]. The messages surfaced as natural language instructions,
combined with appropriate facial expressions, intonation and gestures. The realization of
the resulting messages offered a simple setting to evaluate a model of how people select
words and nonverbal displays in conversation and how they synchronize them together.

The agents we developed were able to cooperate to achieve tasks that neither could
perform independently, by using messages for asking or answering questions, for proposing
goals or actions, or for reporting on the execution of agreed actions. However, in the
absence of an NLG module based on reasoning about action and knowledge, these messages
amounted to direct readouts of the agents’ internal states. As a result, the agents’ actual
dialogues were so filled with obviously inferrable statements that they bordered on the
absurd. It was clear that to attempt further exploration and testing of models of conversation
in this framework would only be possible under a richer and more faithful model of action
description in NLG.

1.2 The Results of the Dissertation
This dissertation describes results about reasoning in NLG in three parts. Part I presents
new techniques for proof-search in modal logic. Part II introduces new ways to bring these
techniques to bear in the course of constructing modal specifications of knowledge and
action. Part III discusses how the SPUD system incorporates and exploits these results in
generating natural language action descriptions.

1.2.1 Modal deduction

Part I begins with an introduction to modal logic, in Chapter 2. The aim of this introduction
is to show why modal logic offers a promising framework not only for expressing the
knowledge about time, agents and problem-solving we would need for good NLG, but also
for drawing the right conclusions from this knowledge in practical applications. In this
introduction to modal reasoning, a particular focus is the use of specialized sequent calculi
to describe strategies for proof-search. Informally, a sequent is a formal, syntactic record
of a particular state in the construction of a proof. Sequent calculi describe how these
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states are rewritten by a proof-search engine in the process of deriving a proof. Viewing
sequent calculi as descriptions of search algorithms, it is natural to associate sequents with
explicit representations of the data structures used in implementations to match logical
terms or guide search through logical formulas. Such calculi provide a formal framework
for analyzing and optimizing proof-search algorithms.

Chapter 3 applies this framework to an important special case: proof-search strategies
that mirror the logic programming search implemented in languages like Prolog. With this
view of logic programming [Miller et al., 1991; Andreoli, 1992], each sequent contains a
distinguished formula that indicates the goal that the theorem-prover is currently working
on. Rules of a logic-programming sequent calculus derive new theorem-proving states
by decomposing this goal whenever possible. This allows logical connectives in the goal
formula to be viewed as explicit instructions for search. When the goal is atomic and cannot
be broken down further, sequent calculus rules describe a backward-chaining process that
first selects a given formula to match against the goal and then breaks that formula down
so as to reduce the atomic goal to an appropriate series of new theorem-proving tasks. This
process continues (nondeterministically) until all tasks have been completed (or until no
further alternatives remain).

The contribution of Chapter 3 is to derive and analyze a sequent calculus of this kind
that describes inference in modal logic. The advantage of modal logic is that it allows the
independence of search problems to be explicitly specified. A modal specification can create
a modular task, which allows local assumptions to made just for the duration of the task and
which permits only limited information to be taken into account. This notion of modularity
is presaged by previous work on logic programming in expressive languages [Miller, 1989;
Giordano and Martelli, 1994; Baldoni et al., 1993], as well as computational proposals
for building separable specifications using contexts [Guha, 1991; McCarthy and Buvač,
1994]. Chapter 3 extends these lines of work by allowing for indefinite information to be
specified using existential quantifiers and disjunctions in programs in a modular way. For
example, an ordinary disjunction creates a global ambiguity in a proof, because analysis
of alternative cases could potentially impact every inference in the proof. A modular
disjunction, in contrast, creates a local ambiguity where case analysis can only impact
inferences in the same module, and which may therefore be dispatched more tractably. This
notion of modularity gives a powerful technique for understanding the search problems
associated with particular modal specifications, or for designing specifications (in modal
languages) with the complexity of search in mind. As subsequent chapters underscore,
it is particularly suited to the ubiquitous task faced by NLG systems in reasoning about
possible (mis-) interpretations of an utterance using a characterization of the hearer based
on indefinite information.

Specialized sequent-calculi can be used not only to characterize an overall strategy for
proof search but also to analyze the complexity of individual steps during proof search. This
technique is illustrated by Chapter 4. At each backchaining step, the logic programming
interpreter described in Chapter 3 must determine in what ways the program clause can be
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applied toward the modular task (or in the possible world) where the goal must be proved.
In prior research, this determination has required an expensive operation of equational
unification [Wallen, 1990; Auffray and Enjalbert, 1992; Otten and Kreitz, 1996]. Chapter 4
uses the framework of a specialized sequent calculus to show that a constraint algorithm
can be used to resolve these matches between program statements and goals, incrementally
and in polynomial time. This helps establish the practical benefit of the logic programming
language described in Chapter 3. Modal logic programs can impose a modular structure on
search without simultaneously introducing combinatorial problems which might offset the
advantages of modularity.

Chapter 5 completes the logical study with an empirical evaluation of the techniques
introduced earlier. It looks at deciding the validity of a sentence of the minimal propositional
calculus (MPC), a particular problem in modal deduction which has been widely studied
using a variety of theorem-proving techniques. The results of Chapter 5 highlight the
variability in performance that different search strategies exhibit under variability in the
structure of formulas analyzed or the structure of needed proofs. MPC suggests several
search strategies and a plethora of specialized representations (not always compatible)
for avoiding poor performance for particular kinds of search problems. As collected and
analyzed in Chapter 5, run-times for deductive problems on different search strategies reveal
that many, but not all, MPC search problems demand the constraint treatment of possible
worlds developed in Chapter 4. The exceptions can be characterized in an interesting
way based on semantic properties of MPC and on the compatibilities between various
representational refinements and search strategies.

1.2.2 Modal representations for action

Part II considers the applications of the techniques developed in Part I to the problems of
reasoning about knowledge and action that are particularly important in interpreting natural
language descriptions. I begin in Chapter 6 by considering how modal logic can be used
to reason about the temporal effects of actions. Reasoning about change is plagued by
the default character of inertia: the effects of an action persist only as long as no further
actions interfere with them. Chapter 6 proposes to use modal deduction, as investigated in
Part I, to characterize putative consequences of actions. The question of whether putative
consequences actually obtain is settled separately, by a process of argumentation that
arbitrates among these competing hypotheses. The overall system contributes a synthesis of
theoretical and practical proposals for reasoning about action. The mathematical approach
to deduction allows the system to be related to other formal approaches to action based
on logic programming [Gelfond and Lifschitz, 1993; Gelfond, 1994; Baral and Gelfond,
1993]. At the same time, the proof-theoretic perspective shows how consequences can
be deduced in this framework by an intuitive algorithm. Its data structures—including
temporal constraint algorithm based on the results of Chapter 4—mirror those used in
special-purpose planners [McAllister and Rosenblitt, 1991; Penberthy and Weld, 1992];
but its algorithms—including methods to perform case analysis for explanatory reasoning
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based on the results of Chapter 3—extend them.
Reasoning in NLG requires characterizing the choices an agent can make as well as

the actions that could occur in the domain: the action described in an instruction must be
one the agent could choose to do. Chapter 7 examines how the arguments introduced in
Chapter 6 can be extended to capture this notion of choice. The key is to explicitly represent
the state of an agent’s knowledge as well as the state of the world. With this representation,
whenever an agent can make an appropriate choice, there is some concrete action which
the agent knows will achieve the desired effects (cf. [Hintikka, 1971]). More generally, an
agent can carry out any plan as long as such a feasible choice can be made, and then the
selected action can be performed, at every step in the plan. Reasoning with specifications of
these choices, naturally formulated by combining modal logic and existential quantification,
represents another application of the study of indefinite information in Chapter 3. Thus, here
as in Chapter 6, our analysis uses modal proof-theory to reconcile theoretical approaches
to reasoning about actions and plans [Moore, 1985a; Morgenstern, 1987; Davis, 1994]
with practical algorithms for building plans and reasoning about actions when an agent has
changing access to information [Etzioni et al., 1992; Golden and Weld, 1996; Goldman and
Boddy, 1996].

This definition of choice is complemented in Chapter 8 by an analysis of how a speci-
fication can describe the information on which an agent will base such choices. Chapter 8
proposes constructing such specifications by dividing up agents’ knowledge into sources or
kinds of information. This strategy echoes Clark and Marshall’s psycholinguistic proposal
for organizing information by sources or kinds [Clark and Marshall, 1981]. By exploiting
the deductive results of Part I—particularly its approach to logical modularity—Chapter 8
shows that modal logic, though a simple formalism with appealing search properties, can
nevertheless capture the range of characterizations of sources of information that Clark and
Marshall consider.

1.2.3 Modal inference and modal specifications in NLG

Part III consists of Chapter 9, a practical demonstration of how these results lead to a
feasible approach to reasoning in NLG. Chapter 9 briefly introduces the SPUD system for
constructing sentences [Stone and Doran, 1996; Stone and Doran, 1997; Stone and Webber,
1998]. SPUD uses a grammar in which alternative choices for generation are linked directly
to lexical items (using the LTAG formalism [Schabes, 1990]). It builds a sentence by
repeatedly making choices to add particular lexical items to the ongoing sentence. SPUD’s
choices of words must be guided by inferences about the domain and about the knowledge
of the hearer, as outlined in section 1.1. Chapter 9 shows how the answers SPUD needs can be
characterized as modal logic queries using the techniques of Part II, and how those answers
can be found with logic programming using the techniques presented in Part I. Chapter 9
goes on to illustrate sample modal specifications given to SPUD in sample domains, shows
the queries SPUD makes in describing particular actions in those domains, and shows how
the results are used to guide SPUD in the generation of concise, natural descriptions of
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actions.
The results of the dissertation are summarized in Chapter 10; the dissertation concludes

with a discussion of issues and problems for future research.

1.3 Advice to Readers
To present a convincing study of a formalism—whether for logical deduction, for represent-
ing and reasoning about causality, or for the interpretation of natural language sentences
in discourse—inevitably requires a substantial amount of technical detail. In collecting
together the material for this dissertation, I have aimed to include this kind of detail in each
part. This means that readers whose interest centers on particular problems will find more
here than they need. In general, those readers can proceed directly to the chapters that
interest them. Readers with specialized interests may nevertheless want a high-level view
of how the different results fit together. At this point, I briefly suggest some abbreviated
paths through the document for such readers, according to their main research interest.

For NLG researchers, one path would be to simply skip ahead to Chapter 9 and read
it on its own. A deeper reading would trace the informal motivation and development of
the logic programming language DIALUP through sections 2.1, 3.1, 3.2, and 5.2. Then it
would briefly touch on reasoning about action as a problem for logic and language through
sections 6.1, 6.5 and 7.1. This background for Chapter 9 gives a flavor for the logical and
computational results that NLG can exploit, but still omits the more technical material.
Afterwards in reading Chapter 9, it will be clear what earlier results the work relies on and
why.

Researchers in modal logic, after going through Part I, may be content to merely sample
the results of Parts II and III to see how modal logic is used there. Sections 6.3, 7.1, 7.2,
8.4 and 9.2 describe how modal models and modal proof figure in these results.

Finally, researchers in cognitive robotics might want not only to look at Part II, but
also to extract from Part I a high-level view of modular search in languages for describing
planning and action. This suggests tracing through sections 2.1, some of 2.3 (e.g., 2.3.3
and 2.3.4), then 3.1, 3.2, and 3.3.



Part I

Modal Deduction
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2
Modal Logic as a Modular Language

Modal logic and its proof theory provide basic resources for this study. This chapter
provides a brief introduction to these subjects for reference in later chapters. Standard texts
on modal logic include [Chellas, 1980; Hughes and Cresswell, 1968]; [Fagin et al., 1995]
provides a thorough introduction to modal representations in artificial intelligence. This
chapter does not duplicate such surveys. Instead, it reviews the computational treatment
of modal languages and modal proofs. Of central concern is the MODULARITY of modal
logic—by which modal formulas describe not only what needs to be derived in a proof,
but also how derivations should be broken down into parts and what information should be
taken into account in each.

Modularity has both a denotational and an operational force. Denotationally, modu-
larity underlies the different interpretations that modal operators can take on. Section 2.1
describes informally how the ability to distinguish statements into separate groups in modal
logic enables descriptions of the changing states of the world in modal temporal logic,
descriptions of the various possibilities compatible with the knowledge of agents in modal
epistemic logic, and even the description of the subprograms of a logic program or the
different contexts to which a knowledge base applies. Section 2.2 provides a more tech-
nical perspective on the same material, including the syntax and semantics of modal logic
[Kripke, 1963].

Operationally, modularity can translate into constraints on search—under favorable
circumstances. There are a variety of syntactic characterizations of proofs in modal logic;
in principle, any can be used to derive modal theorems automatically. In practice, however,
the choice of proof system can have a profound impact not only on the overall difficulty of
automatic proof construction, but on the ability to exploit modularity as a constraint in proof
search. Section 2.3 describes several proof systems for modal logic, exploring this variation
at a theoretical level. The last decade has seen key developments in such systems, with the
result that modal deduction can now be shown to satisfy the advantageous metatheory of
classical logic in many respects, so that research and experience with classical deduction
now transfers to modal logic [Fitting, 1972; Smullyan, 1973; Wallen, 1990; Ohlbach,
1991]. These results are important and deserve to be more widely known, but claims
for their significance—“modal logic is now as a result just as tractable from a deductive
point of view as is ordinary first-order logic” [Bibel, 1993], p.167—have sometimes been
misleading.

17
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Experience with classical deduction is crucial to designing proof procedures with good
performance for modal logic, but this does not mean that henceforth modal theorem-proving
will rely only on classical results. As this and subsequent chapters argue, modal deduction
benefits from keeping the syntax and modularity of modal logic explicit and available during
proof search. Accordingly, the principal objective of section 2.3 is to lay the groundwork
for a Gentzen-style sequent calculus proof system that supports the syntax and modularity
of modal logic as well as the algorithms and data structures of classical theorem-proving.
The reader may consult [Mints, 1992] for a more thorough introduction to modern modal
proof theory and [Gallier, 1986] for an introduction to the connections between proof theory
and automated deduction. [Stone, to appear] presents a more explicit presentation of this
material (including detailed proofs) for the special case of intuitionistic logic, a fragment
of S4 modal logic with particular computational interest.

2.1 An Informal Survey of Modularity in Modal Logic

Modal logic extends the syntax of first-order logic by introducing propositional operators
of NECESSITY and POSSIBILITY. Examples (4)–(7) illustrate the range of concepts which
these operators fruitfully describe.

Chapter 3 investigates the use of necessity operators to describe the modular structure
of logic programs; this use interprets necessity operators as in (4).

(4) [M]p: p is (to be) derived in the M module of the active logic program

In Chapter 6, meanwhile, we use the necessity operators described in (5) to represent and
reason about change over time.

(5) a [N]p: p is true after the next action is taken
b [H]p: p holds now and will continue to hold until further notice

In Chapters 7 and 8, we use necessity operators schematized in (6) to describe the overall
knowledge of an agent or components of that knowledge.

(6) a [K]p: the agent knows p
b [TOPIC]p: p follows from the part of the agent’s knowledge that provides a

theory of TOPIC.

Chapter 9 describes reasoning in discourse in modal terms, using the interpretations of
operators in (7).

(7) a [CP]p: p is a consequence of the shared record of the conversation (as perhaps
derived by copresence heuristics).

b [COMM]p: p can be taken as shared knowledge among members of community
COMM (in virtue of members’ shared access to particular kinds of information).

In these examples, each of the operators [NAME] represents a necessity operator; necessity is
also written 2 or 2i. Modal logic can also include dual operators of possibility, written3,
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3i or hNAMEi;3p is true if and only if2:p is false. (Possibility will not figure much in this
dissertation.) We will work in a multimodal logic, in which any finite number of distinct
kinds of necessity may be admitted; we take the names of the modal operators as arbitrary
and rely on explicit statements when necessary to relate them. (The alternative, exploiting
a more structured space of modal operators as in [Thomason, 1998], is also fruitful.)

Modal operators can be interpreted with the breadth found in (4)–(7) because modal
logic extends classical logic in a very general way. Formulas in first-order classical logic
characterize ordinary entities once-and-for-all. In contrast, the necessary formulas of modal
logic provide characterizations of entities that take only restricted information into account.
Consider how this applies to (5)–(7). [N]p introduces a characterization p that takes into
account only what is true after the next action. Analogously, for [K]p, p takes into account
only what the agent knows; and for [CP]p, p takes into account only the information shared
in a conversation. These interpretations underlie the original applications of modal logic
and its relatives as representation languages [Hintikka, 1962; Prior, 1967; Halpern and
Moses, 1985a; Moore, 1985a].

At the same time as a modal formula indicates what kind of information it represents,
the formula places restrictions on how it can be used in reasoning. I refer to this restriction
using the notion of SCOPE or MODULARITY of deductions: two formulas must lie in the same
scope to be combined in reasoning. This restriction follows naturally from interpretations,
such as those suggested in (5)–(7), which we want modal statements to have. For example,
a specification that describes agents’ propositional attitudes must ensure that statements can
combine in inference only when they describe the content of a single attitude of a single
agent. (Nothing follows if I believe p and YOU believe that p implies q.) The agent and
attitude a formula describes determines the scope for that formula in reasoning. Similarly,
a specification that describes multiple moments in time must guarantee that only facts true
at the same time can be combined in inference. (Nothing follows if p is true TODAY but
TOMORROW p implies q.) Here, the time at which a formula holds determines its scope.

The modal discipline of information and modularity applies recursively. A specification
that characterizes what I know you know offers such a recursive example. It describes and
allows us to reason with a body of limited information—what you know—that is itself
NESTED within a scope where only what I know can be taken into account. McCarthy’s
metaphor of “entering” and “leaving” offers a good handle on this nesting. One is always
free to create and enter a new scope, where only limited information derived from the
broader scope can apply.

An important theme of this chapter is that proof systems and proof-search algorithms
for modal logic can be constructed not just to derive semantically correct judgments about
restricted kinds of information, but to derive them syntactically in a way that respects and
exploits an explicit discipline of scope during search. To prove 2A, we prove A in a new,
nested scope; this new scope is constrained so that only information of the form 2A applies
there.

The advantage of this discipline for search is potentially very strong. Once a body
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of knowledge is organized into a scoped module subject to this discipline, its logical
interactions will be limited to facts in the same or compatible modules. For the purposes
of proving p in module M, any separate module N will be effectively ignored during search.
Neither the possible results nor the alternatives for search derived in module M will be
affected by the addition of other modules. Thus, by creating such modules, programmers
can ensure that facts are logically unaffected by the broader knowledge base where they are
found (thus making specifications more reusable), and can limit the alternative combinations
of facts that must be considered during search (thus making specifications more efficient).

What’s more, a specification need not have been designed as modular for these insights
to apply. An explicit discipline of modularity and scope allows any modal operator to be
seen both as specifying its distinct kind of information and as creating its own scopes in
proofs. This provides an intuition for understanding how search proceeds in existing modal
specifications for temporal or epistemic domains, or for redesigning modal specifications
in such domains to improve search.

An explicit discipline of modularity and scope would be intrinsically valuable for
knowledge representation. Because of the promise of this idea, research on CONTEXT

and on the structure of knowledge bases and logic programs is aimed at exploiting modal
languages (and related languages) in just this way [McCarthy, 1987; Miller, 1989; Guha,
1991; McCarthy and Buvač, 1994; Giordano and Martelli, 1994]. The remainder of
this section describes how these two perspectives on modal logic have led to the design
of different, practical modular representations. The perspective of contextual reasoning,
reviewed in section 2.1.1, embraces all connectives of first-order logic, and is able to enforce
modularity only because of restrictions on the use of modal operators. The perspective of
logic programming, reviewed in section 2.1.2, restricts the use of classical connectives but
allows modal operators to be used more generally. These views are orthogonal; indeed, the
desideratum of a strong, modular disjunction—introduced in section 2.1.3—suggests the
possible advantage of reconciling these perspectives.

Enforcing a discipline of modularity during modal proof search is not automatic, how-
ever. The reason is that most domains involve systematic relationships between the different
kinds of information represented by different classes of formulas. Such relationships can
compromise the semantic basis for modularity, by greatly reducing the extent to which
different operators specify independent information; obviously this must seriously weaken
or even disable the use of modularity to narrow the search space. Even when modularity
remains in the logic, however, it may be impossible to enforce modularity under particular
strategies for proof search. On the basis of the available information about the goals and
structure of proof, those strategies may no longer be able to detect cases where, given
modularity, there is nothing to be gained from combining facts.

Modularity of proof search thus depends both on how different modal operators are
related to one another and on the precise strategy by which an algorithm carries out search.
The representation and treatment of these factors is the main concern of the rest of this
chapter, and recurs during the development of new, more powerful modular langauges in
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Chapters 3 and 4.

2.1.1 Context, Modularity and Modality

A concrete example, adapted from [McCarthy and Buvač, 1994], is representative of the
operators and the range of inferences about them found in a logical approach to generality
and context in AI. The example concerns the representation of product information from
different points of view. In particular, General Electric and the Navy have different ideas
about what the price of a component is. GE establishes base list prices for each component
separately. Navy specifications refer to prices that include not only the cost of the individual
component but also the cost of other equipment, such as spare parts, that the Navy will
purchase along with it.

The first step in representing this scenario is to make room for the two distinct views of
price. We do this using modal operators [LIST] and [SPEC]. The formula [LIST]A represents
that A reflects the perspective taken in GE’s catalogue; likewise, [SPEC]A represents that A
reflects the perspective taken in the Navy’s specifications. These modal operators allow
us to be precise in making claims about GE’s list prices, as in (8a), or about the Navy’s
specification prices, as in (8b).

(8) a [LIST] price(x; p)
b [SPEC] price(x; q)

Following [Guha, 1991], [McCarthy and Buvač, 1994] write formulas like [LIST]A in
the notation ist(list;A), short for A is true in list. In this notation, terms like list name
CONTEXTS [McCarthy, 1987]. The expected tight relationship between these contexts and
ordinary modal operators is substantiated in [Buvač et al., 1995]. The main innovation for
contexts is a technical device that allows the available vocabulary to depend on context;
the extension is designed to allow knowledge representation languages to accommodate
ambiguous or partially-defined terms and relations. This kind of context-dependence is
peripheral to many uses of the formalism (including that in (8)).

The term “context” provides a useful mnemonic that describes, in a more generally
accessible way than “necessity”, the use of propositional operators to modulate the force
of logical statements. For example, as observed in [McCarthy, 1993], suppose we make
the assertion of a formula A in a context C, instead of asserting A directly. Then we can
regard C as a source of information embodying the many assumptions and qualifications on
which the truth of A inevitably depends. When these assumptions (whatever they may be)
are really satisfied, then A is true in C just in case A is true. The use of the context C gives
us a new handle on these qualifications, without forcing us to itemize them all explicitly.
With such examples, McCarthy argues that contexts provide a key tool for representing
generalizations about the world in logic—irrespective of any role of contextual reasoning
in search.

However, Guha describes a direct way to improve search using the formulas such as
those in (8) in which operators are nested to depth one only [Guha, 1991]. This strategy
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is implemented in CYC, the large common-sense knowledge base [Guha and Lenat, 1990].
Any query Q is posed in a distinct problem-solving context, as [PSC]Q. The rules that
might be applied are organized as MICROTHEORIES—collections of facts asserted in a single
context. Facts are included for reasoning in the problem-solving context by selecting them
from the (most) relevant and appropriate microtheories for the current problem. Facts
from other microtheories are ignored (though perhaps only until a later stage of deduction).
This regime establishes the overall query Q as a modular or local goal for proof-search,
and introduces a simple discipline of scope to restrict the inferences that are entertained
while searching for a derivation of Q. This is the only role of modularity in the system,
though. The facts expressed and the inference performed follow classical first-order logic
in other respects, and indeed Guha describes the logical apparatus as an ordinary first-order
problem-solver operating “in” the problem-solving context.

Guha’s strategy is founded on the ability to express general relations of inclusion be-
tween sources of information. For example, in reasoning from (8), suppose the perspective
of GE’s list prices is relevant and appropriate to the current query [PSC]Q. Then from
conclusions of the form [LIST]A, results of the form [PSC]A will follow generally. This is
expressed in the axiom scheme in (9).

(9) [LIST]A � [PSC]A

Once the applicable contexts or sources of information are declared, a second step of
formalization may be needed. This step introduces axioms that allow the assumptions made
in one microtheory to be reconciled with the assumptions in force in another microtheory or
in the problem-solving context. For example, for (8), an inference might have to combine
information about list prices with information about the Navy’s specifications. Recall that
to determine the price of a component in the Navy’s specification, we start with its list price,
and add the list price for its specified spare components. We now formalize this, using the
representation in (10):

(10) 8xpyq ([LIST] price(x; p) ^ [SPEC] spares(x; y)^ [LIST] price(y; q) �
[SPEC]price(x; p + q))

Such statements are known as LIFTING axioms; their benefits include allowing different
logical modules to express conclusions in local and natural terms, while nevertheless sup-
porting compatible formalisms [Guha, 1991; McCarthy and Buvač, 1994]. Lifting axioms
obviously have the potential to complicate the identification of relevant facts during proof-
search—for example, if it is necessary to apply them recursively. Guha’s implementation
permits only a restricted class of lifting rules; lifting is then computed directly by an “access
module”, which transforms contextualized statements into the ordinary, first-order formulas
used for inference in the current problem-solving context.

2.1.2 Modular Logic Programming

Where researchers on context establish a design strategy for generality in knowledge repre-
sentation on the use of modal logic, researchers in logic programming [Miller, 1989; Gior-
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dano and Martelli, 1994; Baldoni et al., 1993] have invoked modal logic—not dissimilarly—
to achieve the classic benefits of modular software design. In particular, a modal, modular
logic program can streamline the statement of commonalities among problems and algo-
rithms, and can be more easily maintained and reused.

Here is an illustration in the current domain. Since both the list and the specification
represent kinds of accounting information, many parallel inferences may be required both
in the scope of [LIST] and in the scope of [SPEC]. These common inferences motivate an
operator [ACCT] for specifying facts about price that list and specification share. One simple
example might be the fact that prices are measured in dollars:

(11) 8xp [ACCT] (price(x; p) � dollar-value(p))

For such statements to play their intended role in reasoning, we again need a way to apply
information of one kind (or one context) towards results of another. To draw inferences
about the units in which list and specification record prices using (11), we need to be able
to infer [LIST]A and [SPEC]A when we have [ACCT]A.

With operators that interact this way, we can present needed generalizations once,
with an intuitive annotation that succinctly describes the range of contexts to which the
facts apply. They also give useful separate roles to the operators and to the first-order
components of formulas like [LIST]price(x; p) and [SPEC]price(x; p). This illustrates how
a modal or contextual representation can be more natural and convenient than a first-
order representation with corresponding compound symbols, such as list-price(x; p) and
spec-price(x; p), for which common generalizations like the measurement of price in dollars
must be spelled out explicitly and separately.

Similarly, we might want to represent that GE and the Navy may have different, partial
information about what is in the list and the specification, by introducing operators [GE] and
[NAVY]: [GE]A indicates that A is to be proved taking only GE’s information into account.
Then an operator [BOTH] that records information that GE and the Navy share will also be
needed to capture commonalities in [GE] and [NAVY]. It might be used, for example, to
record that the two organizations are aware of the method of calculating prices described
by (10):

(12) 8xpyq [BOTH] ([LIST] price(x; p)^ [SPEC] spares(x; y)^
[LIST] price(y; q) � [SPEC]price(x; p + q))

Again, to use (12) as intended, we need a way to infer [GE]A and [NAVY]A from [BOTH]A.
The use of nested operators, as in (12), is characteristic of the modal approach to struc-

turing logic programs. In fact, Miller’s original proposal [Miller, 1989] (as reconstructed
in [Giordano and Martelli, 1994]) involves only a single modal operator and uses nesting
exclusively to assemble modular specifications. Here’s the basic idea. Suppose we have a
query Q which we interpret in a modular way: we want to take into account only clauses C,
D and E when proving Q. We formalize this using a hypothetical implication, as in (13).

(13) 2 (C ^ D ^ E � Q)
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The modal operator restricts the information to take into account and ensures that the
implication exhibits a strong form of modularity—it instructs the interpreter to make local
assumptions of C, D and E which are to be used only in proving Q. (Shoham offers a similar
proposal in the context literature [Shoham, 1991].) Because of this strong modularity, the
goal can be processed correctly and efficiently—no matter how it is nested in other modal
goals—on a logic programming search strategy, where goals are broken down directly
according to their syntax and processed independently. With strong modularity, a variety of
regimes for assembling modular logic programs can be implemented using modal operators
and nested meaningfully, usefully and efficiently [Giordano and Martelli, 1994]. The
identification of this strong interpretation of modularity is thus a key contribution of research
on modal logic programming.

Further benefits come in the logic programming approach from RELATING the informa-
tion that can be used in the different scopes created by nested uses of modal operators. For
knowledge representation, this may make possible a range of natural inferences that would
be difficult or impossible to describe otherwise. The need for this strategy in one direction
is already present with (12). To use (12) as we would use (10), we need a way to infer A
from [BOTH]A. Here we apply nested information in a wider setting.

In the other direction, transferring results from outside into nested scopes, this strategy
is required in modeling the HYPOTHETICAL reasoning of agents. An agent needs such
modeling to explain other agents’ motivations and intentions. Moreover, as argued in
Chapter 7, an agent must also use it to derive its own plans for the future.

To illustrate hypothetical reasoning and nested scopes, suppose what the Navy knows
is specified as in (14).

(14) [NAVY] [LIST] price(fx22-engine; 3600)^
[NAVY] [SPEC] spares(fx22-engine; fx22-fan-blades)

That is, the Navy knows it needs FX22 fan blades with its FX22 engine, and the Navy has
GE’s list price as $3.6 million. Suppose we know that the Navy needs to know the spec
price for the FX22 engine. Should we then expect the Navy to ask what the price of FX22
fan blades is?

The answer must depend in part on our characterization of what the Navy knows.
Underlying any question from the Navy, there must be a plan whereby the Navy recognizes
(taking just what it knows into account) that it will be able to determine its specification
price once it has the list price for FX22 fan blades. It would seem that (14) and (12) ascribe
to the Navy enough information to accomplish this recognition. Formally, the fact that must
be derived is (15).

(15) 8p [NAVY] ([NAVY] [LIST] price(fx22-fan-blades; p) �
[NAVY] [SPEC] price(fx22-engine; 3600+ p))

We would like to derive (15) as a consequence of (12), but our goal has the form
[NAVY] [NAVY] price(x; p), with a double embedding. Our strategy is appeal to an in-
ference from [NAVY]A to [NAVY][NAVY]A—what the Navy knows, it knows that it knows.
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This inference expresses a different, natural relationship between scopes. We continue by
establishing

(16) [NAVY] [NAVY] [LIST] price(fx22-engine; 3600) ^
[NAVY] [NAVY] [NAVY]spares(fx22-engine; fx22-fan-blades) ^
[NAVY] [NAVY] [GE]price(fx22-fan-blades; p)

The first two must be obtained indirectly from (14), by the same inference about nested
scopes. We get the third because it is assumed in proving the implication. This establishes
the result.

2.1.3 Modularity: Limits and Prospects

The rich logical statements needed to represent common-sense knowledge about the
world—as explored in research on context like [Guha, 1991] or as described in Chapters
6 and 7 of this dissertation—fall outside the expressive power of the logic programming
languages proposed by [Miller, 1989; Giordano and Martelli, 1994; Baldoni et al., 1993;
Baldoni et al., 1996]. Nevertheless, the nested modal operators and strong modularity of
the logic programming approach ought to be just as valuable for those richer statements.

Modal disjunctions, the topic of Chapter 3, offer a provocative such example. Modal
disjunctions can not only support reusable and precise descriptions of rich domains; under
the strong, logic programming interpretation of modularity, they can also reduce the size of
proofs and the number of ambiguities in proofs that need to be considered simultaneously.
The following argument suggests why. From the point of view of search, a disjunction
such as C _ D can be seen as an instruction to perform proof by cases, in which the proof
proceeds separately for the one case where C is true and for the other case where D is true
and (perhaps) C is false. In general, the two cases introduced by a disjunction may span
the entire proof and may have no inferences in common. A modal disjunction, in contrast,
is much more restricted. First, the disjunction 2(C _ D) applies towards some goal 2G
which depends on the same kind of information. In addition, if this information is modular
and local, the disjunction permits case analysis to be considered for the proof of this goal,
and this goal only. In other words, the two cases introduced by 2(C _ D) span just the
subproof in which 2G is proved; the overall derivation to which 2G contributes has no
global ambiguity.

Not every plausible principle for relating nested operators is compatible with the strong
interpretation of modularity needed for modular disjunction or the logic programming
interpretation of � illustrated by (13), however. For example, in formalizing the logic of
contexts, [Buvač et al., 1995] postulates an axiom scheme (∆) which can be written in
modal logic as in (17).

(17) (∆) : 2(2A _ B) � (22A _2B)

In the presence of (∆) axiom, it is no longer correct to treat assumptions made during proof
search as local or modular, and to attack modular goals by separate inferencing. With
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separate inferencing, whenever a goal2(2p � q) arises, it suffices to apply the assumption
2p to the proof of q. But consider the complex goal in (18).

(18) 22p _2(2p � q)

This goal is provable given (∆). From a formal point of view, to see why, start with the
formula 2p _ :2p _ q which, because it is a tautology, must be necessarily true. From
this statement of necessity, (∆) can apply to get 22p _ 2(:2p _ q), a logical equivalent
of (18). Informally, to prove (18) requires the assumption of 22p, ostensibly made as part
of proving q in the second disjunct, instead to be applied towards proving the first disjunct.

Also incompatible with strong modularity is the axiom scheme of negative introspection
presented in (19).

(19) :2A � 2(:2A)

This axiom is often used to characterize the knowledge of agents in finite domains [Fagin
et al., 1995]. (19) entails the statement in (20) which is again incompatible with strong
modularity; (20) follows from (19) in much the same way (18) follows from (17).

(20) 2p _2(2p � q)

This study eschews axioms like (∆) and negative introspection that are incompatible
with strong modularity. Strong modularity is too useful for structuring and searching logical
specifications. Ultimately, this choice must be assessed based on the logical results that
follow from it, in Chapters 3, 4 and 5, and the illustrative specifications constructed in this
framework, in Part II. In the meantime, note anyway that axioms like (∆) and negative
introspection are most often motivated not by key inferences of this pattern that domains
require, but by the ease of analysis of their simple mathematical semantics—permitting the
use of simple normal forms for formulas or models. As far as applications to AI or NLG
go, such considerations are not particularly compelling.

Note that representations with the expressive power to describe entities based on limited
information are not always couched as modal languages. [Morgenstern, 1987; Ballim et
al., 1991; McCarthy and Buvač, 1994] offer alternative proposals to describe concepts like
those in (4)–(7) in a computational setting. Although the formalizations differ, the key
feature of each is an operator that defines scopes in deductions in which the use of formulas
is restricted—variously, necessity, quotation, boxes, and contexts—along with rules that
govern the transfer of formulas from one scope to another. The effects that these features
achieve in the different formalisms are strikingly similar. Accordingly, we can stick to
modal logic here without regret.

2.2 Modal Logic in a Nutshell
2.2.1 Syntax

We consider a family of first-order modal languages, L2m;T. L2m;T is parameterized by a
set of m paired operators of necessity, 2i, and possibility 3i, for finite integer m; and



MODAL LOGIC AS A MODULAR LANGUAGE 27

by a theory T specifying relations between operators in terms of the three modular axiom
schemes introduced in the previous section:

(INC) (inclusion) 2iA � 2jA
(VER) (veridicality) 2iA � A
(PI) (positive introspection) 2iA � 2i2iA

(In general, we may invoke a variety of axioms to augment the basic modal logic K to
better match modal operators and the common-sense notions they are meant to model. For
example, the combination of (VER) and (PI) known as S4, provides a model of knowledge,
because whatever an agent knows is true (in keeping with (VER)) [Hintikka, 1962]. Since
an agent’s beliefs may not be true, (PI) alone may be a better model of belief. This logic is
known as K4. Finally, modalities are called T when governed just by (VER).)

As usual, we presume a signature describing available constant symbols and applicable
relation symbols (with arities), and thus a set of atomic formulas of the form p(t1; : : : ; tn).
(We will stick to a basic language without function symbols and equality to keep closer to
what we can ultimately implement in a logic programming language.) Schematizing such
formulas as P, the formulas of L2m;T are described as A by the following grammar:

A ::= P j A ^ A j A � A j A _ A j :A j 2iA j 3iA j 8x:A j 9x:A

Although some of these connectives may be defined in terms of others, we will refrain from
doing so as we will be interested not only in this language as a whole, but in FRAGMENTS

of the language which can not express those definitions. Two fragments of particular
importance are the PROPOSITIONAL fragment, which omits the quantifiers, and the2-ONLY

fragment, which omits negation and all of the3i.
The usual definitions of free and bound variables carry over to modal logic. A[t=x]

denotes the result of substituting t for x in A, with bound variables in A renamed when the
same variable appears free in t, to avoid capture. (We will treat formulas differing only in
the names of bound variables as identical.) In allowing terms to be substituted freely inside
2iA and 3iA, we implicitly adopt the INCREASING or CUMULATIVE domain constraint for
modal logics, which allows formulas in nested scopes to refer freely to objects introduced
outside. Objects introduced in nested scopes need not be available outside. We will, of
course, make a corresponding assumption in the semantics.

2.2.2 Semantics

Modal semantics is based on a model of possible worlds [Kripke, 1963]. Possible worlds
record different ways things could turn out; for example, different entities exist at different
possible worlds and relation symbols characterize different tuples of entities at different
possible worlds. A formula is true or false, then, only at a particular possible world.
Effectively, in the modal semantics, each relation in an atomic formula, and each compound
formula, has a new parameter on which it implicitly depends, its WORLD OF EVALUATION.
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In possible worlds models, the connectives of first-order logic are interpreted classically
at the current world of evaluation. Modal operators are interpreted as restricted quantifiers
over worlds. The restriction is accomplished by using an ACCESSIBILITY RELATION Ri to
interpret 2i and 3i. At each world w, we identify a set of possibilities accessible by i
using Ri: fw0 j Riww0g. A formula is necessary at w when it is true at all these accessible
possibilities; a formula is possible at w when it is true at one of these accessible possibilities.

Various properties of modal operators can be captured by constraints on the worlds
and accessibility relations used to interpret them. In particular, given some intended
interpretation of the modal operators in a domain and appropriate combinations of the
three axiom schemes (VER), (PI), and (INC), we can obtain a suitable representative class
of models this way. For example, by admitting only reflexive relations for Ri, we capture
exactly the consequences of the (VER) axiom scheme for 2i. Now (VER) may also hold in
models which are not reflexive; in fact, no modal formula picks out exactly the reflexive
(or the irreflexive) accessibility relations [van Benthem, 1984]. Associating (VER) with
reflexive models suffices, however, because no modal formula can be true (or false) at a
world in an irreflexive model which satisfies all instances of (VER) unless that formula is
also true (or false) at some world in some reflexive model.

Similarly, we can impose a constraint of transitivity on Ri to obtain a representative class
of models to capture the (PI) scheme for2i, and we can use a constraint of inclusion Rj � Ri

to implement the (INC) scheme2iA � 2jA. Moreover, we can capture combinations of these
schemes straightforwardly by imposing combinations of these accessibility constraints.

Formally, these ideas are fleshed out using the following definitions. A Kripke model
for L2m;T is a tuple M = hW;R;D;Fi such that:

� W is a nonempty set of worlds.

� R is a family of m binary relations on W. If 2i is governed by (VER), then we impose
the additional restriction that Ri is REFLEXIVE: for all w in W, Riww. If2i is governed
by (PI), then we impose the additional restriction that Ri is TRANSITIVE: for all u, v
and w in W, if Riuv and Rivw then Riuw. Finally, if 2i and 2j are governed by (INC)
with2iA � 2jA, then we impose the additional restriction that Rj � Ri.

� D is a function assigning sets to elements of W such that all D(w) are nonempty and
for all u and v in W and all Ri, if Riuv then D(u) � D(v)

� F is an interpretation of constant symbols and relation symbols. For any constant
symbol c, F(c) 2 \fD(w) j w 2 Wg. For any n-ary relation symbol p, F(p)(w) �
D(w)n.

A term t is interpreted as an element of the model [[c]]w;g, where g is an assignment
taking variables to values in D(w). If t is a constant c, then [[c]]w;g = F(c); if t is a variable
x, then [[x]]w;g = g(x).

Then the truth of a formula p in M respect to a world of evaluation w and an assignment
g is defined by an inductive condition [[p]]w;g as follows:
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� [[r(t1; : : : ; tn)]]w;g exactly when h[[t1]]w;g; : : : ; [[tn]]w;gi 2 F(r)(w).

� [[p ^ q]]w;g exactly when [[p]]w;g and [[q]]w;g.

� [[p _ q]]w;g exactly when either [[p]]w;g or [[q]]w;g.

� [[p � q]]w;g exactly when either [[p]]w;g is false or [[q]]w;g is true.

� [[:p]]w;g exactly when not [[p]]w;g.

� [[8xp]]w;g exactly when for all e in D(w), [[p]]w;g
0

for the function g0 exactly like g
except that g0(x) = e.

� [[9xp]]w;g exactly when there is some e in D(w) such that [[p]]w;g
0

for the function g0

exactly like g except that g0(x) = e.

� [[2ip]]w;g exactly when for all v such that Riwv, [[p]]v;g.

� [[3ip]]w;g exactly when for some v such that Riwv, [[p]]v;g.

A formula p is valid in L2m;T exactly when, for every Kripke model M, [[p]]w;g is true for
all g and all w in W.

2.3 Proofs in Modal Logic and Modular Search
This section describes syntactic methods that allow the validity of formulas in L2m;T to be
determined. For expository purposes, we focus on proof systems for propositional modal
logic with a single modal operator only. Quantified systems with multiple modalities can
be constructed along the same lines, although they tend to involve considerable technical
complexity; their properties are similar to the corresponding simple propositional systems.

The analysis of these methods reveals the surprising difficulty of exploiting modularity
in inference while avoiding redundancy in search. As outlined informally in section 2.1,
imposing modularity allows the structure of modal formulas to be used to constrain candi-
date inferences. Several proof systems establish this modularity directly, by dividing the
construction of a proof into modular stages and restricting what inferences are applicable
at each stage. These constraints on inference make the modularity of modal logic concrete
in an intuitive way. However, the division of proof-search into modular stages entails
substantial redundancy. For example, the same inferences must be considered repeatedly
at many stages of the proof. In addition, statements whose use involves inferences at
several stages of proof are difficult to control. These redundancies prohibit the practical
use of these systems except on restricted classes of problems. This section reviews two
such systems: the Hilbert-style axiomatic method for modal inference, as typically con-
sidered in proofs of soundness and completeness for modal deduction, which is explored
in section 2.3.1; and structurally-scoped proof systems in the style of Gentzen, which are
explored in section 2.3.2.
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The semantics of modal logic suggests how these explicit stages of proof can be avoided.
A proof can associate each formula with the possible world to which it belongs and reason
explicitly about relations among worlds. This treats modal formulas exactly like formulas
of classical logic, and therefore allows deduction methods for classical logic like resolution
to be used directly. Such techniques, described in section 2.3.3, have the advantage of
avoiding redundancy. However, they have the disadvantage that there is no provision
for modularity in the structure of the proof; the classical techniques they are based allow
global interactions among ambiguities in the proof—as is required by the general absence
of modularity in classical logic.

To achieve modularity without redundancy, we need to exploit both modal syntax and
classical techniques. Sections 2.3.4 and 2.3.5 describe systems in which such exploitation
can be more easily described. Section 2.3.4 introduces a sequent calculus that operates
on modal formulas labeled with terms for possible worlds; section 2.3.5 shows how this
system is LIFTED to use unification. In this system, the labels on formulas and unification
eliminates the redundancy and unnecessary commitment inherent in structurally-scoped
sequent calculi. However, the modal syntax of formulas is available in deductions so that
constraints of modularity can be explicitly imposed.

This lifted, explicitly-scoped proof system will be our focus throughout the remainder
of the dissertation. In particular, Chapter 3 shows how to refine this proof system to impose
a modular, logic-programming search strategy, while Chapter 4 shows how to refine it
further to constrain the interaction of modular statements more efficiently.

2.3.1 Hilbert Systems

Inference in modal logic is most succinctly and intuitively characterized by Hilbert Systems.
In these systems, a proof is a linear sequence of formulas where each formula is either an
instance of one of numerous axioms, or derivable from earlier formulas by the action of
simple inference rules. (By contrast, the proofs considered in sections 2.3.2–2.3.5 have tree
structure and only a single axiom.) For the simplest propositional modal logic, K, there are
three axiom schemes:

A1: Any tautology of classical propositional logic
A2: 2A � (2(A � B) � 2B)
A3: 3A � :2:A

These are combined by two rules of inference:

R1:(modus ponens) From A and A � B infer B:
R2:(necessitation) From A infer 2A:

Principles relating scopes are accommodated by simply by adding the appropriate additional
axiom schemas.

This proof system is sound and complete: all and only valid statements have derivations
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in this system. A recent and thorough treatment of this system and proofs for this result can
be found in [Fagin et al., 1995, pp. 48–62] (among other places).

The axioms and inference rules of Hilbert systems square straightforwardly with the
informal conception of modularity and scope motivated in section 2.1. In particular, the
axiom A2 represents a direct statement that modular information can be combined in
inference with other modular information of the same type. This modularity is elevated to a
global characteristic of the proof system simply by the absence of any other rules that could
combine information across modules. Even the rule R2 of necessitation does not create a
new combination of information across scopes. It only allows a single, timelessly valid
statement to percolate into a nested scope.

Because of this straightforwardness, and because they directly import the results of
classical propositional logic, Hilbert systems can sometimes facilitate mathematical study
of modal systems, for example in proofs of soundness and completeness. However, there
are a number of computational drawbacks to Hilbert systems as a method for proof search.
One problem is the size of Hilbert proofs. Proofs in Hilbert systems can be rather involved,
because Hilbert systems involve rather cumbersome manipulation of assumptions. Consider
the S4 theorem in (21).

(21) 2(a � 2b) � 22(a � b)

A proof is provided in Figure 2.1; it requires fifteen steps and some brutally explicit
propositional reasoning. There is a compensating factor—the fact that Hilbert systems
allow results to be reused repeatedly after they have been established. This is required for
some formulas to have compact proofs and is not present in all proof systems [D’Agostino,
1992]. However the same advantage can be obtained without the drawbacks of Hilbert
systems with methods such as resolution. In deference to the complexity of Figure 2.1,
I will forgo the presentation of alternative proofs in this system (although theoretically-
minded readers might be interested in working out for themselves proofs in this system
which showed different ways of propagating modular information, or which illustrated the
modularity of modal case analysis).

A more substantial obstacle to automated proof in Hilbert systems is control of the
search space. This lack of control is reflected in the difficulty of summarizing intuitively
why some non-theorem cannot be proved in a Hilbert system. Take the non-theorem
2(p � q) _ 2p. In a Hilbert system, we cannot say that no rules could have applied to
yield this conclusion; in fact, many propositional tautologies might have been used to infer
this statement by modus ponens. We can only observe vaguely that because the Hilbert
system maintains a discipline of scope and modularity, none of these steps could have been
completed backward into a full proof.

A formal statement of this difficulty is that Hilbert Systems lack the SUBFORMULA

property common to proof systems used in efficient classical theorem-proving methods.
The subformula property guarantees that if a result Γ is provable in a system, then there
is a proof of Γ in the system in which each formula used is a substitution instance of a
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1. 2b � b [(VER)]

2. 2(2b � b) [necessitation, 1]

3. (2b � b) � (a � 2b) � (a � b) [instance of tautology (p � q) � (r � p) �
(r � q)]

4. 2((2b � b) � (a � 2b) � (a � b)) [necessitation, 3]

5. 2(2b � b) � 2((2b � b) � (a � 2b) � (a � b)) �
2((a � 2b) � (a � b)) [A2]

6. 2((2b � b) � (a � 2b) � (a � b)) � 2((a � 2b) � (a � b))
[modus ponens, 2, 5]

7. 2((a � 2b) � (a � b)) [modus ponens, 4, 6]

8. 2(a � 2b) � 2((a � 2b) � (a � b)) � 2(a � b) [A2]

9. (2(a � 2b) � 2((a � 2b) � (a � b)) � 2(a � b)) �
(2((a � 2b) � (a � b)) � 2(a � 2b) � 2(a � b))
[instance of tautology (p � q � r) � (q � p � r)]

10. 2((a � 2b) � (a � b)) � 2(a � 2b) � 2(a � b) [modus ponens, 8, 9]

11. 2(a � 2b) � 2(a � b) [modus ponens, 10, 7]

12. 2(a � b) � 22(a � b) [(PI)]

13. (2(a � 2b) � 2(a � b)) � (2(a � b) � 22(a � b)) �
(2(a � 2b) � 22(a � b)) [instance of tautology (p � q) � (q � r) � (p � r)]

14. (2(a � b) � 22(a � b)) � (2(a � 2b) � 22(a � b))
[modus ponens, 11, 13]

15. 2(a � 2b) � 22(a � b) [modus ponens, 12, 14]

Figure 2.1: Proving 2(a � 2b) � 22(a � b) in a Hilbert system.
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subformula of Γ (that is, the formula may be obtained from by this subformula by freely
substituting terms for free variables). In general, the use of complex axioms and modus
ponens runs counter to the subformula property, because it forces the deduction of a formula
B from a formula A to appeal to an explicit derivation of a more complicated formula, A � B.
In modal logic, in virtue of the nested application of modus ponens (using A2), the more
complicated formula that must be derived to carry the inference forward—2(A � B)—is
even more indirectly related to premise (2A) and conclusion (2B).

In theorem-proving, the subformula property is crucial for controlling search, because
it allows a search engine to rule out options for extending a proof as soon as those options
would introduce non-subformulas. Such methods of ruling out options are vital in allowing
a theorem-prover to detect failure in one branch of proof search and move on to another. The
subformula property also streamlines theorem-proving by enabling a variety of methods for
improving space usage by structure-sharing [Boyer and Moore, 1972].

2.3.2 Structurally Scoped Sequent Calculi

One way to construct a modal proof system that does satisfy the subformula property is
to extend the cut-free sequent calculus of classical logic of [Gentzen, 1935] with rules for
modal operators. The sequent calculus works with statements of the form Γ - ∆, where
Γ and ∆ are both multisets of formulas. Such statements, called SEQUENTS, indicate that
one of the ∆ formulas always holds, assuming all the formulas in Γ do. Rules for logical
connectives can be written so as to derive any sequent containing a complex formula
from a related sequent or sequents involving its constituents. [Gentzen, 1935] proved
a fundamental result showing that such rules, which guarantee the subformula property,
suffice to describe classical and intuitionistic deduction. This result can be extended to
many modal logics—notably including S4, where Gentzen-style sequent systems go back
to [Onishi and Matsumoto, 1957; Onishi and Matsumoto, 1959; Kanger, 1957]. (See also
[Fitting, 1983].) The new rules for modal operators are set up so as to directly follow the
modularity of modal logic. For example, to implement the requirement that a necessary
statement must be proved by taking only other necessary information into account, the
sequent rule for proving necessary statements discards formulas from Γ and ∆ that do not
represent necessary information.

A sample modal sequent calculus is shown in Figure 2.2. It covers the propositional
logic of a single S4 modal operator 2 (governed by (VER) and (PI)). This sequent calculus
represents a sound and complete inference system for the same semantics as the Hilbert
system characterizes; it is an equivalent system. (For example, [Smullyan, 1973] leverages
his trademark metatheoretic concision to prove this.) However, this system respects the
subformula property, because reasoning can be performed directly inside the scope of modal
rules, without the mediation of rules like necessitation (R2) or axioms like consequential
closure (A2).

Proofs in this system are trees built in accordance with the inference rules in the figure.
The label of a node in a proof-tree is a sequent; the label of the root of a proof is called its
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Γ;A - A;∆ initial

Γ;A ^ B;A;B - ∆
Γ;A ^ B - ∆ ^ !

Γ - A ^ B;A;∆ Γ - A ^ B;B;∆
Γ - A ^ B;∆ ! ^

Γ;A _ B;A - ∆ Γ;A _ B;B - ∆
Γ;A _ B - ∆ _ !

Γ - A _ B;A;B;∆
Γ - A _ B;∆ ! _

Γ;A � B - A;∆ Γ;A � B;B - ∆
Γ;A � B - ∆ �!

Γ;A - A � B;B;∆
Γ - A � B;∆ !�

Γ;:A - A;∆
Γ;:A - ∆ : !

Γ;A - :A;∆
Γ - :A;∆ ! :

Γ;2A;A - ∆
Γ;2A - ∆ 2!

f2B j 2B 2 Γg - A; f3B j 3B 2 ∆g
Γ -

2A;∆ ! 2

Γ - A;3A;∆
Γ -

3iA;∆ ! 3

f2B j 2B 2 Γg;A - f2B j 2B 2 ∆g
Γ;3A - ∆ 3!

Figure 2.2: Structurally-scoped, cut-free sequent calculus for the propositional modal logic
of a single S4 modal operator 2.
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end-sequent.
Any instantiation of the initial rule Γ;A - A;∆ is a proof (so a result of A and any

other facts can be derived from an assumption of A and any other facts). Given proofs D1

and D2 with end-sequents Γ1
- ∆1 and Γ2

- ∆2, for any

Γ1
- ∆1

Γ - ∆

that instantiates a (unary) inference rule of Figure 2.2, the tree

D1

Γ - ∆

is a proof; for any
Γ1

- ∆1 Γ2
- ∆2

Γ - ∆

that instantiates a (binary) inference rule, the tree

D1 D2

Γ - ∆

is a proof. All proofs are constructed in accordance with these schemes.
Although it is convenient to define proofs by this top-down characterization, it is

typically more natural to read proofs from bottom up, as a record of proof-search for an
end-sequent. Read thus, each rule DECOMPOSES the outer connective in a distinguished
formula in the end-sequent, called the PRINCIPAL FORMULA of the rule. This yields new,
typically smaller search problems: the immediate subformulas of the principal formula, the
SIDE FORMULAS of the rule application, occur in the end-sequents of D1 (and D2) in place
of the principal formula. As written in Figure 2.2, the inference rules also carry over the
principal formula from the end-sequent to higher sequents. This convention allows formulas
to be used repeatedly in proofs (without it, a structural rule of contraction is required), but
since the duplicated formulas clutter proofs I will occasionally suppress them. (For more
on alternative representations of structure in sequent proofs, see e.g. [Gallier, 1993].)

Informally, proofs in this system consist of contiguous regions where reasoning is
performed in a single scope or modular context. In the proof, applications of (!) and
(3!) mark the boundaries between scopes. The entire subproof ABOVE each application
is more deeply NESTED in scope, by the application of one 2 operator. The (2 !) and
(! 3) rules represent applying necessary information in the current scope.

The restriction that only necessary information can be used in nested scopes—or that
necessary information can only be used in nested scopes—is achieved by filtering the
formulas in the sequent at scope transitions. This filtering can be designed to reflect the
laws of a variety of modal logics. Only those formulas that describe the nested scope will
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survive the transition from below the application of (! 2) to above it; the rest will be
discarded. Above the transition, surviving formulas are modified to reflect their strength in
the new, nested scope. Thus, in the S4 rules shown in Figure 2.2, necessary formulas are
kept while others are discarded; and the necessary formulas remain necessary above the
transition, in keeping with (PI). For some logics, the (2!) and (! 3) rules also have to
introduce boundaries, because in these logics necessary information can be applied ONLY in
nested scopes. In Figure 2.2 the rules do not introduce boundaries; this achieves the effect
of the (VER) axiom of S4.

The informal characterization of modularity in the structurally scoped sequent calculus
of Figure 2.2 can be substantiated with concrete illustrations of the proof system. For
example, with reference to a few simple cases, we can explain why there is no proof for a
non-theorem like2(p � q) _2p (where a proof would have to circumvent the modularity
of the assumption of p). The proof must end with the (! _) rule, above which (! 2)

must apply to one of the new formulas. Two alternative proof fragments might be derived:

(22) a

!- p � q
- 2(p � q);2q ! 2

- 2(p � q) _2q ! _

b

!- q
- 2(p � q);2q ! 2

- 2(p � q) _2q
! _

Note how in either case, when the (! 2) rule applies, alternative formulas from ∆ are
discarded, accomplishing a transition to a new modular subproof of the overall derivation.
The goals that remain in these subproofs are classical sequents that are obviously unprovable
(as the sequent calculus rules are promptly, if not immediately, exhausted).

Where (22) shows how structure of proofs enforces modularity, Figures 2.3, 2.4 and
2.5 show how proofs can record different strategies for applying modal information. The
figures provide proofs in this system of three sequents involving a single S4 modality:

2(a � 2b) - 22(a � b)
2(a � 2b) - 2(a � 2b)
2(a � 2b) - a � 22b

The theorems involve necessary assumptions that may be used in three different scopes:
twice nested, once nested, or not nested at all.

The key difference between the different proofs is the scope (and thus the order) in
which the lower (2!) rule applies. This rule is highlighted by a box in the proofs. In the
first proof, this rule lies inside two nested scopes—above both applications of (! 2). In
the second, it lies inside one—above one application of (! 2). In the third, it is used at
root scope.

The scoped location of this application of (2 !) is crucial in each case to allowing
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a - a

b - b
2b - b

2!

a; a � 2b - b
�!

a;2(a � 2b) - b
2!

2(a � 2b) - a � b
!�

2(a � 2b) - 2(a � b)
! 2

2(a � 2b) - 22(a � b)
! 2

Figure 2.3: Example theorem 1 in a structural system.

a - a

b - b
2b - b

2!

2b - 2b
! 2

a; a � 2b - 2b
�!

a;2(a � 2b) -
2b

2!

2(a � 2b) - a � 2b
!�

2(a � 2b) - 2(a � 2b)
! 2

Figure 2.4: Example theorem 2 in a structural system.

the proof to be completed. All three proofs rely on an application of (�!) whose left
branch consists of the axiom link a - a. This (�!) application must be performed in
the scope in which a is introduced. On the one hand, the rule cannot be used before a is
assumed—and thus before the nested scope is introduced from the formula to be proved.
On the other, this assumption, once made, is contingent: it can be used as an assumption
only in the scope in which it is introduced, and will not pass the filtering of higher (! 2)

rules.
As a final example of the sequent calculus of Figure 2.2, we look at its modular treatment

of modal disjunction. We consider the theory Γ specified in (23).

a - a

b - b
2b - b

2!

2b - 2b
! 2

2b - 22b
! 2

a; a � 2b -
22b

�!

a;2(a � 2b) -
22b

2!

2(a � 2b) - a � 22b
!�

Figure 2.5: Example theorem 3 in a structural system.
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1 =

Γ; a - a Γ; c - c
Γ; a; a � c - c �!

Γ; a - c
2!

Γ; b - b Γ; c - c
Γ; b; b � c - c �!

Γ; b - c
2!

Γ; a _ b - c _ !

Γ - c
2!

Γ - 2c
! 2

2 =

Γ; d - d Γ; f - f
Γ; d; d � f - f �!

Γ; d - f
2!

Γ; e - e Γ; f - f
Γ; e; e � f - f �!

Γ; e - f
2!

Γ; d _ e - f _ !

Γ - f
2!

Γ - 2f
! 2

1 2
Γ - 2c ^2f

! ^

Figure 2.6: Modular disjunction in the structurally scoped sequent calculus

(23) Γ � 2(a _ b);2(a � c);2(b � c);2(d_ e);2(d � f);2(e � f)

Γ is a modular variant of a disjunctive database presented in [Loveland, 1991]; it offers
the simplest nontrivial illustration of the possible independence of case analysis. The
theory establishes two modular disjunctions, 2(a _ b) and 2(d _ e). From these modular
disjunctions, modular results 2c and 2f follow.

The proof of 2c^2f is presented in Figure 2.6 and opens the door to an explanation of
how the sequent calculus enforces the modularity of disjunction by syntactic manipulations
on sets of formulas. The explanation goes as follows. Consider the placement of the (2!)

rule that applies to the assumption of 2(a _ b). This inference must occur higher in the
proof than the (! 2) inference that applies to 2c. Otherwise, any assumptions of a _ b,
a and b would eventually have to be discarded, and no progress toward the proof of c
would have been made. For similar reasons, the (2!) rule that applies to the assumption
of 2(d _ e) must occur higher than the (! 2) inference that applies to 2f. But the two
(! 2) inferences must apply in different branches of the proof—this is a consequence
of the (! ^) inference figure. This means that the two disjunctions must also occur in
different branches of the proof tree. The arguments-by-cases in this proof are thus forced
to be independent. Thus, in exhibiting this independence, the proof in Figure 2.6 is not
biased but in fact illustrates the only strategy by which a proof of this theorem could be
constructed.
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The informal discussion of these examples has used the structural discipline of scope
realized in the sequent calculus of Figure 2.2 to reason concretely about the possibilities and
limits of modular inference. And indeed this calculus can be useful for logic programming,
where it offers a starting point for specialized inference algorithms for restricted fragments
of the logic; it underlies [Miller, 1989; Giordano and Martelli, 1994]. However, this
calculus turns out to be inappropriate for computational use in a general setting. For more
general inference problems, the significance of the relative positions of rules in a proof
introduces a problematic redundancy into the search space that is not found in classical
logic.

In classical sequent calculi, rules can be freely interchanged, as long as the structure
of formulas is respected and quantifier rules continue to introduce new variables as neces-
sary [Kleene, 1951]. Exploiting this property in search is a key feature of classical theorem
provers. For example, resolution [Robinson, 1965b] and matrix [Andrews, 1981; Bibel,
1982] theorem-proving methods can be seen as optimizations of sequent calculi which by-
pass the redundancy of considering different orderings of rules separately. In contrast, the
sequent calculus of Figure 2.2 does not allow this optimization, because of the qualitative
difference of different orderings of rules.

In practice (especially for first-order problems), the redundancy of rule-ordering in-
troduces more than combinatorial difficulties—as if combinatorial difficulties aren’t bad
enough! Automated deduction engines must build sequent proofs from the root up, but
can only determine whether a move is helpful by matching atomic formulas at leaves.
Since rules must be introduced in the right order—at the right time in construction of the
proof—automated methods must be prepared to apply a rule before they know whether the
application will even be needed. Thus, the regime for imposing scope on proofs means that
proofs can no longer be constructed in a goal-directed manner.

2.3.3 Semantic Translation and Resolution

If departures from classical logic are so problematic, perhaps we must completely assimilate
modal theorem-proving to classical theorem-proving. This is the idea behind semantic
translation. Kripke semantics puts any modal formula in correspondence with a classical
logic formula which describes a modal model explicitly. Translating the modal formula into
this corresponding classical one permits the use of ordinary classical reasoning methods,
particularly resolution [Robinson, 1965b].

The basic strategy is known as the reified method for modal deduction. This method
translates modal formulas using primitive terms for possible worlds and ordinary formulas
that explicitly state links of accessibility between worlds. After this translation, constraints
of accessibility are treated at the same time and by the same mechanisms as the ordinary
first-order features of a modal specification. [Moore, 1985a; Jackson and Reichgelt, 1987]
represent early computational work on the reified approach to modal deduction. A caveat
about this technique is in order. Although all the axioms dealt with in this dissertation can be
modeled by first-order conditions on accessibility—a fact which is assumed henceforth—
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not all modal frame axioms do correspond to first-order constraints on models; see [van
Benthem, 1983; van Benthem, 1984]. The basic reified approach will not work in such cases,
although refinements might (particularly those based on equational reasoning) [Ohlbach,
1993].

More refined strategies perform modal reasoning by combining an inference method
for classical logic with special-purpose techniques for handling accessibility. One example
of such a hybrid system is developed by [Frisch and Scherl, 1991] in the context of the
substitutional framework for constrained resolution [Frisch, 1991]. In this system, ordinary
first-order clauses are paired with constraints that indicate accessibility relations among
worlds. As resolution combines clauses, a special module ensures that the associated set of
constraints are consistent with an appropriate logical theory of accessibility.

A similar alternative is to use compound terms for worlds instead of first-order state-
ments to encode accessibility. Instead of naming a world atomically, each term specifies
the sequence of transitions that is needed to reach that world from a designated starting
point (the real world). This FUNCTIONAL TRANSLATION goes back to modal proof-theory of
[Fitting, 1972; Smullyan, 1973] and is explored in [Wallen, 1990; Ohlbach, 1991; Auffray
and Enjalbert, 1992]. Like the constraint approach, functional translation allows a special-
ized module to deal with relations between worlds in parallel with resolution: now it is
equational unification, rather than constraint propagation.

All of these methods are designed to allow modal theorem proving to work using
resolution, or related techniques like the connection or matrix method [Andrews, 1981;
Bibel, 1982]. By nature, these methods are designed to allow information to flow freely
around a proof. They can match any positive occurrence of an atomic formula against a
negative occurrence of the same atomic formula no matter where the two literals derive
from in the original statement of the theorem-proving problem. Because of this, it is very
difficult to get resolution to enforce modularity—restrictions on how formulas can be used—
in a predictable and powerful way during proof search. Improvements on the basic form of
resolution, including constraint or equational methods, are significant and successful largely
because they allow systems to use modularity more directly to prune search. Nevertheless,
not even the improvements provide as strong a realization of modularity as the structurally-
scoped sequent calculi.

To appreciate these points requires a careful understanding of resolution proof, as it is
applied in reified deduction. Generally, resolution proof is a technique for showing that
a set of statements is inconsistent; to show that a goal follows from a set of assumptions,
resolution can derive a contradiction from the assumptions together with the negation of
the goal.

The process of reified resolution theorem-proving begins by transforming the input
statements into a canonical form as a set or conjunction of CLAUSES, where a clause is a
disjunction of LITERALS and a literal is an atomic formula or its negation. Any classical
statement is equivalent to a conjunction of clauses—thus using the Kripke semantics (and
first-order frame properties) any modal statement is too. Resolution then repeatedly derives
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new clauses by combining input clauses together according to a simple operation. If
this process derives the empty clause (the disjunction of no literals), the statements are
inconsistent.

A modal statement is transformed into a corresponding set of clauses in several steps.
The statement is first replaced by its semantics, which is then converted to prenex form, so
that all quantifiers are initial. The existential quantifiers are replaced by Skolem functions
and the universal quantifiers are replaced by free variables. This gives a propositional
statement with free variables. This propositional statement is then converted to clausal
form using de Morgan’s laws and the distribution of disjunction over conjunction.

For example, take 2(a � 2b) in S4. Using a Kripke semantics where s0 names the
initial world of evaluation, this formula is true in a model exactly when (24) is.

(24) 8w1(R(s0;w1) � a(w1) � 8w2(R(w1;w2) � b(w2)))

After quantifier elimination, (24) simplifies to (25).

(25) R(s0;w1) � a(w1) � R(w1;w2) � b(w2)

Its clausal form is given in (26).

(26) :R(s0;w1)_ :a(w1) _ :R(w1;w2) _ b(w2)

A goal for proof is negated and then added as an additional set of clausal assumptions.
Thus, to test whether2(a � 2b) entails22(a � b) from 2(a � 2b), we must add to (26)
the negation of 22(a � b)—translated to its four clauses in (27) using Skolem constants
s1 and s2—and attempt to derive a contradiction.

(27) R(s0; s1);R(s1; s2); a(s2);:b(s2)

For a particular modal logic, we must also provide clausal premises that specify any
constraints on the accessibility relation. For example, for S4, we add clauses for reflexivity
and transitivity of the relation, as in (28).

(28) a R(x; x)
b :R(x; y)_ :R(y; z) _ R(x; z)

The inference operation of resolution takes two clauses and yields a new clause that is
a logical consequence of its inputs. Formally, the rule goes as follows. The inputs are a
clause C1_ l which is the disjunction of a positive literal l and a set of other literals C1; and a
clause C2 _:r which is the disjunction of a negative literal :r and a set of other literals C2.
The two clauses are assumed to have no variables in common (variables can be renamed if
necessary to meet this assumption). The literals l and r are UNIFIED if possible, to produce
a substitution � which assigns values to the variables in l and r such that l� = r�. Given
�, resolution derives the new clause N = C1� _ C2�. To see why this follows, suppose
l� is true; then :l� (which is identical to :r�) is false and hence some other disjunct in
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1. :R(s0;w1) _ :a(w1) _ :R(w1;w2) _ b(w2) [(26)]

2. a(s2) [(27)]

3. :R(s0; s2)_ :R(s2;w2) _ b(w2) [1,2]

4. :b(s2) [(27)]

5. :R(s0; s2)_ :R(s2; s2) [3,4]

6. R(w;w) [(28)]

7. :R(s0; s2) [5,6]

8. :R(x; y) _ :R(y; z)_ R(x; z) [(28)]

9. :R(x; y) _ :R(y; s2) [7,8]

10. R(s1; s2) [(27)]

11. :R(x; s1) [9,10]

12. R(s0; s1) [(27)]

13. contradiction [11,12]

Figure 2.7: A resolution proof by semantic translation of the S4 theorem 2(a � 2b) !
22(a � b)

C2�_:r� must be true for this case. Otherwise, l� is false—and hence some other disjunct
in C1� _ l� must be true for this case. This establishes that some disjunct in N is always
true.

Resolution theorem-proving consists in repeatedly deriving new clauses by resolution
from assumptions and those clauses already derived until the empty clause is derived and
a contradiction is thereby established. A sample resolution proof based on the clauses
presented in (26), (27) and (28) is given in Figure 2.7.

In a proof like Figure 2.7, the scope at which a rule is used is represented by the world-
term at which the rule is instantiated and the facts of accessibility linking that world-term
to others. For example, here as in Figure 2.3, the rule a � 2b is applied in a twice-nested
scope. Here that is expressed not by the position of inferences in the derivation, but by the
term s2 at which the rule is instantiated, and by the double link of accessibility that connects
s0 to s2.

In some cases, modularity is enforced in resolution just by the names assigned to
possible worlds. Our non-theorem2(p � q)_2p is a good example. It translates into the
semantic clauses given in (29).
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(29) R(s0; s1); p(s1);:q(s1);R(s1; s2);:p(s2)

The universal quantifiers associated with the two modal operators are translated by different
Skolem constants, s1 and s2. Thanks to the difference, there is no substitution that unifies
p(s1) and :p(s2). Therefore, no step of resolution will succeed in combining these facts.
This respects the modularity of the modal statements.

When it comes to the use of modular assumptions, however, pure reified translation and
resolution is less satisfactory. Evidence of this is available already in Figure 2.7. Up to
line 5, the proof takes only the first-order part of the specification into account; the proof
resolves away the occurrences of :a(w1) and b(w2) in (26) without even considering any
relations of accessibility. Now, :a(w1) and b(w2) will continue be translated in terms
of free variables w1 and w2 as long as necessity operators occur at the same positions in
initial modal formula. Which necessity operator is chosen affects only which relations of
accessibility link s0, w1 and w2. This means that the beginning of the proof in Figure 2.7
doesn’t depend on the choice of necessity operators either. So modularity might not be
taken into account in restricting search at all!

Indeed, using pure resolution, no necessary statement is guaranteed to be used only
in a modular way. The application of any statement to the current problem is contingent
on showing the relationship between sets of worlds. This is one goal among many in
resolution. The resolution search strategy doesn’t say anything about when to attack such
goals. Thus goals of relatedness might always be delayed. But as long as they are delayed,
modal operators don’t constrain the search in any way over the corresponding classical
case.

Constraint and equational approaches to modal deduction are ways to get some of the
modularity back. The constraint approach, developed in [Frisch and Scherl, 1991] as an
extension of [Frisch, 1991], is perhaps the easier to understand. In this approach, each
statement takes the form of a constrained clause C=R. C is an ordinary clause describing
first-order information, while R is a constraint that specifies a conjunction of accessibility
restrictions on the free world variables in C. Such constraints are governed by the usual
theory of accessibility in the modal language, and, if necessary, a further specification of
what accessibility constraints hold of Skolem constants that name worlds.

Statements are combined by a hybrid reasoning system. The first-order clauses are
resolved using ordinary resolution, and an updated constraint is computed simultaneously.
This computation must consistently reduce relatedness constraints among constants or
Skolem-functions to relatedness constraints that follow from the basic theory; if the con-
straints become unsatisfiable the new statement is rejected. The remaining constraints of
relatedness on free world variables are associated with the new statement. This processing
strategy means that constraints on the accessibility relation are taken into account as soon
as possible. This helps to guarantee that information is used in a modular way.

For example, the statement corresponding to 2(a � 2b) on the constraint approach is
(30).
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(30) :a(w1) _ b(w2)=R(s0;w1);R(w1;w2)

When we combine (30) with a(s2) by resolution, we get the first-order clause b(w2). At
the same time, we are obliged to meet the constraint R(s0; s2) which now relates ground
terms. In this case, we can meet this constraint by using the transitivity of accessibility to
link s0 to s2 through s1. In alternative circumstances, if the relation R(s0; s2) could not be
immediately established, this step of constrained resolution would be impossible. Thus,
the discipline of checking constraints is a tool that permits inferential combinations of facts
that violate modularity to be detected and rejected as early as possible.

The resulting constrained clause is given in (31).

(31) b(w2)=R(s3;w2)

Just a single further modular step of constrained resolution is required to complete the
hybrid proof.

Where the approach of [Frisch and Scherl, 1991] encodes accessibility by distinguished
constraints on terms, equational approaches encode accessibility by giving a special struc-
ture to terms themselves. The technique goes back to Fitting’s use of prefixes [Fitting,
1972], and has since been considerably refined [Smullyan, 1973; Fitting, 1983; Wallen,
1990; Ohlbach, 1991; Auffray and Enjalbert, 1992].

From a semantic point of view, the heart of the equational technique is a refinement of
the usual definition of Kripke models. This alternative takes paths between possible worlds
as primitive [Ohlbach, 1991; Ohlbach, 1993]. Instead of using relations Ri directly, models
are constructed in terms of a set of partial functions AFi such that Ri(u; v) if and only if
9f 2 AFi:v = f(u). This change works its way into the truth-conditions for modal formulas:
2iA is true at w just in case A is true at f(w) for all f 2 AFi with f(w) defined.

The new model theory induces a change in the translation of modal formulas into
classical logic. In the translation, worlds are named by complex terms that give the sequence
of transitions required to reach them from the real world s0. For example, the term ��

names the world reached by starting at s0, following the transition �, then following the
transition � and finally following the transition .

The usual axioms of modal logic now correspond to equational generalizations about
sets of accessibility functions. For example, to obtain sound and complete models for
(VER), we introduce the constraint that AFi include an identity transition � such that �� = �.
(The presence of this axiom also means that for these logics we can restrict attention to
cases where AFi includes only total functions.) Meanwhile, to obtain sound and complete
models for (PI), we introduce the constraint that AFi include a transition � � � for any pair
of transitions � and �, with �(� � �) = ���. (The notation � serves as a reminder that
� � � 2 AFi.) We capture the (INC) scheme2iA � 2jA with the constraint that AFj � AFi.

To implement the equational approach, appropriate equations must be factored into the
unification method used to resolve literals. The equational method guarantees that there is
a consistent way to link the worlds mentioned in a clause along paths of accessibility where
modularity of inference is eagerly enforced. Thus, the effect of these steps of equational
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unification is similar to the effect of constraints in constrained resolution. (In fact, [Frisch
and Scherl, 1991] show that an equational unifier would count as an instance of their
substitutional framework.)

We can illustrate with the example of Figure 2.7 again. 2(a � 2b) is now translated
and put in the clausal form of (32).

(32) :a(s0x1) _ b(s0x1x2)

The goal 22(a � b) is negated and put in clausal form as in (33).

(33) a(s0�1�2);:b(s0�1�2)

We unify the literals a(s0x1) and a(s0�1�2) by assigning x1 = �1 � �2. The assignment
exploits the equation implementing the (PI) scheme of S4; it indicates that x1 should span
the two steps of accessibility corresponding to the two modal operators in the original goal.
The result of resolution is b(s0(�1��2)x2). This resolves against:b(s0�1�2) in one further
step of equational resolution, in which the variable x2 gets the value � in keeping with the
need to instantiate the necessary statement 2b at the present world, and the equational
interpretation of the (VER) scheme of S4.

While constraint and equational approaches to modal resolution can help to ensure that
two facts are not combined together unless they specify compatible kinds of information—
so that resolution proofs always maintain modular information-flow—these approaches are
not sufficient to ensure that the structure of proofs is also modular. This means that the
search space will include proofs that are unnecessarily large. One consequence of this is
that these refinements of resolution do not factor into search the modularity of disjunction
motivated in section 2.1.3 and illustrated for structurally scoped proofs in section 2.3.2.

For example, consider again the modular theory Γ introduced in (23) and repeated as
(34) below.

(34) 2(a _ b);2(a � c);2(b � c);2(d _ e);2(d � f);2(e � f)

2c^2f is a consequence of this theory. The clausal version of (34), and this query negated,
are presented in Figure 2.8 in the notation of constrained resolution.

As we saw in section 2.3.2, this consequence ought to be established in a modular way.
Any proof by cases that depends on a modular disjunction must be resolved at the world
where the disjunction is introduced. The labeling of a resolution proof is not sufficient
to ensure this, however. It’s true that you can perform resolution steps in a modular way,
as in Figure 2.9. We can see the modular structure of this proof at lines 5 and 12. Take
line 5. Here we have a single literal in the clause c(w1), where (strictly speaking) you
might expect the disjunction c(w1)_ c(w1). The two identical disjuncts are collapsed by an
operation called FACTORING which is implemented in most resolution provers. The use of
factoring here indicates that the case analysis introduced at a(w1)_b(w1) is now effectively
over. We are left with a single common case: c(w1). Factoring of f(w1) also occurs at line
12. This shows that the two case analyses in the proof are being resolved independently.
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a(w1) _ b(w1)=R(s0;w1)
:a(w1)_ c(w1)=R(s0;w1)
:b(w1)_ c(w1)=R(s0;w1)
d(w1) _ e(w1)=R(s0;w1)
:d(w1) _ f(w1)=R(s0;w1)
:e(w1) _ f(w1)=R(s0;w1)
:c(u1) _ :f(v1)

Figure 2.8: Modal disjunctive specification for constrained resolution.

1. a(w1) _ b(w1)=R(s0;w1) [premise]

2. :a(w1) _ c(w1)=R(s0;w1) [premise]

3. b(w1) _ c(w1)=R(s0;w1) [1,2]

4. :b(w1) _ c(w1)=R(s0;w1) [premise]

5. c(w1)=R(s0;w1) [3,4]

6. :c(u1) _ :f(v1) [premise]

7. :f(v1) [5,6]

8. d(w1) _ e(w1)=R(s0;w1) [premise]

9. :d(w1) _ f(w1)=R(s0;w1) [premise]

10. e(w1) _ f(w1)=R(s0;w1) [8,9]

11. :e(w1) _ f(w1)=R(s0;w1) [premise]

12. f(w1)=R(s0;w1) [10,11]

13. contradiction [7,12]

Figure 2.9: Resolution proof that uses modal disjunction in a modular way
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This separation would always be allowed in a resolution proof—whether in modal logic
or classical logic. Here the separation naturally fits the meanings of the modal statements.
The two disjunctions are modular, so the meanings of these statements indicate that the two
ambiguities should not interact in the proof.

Although this modular force is naturally associated with the modal statements, nothing
about resolution proof search mandates the independence. In fact, in resolution, the values
of terms for possible worlds has no impact on the independence of disjunctions or the
explicitly modular structure of a proof. For example, derivations like the one in Figure 2.10
are perfectly possible. This proof abandons modularity at line 5 because the case analysis
based on whether a or b is true in world u1 is not resolved at world u1 itself. There is no
factoring. Instead line 5 permits global case analysis—one case where b is true at world
u1 and another case where f is false at world v1. This global case analysis causes several
extra steps to be included in the proof. Overall, lines 1 through 9 of the proof handle only
the global case where a is true at world u1 and d is true at world v1. Then lines 10 through
13 are required to handle the case where b is true at world u1 and d is true at world v1. At
this point—when the modular proof is already completed—this proof has only dispensed
with the case where d is true, leaving the cases where e is true yet to be handled. Lines 14
through 17 handle the cases where e and a are true; that leaves lines 18 through 20 to finish
the proof on the cases where e and b are true.

Of course, this proof has the same meaning as the previous one. The modular use
of information that is part of modal logic continues to be respected. This could not be
otherwise, given the correctness of the proof method. However, modularity is not being
used to constrain search in as strong a way as it could be. To impose such constraints we
need to look more closely at the structure of modal proofs—and stick more closely to the
syntax of modal logic itself.

2.3.4 Explicitly-scoped Sequent Calculi

The starting point for this analysis is an EXPLICITLY-SCOPED sequent calculus, such as that
presented for propositional S4 in Figure 2.11. This sequent calculus is a notational variant
of a tableau system presented in [Smullyan, 1973]. It can be motivated in several ways.

From one point of view, this calculus presents rules for modal proof that interleave and
combine functional translation for modal formulas with the inference figures of the classical
sequent calculus.

Each formula in the proof is labeled with with a STRING from a distinguished alphabet
of scope variables. (A string is just a term built using an associative binary operation of
concatenation with left- and right- identity �. I will write annotation variables �, �, etc.; I
will use �, � etc. to represent strings.) As in the functional translation, this string encodes
the path to the world where the formula is evaluated semantically.

The inference figures reduce labeled modal formulas into components by accessing
the classical translation of the main connective of the modal formula and realizing the
corresponding classical inference. For example, for the connectives of ordinary first-order
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1. a(w1) _ b(w1)=R(s0;w1) [premise]

2. :a(w1) _ c(w1)=R(s0;w1) [premise]

3. b(w1) _ c(w1)=R(s0;w1) [1,2]

4. :c(u1) _ :f(v1) [premise]

5. b(u1)_ :f(v1) [3,4]

6. d(w1) _ e(w1)=R(s0;w1) [premise]

7. :d(w1) _ f(w1)=R(s0;w1) [premise]

8. e(w1) _ f(w1)=R(s0;w1) [6,7]

9. b(u1)_ e(v1) [5,8]

10. :b(w1) _ c(w1)=R(s0;w1) [premise]

11. c(u1) _ e(v1) [9,10]

12. :c(u1) _ e(v1) [4,8]

13. e(v1) [11,12]

14. :e(w1) _ f(w1)=R(s0;w1) [premise]

15. f(v1) [13,14]

16. :c(u1) [4,15]

17. :a(u1) [2,16]

18. b(u1) [1,17]

19. c(u1) [10,18]

20. contradiction [16,19]

Figure 2.10: Resolution proof with modal disjunction but without modular structure.
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� = �
Γ;A� - A� ;∆ initial

Γ;A ^ B�;A�;B� - ∆
Γ;A ^ B� - ∆ ^ !

Γ - A ^ B�;A�;∆ Γ - A ^ B�;B�;∆
Γ - A ^ B�;∆ ! ^

Γ;A _ B�;A� - ∆ Γ;A _ B�;B� - ∆
Γ;A _ B� - ∆ _ !

Γ - A _ B�;A�;B�;∆
Γ - A _ B�;∆ ! _

Γ;A � B� - A�;∆ Γ;A � B�;B� - ∆
Γ;A � B� - ∆ �!

Γ;A� - A � B�;B�;∆
Γ - A � B�;∆ !�

Γ;:A� - A�;∆
Γ;:A� - ∆ : !

Γ;A� - :A�;∆
Γ - :A�;∆ ! :

Γ;2A�;A�� - ∆
Γ;2A� - ∆ 2!

Γ -
2A�;A��;∆

Γ -
2A�;∆ ! 2

y

Γ -
3A�;A�� ;∆

Γ -
3A�;∆ ! 3

Γ;3A�;A�� - ∆
Γ;3A� - ∆ 3!y

Figure 2.11: Path-based, explicitly-scoped, cut-free sequent calculus for propositional S4
modal logic. The initial rule specifies a derivation as long as � and � are equal strings.
y For (! 2), (3!), � must not appear in the conclusion sequent.



50 MATTHEW STONE

logic, the inference figures preserve the labels of principal formulas just as the modal
semantics preserves the world of evaluation. (Note that the inference figures of the calculus
are presented with the same conventions of composition and structure as the structurally-
scoped calculus of Figure 2.2. In particular, the inference figures here also carry over the
principal formula from the end-sequent to higher sequents to avoid a contraction rule—and
again I will generally suppress this for clarity.)

Meanwhile, the (! 2) and (3!) rules create a NEW nested scope by appending a new
variable (representing an arbitrary transition from one possible world to another) to the label
of the side formula. Conversely, the (2!) and (! 3) rules allow the path to the world of
evaluation to be extended by one transition by instantiation. Thus, these figures implement
the inference for the quantifier in the modal truth conditions. Finally, the initial rule in
this system requires the labels of formulas to match, as well as the formulas themselves.
Thus, an atomic result can be inferred at a given world only in virtue of an assumption
introduced at that world by some lower modal rule. I write this using an auxiliary judgment
� = � because in a computational implementation of the calculus, this check requires work;
� and � may have different representations. Accordingly, the leaves of a derivation are
statements � = � where � and � are equal as strings. From such statements, derivations
are constructed according to the rules of the calculus as usual.

Because of its explicit scoping, this new system is somewhat more expressive than the
structurally-scoped modal proof system. The correspondence between them is stated as
follows: there is a derivation with end-sequent Γ - ∆ in the structurally-scoped sequent
calculus of Figure 2.2 if and only if there is a derivation with end-sequent Γ - ∆ in
the explicitly-scoped sequent calculus (i.e., every formula in antecedent and succedent of
the sequent is labeled with �). This result is most directly established by showing that the
explicitly-scoped calculus is also sound and complete for the usual semantics of modal
logic [Smullyan, 1973].

From another point of view, this calculus represents merely a syntactic elaboration of the
structurally-scoped sequent calculus presented in section 2.3.2. The new calculus simply
rewrites the rules of the old calculus in a notation that gives inferences the same interpretation
no matter where those rules appear in the proof. We achieve this by labeling each formula
A in a proof with a distinguished term � that represents the SCOPE of the formula. The term
LISTS the sequence of scope-changing inferences—(! 2) and (3!)—that should apply
in a structurally-scoped proof from the root to the inference that introduces this occurrence
of A. The scope of each rule application follows from the labels of its principal and side
formulas.

Thus, the use of an explicitly-scoped calculus need not be regarded as a semantic method,
despite the apparent similarity. [Stone, to appear] considers intuitionistic logic, where the
proofs of a structurally-scoped sequent calculus derive independent interest because of their
interpretation as programs [Howard, 1980], and shows that an explicitly-scoped sequent
calculus describes exactly the same proofs as the structurally-scoped system. By this
result (which is stronger than mere equivalence of provability or semantics), that explicitly-
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�� = ��
a�� - a��

initial

�� = ��

a��; b�� - b��
initial

a��;2b�� - b��
! 2

a��; a � 2b�� - b��
�!

a��;2(a � 2b) - b��
2!

2(a � 2b) - a � b��
!�

2(a � 2b) - 2(a � b)�
! 2

2(a � 2b) - 22(a � b)
! 2

Figure 2.12: Example theorem 1 in an explicitly-scoped system.

scoped calculus can be considered a purely proof-theoretic optimization. Further, as in
this dissertation, the explicitly-scoped calculus can be studied fruitfully as a proof-theoretic
object in its own right (see [Schmidt, 1996] for another example).

Examples of this proof system show that it falls between the structurally-scoped calculus
of section 2.3.2 and the resolution approaches discussed in section 2.3.3. The imposition
of modularity in failing to prove 2(p � q) _2p is similar to the resolution calculus:

(35)

p� !- q�; p�
- p � q�; p� !�

- p � q�;2p ! 2

- 2(p � q);2p
! 2

- 2(p � q) _2p
! _

Again, the problem is a mismatch due to the unequal path labelings of atomic formulas.
Like the structurally-scoped proof system, however, the explicitly-scoped system cap-

tures modularity in the structure of its proofs. Consider again the three theorems proved
in Figures 2.3, 2.4 and 2.5. Proofs identical in structure to those presented earlier can
be worked out in the explicitly-scoped calculus, by adding appropriate labels to formulas
throughout the proofs. Such proofs are presented in Figures 2.12, 2.13 and 2.14. Note
how the labels encode the scopes of the different (2 !) applications. In Figure 2.12, the
side formula of the lower (2!) gets ��, indicating the double nesting; likewise, in Figure
2.13, it gets �; and in Figure 2.14, the empty string.

In the explicitly-scoped system, the proof can still be constructed if the (2!) rules are
permuted HIGHER. The assumption of a, in whatever scope, remains available on the left
of the sequent until the leaves of the proof tree. This contrasts with the structurally-scoped
system, where the assumption of a must be discarded above any inference that effects a
change in scope.

However, as with the structurally-scoped system, these (2!) rules cannot be permuted
down across the remaining (! 2) rules. Otherwise, they would violate the eigenvariable
condition that says that when a scope variable is introduced by a (! 2) rule, it cannot
appear anywhere (else) in the sequent.



52 MATTHEW STONE

� = �
a� - a�

initial

�� = ��

a�; b�� - b��
initial

a�;2b� - b��
2!

a�;2b� -
2b�

! 2

a�; a � 2b� -
2b�

�!

a�;2(a � 2b) - 2b�
2!

2(a � 2b) - a � 2b�
!�

2(a � 2b) -
2(a � 2b)

! 2

Figure 2.13: Example theorem 2 in an explicitly-scoped system.

� = �
a - a

initial

�� = ��

b�� - b��
initial

a;2b - b��
2!

a;2b - 2b�
! 2

a;2b - 22b
! 2

a; a � 2b - 22b
�!

a;2(a � 2b) -
22b

2!

2(a � 2b) - a � 22b
!�

Figure 2.14: Example theorem 3 in an explicitly-scoped system.

Downward impermutability also means that modal disjunctions induce a modular struc-
ture in proofs of this explicitly-scoped calculus. The modular proof of Figure 2.6 can be
carried over into the explicitly-scoped systems by labeling the scopes of inferences, just
as in the proofs of Figures 2.12, 2.13 and 2.14. For reference, such a proof is shown in
Figure 2.15. Observe that the modal disjunction 2(a _ b) is instantiated along the path �

introduced by the query2c. The eigenvariable condition therefore ensures that no inference
can usefully apply to this disjunction below the (! 2) inference where � is introduced.
Analogously, no inference can usefully apply to the disjunction2(d_ e) below the (! 2)

inference where � is introduced. Thus, here as before, the two disjunctions are irrevocably
confined to different components of the proof, and cannot interact.

In allowing instantiations of necessary information to be permuted upward but not
downward in a proof, the explicitly-scoped sequent calculus of Figure 2.11 goes only
halfway toward eliminating the redundancies of search that encumber the structurally-
scoped sequent calculus. The explicitly-scoped calculus is an important intermediary,
however, because it still retains all the properties of modularity that we might want in
a modal proof system—unlike the resolution-based translation approaches described in
section 2.3.3 or even the unification-based variant of the explicitly-scoped sequent calculus
we introduce next in section 2.3.5. As a result, the basic explicitly-scoped calculus serves as
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1 =

Γ; a� - a� Γ; c� - c�

Γ; a�; a � c� - c�
�!

Γ; a� - c�
2!

Γ; b� - b� Γ; c� - c�

Γ; b�; b � c� - c�
�!

Γ; b� - c�
2!

Γ; a _ b� - c�
_ !

Γ - c�
2!

Γ - 2c
! 2

2 =

Γ; d� - d� Γ; f� - f�

Γ; d�; d � f� - f�
�!

Γ; d� - f�
2!

Γ; e� - e� Γ; f� - f�

Γ; e� ; e � f� - f�
�!

Γ; e� - f�
2!

Γ; d _ e� - f�
_ !

Γ - f�
2!

Γ -
2f

! 2

1 2
Γ - 2c ^2f

! ^

Figure 2.15: Modular disjunction in the explicitly scoped sequent calculus

a benchmark for assessing the properties of proofs and proof-systems that allow modularity
of proof structure to be exploited during proof search, in Chapter 3 and, to some extent, in
Chapter 4. Indeed, the unification-based calculus that we consider next provides a useful
alternative to resolution-based inference methods principally because the flexible proofs it
allows can be compared and transformed more easily into simpler explicitly-scoped proofs
with guaranteed modular structure.

2.3.5 A Lifted System

Using general proof-theoretic techniques (as in e.g. [Lincoln and Shankar, 1994]), the
explicitly-scoped sequent calculus can be lifted to use unification. The use of unification
streamlines search in two ways. First, the choice of instantiated terms is delayed until
formulas containing them appear as axioms. This is of course when information becomes
available about which values might be useful. Second, requirements for variables to be
new are replaced by the use of Skolem terms. From a proof-theoretic point of view, Skolem
terms are purely syntactic devices. Any value that would have to appear on the sequent
where a variable was introduced—taking into account possible permutations—is a subterm
of its corresponding Skolem term. By ruling out circular terms by an occur-check in
unification, we ensure that a variable can be chosen in place of the Skolem term and the
proof reordered so that the variable is new. This eliminates the remaining impermutabilities
of the calculus—and, unfortunately, at the same time frees proofs from any structural
constraints of modularity.
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C=C;A = B; � = � . Γ;A�

X
- B�

X;∆ initial

C=C0 . Γ; (A ^ B)�X;A�

X;B�X
- ∆

C=C0 . Γ; (A ^ B)�X
- ∆ ^ !

C0=C00 . Γ - (A ^ B)�X;A�

X;∆ C=C0 . Γ - (A ^ B)�X;B�

X;∆
C=C00 . Γ - (A ^ B)�X;∆ ! ^

C0=C00 . Γ; (A _ B)�X;A�X
- ∆ C=C0 . Γ; (A _ B)�X;B�

X
- ∆

C=C00 . Γ; (A _ B)�X
- ∆ _ !

C=C0 . Γ - (A _ B)�X;A�X;B�

X;∆
C=C0 . Γ - (A _ B)�X;∆ ! _

C0=C00 . Γ; (A � B)�X
- A�

X;∆ C=C0 . Γ; (A � B)�X;B�X
- ∆

C=C00 . Γ; (A � B)�X
- ∆ �!

C=C0 . Γ;A�

X
- (A � B)�X;B�

X;∆
C=C0 . Γ - (A � B)�X;∆ !�

C0=C00 . Γ; (:A)�X
- A�

X;∆
C0=C00 . Γ; (:A)�X

- ∆ : !

C0=C00 . Γ;A�

X
- (:A)�X;∆

C0=C00 . Γ - (:A)�X;∆ ! :

C=C0 . Γ; (2A)�X;A�x
X;x

- ∆
C=C0 . Γ; (2A)�X

- ∆ 2!y

C=C0 . Γ - (2i�A)�X;A��(X)
X ;∆

C=C0 . Γ - (2i�A)�X;∆ ! 2

C=C0 . Γ - (3iA)
�

X;A�x
X;x;∆

C=C0 . Γ - (3iA)
�

X;∆ ! 3y

C=C0 . Γ; (3i�A)�X;A��(X)
X

- ∆
C=C0 . Γ; (3i�A)�X

- ∆ 3!

Figure 2.16: Lifted path-based, explicitly-scoped, cut-free sequent calculus for proposi-
tional S4 modal logic y The variables u and x may not appear in Σ.



MODAL LOGIC AS A MODULAR LANGUAGE 55

xy = ��=xy = ��; �� = x . a�� - ax

=xy = �� . bxy - b��

=xy = �� . (2b)x - b��
! 2

=xy = ��; �� = x . a��; (a � 2b)x - b��
�!

=xy = ��; �� = x . a��;2(a � 2b) - b��
2!

=xy = ��; �� = x .2(a � 2b) - (a � b)��
!�

=xy = ��; �� = x .2(a � 2b) - (2�(a � b))�
! 2

=xy = ��; �� = x .2(a � 2b) -
2�2�(a � b)

! 2

Figure 2.17: Example theorem 1 in the lifted system.

Figure 2.16 shows a lifted system corresponding to the system of Figure 2.11. In this
system, the inference rules describe not proofs but simply DERIVATIONS or PROOF-ATTEMPTS.
Each derivation is associated with a set of equations which must be solved to obtain a proof.

More precisely, each sequent is of the form:

C=C0 . Γ - ∆

As always, formulas in Γ and ∆ are labeled by terms explicitly indicating scope. During the
proof, we accumulate a list of equations indicating constraints on the values of variables:
C is the input list of equations and C0 is the output list of equations.

Each formula in a sequent is associated with a list of free variables schematized by a
subscript X in the inference rules of Figure 2.16; quantifier and modal rules which introduce
a variable add the variable to this list. Skolem terms involve function symbols associated
uniquely with quantifiers and modal operators (as indicated by subscripting); we build a
Skolem term as a placeholder for a fresh eigenvariable by applying this function symbol to
the list of free variables on the formula. The resulting system is necessarily rather dense in
notation, but operates straightforwardly.

A proof of Γ - ∆ is pair consisting of a derivation with end-sequent

=C . Γ - ∆

where every formula in Γ and ∆ is labeled with �, together with a substitution �—a finite
map from scope variables to scope terms—such that l� = r� for each equation l = r in C.

The correctness theorem for this system states that Γ - ∆ is provable in the lifted
system if and only if it is provable in the ground system. When presented in the style of
Herbrand’s theorem for classical logic [Herbrand, 1971], as in [Lincoln and Shankar, 1994],
the proof gives explicit transformations between the derivations of the two systems.

Proofs in the lifted system of our three S4 theorems are illustrated in Figures 2.17, 2.18
and 2.19. The figures present UNIFORM PROOFS [Miller et al., 1991], as an illustration of
how the lifted system facilitates systematic, goal-directed proof search. (Uniform proofs
such as these are discussed much more carefully in Chapter 3.) In all three proofs, we
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Figure 2.18: Example theorem 2 in the lifted system.
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=xy = �� . (2b)x - b��
! 2
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! 2

=xy = ��; � = x .2(a � 2b) - (a � 2�2�b)
!�

Figure 2.19: Example theorem 3 in the lifted system.

proceed by performing all possible left rules, so as to decompose the formula to be proved
into the atomic goal b��. We then apply right rules strategically to the assumption2(a �
2b) so as to match the literal b in the assumption with the goal. This generates an equation
xy = �� and a new goal ax. This goal is established by matching it against the assumption
of a in the right subtree of each proof. In the lifted system, the different theorems can be
proved using rules in the same order—because of the permutabilities, only this order need
be considered in proof search. The different scopes of rules are represented by the values
of variables and are determined by unification. Here, the lower application of (2 !) is
scoped by the value of x. As always, the scope is identical to the scope of the assumption
of a: either �, �, or ��.

2.4 Summary

A modal goal [M]A has the potential to be modular in two important respects. First, it can
set up an independent (modular) subproblem for proof search, in which all assumptions
and ambiguities introduced are local. Second, it can set up a goal for proof in which only
restricted (modular) information can be taken into account. As described in section 2.1,
modal operators seen this way provide a way to talk not just about the attitudes of agents
or states in time, but more abstractly about the structure and context-dependence of logical
specifications.

Exploiting this modularity to the fullest is both subtle and difficult. In previous work,
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modularity has been limited—because of the OVERLY STRONG semantic principles added
to the logic, as in section 2.1.3; because of INFLEXIBLE proof procedures, which introduce
prohibitive redundancy into the search space for general inference, as in section 2.3.1, 2.3.2
and 2.3.4; or, paradoxically, because of overly FLEXIBLE proof procedures, which are blind
to the constraints of modularity in the logic, as in sections 2.3.3 and 2.3.5.

The next chapter refines the perspectives on the sequent calculus and functional trans-
lation developed in this chapter, and extends our ability to realize both kinds of modularity
in efficient, general and predictable logic programming inference.



3
Logic Programming and Modal Logic

In Chapter 2, we investigated the potential of modal logic to describe both which assump-
tions can be applied within a proof, and how inferences involving those assumptions can
be linked together. In this chapter, we show how to operationalize this view, so that modal
formulas can be viewed as instructions for modular proof-search. Our result is a modal
logic programming language DIALUP in which programs can establish disjunctions and
existentially quantified sentences—and can embed these constructs under modal operators
that describe the structure of a specification and at the same time resolve ambiguities in
how programs will be executed. Such programs are said to encode MODULAR INDEFINITE

INFORMATION.
Admitting indefinite information represents a significant advance over previous modal

extensions of logic programming [Fariñas del Cerro, 1986; Debart et al., 1992; Giordano
and Martelli, 1994; Baldoni et al., 1993; Baldoni et al., 1996]. We can appreciate the
conceptual and technical contribution of the extension in light of the results of Chapter 2.
Conceptually, the work on context reviewed in section 2.1 reflects the increased applica-
bility that knowledge representation schemes derive from the ability to describe indefinite
information. (We will also see later, in Part II, that this ability makes this language expres-
sive enough to describe the partial information needed in planning and in natural language
generation.) Technically, DIALUP combines general-purpose inference mechanisms with a
modular regime for structuring modal proofs and proof-search. We explained the difficulty
of achieving such modularity in reviewing modal proof methods in section 2.3.

This chapter begins in section 3.1 by describing the scheme that DIALUP uses to interpret
modal statements as instructions for proof-search. This description, which suggests both
an informal characterization of the action DIALUP takes in search and a formal way to view
that action in terms of the construction of sequent calculus proofs with a special form,
grounds the discussion of the rest of the chapter. Armed with the concrete statement of how
DIALUP works, we go on describe the modularity that DIALUP achieves, in section 3.2, and
the uses of that modularity in structuring and transforming specifications, in section 3.3.
Then, following up on the formal connection between DIALUP and the sequent calculus, we
justify the soundness and completeness of DIALUP in section 3.4.

58



LOGIC PROGRAMMING 59

3.1 Modal Logic Programming in the Abstract
Building a proof is always a search problem. The goal is to find a way to use the available
assumptions to establish a desired conclusion. The available operators transform and
combine assumptions according to the rules of the logic. Proof-construction by a logic
programming language is no exception. What makes logic programming different from a
pure theorem-proving method like resolution—and from the refinements of resolution, such
as ordered hyperresolution [Robinson, 1965a], which must actually be used in fast, general
automatic provers [McCune, 1994]—is that search is made up of simple, predictable steps.
At each step, the alternatives for search are determined from the available assumptions and
the needed conclusion by a straightforward, intuitive and easily analyzed algorithm.

More precisely, the logical structure of a goal directly determines the search options
available when that goal arises. Thus, logical symbols in goals can be seen as instructions
for decomposing and transforming the search problem that the interpreter faces. Similarly,
the atomic formulas that an assumption can be used to derive—the HEAD or HEAD of
that assumption—serve as indexes that regulate whether an assumption can be applied.
And the logical structure of the assumption provides an instruction for creating a set
of new search problems whenever the assumption is used. This general perspective on
logic programming has been formalized and analyzed under the name ABSTRACT LOGIC

PROGRAMMING LANGUAGE [Miller et al., 1991].
In this section, we describe the operation of a new modal logic programming language,

DIALUP, in these terms. We begin in section 3.1.1 by introducing Prolog and describing
how its operation can be understood in terms of specialized sequent calculi. This allows
us to relate Prolog and the calculi for modal proof presented in sections 2.3.4 and 2.3.5.
Then, in section 3.1.2, we introduce the search strategy that DIALUP uses; the strategy is
presented both as a specialized sequent calculus and as an algorithm governing the steps
that the interpreter can take in building a proof.

3.1.1 Prolog, its extensions, and logic

Prolog, as the generic logic programming language, provides the simplest illustration of an
abstract logic programming language [Clocksin and Mellish, 1994]. Prolog specifications
are written in statements of the following simple form:

(36) 8X̄(g1(X̄) ^ : : :^ gn(X̄) � h(X̄))

Here h(X̄) and all the gi(X̄) are just atomic formulas. Such statements are called Horn
clauses; by eliminating the universal quantifiers and translating the implication to disjunc-
tion, they correspond to a subclass of the clauses used in resolution deduction described in
section 2.3.3. The formula h(X̄) is the HEAD of the clause; the conjunction g1(X̄)^: : :̂ gn(X̄)
is the BODY of the clause. (The effect of other connectives can in some cases be obtained us-
ing logical equivalences—existential quantification can be simulated using function terms;
some disjunctions can be simulated by duplicating clauses—but ultimately specifications
of the form (36) are all Prolog offers.)
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The Prolog interpreter embodies a simple search strategy for identifying whether a
query Q is a consequence of a Prolog specification P. At each point, the interpreter keeps
track of the work remaining to establish the query as a stack of atomic formulas that the
interpreter must prove from P to establish the query. The top of this stack is the current
goal G. When the query Q is first posed, this list contains just Q itself and Q is the current
goal.

The interpreter determines how the search state might be extended by an operation of
BACKWARD CHAINING that applies the clauses in the specification toward the current goal G.
A clause matches when its universal quantifiers can be instantiated to fresh variables that
allow the head of the clause to unify with the current goal G. A successful match allows
the state to be transformed by eliminating G from the goal stack while pushing the body of
the matched clause onto it. The Prolog interpreter explores these alternatives following the
order that matched clauses appear in the original specification and using depth-first search.

The view of Prolog as an abstract logic programming language is based on explicating
this behavior in logical terms. At each stage in search, there is a multiset P of clauses in
force and a particular goal formula G that the interpreter is addressing. The task of the
interpreter is to derive G from P. We can write this using a sequent P ?- G, to underscore
the parallel between the deductive task faced by the interpreter and the formal judgments
derived in sequent systems for logical proof. In Prolog, the clauses P are always exactly
the clauses in the original specification; the current goal is always the first atomic formula
on the goal list. The transformations involved in backward chaining implement the sequent
calculus rules (8 !), (�!) and (! ^) that govern clauses: (8 !) introduces fresh logic
variables to instantiate the clause, (�!) allows the head to be deduced but introduces a
new conjunctive goal which (! ^) reduces to atoms. The step of unification implements
the link of an initial sequent that connects the head of the clause with the current goal.

The extensions of Prolog described in [Miller et al., 1991; Hodas and Miller, 1994;
Miller, 1994] emphasize the close connection of Prolog to logic by describing this search
strategy—where goals are viewed as instructions for search—directly in terms of rules of
the ordinary sequent calculus (for intuitionistic or linear logic). Viewing a complex goal
G as an instruction for search means that the options to prove P ?- G depend only on
the logical structure of G. In particular, if G is a compound formula, the next rule applied
in building the proof must be the sequent rule for G. Proofs where the ordinary sequent
rules are used in this order are called UNIFORM PROOFS. Using the idea of uniform proofs,
[Miller et al., 1991; Hodas and Miller, 1994; Miller, 1994] show more generally how goals
and clauses may be more complex formulas in intuitionistic logic or linear logic and how,
for example, the clauses in effect will evolve as search for these formulas proceeds.

DIALUP represents a way of adapting this framework to modal logic. Informally, DIALUP

starts from an explicitly-scoped sequent calculus for modal logic, like those introduced in
sections 2.3.4 and 2.3.5. Recall that these systems interleave semantics-based translation of
modal formulas and classical reasoning about the translation; to keep track of the translation,
they annotate formulas with string terms representing paths to possible worlds. (In this
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chapter, paths will be given by a superscript term labeling formulas; �, �, etc. represent
arbitrary elements in paths; x, y, etc. represent logic variables in paths, and �, �, etc. are
metavariables over paths as a whole.)

By analogy to the abstract logic programming view of Prolog, then, the search problem
faced by the DIALUP interpreter at any stage has a form schematized by P ?- G�. The
goal is a formula G to be shown true at world �; the proof must make use of the formulas
in P, each of which is also labeled by the world at which it is supposed true.

More so than for Prolog, for DIALUP, we must be careful to specify what this search
schema really represents. The perspective of abstract logic programming languages encodes
the search of the interpreter not as a concrete procedure but only as a subclass of proofs;
and the perspective ignores the use of unification to implement the interpreter. It is possible
to be more precise on both counts.

The explicit structure of logic programming proofs can be formalized by writing alter-
native sequent rules. These rules are modified so that they can only be chained together
as inferences in uniform proof order. For example, the structure of sequent rules can dis-
tinguish the current goal, as well as the program clause currently being matched against
that goal, when applicable. This gives a FOCUSING PROOF SYSTEM, whose deductions are
called FOCUSING PROOFS [Andreoli, 1992]. Then the correctness of the logic programming
language lies in showing that the restricted proof system is sound and complete—that every
proof in the ordinary system can be transformed into a proof with the restricted form, and
vice versa.

Similarly, the role of unification in building the proof can also be formalized by providing
alternative sequent rules. Recall that section 2.3.5 illustrated how this could be done by
annotating sequents with equations that describe restrictions on the values of variables that
have been derived by the interpreter at various stages in proof search.

This precision is called for in DIALUP for two reasons. The first is our goal of modularity
for indefinite information: as we saw in sections 2.3.4 and 2.3.5, we will not succeed if we
exploit simple ground (or simple lifted) proof. Only analyzing search order and unification
explicitly will allow us to construct the intermediate proof system we need, with the
modularity of the ground proof system of section 2.3.4 and the flexibility of the lifted proof
system of section 2.3.5. The second is the goal of handling path representations of possible
worlds efficiently, which is addressed in Chapter 4. The algorithms proposed there exploit
the structure of equations in proofs; this structure must therefore be made explicit. At the
same time, these new algorithms introduce constraint-based alternatives to unification; a
careful, equational presentation of the logic programming language is therefore required to
correctly describe the alternatives that are actually considered during search.

Thus, we shall see that a description of a DIALUP task like P ?- G� implicitly includes
two additional kinds of information. One kind records aspects of the state and history of
the derivation that can be used to determine what instructions for search will be performed
next. The other kind records information about the values of variables as the problem is
begun and, when appropriate, after the problem is solved. The formal description of DIALUP
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must make this explicit.

3.1.2 Defining DIALUP

We will begin by describing DIALUP schematically. The natural starting point is to describe
the instructions for search that break down complex goals into atomic ones. The interpre-
tation of some connectives is easy; for example, in decomposing P ?- G� for a goal G
with prefix �, proof search can observe the directives in (37).

(37) a If G is of the form B ^ C, the proof must be constructed by solving P ?- B�

and P ?- C�.
b If G is of the form B _ C, the proof must be constructed either by solving

P ?- B� or by solving P ?- C�.
c If G is of the form 9xA, the proof must be constructed by solving

P ?- A[X=x]�, using a new logic variable X to leave open some term t defined
at world �.

(37a) says that a conjunctive goal encodes two subproblems, one for the left conjunct and
one for the right conjunct; both must solved. (37b) says that a disjunctive goal also defines
two subproblems, but that either may be solved to complete the specified search. Finally,
(37c) indicates that existential quantifiers describe parametric search problems; part of the
search is finding a value for a variable X that allows the goal to be solved.

A modal operator, meanwhile, transforms the search problem by considering a transition
to a new possible world. More formally, its action is given in (38).

(38) In general, if G is of the form [O]A, the proof must be constructed by solving
P ?- B��, where � is a new constant representing an arbitrary transition of
accessibility in AF[O].

In some sense, (38) also describes a parametric search problem, but in this case the value
to be substituted is picked at random before the search begins. Proof-theoretically, this
process ensures that no information that we discover about the parameter will be accidental.
Only necessary conclusions about this parameter will be drawn. Of course, this suits the
meaning of the necessity operator [O]. Using the same idea, we can handle the additional
connectives 8 and � in goals in certain special cases. These rules are given in (39).

(39) a If G is of the form [O]8xA, the proof must be constructed by solving
P ?- A[c=x]��, for a new constant � representing a transition in AF[O] and a
new constant c defined (only) at world ��.

b If G is of the form [O](B � C), the proof must be constructed by solving
P;B�� ?- C�� where � is a new constant representing a transition in AF[O].

Notice that these rules implement explicitly-scoped search by combining features of
ground and lifted proof. On the one hand, we use logic variables and unification to
allow values to be delayed; DIALUP uses lifted proof. On the other hand, when we use fresh
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parameters in (38) to implement (! 2) rule, we are adopting a feature of the ground system.
This combination is what gives DIALUP efficient structural modularity; in particular, analysis
of DIALUP proofs will show that the use of fresh variables restricts the use of disjunctions
in a way that the interpreter can detect and exploit.

This combination also represents the key obstacle to overcome in showing that DIALUP

is correct. In a lifted system, we would expect to Skolemize the representation of the
transition introduced for G by rules such as (38) and (39). We would associate the goal
G with some function, and construct an appropriate parameter for search by applying this
function to the logic variables that had been introduced in deriving G. Such Skolemizing is
LESS CONSTRAINING than the use of a fresh constant. With Skolem functions, but not with
fresh constants, a single inference elsewhere in the proof can contribute both towards this
new goal and towards other occurrences where G is proved. All that is required for this, if
Skolem functions are used, is that we equate the logic variables revealed in processing the
two occurrences of G. The relaxation involved in Skolemizing must be accommodated to
retain completeness in general. Why is it not needed here?

The answer exploits the technical role unification plays in proof search, cf. [Gallier,
1986; Lincoln and Shankar, 1994]. Unification essentially allows proofs to be built out of
order; it allows some inferences to be added to the proof later than they could be otherwise.
This is good because with unification those inferences can be added only when they are
known to be needed. However, there is the complication that in delaying an inference,
the interpreter may decompose a conjunctive search problem. In this case, what must
really be a single, earlier inference appears as two or more, later inferences. The point
of Skolemization is to handle these cases where proof search discovers that two proofs
of the same goal or two uses of the same premise should be collapsed. Skolemization is
therefore necessary only to the extent that the inferences can be delayed in proof search. By
processing goals as soon as they arise, using rules such as (37) and (38), modal inferences
in goals are never delayed and there is no need for Skolemization. (Clauses in the program
are delayed, however, so they must be treated differently.)

The rules in (37), (38) and (39) describe the processing DIALUP will do in breaking down
any complex goal into a combination of atomic goals. Once this process is completed, the
program itself is consulted; the interpreter performs an appropriate version of backward
chaining. The interpreter chooses a clause that might match the goal nondeterministically
from the program and dissects it—by rules dual to the ones above that dissect goals—to
obtain an atomic fact and a sequence of new subgoals. The atomic fact is constrained to
equal the goal to discharge that goal; then the new subgoals are processed in turn.

As befits backward chaining, the action of the interpreter is specified in terms of how
a particular clause formula should be matched against a particular atomic goal. Again, we
can flesh out this process by describing some easy cases first.

(40) a To match an atomic formula P� against the atomic goal G�, unify P and G and
set � equal to �.
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b To match a formula A ^ B� against the atomic goal G�, either match A� against
G� or match B� against G�.

c To match a formula 8xA� against the atomic goal G�, introduce a new logic
variable X which is to take a value at world �, and match A[X=x]� against G�.

(40a) just specifies precisely how deriving a goal discharges it. The two paths are con-
strained to be equal, rather than unified, to capture the effect of axioms on modalities.
Because of the composition and identity transitions that interpret these axioms, path equa-
tions can have many solutions. Indeed, in general—and for many cases of practical
interest—exponentially many distinct matches arise each time a goal is matched against a
clause. Explicit UNIFICATION requires each alternative to be considered separately. This
is unacceptable. Nevertheless, previous modal logic programming languages enumerated
all alternative modal unifiers at each stage and backtracked separately among them [Debart
et al., 1992; Baldoni et al., 1993]. In contrast, DIALUP maintains modal matches using a
constraint algorithm that builds a tree of worlds to match of all the clauses and goals in the
proof incrementally in polynomial time—avoiding all backtracking among matches. This
algorithm is fully described and justified in Chapter 4.

(40b) arises when the search tasks to which the interpreter is already committed will
result in two facts being true; (40b) states only that at such times either fact may be used
to discharge the goal. Similarly, (40c) arises when the interpreter’s commitments entail
a proposition that can be arbitrarily instantiated; (40c) leaves open the instantiation by
introducing a fresh logic variable and continuing the match.

Three cases are somewhat more involved, but will still be relatively familiar to Prolog
programmers (given the preceding discussion).

(41) a To match [O]A� against the atomic goal G�, introduce a fresh logic variable x
over transitions in AF[O] and match A�x against G�.

b To match A � B� against the atomic goal G�, post the goal P ?- A� to derive
A at � given the clauses P currently in effect, and continue to match B� against
G�.

c To match 9xA� against the atomic goal G�, Skolemize. That is, we assume that
the occurrence of the existential quantifier in the program is associated with a
function f, and the sequence of logic variables that have been introduced during
matching is given by the list V. This allows us to use the entity f(V) existing at
world � as a witness for the existential quantifier. Thus, the statement 9xA� is
transformed into the statement A[f(V)=x]� and this is matched against G�.

(41a) indicates that modal operators, like quantifiers, allow arbitrary instantiations; a logic
variable allows an appropriate transition of accessibility to be instantiated by unification
with the goal. (41b) indicates that once an implication is derived, we can discharge the
goal by matching it against the consequent of the implication, provided we undertake the
new goal of establishing the antecedent. Finally, (41c) indicates how existential quantifiers
are Skolemized as matches take place. Skolem functions are necessary with existential
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quantifiers because during matching they will frequently be unified with logic variables that
appear on many other goals. When we tackle those later goals, we might want to apply
this same program clause again to prove them, so we must take care to have a compatible
representation of the generic witnesses of the existential on both occasions when the clause
is used.

The most difficult matching action is that taken for disjunctive specifications. Disjunc-
tive specifications offer a way to prove a goal by cases. To use A _ B, first assume A and
prove the goal, then assume B and prove the goal. The wrinkle for matching lies in the
question, what is the goal to prove by cases? The logic programming strategy identifies the
need for a proof by cases somewhere in the middle of the first case. Generally, some infer-
ences that depend on A will already have been found when we match against the disjunction,
recognize that A applies, and tackle the A case. When we consider the case where B is used,
we will want to ignore these goals and inferences that depend on A and instead reprove
some earlier goal that can be proved both using A and using B. In general, the safe thing
to do after finishing the A case is just to restart the original query assuming B. This is the
basis of the restart rule of the Near-Horn Prolog family of disjunctive logic programming
languages [Loveland, 1991; Reed et al., 1992; Nadathur and Loveland, 1995].

We will adopt such a restart rule, with an important modification that specializes it to
modal logic. In modal logic, when we derive A_ B at world �, we don’t have to restart the
whole search for the query. We only need to restart some RESTART query—one which has
introduced a new transition and shifted the consideration of the interpreter to a new possible
world � 0—where � 0 is reachable from �. As proved in Section 3.2, the logic programming
search regime of DIALUP allows the modularity of modal logic to be read off of programs
and goals, so a case analysis that is introduced in world � must be confined to that world.
This property is encoded in the rule (42).

(42) To match A _ B� against the atomic goal G�, pick A� (or, under certain
circumstances B� ) and match it against G�; post the goal P;C� ?- O�0

,
where C is the unmatched case of the disjunction, P is the program clauses
currently in effect, and O is any restart goal whose annotation � 0 extends � (O
may be selected when the goal is reached).

The scope of restarts is only one of the difficulties for search control that disjunctions
introduce. Another is the problem of redundancy, which may explode the search space when
goals follow one way using case analysis and another way without. One regime for avoiding
redundancy involves keeping track of CANCELLATIONS, which mark the contribution of a
disjunct to a proof in case analysis [Loveland, 1991]. The possibility of matching B instead
of A in (42) is governed by cancellations. In particular, it is triggered only by the need
to find a cancellation for a previous disjunct before restarting with this disjunction—and
it is restricted to circumstances where this cancellation can be obtained only by using B
immediately in this way. Section 3.4 describes in more detail how DIALUP uses cancellations
not only to eliminate redundant search paths, but also to help justify modular search in
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general.
The definitions in (37), (38), (39), (40), (41) and (42) together describe a logic pro-

gramming interpreter that executes specifications with the following syntax:

(43) G ::= [O]G j G ^ G j G _ G j [O](8xG) j 9xG j [O](D � G)

D ::= [O]D j D ^ D j D _ D j 8xD j 9xG j G � D

The syntactic class D (for definitions) describes possible specification clauses; the class
G describes possible goals. This syntax gives the logic programming language DIALUP

which we will take as a reference point for executing modal specifications for the rest of
this study. DIALUP is so named because it handles Disjunction and Intensional Abstractions
(i.e. possible worlds) in a Logic with Uniform Proofs.

3.2 Modality and Modularity in Design

The outline of DIALUP in section 3.1.2 offered very concrete instructions for navigating
formal search problems, and motivated those instructions in section 3.1.1 with quite a
technical approach to logic. This is not an easy perspective to take in writing a DIALUP

program. Fortunately, as this section shows, it is rarely necessary.
The payback from any use of logic in programming is that programming often becomes

an exercise of writing formulas with the right meanings. DIALUP allows programmers to
refine those meanings by describing computations in modal terms. These descriptions
can draw on the intuitive meanings of modal operators, as well as the general connection
between modal logic and modularity. For example, a modal goal [A]p can be thought of as
a query to a specialized agent A about whether it knows p. Under DIALUP’s search strategy,
such intuitions can offer guides—coarse ones or precise ones, as necessary—to help a
programmer understand and control the operational definitions DIALUP uses to execute a
specification.

The simplest illustration of modality and modularity is with specifications and search
problems that use only modal connectives. Here is a representative problem:

(44) p; [A]p; [B]p ?- [B]p

(44) involves a program specified with three modules: what is really true, what is described
by module or agent [A] and what is described by module or agent [B]. Each module has its
own content, which can be set up by a programmer in a modular way, and must in turn be
accessed by DIALUP in a modular way. (44) represents the goal of showing that p is part of
the content specified by [B]. Accordingly, a programmer can predict at a high level that the
clause [B]p will be taken into account in proving the goal, whereas the other clauses will
not be.

This intuition can be confirmed by analyzing the concrete actions of the interpreter. In
processing the goal, the first low-level action of the interpreter is to introduce some new [B]

transition—� say—and to attempt to prove p after �. Then the interpreter tries backward
chaining. All of the statements in the specification describe the formula p that we need to
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prove, but only the statement [B]p allows the transition � to be matched. By applying this
statement, of course, the interpreter reaches a goal state that answers the query.

Formally, here is why the other two clauses do not apply. To apply the fact p, we would
have to match the real world against the world �. This is impossible because the worlds
are represented by distinct ground terms. To apply the fact [A]p, meanwhile, we would
have to unify a logic variable X representing a transition of [A] accessibility with the ground
transition �. This would cause a type mismatch; [A] and [B] do not interact and therefore �
does not represent a transition contained in AF[A].

Thus, we can see the new term � as allowing the interpreter to record the fact that the
goal p is modular, while continuing to process the goal. Each clause is checked against
terms like � before it can contribute to the proof of p. The structure and type of � prevents
outside information from affecting how the goal p is established. This generalization allows
a programmer to take a higher-level view. Details of modal matching are abstracted, and
the modal operator of the goal [B]p reduces to an annotation that directly restricts what
clauses should apply to prove p.

In modal logic, modularity not only blocks outside information from flowing into a
modular goal, it also prevents inside information from flowing out. A good illustration of
this is the query represented in (45).

(45) ?- [A](p � q)_ [A]p

The specification for this query is empty. (45) is not a theorem of modal logic, so the
interpreter does not find a proof of it. The interpreter first tries the left disjunct, [A](p � q);
it introduces a transition to a new possible world � where it assumes p and tries to prove
q. The interpreter is stuck there, so it backtracks to the right disjunct [A]p; it introduces a
transition to a new possible world � and tries to prove p there. Again it fails; now it must
abandon the goal. This result matches our intuitions about what the query would mean:
we don’t expect a module automatically either to specify p � q or to specify p. Note in
contrast that the corresponding first-order formula, (p � q) _ p, is valid, and that several
modal axioms presented in section 2.1.3 even make (45) valid.

Again for (45), the low-level operation of DIALUP in manipulating sequents and possible
worlds is easily abstracted into a simple form that can be read off the program. Namely, q
in (45) is an independent goal, whose search automatically takes into account just the [A]

information and the special added formula p.
Modularity can provide a link between DIALUP’s low-level operation and a program-

mer’s abstract intent not just for modal Horn clauses, but for quantified and disjunctive
programs as well. Quantifiers and disjunctions can both introduce ambiguities in modal
proofs, but these ambiguities must be resolved where they are created—by the module or
agent that introduces them.

Let’s start with quantifiers. The search problem in (46) is a representative example
where the modularity of quantification comes into play.

(46) [A]9X:r(X) ?- 9X[A]r(X)
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Here is the informal difference between the specified formula and the query. According to
the formula in the specification, it is part of the content of [A] that there should be some
individual X in relation r. The query asks whether there is any entity X about which [A]

says X is in r. It is instructive to read this query as asking whether agent [A] knows what
is r [Hintikka, 1971]—asking [A] to provide a specific, concrete global value that it knows
is r. When we contrast the local knowledge [A] has here (just that there is an r) with the
global information the query demands, it is easy to see that the query is stronger than the
specification. For example, if agent [A] really knew only that either a or b was r, then it
would meet the specification but would not satisfy the query.

DIALUP’s rejection of (46) of course depends once again on a relatively subtle account
of how the interpreter manipulates possible worlds during search. In particular, in proving
the query, DIALUP first introduces a variable X over entities in the real world, then considers
whether it can show r(X) at some new [A]-world �. DIALUP consults the specification: for
any [A]-world x, the specification describes an individual f(x) that exists at x and is in r.
We can unify � with x, but we cannot then unify X with f(�). The world where f(�) is
introduced does not match the world where the value of X is needed.

Note by contrast that if we reverse the role of query and specification, the interpreter
succeeds. For then the interpreter only needs to find an individual X at world � that has
property r. The specification defines a real individual f(�) that has property r in � (or any
other [A]-accessible world). X can be unified with f(�) because, by the increasing domain
constraint if X exists in the real world then X also exists at � (cf. section 2.2).

Again, we can invoke the idea of modularity to link these two descriptions of (46), as a
bridge between operations on possible worlds and high-level intuitions about what DIALUP

should do. [A]9X:r(X) introduces X as a modular individual. Its very existence is limited to
the module [A], to agent [A]’s momentary thought. Moreover, different [A] goals must appeal
to different values of X; we cannot assume that the value of X is constant as we consider
different ways the knowledge or content of [A] could be fleshed out. As with propositions,
the maintenance of possible worlds in the interpreter is what keeps X a modular individual.
The limitation on X’s existence is encoded by associating X with a possible world. Since
different goals appeal to different possible worlds, the same association ensures different
goals do not succeed by using the same X as the r.

Finally, we have disjunction. Disjunction really just parallels existential quantification,
although the modal restart rule for disjunction gives disjunction a different look. (47) is an
example to bring this out.

(47) [A](q _ r) ?- [A]q _ [A]r

(47) invites us to consider whether, once we have specified an agent A that knows that
either q or r is true, whether it follows that either A knows q or that A knows r.

Consider how proof search for (47) proceeds. The interpreter follows the left disjunct
in the goal, introduces world �, and looks to the program to establish q at �. The speci-
fication reveals that proof by cases is appropriate: in one case outlined by the disjunctive
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specification, q holds at any [A]-world and � in particular. The other case requires the use
of r at �. It is to this case that the interpreter now turns.

The modal restart rule dictates that the goal to reprove for this case should be some
restart goal after � was introduced: this must be the goal of showing q at �. The interpreter
attempts this goal, and after some search identifies that no progress can be made in analyzing
this case: there is no way to get to q by using r. At this point the interpreter identifies
failure.

The choice of restarting to the goal of showing q at � encodes and exploits the fact that
disjunction is modular. To see this, suppose the interpreter was to attempt to reprove the
entire query assuming r at �, as part of the case analysis. As it processed each disjunct,
the interpreter would introduce transitions to new possible worlds, � and . Because these
terms are distinct from �, the interpreter would never be able to use the fact that r was true
at � to prove something about what was true at � or . So the interpreter would ultimately
determine that there was no progress to be made by its case analysis. It would abandon its
search.

Again, underlying this discussion is a general fact that allows a programmer to construct
and think about a DIALUP program at a high level. There is no way to exploit case analysis
at one world if the proof is restarted to a closer world. Disjunction is modular. The modular
restart rule, with its bookkeeping of worlds and goals, is DIALUP’s low-level strategy to
exploit the modularity of disjunction and shortcuts these doomed searches.

3.3 Exploiting Modularity for Search Control
Modular execution is an important resource for describing inference problems in tractable
and reusable specifications. Modal operators can be used to limit the number of alternatives
that need to be considered at any point, to constrain the size of proofs that need to be
constructed, and to allow specifications to be flexibly reused. Let’s look at some examples
of this.

3.3.1 Problem Decomposition

A record of the possible interactions that may arise in problem-solving can be an important
part of a specification of how to reason in a domain. Here is a simple example.

In planning a trip, it is important to determine before you begin that you will be able
to complete the trip successfully. To be stranded midway would be a real disaster. Often,
however, many details about the trip cannot be resolved in advance. For such situations,
showing that the trip will be successful means showing that you will be able to negotiate
these details when the time comes, no matter how they turn out. What makes it possible to
quickly derive confidence in a planned journey is the knowledge that such details cannot
conspire together to require global revisions of the plan.

Thus, suppose one leg of a journey involves taking an early train. At the station,
you have to get a ticket for the train and (if you’re like me) get a cup of coffee. Tickets
can be purchased from a teller at a window or from automatic machines; the windows
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t ^ c � j:
a � t: d � c:
w � t: m � c:
a _ w: d _ m:

Figure 3.1: Unstructured logic program

[T]t ^ [C]c � j:
[T](a � t): [C](d � c):
[T](w � t): [C](m � c):
[T](a _ w): [C](d _ m):

Figure 3.2: Modular logic program

Symbol Content
j I can have a successful train-trip
t I can obtain a ticket
c I can obtain coffee
a I can use an automatic ticketing machine
w I can use a teller’s window
d I can get coffee from Dunkin Donuts
m I can get coffee from McDonalds

Figure 3.3: Interpretations of symbols for the example

can have prohibitive lines and the automatic machines can be out of order, but the station
management always makes sure that one quick and easy method is available. Similarly,
there are a couple of places to get coffee at the station; you can be sure at least one will be
open at any time trains are leaving, but since their hours vary, you may not know which.
Using the abbreviations in Figure 3.3, we might formalize this situation by the logic program
of Figure 3.1.1

In general, without knowing more about a specification, we can expect a number of
cases to be considered in proof search that is exponential in the number of ambiguities in it.
Here, for example, searching automatically for proofs of j is likely to require showing that j
holds independently in the four cases that the program specifies (cases in which we assume

1The use of proposition letters is a harmless abbreviation that allows the MODULARITY of the example—our
main focus—to shine through. DIALUP could also represent the problem using complex formulas in a logic of
knowledge and action like that developed in chapter 7; this expressiveness provides familiar motivation for
modal logic programming [Debart et al., 1992]. For example, j could be fleshed out in terms of the knowledge
[K] of the planning agent about the hypothetical consequences of an event—9e [K]8t [K]([K] do(e; i; now; t) �
[K] 9e0 jrny(e0; now; t) ^ succ(e0)).
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one of a and w and assume one of d and m). A representative example of this is the naive
restart rule that starts to process the original query in each case; consider proving j under
this strategy. The first subproof of j takes care of the d and a case by using the first disjuncts.
This subproof requires two restarts of the goal j, once assuming a and once assuming w—
leading to a proof of j from m and a and a proof of j from d and w. The last case, proving
j from m and w, arises as a restart goal in both of these subproofs. This represents good
behavior for the naive restart rule; in problems with multiple case analyses, subproofs can
reintroduce cases in such a way that search never terminates [Loveland, 1991]. Expanding
the search space can delay the point where this happens, but cannot avoid difficulties if the
full space must be explored—whether because all solutions are needed or because a dead
end must fail before an alternative is tried.

The specification of Figure 3.1 omits the important fact that the ambiguities are inde-
pendent. Where you get your ticket doesn’t affect where you get coffee, and vice versa. If
we provide this better description of the domain, a simple search strategy will be able to
break up the proof in advance using the knowledge that these alternatives are independent:
It will restrict the ambiguity d or m to proving c, and restrict a or w to proving t. In general,
when alternatives are specified not to interact, worst-case proof size increases only linearly
as new independent ambiguities are added. This makes for fast failure as well as fast
success.

Modal specifications can indicate that alternatives do not interact. They do this,
metaphorically, by describing how problem-solving tasks in a domain can be assigned
to separate and independent problem-solving agents with specialized information. The
agents work individually, and only combine their results after they have derived their so-
lutions independently. Such a specification is given for our train problem in Figure 3.2.
The specification invokes two necessity operators, [T] and [C] to distinguish the goals and
program clauses describing getting a ticket from those describing getting coffee. Metaphor-
ically, Figure 3.2 describes how problem-solving tasks in catching a train can be assigned
to separate problem-solving agents with specialized information—one [T] that knows just
about tickets and another [C] that knows just about coffee.

This metaphor leads directly to intuitions about search that can be applied correctly
to DIALUP without delving into the intepreter’s internals. The problem of getting coffee
is assigned to agent C by the goal [C]c. C has certain alternatives to consider in getting
coffee (d or m?); C considers these alternatives and no others in solving its task. Likewise,
the problem of getting a ticket is assigned to agent T by the goal [T]t. T considers just
its alternatives—a or w? Since the two agents are reasoning separately about different
goals and ambiguities, the record of their problem solving is just a combined record of
their independent steps—not, as before, an interacting record with combined resolutions of
ambiguities.

The detailed record of DIALUP’s search for j illustrates how DIALUP captures this high-
level search process with a more detailed manipulation of formulas and possible worlds.
We begin by backchaining from j to new goals [T]t and [C]c. To interpret the modal operator
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fib(0,1).
fib(1,1).
*I *J *K *L *M *N (succ(I,J), succ(J,K),

fib(I,L), fib(J,M),
sum(L,M,N) -> fib(K,N)).

succ(0,1). succ(1,2). succ(2,3).
succ(3,4). succ(4,5). succ(5,6).
succ(6,7). succ(7,8). succ(8,9).
succ(9,10). succ(10,11). succ(11,12).

*X *Y ?Z sum(X,Y,Z).

Figure 3.4: Naive Fibonacci program

[T], we introduce a fresh T TRANSITION �. This corresponds to moving to the T module or
considering the inference of a T problem-solving agent. We must now prove the goal t at
the world reached by the transition �. Backchaining, we obtain the goal of showing a at
�. Matching the disjunction, we discharge this goal but are left with the case where w is
true (still at �). We must restart an earlier goal taking w into account. Now, all transitions
lead further from the initial world and goals always introduce fresh transitions; this is the
model-theoretic counterpart to the independence of agents and modules described earlier.
So, w must ultimately contribute to our goal of t at �; we restart that goal. Immediately,
we backchain to w at �, use the assumption and finish the case. In an analogous process,
we handle the goal [C]c by introducing a new C transition and consider proving c at the new
world �. Backchaining and matching the disjunction discharges the goal, but leaves us with
a case analysis in which we assume m at �. As before, the world at which m is assumed
requires us to restart c at�. We backchain to the assumption m at�. The labels of formulas—
model-theoretic representations of the modular structure of clauses—dynamically bound
the restarts of the interpreter and force case analyses to proceed independently.

3.3.2 Memoization

Modality and implication provide a way to eliminate redundancy in proof search by record-
ing and reusing intermediate results. This process is known generally as memoization.
Encodings of memoization in expressive logic programming languages go back to [Miller
et al., 1991].

Figure 3.4 shows a logic program that cries out for memoization. The program gives a
naive specification of the Fibonacci function, expressed as a relation fib(K,N) true when
N is the Kth Fibonacci number. The first two clauses establish the value of 1 for the first two
Fibonacci numbers; the next clause establishes that any subsequent Fibonacci number is the
sum of the two previous ones. The remainder of the specification lays out the mathematical
facts to which we will appeal: the linear order of the first (baker’s) dozen numbers and the
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N Time to find A with fib(N,A), in Linc CPU seconds

0 .01
1 .01
2 .03
3 .06
4 .1
5 .2
6 .4
7 .8
8 2
9 4
10 10
11 25
12 60

Figure 3.5: Executing the naive program

existence of a total function computing addition.
The clauses in Figure 3.4 are written in a convenient concrete keyboard syntax for

first-order formulas. In this convention, *X represents the universal quantifier 8x; ?X
represents the existential quantifier 9x; -> represents implication;, represents conjunction;
and ; represents disjunction. Lower-case strings name atomic propositions and primitive
relations; upper case strings indicate variables in terms, and indicate modal operators
elsewhere.

The program of Figure 3.4 is not exactly an executable specification. The proofs are
too big. Using logic programming proof search, any proof we find that the Kth Fibonacci
number has value N has a size that exceeds N. The proof has to have at least N steps because
logic programming search attacks each subproblem of proving fib separately, and these
subproblems only ground out at clauses that make unit contributions to the overall sum. But
the Fibonacci numbers grow exponentially in K. Famously, the ratio of successive Fibonacci
numbers approaches the constant 1+

p
5

2 . This explosive growth is illustrated in Figure 3.5,
which gives the running times for solving fib queries using this specification.

The complexity of executing the program of Figure 3.4 is a property of the program, not
a property of the Fibonacci function. The Kth Fibonacci number can in fact be computed
immediately given the values of the previous Fibonacci numbers. Thus, if the computations
of these values are saved and reused, proofs of size K can the specify the value of the Kth
Fibonacci number.

This characterization has an unsettlingly procedural flavor. Let’s turn this characteri-
zation into a declarative statement about the dynamic state of the interpreter. In computing
some Fibonacci number, the interpreter is to compute the Fibonacci numbers in order,
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working up from the first one to the needed one. At each stage, the interpreter maintains
two kinds of information: both the particular results it has accumulated and its general
rules for computation. These general rules describe the inferences that the interpreter may
apply in each stage of computation to the particular conclusions it has at that point. That is,
these rules identify the additional particular conclusions that the interpreter will have at its
disposal in the next stage of computation. In particular, of course, these rules dictate that
the interpreter is to derive the next Fibonacci number as the sum of the two previous values
it most recently derived.

Modal logic gives us the tools to articulate formally this kind of statement about the state
of an interpreter. We can use a modal operator Memo to describe the particular conclusions
that the interpreter has derived at a certain point, and a modal operator Rule to describe the
content of the general rules that the interpreter observes in going from one state of deduction
to another. Both Rule and Memo should be S4 modalities, expressing the fact that both
kinds of information could only grow as the computation proceeded; and it is convenient
to postulate that Rule elaborates on Memo. With these assumptions, the statement in (48)
represents the condition that if the interpreter registered the particular conclusion p, then
the conclusion q would be available at the next step.

(48) Rule(Memop � q)

More generally, (49) formalizes the directive to perform an overall computation all by
immediately deriving step, then registering the result step, and finally undertaking rest.

(49) Rule(step ^ Rule(Memostep � rest) � all)

If we combine these intuitions to specify the intended search behavior for deriving
Fibonacci numbers, we end up with something like the specification in Figure 3.6. The
first three clauses describe the derivation of particular Fibonacci numbers. The interpreter
begins with the initial pair of Fibonacci numbers explicitly represented; it can derive that
the Kth Fibonacci number is N as long as it has explicitly represented the values L and M of
the two previous Fibonacci numbers, and N is L + M.

The next two clauses describe the evolving state of the interpreter during the derivation
of a sequence of Fibonacci numbers. According to the first one, the interpreter finishes
when the sequence ends. According to the second one, the interpreter process a nonempty
sequence X beginning with I and continuing with R by deriving the value N of the Ith
Fibonacci number, and, following the pattern illustrated in (48) and (49), registering the
value and continuing the computation of R.

The remainder of the program outlines the mathematical facts needed to carry things
along, and defines a predicatenlist(X,Z) true whenZ is the list of the successive integers
from 2 to X; this list Z defines the sequence for the computation of the first X Fibonacci
numbers. In other words, the query nlist(K,L), fiblist(L,A) succeeds when A
is a list of the first K Fibonacci numbers (save the two initial 1s).

The program in Figure 3.6 is an executable specification (measured in the value of the
number K of Fibonacci numbers it computes), because each Fibonacci number is calculated
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Memo fib(0,1).
Memo fib(1,1).
*I *J *K *L *M *N Rule

(Memo (succ(J,K), succ(I,J),
fib(I,L), fib(J,M), sum(L,M,N))

-> fib(K,N)).

Rule fiblist(nil, nil).
*X *Y *I *R *N *A Rule

(list(I,R,X), list(N,A,Y),
fib(I,N),
Rule (Memo fib(I,N) -> fiblist(R,A))

-> fiblist(X, Y)).

Memo succ(0,1). Memo succ(1,2).
Memo succ(2,3). Memo succ(3,4).
Memo succ(4,5). Memo succ(5,6).
Memo succ(6,7). Memo succ(7,8).
Memo succ(8,9). Memo succ(9,10).
Memo succ(10,11). Memo succ(11,12).

*X *Y ?Z Memo sum(X,Y,Z).
*X *Y ?Z Memo list(X,Y,Z).

*Y Memo rnlist(1,Y,nil).
*I *J *M *N *R *L Memo

(succ(I,J), succ(M,N),
rnlist(I,N,R), list(M,R,L)

-> rnlist(J,M,L)).
*X *Z Memo (rnlist(X,1,Z) -> nlist(X,Z)).

Figure 3.6: Memoizing fibonacci program

only once in any proof of fiblist. We already have a high-level explanation why,
namely that the specification corresponds to a description of the intended behavior of an
engine for efficient inference of Fibonacci numbers. A more mechanical explanation may
also be illuminating. First, note that the fiblist relation is invoked about K times in any
proof; it is invoked recursively one time for each element in the list X (corresponding to
each remaining stage of the computation). Each time, it also makes one call to fib.

This is where there might be a problem. Recall that the difficulty that arises in ex-
ecuting the specification of Figure 3.4 is that a logic programming interpreter repeatedly
backchains against the complex clause for calculating Fibonacci numbers. This backchain-
ing is explosive. In the new specification, such backchaining is impossible. In calculating
fib(K,N) at world �, the interpreter turns to a new world �� where � is a new transition
of the kind described by Memo, and looks to prove further fib facts at ��. At this world,
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N Time to find A with fib(N,A), in Linc CPU seconds

0 .01
1 .01
2 .05
3 .13
4 .25
5 .4
6 .6
7 .8
8 1.1
9 1.4
10 1.8
11 2.3
12 2.8

Figure 3.7: Executing the memoized program

Rule content is unavailable—the interpreter is to rely only on facts explicitly recognized
as part of the computation thus far—and so the complex clause for fib cannot be applied
recursively. Only the memoized atomic fib facts are available here. Using these atomic
facts is of course an easy computation.

The relative ease of executing the specification in Figure 3.6 is substantiated by the
calculation times reported in Figure 3.7. The times don’t increase exponentially, but they
grow faster than the linear rate you might at first expect. The reason is that each step
involves matches against possible-world terms representing the state of the interpreter.
These terms grow linearly in the number of Fibonacci numbers considered; as they grow,
the cost of manipulating them correctly in the interpreter also grows.

We can contrast the specification of Figure 3.6 with the more conventional fast specifi-
cation of the Fibonacci numbers shown in Figure 3.8. I claim that the program of Figure 3.8
encodes essentially the same insight that the program of Figure 3.6 does, but relies on further
optimizationand encoding to present the insight in a low-level and first-order representation.

In Figure 3.8, the predicate fstate records the state of interpreter as a relation among
key terms: the previous two Fibonacci numbers computed (the Ultimate and Penultimate
ones), the number of steps of computation remaining I, and the final result R. The state
of the computation is represented by the fstate goal currently under consideration. The
final pair of clauses describes explicitly how this state evolves. First, when there is nothing
left to do, the overall value to be computed is identical to the most recent computed value.
At any other stage of the computation, the next Fibonacci number is computed as the sum
of the previous two and the number of steps of computation remaining is reduced by one.
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fib(0,1).
fib(1,1).
*I *K *L *M *N (succ(I,K), fstate(1,1,I,N)

-> fib(K,N)).

*X *Y fstate(X,Y,0,Y).
*K *L *R *P *U *N (sum(P,U,N), succ(K,L),

fstate(U,N,K,R) -> fstate(P,U,L,R)).

Figure 3.8: A hacked memoizing Fibonacci program

The resulting new state of computation is encoded as a further fstate goal to be derived.
The only role of the fib predicate itself in this specification is to set up the initial state of
this computation.

Thus, like the program of Figure 3.6, this program offers a way of finding Fibonacci
numbers efficiently by describing a machine that finds them efficiently. The program of
Figure 3.6 describes the state of the machine as an object with content in terms of the
operator Memo; the entire history of the computation is available at each stage; and update
of the state is accomplished by logical operations. In the program of Figure 3.8, only the
relevant history of the machine is represented, and that history takes a special, concrete form:
the two previous calculated values are stored in a distinguished position. The history is no
longer an object with content; it is just an object. This transformation speeds up execution
by dispensing with the logic of states (giving in fact an order of magnitude improvement);
but this comes at the price of encoding the manipulation of state as an arbitrary concrete
transformation on the history between goals.

3.4 Formalities
In the remainder of this chapter, we describe the design of DIALUP formally. Its correctness
rests on a variety of proof-theoretic ideas about modal logic and logic programming, which
we combine in a novel way. To describe logic programming, we use the idea of uniform
proof search described in [Miller et al., 1991] and extended to different kinds of disjunctions
in [Miller, 1994; Nadathur and Loveland, 1995]. To facilitate the development of a uniform
proof system, we use a lifted, path-based sequent calculus for modal logic that assimilates
modal proof to classical proof. This calculus refines and extends the one presented in
section 2.3.5, by explicitly accounting for multiple modalities and first-order quantification
following particularly [Wallen, 1990; Auffray and Enjalbert, 1992]. We describe this
calculus completely in section 3.4.1.

This calculus has the advantage that inferences can be freely interchanged, allowing
arbitrary proofs to be transformed easily into goal-directed proofs—we show in Theorem 1,
presented in section 3.4.2, how to obtain goal-directed proofs in this calculus. However,
as noted already in section 2.3.5, this calculus neither respects nor represents the potential



78 MATTHEW STONE

structural modularity of modal inference.
To guarantee the modular behavior of the uniform system, we rely on proof-theoretic

analyses of path-based sequent calculi. These analyses establish that path representations
enforce modularity and locality in the uses of formulas in proofs, even with otherwise
classical reasoning. The foundational step in this analysis is to establish an important
general result about lifted modal proof systems, Theorem 2, which is proved in section 3.4.3.
The theorem shows how to streamline proofs so that all inferences directly contribute to
the proof, and observes some important constraints on labels for possible worlds that such
streamlined proofs exhibit.

The operational rules of DIALUP are obtained by transforming the uniform proof system
to take advantage of these results; as a consequence, the interpreter can dynamically exploit
locality in the use of modular assumptions. The transformation starts in section 3.4.4 by
dividing uniform proofs into separate BLOCKS to analyze separate cases. As a preliminary
to modularity, we organize these blocks so that each one contains a CANCELLATION whereby
the most-recently introduced case contributes to the goal being proved [Loveland, 1991].
Finally, in section 3.4.5, we combine the presence of cancellations and the inherent ability
of the modal language to modularly restrict the contributions premises can make (together
with the uniformity of proof search and the independence of cases) to derive a final sequent
calculus (in Figures 3.11 and 3.12) which specifies the interpreter of a logic programming
language.

3.4.1 Modal sequent calculus

We begin by describing how the lifted, explicitly-scoped sequent calculus, as introduced
in section 2.3.5, is extended to a multi-modal, first-order modal logic. This extension
straightforwardly reflects the model-theoretic changes required to interpret accessibility
transitions of multiple types and first-order statements. Our presentation roughly follows
[Debart et al., 1992]; we diverge in using a sequent calculus system with interleaved
translation in place of their sequential scheme of translation and resolution. (Alas, from a
technical point of view, such divergences are somewhat unsatisfying; they leave the sequent
calculus less directly grounded in established practice than it perhaps ought to be.)

With the multi-modal logic, atomic modal transitions can have different types depending
on the kind of transitions they represent. This requires two elaborations to the maintenance
of path terms as characterized in a ground calculus 2.3.5. First, in order to handle non-
serial modalities correctly, we need to explicitly enforce a UNIQUE PREFIX PROPERTY on
occurrences of variables in path terms (cf. [Wallen, 1990; Auffray and Enjalbert, 1992]).
For each eigenvariable �, we require that there be a term �� such that each occurrence of
� in the proof is in a term of the form ����; �� is the unique prefix associated with �.
The unique prefix property means that the equations that arise in proof search describe a
TREE in which variables occur uniquely; equating terms means identifying the nodes the
terms designate. In fact, the unique prefix property may be imposed on lifted proofs as
well—describing both logic variables and Skolem terms—without loss of generality. In
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Σ; � : i . � : i (AXt)

Σ . � : i 2jA � 2iA (INC)
Σ . � : j (INCt)

2iA � A (VER)
Σ . � : i (VERt)

Σ . � : i Σ . � : i 2iA � 2i2iA (PI)
Σ . �� : i (PIt)

Figure 3.9: Deriving the judgment Σ . � : i.

some frameworks, the unique prefix property is observed as a meta-theorem; but for our
purposes it is convenient to insist on it from the start.

The second elaboration involves assigning types to transitions and sequences of tran-
sitions. Sequences are assigned types based on the elements of which they are composed.
We will indicate these type restrictions by associating each sequent with a set of auxiliary
premises of the form � : i where � represents an atomic modal transition and i names a
modal operator. These premises can be used to derive JUDGMENTS that more complex scope
representations have particular types. For scope terms, the judgment Σ . � : i indicates
that � describes a transition of i-accessibility, according to the auxiliary premises Σ. Such
judgments are derived according to the rules shown in Figure 3.9, which realize axioms
(INC), (VER) and (PI) as rules of inference amalgamating and reclassifying terms. We can
obtain a ground explicitly-scoped sequent calculus for propositional multi-modal logic by
adding these specifications to sequents. Initially, the specification is empty.2 (! 2i) and
(3i !) will introduce a fresh variable � and add the specification � : i; then, (2i !) and
(! 3i) require a judgment � : i to be derived from the attached specification.

To endow the system with first-order reasoning, we also need to keep track of the worlds
that give the domains for first-order terms. For this, we associate sequents with a set of
premises of the form a : �, where a is a first-order eigenvariable and � gives the world
where we first assume a has a value. Similarly, judgments of the form Σ. t : � indicate that
the first-order term t is available in scope �, and are determined by the following definition:

Definition 1 Σ . t : � if and only if for every free variable x that occurs in t with an

2Because this specification is empty and because we insist on the unique prefix property, the treatment of
non-serial modalities is correct. This departs from [Debart et al., 1992] but effectively follows [Wallen, 1990].
With non-serial modalities, we may have 2p at � without having3p there, because no worlds are accessible.
But the rules of Figure 3.9 correctly fail to allow a proof of2ip - 3ip except if (VER) holds. In the absence
of any typing premises, no modal term can be shown to have type i. Therefore, neither (2!) or (! 3) rules
apply. In fact, the treatment of serial but not veridical modalities requires the inference rules of to be extended
so that we can introduce arbitrary fresh transitions �i : i, to permit the application of necessary facts at any
point in the proof.
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assignment x : � 2 Σ, � is a prefix of �.

The condition that � be a prefix of � implements the increasing domain constraint. The
ground (! 8) and (9 !) rules introduce a new variable x and a declaration x : � where
� is the label of the principal formula of the rule. The corresponding (! 9) and (8 !)

rules require deriving a judgment t : � from the available declarations before a term t can
be substituted into a principal formula at world �.

Again, the demands of efficient, general inference require us to work not in this ground
system, which implements ground inference on the classical semantics, but in a lifted system
which uses logic variables, Skolemization and unification. Here too, the lifted system can
be constructed correctly and automatically from the ground system by applying a proof-
theoretic version of Herbrand’s theorem, as in [Lincoln and Shankar, 1994]. As in the basic
lifted system of section 2.3.5, the inference rules describe derivations or proof attempts;
derivations are associated with constraints that must be solved to obtain a proof. Now
derivations are also associated with declarations of types that must be respected in solving
the constraints. In particular, logic variables are declared with the types that their values
must have, while Skolem terms are declared with the types belonging to the corresponding
eigenvariables. A substitution is possible only if the value assigned to each logic variable
can be assigned to the type associated with the logic variable using the declarations of
Skolem terms as premises Σ and the rules in Figure 3.9.

Thus, now sequents take the form

Σ; C=Σ0; C0 . Γ - ∆

The sequent shows not only the formulas Γ and ∆ and the initial constraints C which increase
over the course of the subderivation to C0, but also the initial declarations Σ of types for
modal terms and domains for first-order terms, which increase to Σ0 over the course of the
subderivation. (The sequent suppresses the association between formulas and free variables
used in the ongoing process of Skolemization and translation.)

For example, the full rule (! 2i) is annotated this way:

Σ; �(X) : i; C=Σ0; C0 . Γ - A�;�(X)
X ;2i�A�

X;∆
Σ; C=Σ0; C0 . Γ - 2i�A�

X;∆ ! 2i

This rule encodes in two places the bookkeeping required to prove 2iA by introducing a
Skolem term for a transition to a fresh possible world and proving A there.

The dense notation involved in this strategy is a drawback, however. In fact, the
underlying state of proof search is easily recovered from logical operations and the correct
update of state is easily dealt with in proof transformations. Accordingly, for the remainder
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of this chapter, we will use abbreviations that leave these details implicit, such as these:

Γ;A� - B� ;∆ (A� = B�)

Γ - A�;�(X);2iA�;∆
Γ - 2iA�;∆ ! 2i (SK �(X) : i)

(SK indicates Skolemization; LV, the introduction of a logic variable.) Using these abbre-
viations, we give in Figure 3.10 the sequent calculus SCL from which we start constructing
DIALUP by proof-theoretic analysis. Note that, because we base proof search on a cut-free
sequent calculus, we can dispense with inference rules for connectives that lie outside the
DIALUP fragment (cf. (43) in section 3.1.2).

The proofs of this section require a number of easy consequences of the simple structure
of SCL. These consequences continue to hold, suitably adapted, for the intermediate proof
systems that we will construct from SCL in later sections (including SCLA and SCLB). Let
us adopt some terminology from [Kleene, 1951] and then present these results.

A (PROPER) DERIVATION is a tree of sequents derived from initial (or axiom) sequents
according to the rules of Figure 3.10 (or whatever sequent calculus is under discussion).
A tree similarly constructed except for containing some arbitrary sequent S as a leaf is a
DERIVATION FROM S.

Each formula occurrence in the immediately higher sequent is traceable to a particular
occurrence in the end-sequent, and so we can identify for each formula occurrence in any
higher sequent (or the end-sequent itself) its ANCESTOR in the end-sequent.

Lemma 1 (weakening) For any SCL derivationD with end-sequent

Γ - ∆

we can obtain another SCL derivationD0 with end-sequent

Γ;Γ0 - ∆

that differs from the end-sequent of D only in adding the formulas Γ0 to the left-hand side
of each sequent in D; we can likewise add additional conclusions to ∆.

Lemma 2 (contraction) For any SCL derivationD with end-sequent

Γ;A�;A� - ∆

we can obtain another SCL derivationD0 with end-sequent

Γ;A� - ∆

that differs from the end-sequent of D only in eliminating one occurrence of A� on the left
throughoutD; we can likewise eliminate duplicate formulas from ∆.
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Γ;A� - B� ;∆ (A� = B�)

Γ;A^ B�;A�;B� - ∆
Γ;A^ B� - ∆ ^ !

Γ - A�;A ^ B�;∆ Γ - B�;A ^ B�;∆
Γ - A ^ B�;∆ ! ^

Γ - A�;B�;A_ B�;∆
Γ - A _ B�;∆ ! _

Γ;A_ B�;A� - ∆ Γ;A_ B�;B� - ∆
Γ;A_ B� - ∆ _ !

Γ;A� - B�;A � B�;∆
Γ - A � B�;∆ !�

Γ;A � B� - A�;∆ Γ;A � B�;B� - ∆
Γ;A � B� - ∆ �!

Γ;2iA�;A�x - ∆
Γ;2iA� - ∆ 2i ! (LV x : i)

Γ - A��(X);2iA�;∆
Γ - 2iA�;∆ ! 2i (SK �(X) : i)

Γ;A[u=x]�; 8x:A� - ∆
Γ; 8x:A� - ∆ 8 ! (LV u : �)

Γ - A[f(X)=x]�; 8x:A�;∆
Γ - 8x:A�;∆ ! 8 (SK f(X) : �)

Γ; 9x:A�;A[f(X)=x]� - ∆
Γ; 9x:A� - ∆ 9 ! (SK f(X) : �)

Γ - A[u=x]�; 9x:A�;∆
Γ - 9x:A�;∆ ! 9 (LV u : �)

Figure 3.10: SCL. Modal sequent calculus using unification and dynamic Skolemization
(abbreviated)
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(In later systems, the weakening transformation need only add formulas up to rules which
discard formulas; in later cases, the contraction transformation can only collapse formulas
with the same status in the sequent.)

Lemma 3 (monotonicity) For any SCL derivationD with end-sequent written in full as

Σ=Σ0; C=C0 . Γ - ∆

for any set Σ1 containing only elements of Σ and list C1 containing only elements of C, we
can obtain a derivation (like D) with end-sequent:

Σ1=Σ01; C1=C0
1 . Γ - ∆

where: Σ01 contains all the elements of Σ1 and only elements of Σ0; and C0
1 contains all the

elements of C1 and only elements of C0.

Proof. Straightforward induction on the structure of derivations.

Definition 2 A derivation in which no two rules introduce the same logic variable is a
pure-variable derivation.

Lemma 4 Every SCLB derivation can be transformed into a pure-variable derivation; any
unifier solving the equations associated with the first can be transformed to a unifier solving
the equations associated with the second.

The argument that shows this is summarized informally as follows. We can rewrite any
derivation so that all occurrences of a logic variable y that are due to the action of a particular
inference are replaced by a fresh variable z (that does not occur elsewhere in the proof).
By this process, any rule involving a duplicate variable can be rewritten so as to create a
derivation in which the number of rules involving duplicate variables is decreased by one.
Induction allows all the duplicate variables to be eliminated.

This rewriting involves substituting z for occurrences of y at positions corresponding to
the location of the bound variable in the principal formula of the inference introducing y in
all formulas with the side formula of that inference as an ancestor. Substitutions are also
required appropriately in the record of variables maintained for dynamic Skolemization,
in the record of equations derived during the proof, and in the specification of types
for variables. (Because the latter two are sets, and the original proof may duplicate its
constraints on y, this step could involve adding constraints on z while also preserving those
formerly placed on y.) The unifier for the resulting derivation is obtained for the unifier for
the original derivation by assigning z the same value given to y.

We can also observe that this regime permits the abbreviation of goal occurrences of
2(A � B) by a single formula (A > B) and the consolidation of corresponding inferences
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(! 2) and (!�) into a single figure (!>):

Γ;A��(X) - B��(X);A > B�;∆
Γ - A > B�;∆ !> (SK �(X) : i)

This corresponds to the pair of inferences:

Γ;A��(X) - B��(X);A � B��(X);A > B�;∆
Γ - A � B��(X);A > B�;∆ !�

Γ - 2(A � B)�;∆ ! 2 (SK �(X) : i)

Derivations using the new rule can be transformed to derivations using the old rule by
substituting this pattern for the new rule and weakening the higher derivation by A � B��.
Meanwhile, derivations using the old rule can be transformed to use the new rule by
eliminating appropriate instances of (! 2) (and hence also eliminating its side formula in
higher derivations). This elimination proceeds by replacing higher instances of (!�) that
apply to the side formula of the (! 2) rule by applications of (!>) to the principal formula
of (! 2). (More formally, the replaced rules apply to formulas identical to the side formula
of the lower (! 2) which also have this formula as an ancestor.) This is possible because
the preservation of formulas in sequents ensures that a copy of the principal formula is
available, and because side formulas of the two rules are the same, and is complete because
axioms apply only to atomic formulas.

3.4.2 Uniform proofs and eager proofs

[Miller, 1994] uses Definition 3 to characterize ABSTRACT LOGIC PROGRAMMING LAN-
GUAGES.

Definition 3 A cut-free sequent proof D is uniform if for for every subproof D0 of D and
for every non-atomic formula occurrence B in the right-hand side of the end-sequent of D0

there is a proof D00 that is equal to D0 up to a permutation of inference rules and is such
that the last inference rule in D00 introduces the top-level logical connective of B.

Definition 4 A logic with a sequent calculus proof system is an abstract logic programming
language if restricting to uniform proofs does not lose completeness.

It is easy to show that the sequent calculus SCL is an abstract logic programming language
in this sense. In fact, as we shall see, by this definition EVERY SCL derivation is uniform.

More precisely, each SCL derivation can be transformed into an EAGER derivation,
which we can define in terms of the transformations of sequent derivations described in
[Kleene, 1951]. Because of the automatic copying of formulas in this calculus, adjacent
logical inferences are applied in succession. A higher inference H is applied at the root of
the immediate subderivation of a lower inference L. (No structural rules intervene.) If a
side formula of L is not the principal formula of H, we may attempt to replace the derivation
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of the end-sequent of L by a new derivation of the same end-sequent with H at the root,
followed immediately by L, capped by subderivations copied from the original derivation
(but possibly weakened to reflect the availability of additional logical premises, and the
earlier introduction of terms and the earlier impositions of equalities). Performing such a
replacement constitutes an interchange of rules L and H and demonstrates the permutability
of L and H; see [Kleene, 1951]. The calculus of Figure 3.10 is formulated so that no rules
impose structural conditions on the sequents where they apply (as substantiated by Lemmas
1, 2 and 3) and therefore any such pair of inferences may be exchanged in this way.

Now consider a derivationD containing a right rule R.

Definition 5 R is delayed exactly when there is a subderivationD0 ofD that contains R and
ends in a left rule L, such that the ancestor of the principal formula of R in the end-sequent
of D0 is an occurrence of the principal formula of R.

Intuitively, R is delayed in that we have waited in D to apply R until after consulting the
program by applying L, when we might have applied R earlier.

Definition 6 D is eager exactly when it contains no delayed applications of right rules.

By transforming any derivationD into an eager derivationD0 by permutations of inferences,
we effectively witness that D is uniform and provide a starting point for further analysis.

Theorem 1 Any SCL derivation D is equal to an eager derivation D0 up to permutations
of inferences.

The proof follows [Kleene, 1951, theorem 2]. A double induction transforms each deriva-
tion into an eager one; the inner induction rectifies the final rule of a derivation whose
subderivations are eager by an interchange of inferences and induction [Kleene, 1951,
Lemma 10]; the outer one rectifies a derivation by rectifying the furthest violation from the
root and induction.

We can present this proof in full using a lemma.

Lemma 5 Consider a derivationD which has eager immediate subderivations and which
ends in rule application A. FromD we can construct a derivation with the same end-sequent
that is eager.

Proof. If the rule A that ends D is a right rule, we are done. A cannot be delayed in D, nor
can any rule not delayed in the immediate subderivations of D be delayed inD. Otherwise,
we have A a left rule. We proceed after [Kleene, 1951], lemma 10. Define the GRADE of D
as the number of delayed right rule applications in D. We show by induction on the grade
that any derivation can be transformed to an eager one.

The base case is derivations of grade 0. This case hasD itself eager. Thus, suppose the
lemma holds for derivations of grade g, and consider D of grade g + 1. Since the grade is
nonzero, and the immediate subderivations are eager, at least one of them—call it D0—must
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end with a right rule R whose principal formula is preserved from the end-sequent ofD0 to
the end-sequent of D.

(If an eager derivation ends in a left rule, then the end-sequent contains no identical
ancestor to the principal formula of a right rule. All rules add structure to the ancestors of
formulas, so we cannot change this property by applying further rules to the derivation.)

We interchange rules R and A. In the result, the subderivation(s) ending in A satisfy the
condition of the lemma with grade g or less. By applying the induction hypothesis, we can
replace these subderivations with eager ones. Since in this last transformed derivation, the
immediate subderivation(s) are eager and the last rule is a right rule, we have an overall
eager derivation.

Now, continuing the proof of Theorem 5, define the RELUCTANCE ofD to be the number
of rule applications R such that DR is not eager. We proceed by induction on reluctance. If
reluctance is zero, D is itself eager.

Now suppose the theorem holds for derivations of reluctance d, and consider D of
reluctance d + 1. Since D is finite, there must be some subderivation DR that is not eager
and such that every subderivation (DR)R0 is eager. ThisDR satisfies the condition of lemma
5. Therefore this DR can be replaced with a corresponding eager derivation, giving a new
derivation of smaller reluctance. Induction then shows that the resulting derivation can be
made eager.

3.4.3 Linking and Variable Introduction

Eager derivations do not make a satisfactory specification for a logic programming inter-
preter because they do not embody a very focused search strategy. This shows up in two
ways. First, eager derivations are free to work in parallel on different disjuncts of a goal;
in logic programming we want SEGMENTS in which a single goal is in force. Moreover,
eager derivations can reuse work across separate case analyses; in logic programming we
want BLOCKS where particular cases are investigated separately. Second, because of their
classical formulation, eager derivations do not enforce or exploit the modularity of their
underlying logic.

In subsequent sections, we will remedy these faults of eager derivations. To do so, we
need to characterize more precisely derivations both in SCL and in the related formalisms
that we will derive from it in subsequent sections. This section provides this characteri-
zation. We show that SCL derivations need only apply inferences when those inferences
contribute to the proof, in this technical sense:

Definition 7 An inference R contributes to a derivationD iff some side formula A of R is a
the ancestor of a principal formula of an axiom in D.

At the same time, we show that in an SCL derivation all of whose inferences contribute
to the proof, the proof respects a VARIABLE INTRODUCTION PROPERTY that describes the
restricted way in which variables are propagated in the proof. We define this as follows.
Let C be the list of annotation equations resulting from a SCL proof attempt D, numbered
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in increasing order. (Recall that equations in C generated by axioms in right branches of
a proof PRECEDE those on left branches.) Denote the term in Ci coming from the right
formula of the ith axiom as ri and that coming from the left formula as li.

Definition 8 D has the variable introduction property if and only if every variable x that
is introduced by a (2 !) rule in D and occurs in some term ri also occurs in some lj for
some j < i.

First we note the following crude sense in which every rule should bring something
new to the proof.

Lemma 6 (simplicity) For any SCL derivationD, there is another D0 with the same end-
sequent such that every rule-application inD0 has a different principal formula or different
side-formulas from every lower rule-application.

Proof. We can eliminate any higher application identical to some lower one using the
contraction lemma: observe that the side formulas of the lower application are available by
preservation, and thus the side formulas of the higher application are duplicates.

Now we state and prove the main result. Because of its importance, we provide a
sample illustration of some technical details we will generally pass over later: We refer
explicitly to constraints and specifications accumulated during the proof. We also consider
the rules of SCL directly, to make it clear that the result applies to this fragment of modal
logic more generally, irrespective of logic programming considerations.

Theorem 2 (variable introduction) Given any SCL derivation D with end-sequent

Σ=Σ0; C=C0 . Γ - ∆

we construct a derivationD0 with end-sequent

Σ=Σ00; C=C00 . Γ0 - ∆

with the following properties: Σ00 contains only elements from Σ0; C00 contains only elements
from C0; Γ0 contains only elements from Γ; and D0 contains only inferences from D (and
does not interchange them); every formula in Γ0 is the ancestor of the principal formula
of some axiom in D0; every inference in D0 contributes to it; and D0 enjoys the variable
introduction property.

Proof. Consider an SCL derivation D with end-sequent:

Σ=Σ0; C=C0 . Γ - ∆:

We say a formula A� is GROUNDED in D if A� occurs in Γ and there is some formula B�

in ∆ such that � is a prefix of �. If A� occurs in Γ but is not grounded, we say A� is
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UNGROUNDED in D. If an occurrence of an equation l = r appears in C0 but not in C, we
say D GIVES RISE to C.

Induction on the structure of LU2 proof attempts shows that there is a proof attempt
D0 corresponding toD satisfying the conditions of the statement of the theorem, and where
one of two further properties holds of each ungrounded A� inD. Either (1) D0 gives rise to
no equation li = ri in which � is a prefix of li and A� does not occur in the end-sequent of
D0; or (2), the end-sequent of D0 includes A�, and D0 contains a FIRST LEFT USE OF �—in
other words D0 gives rise to some equation lj = rj where � is a prefix of lj and � is not a
prefix of any right equation term ri with i � j. The intuition behind these conditions is that
any problematic formula that starts out ungrounded in D should disappear in D0 unless it
makes a contribution.

For the base case, we start from an instance of the axiom rule:

Σ=Σ; C=C;A = B; � = � . Γ;A� - B� ;∆

We construct the axiom:

Σ=Σ; C=C;A = B; � = � . A� - B� ;∆

It is immediate that the new axiom satisfies the condition of the theorem. The auxiliary
conditions also hold—since either A� is grounded or � is used here first on the left.

Now suppose the claim is true for derivations of height h or less, and consider derivations
of height h+1. The transformation depends on the inference rule at the root of the derivation.
We consider the case of (�!) in detail as a key illustration. Consider a derivationD ending
in (�!), as below:

Σ0=Σ00; C0=C00 . Γ; (A � B)� - A�;∆ Σ=Σ0; C=C0 . Γ; (A � B)�;B� - ∆
Σ=Σ00; C=C00 . Γ; (A � B)� - ∆ �!

The same multiset of formulas ∆ appears above the rule-application in the right subderiva-
tion and below the rule-application. Hence the ungrounded formulas in the whole derivation
are all ungrounded in right subderivation. (The same property holds for right rules that
do not change annotation, even though they add a formula to ∆.) We apply the induction
hypothesis to the RIGHT subderivation; we thereby eliminate or find first left uses for all
these ungrounded formulas.

In particular, if our principal formula (A � B)� is ungrounded, either we will eliminate
it and its side formula in the subderivation, or we will find a first left use for all formulas
labeled by a prefix of �. If we eliminate it, we obtain a new subderivation, in which the
end-sequent is of a form

Σ=Σ1; C=C1 . Γ1
- ∆

in which neither (A � B)� nor its subformula appears. The monotonicity lemma ensures
that Σ1 contains only elements of Σ00 and that C1 contains only elements of C00, so the new
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subderivation satisfies the needed conditions.
Otherwise, the principal formula is preserved in the right subderivation. In this case,

we apply the induction hypothesis to the left subderivation—observing that it applies only
to those ungrounded formulas in the overall derivation that are NOT labeled by prefixes of
�. We apply the weakening lemma to each new derivation and the formulas that appear in
the other new derivation but not in it. The two subderivations then agree on a multiset Γ2

of formulas that survive. These two derivations can be combined into the needed overall
derivation using (�!), as below:

Σ1=Σ2; C1=C2 . Γ2; (A � B)�X
- A�

X;∆ Σ=Σ1; C=C1 . Γ2; (A � B)�X;B�

X
- ∆

Σ=Σ2; C=C2 . Γ2; (A � B)�X
- ∆ �!

This derivation satisfies the conditions of the theorem. The weakening step does not
introduce rules, constraints, or specifications, nor formulas foreign to Γ. Annotations of
formulas weakened onto either subderivation contribute to this new overall deduction and
are first used in equations on the left here, by the induction hypothesis (these annotations
have a first left use in one subderivation and no use in the other). Meanwhile, for any
ungrounded formula C�

Y where � occurs in equations from both new subderivations, � has a
first left use—even with � a prefix of �, if applicable. For, in the new B subderivation, there
is a first equation-term involving � on the left; this term will precede all equation-terms
involving � from the A subderivation as well. The monotonicity lemma again ensures that
Σ2 and C2 contain only elements of Σ00 and C00.

Similar reasoning takes care of the five right rules that do not alter annotations—
(! ^), (! _), (!�), (! 8), and (! 9)—as well as the five left cases that do not alter
annotations—(^!), (_ !), (�!), (8 !), and (9 !).

Two cases remain. First, suppose the proof attempt ends in (! 2i):

Σ; �(X) : i=Σ0; C=C0 . Γ - 2iA�;A��(X);∆
Σ=Σ0; C=C0 . Γ - 2iA�;∆ ! 2i

Observe that the ungrounded formulas in the immediate subderivation are exactly those
that are ungrounded in the overall derivation. For, consider any ungrounded formula B�

in the overall derivation. By definition, � is not a prefix of �. Thus, the only way we
could could have � a prefix of ��(X) is if � = ��(X). Now, �(X) is a unique Herbrand
function application associated with this occurrence of the formula 2iA. Since labels are
preserved or extended by all sequent rules, by monotonicity, if � = ��(X) then B must be
a descendant of a lower occurrence of A��(X). By Lemma 6, we may assume this is not so
without loss of generality.

So the induction hypothesis applies to the subderivation with the same ungrounded
formulas. Assuming the side formula of this inference is preserved there, weakening by
2iA� if necessary and applying (! 2) to the result (as below) gives a derivation with the
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needed properties:

Σ; �(X) : i=Σ1; C=C1 . Γ1
- 2iA�;A��(X);∆

Σ=Σ1; C=C1 . Γ1
- 2iA)�;∆ ! 2i

Finally, consider (2i !):

Σ; x : i=Σ0; C=C0 . Γ;2iA�;A�x - ∆
Σ=Σ0; C=C0 . Γ;2iA� - ∆ 2i !

Here x is a logic variable which by Lemma 4 we may assume is different from other variables
and Herbrand terms. In the immediate subderivation therefore, A�x is ungrounded, because
�x cannot be the prefix of the annotation of any ∆ formula. Apply the induction hypothesis.
If A�x disappears, the subderivation suffices. Otherwise, use the new subderivation to
construct a derivation ending:

Σ; x : i=Σ1; C=C1 . Γ1;2iA�;A�x - ∆
Σ=Σ0; C=C0 . Γ1;2iA� - ∆ 2!

Here, �x—along with all surviving ungrounded formulas—appears last on a left equation,
by the induction hypothesis. Thus the overall deduction has the variable introduction
property and witnesses the needed properties of the ungrounded formulas.

3.4.4 Block structure

We can now reformulate the rules of the sequent calculus so as to preserve provability but
introduce the block and segment structure characteristic of logic programming. After this
transformation, the proof system treats the work done in decomposing a goal or backward
chaining against a clause as temporary. The work contributes to the current problem in a
fixed way, and then is discarded.

We begin with a trick that for now is purely formal—introducing an ARTICULATED

SCL. We represent assumptions as a pair Π; Γ with Π encoding the global program and
Γ encoding local clauses; eventually local clauses will be processed only in the current
segment and then discarded. Similarly, we represent goals as a pair ∆; Θ, with Θ encoding
the restart goals and ∆ encoding the local goals (eventually ∆ will be discarded between
segments). With this representation, principal formulas of logical rules are local formulas
(in Γ and ∆)—and with these exceptions so are the side formulas: the (! 2) and (!>)

rules augment Π instead of Γ (when they add a new program clause) and Θ in addition to
∆ (when they add new restart goals, but continue to be processed).

New (decide) and (restart) rules keep this change general; they allow a global formula—
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a program clause or restart goal—to be selected and added to the local state.

Π;P�; Γ;P� - ∆; Θ
Π;P�; Γ - ∆; Θ (decide)

Π; Γ - ∆;G�; Θ;G�

Π; Γ - ∆; Θ;G� (restart)

Lemma 7 (articulation) Every ordinary SCL deduction can be converted into an articu-
lated SCL deduction with an end-sequent of the form Π; - ; Θ (i.e, in which the local
parts Γ and ∆ are empty) in such a way that if the initial derivation is eager then so is the
resulting derivation (and vice versa).

The proof forward argues by straightforward structural induction that the derivation can
be transformed assuming each formula in the end-sequent is allocated somehow either to
Π or Γ; we preserve and extend this allocation in immediate subderivations, introducing
instances of (decide) and (restart) as necessary when the principal formula occurs in Π only;
then argue by induction. Backward, another straightforward structural induction shows we
return to SCL by forgetting the distinction between Π and Γ, forgetting the (decide) and
(restart) rules, and contracting copied formulas.

To give content to the splitting of sequents, we first introduce new rules for (_ !). In
these new rules, local work (and perhaps some global work) is discarded in the subderivation
written on the right; this subderivation is said to begin a new BLOCK of the derivation separate
from the block in which the rule is applied. (Blocks of a derivation are thus derivations from
the end-sequents of right subderivations of the revised (_ !) inferences.) This discarding
normally means that while each block of a derivation is eager, the derivation as a whole
is not eager. A derivation that meets this weaker condition is called BLOCKWISE EAGER.
As observed in [Nadathur and Loveland, 1995], derivations with blocks can nevertheless
be seen as eager throughout by reconstructing the (restart) rule as backchaining against the
negation of a subgoal.

Π; Γ;A_ B�;A� - ∆; Θ Π0;B�; - ; Θ0

Π; Γ;A_ B� - ∆; Θ _ !L

Π; Γ;A_ B�;B� - ∆; Θ Π0;A�; - ; Θ0

Π; Γ;A_ B� - ∆; Θ _ !R

(Formally, Π0 is a sub-multisetof Π; Θ0 is a sub-multisetof Θ.) Having both rules introduces
the apparent ambiguity of which to apply in proof search. The ambiguity is resolved by
a policy of enforcing CANCELLATIONS—immediate uses in the derivation of any disjunct
introduced (cf. [Loveland, 1991], but note restriction of immediacy).

Definition 9 A cancellation of a side formula P of a (revised) (_ !) inference is a principal
formula of an axiom in the block in which P is introduced which has that occurrence of P
as an ancestor.

Definition 10 A derivation is strict if for every (revised) (_ !) inference in the derivation,
both side formulas have cancellations.
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As we see in the proof of Lemma 8, (_ !R) is used only when necessary to ensure disjuncts
have cancellations—i.e, only when the lower formula that needs cancellation contributes
to the B derivation but wouldn’t contribute to the A subderivation. Call the calculus so
revised SCLA. Obviously, we can use weakening to transform an SCLA derivation into an
articulated SCL derivation, so the rule is sound. The completeness of the rule is the content
of the following lemma.

Lemma 8 Any eager, articulated SCL derivation can be transformed into an SCLA deriva-
tion that is strict and blockwise eager.

The proof takes advantage of an initial, subsidiary lemma, which is a direct corollary
of Theorem 2.

Definition 11 The side formula of a rule R is linked inD if it is the ancestor of a principal
formula of an axiom in the same block ofD as R. The inference R is linked iff it has a linked
side formula. A derivation is linked iff all of its inferences are.

Lemma 9 Any strict, articulated SCL derivation D (possibly containing revised (_ !)

inferences) can be transformed into another in which the order of (retained) rules is
preserved and every rule application in the block that includes the root is linked.

Given this lemma, the proof of Lemma 8 assumes a strict, linked, blockwise eager SCL
derivationD, with the property that no revised (_ !) inferences appear above any original
(_ !) inference, and (perhaps) with a distinguished formula G in the end-sequent that is
an ancestor of the principal formula of an axiom in the lowest block. It shows that D can
be transformed into a strict, linked, blockwise eager SCLA derivation by induction on the
number of ordinary (_ !) applications in D, where G remains an ancestor of the principal
formula of an axiom in the lowest block.

In the base case there are no ordinary (_ !) rules, so D is in fact an SCLA derivation.
In the inductive case, we are given D with n ordinary disjunctions, and assume the

hypothesis true for derivations with fewer. We find an application R of SCL (_ !) to
replace with no ordinary (_ !) closer to the root of D.

To describe the transformation, we restrict attention to the subderivation D0 of D
containing R and rooted at the highest right subderivation of a revised (_ !) rule S if any
(and the root of D otherwise). Since D is strict, any side formula F of S is linked in the
lowest block ofD0 (at the root of D use the key formula G as F). We decide whether to use
(_ !L) or (_ !R) in place of R based on how F fits into the derivation.

Let A _ B be the principal formula of R; call the subderivation of D0 below R (from R)
DR and call the right subderivation above R (in which B is assumed) DB. Weaken DR by
the formula B (and by equalities and introductions of terms as needed) to obtain W(DR).
We also weaken DB by equalities and introductions of terms if necessary, so that we can
identify the open leaf of W(DR) with the end-sequent of DB. This new derivation contains
n�1 occurrences of (_ !), since it contains only applications fromD and does not contain
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R. For similar reasons, it remains strict and blockwise eager. We can thus obtain a strict,
linked, blockwise eager version B by applying Lemma 9. A parallel construction will give
a strict, linked, blockwise eager versionA obtained from the left subderivation above R.

We now observe two facts about the derivations A and B, which follow because the
construction of the linking lemma preserves the inferences in linked derivations. First, a
derivation containing the inferences of DR occurs as a subderivation of B and a derivation
containing the inferences of its alternative DL occurs as a subderivation of A. Second,
every axiom from D0 is represented either in A or in B.

As a result of these facts, we can select either of these derivations, say B, and apply the
induction hypothesis to obtain a new strict, blockwise eager SCLA derivation in which B
is linked in the initial block. Replacing this derivation as the right subderivation of R turns
R into a strict inference of (_ !L). Lemma 9 can now be applied; afterwards, because the
B derivation is in a different block, the inferences in the lowest block will now match A.
Thus, if F is linked inA, this is the construction to use. Otherwise, the mirror construction
must be used, to generate a strict inference of (_ !R). Overall, we now have a strict,
blockwise eager SCL derivation with fewer original (_ !) inferences, so applying the
induction hypothesis to the result gives the final needed derivation.

The next step is to develop a local (�!L) rule that imposes a SEGMENT structure on
derivations:

Π; - A�;∆; Θ Π; Γ;A� B�;B� - ∆; Θ
Π; Γ;A � B� - ∆; Θ (�!L)

The use of this rule in blockwise eager derivations ensures that the processing of each new
goal refers directly to global program clauses. This fact is formalized as Lemma 10.

Lemma 10 Let D be a blockwise eager SCLA derivation, perhaps including (�!L) in-
ferences, with a end-sequent of the form : : : . Π;! ∆; Θ. Let R be any fresh right rule in
D—one such that the path from R to the root never follows the left branch of (�!). Then
the end-sequent of DR has the form : : : . Π0;! ∆0; Θ0.

Proof. Suppose otherwise, and consider the lowest fresh right rule R in D with some local
clauses Γ. R cannot be the first inference of D, so there must be an inference S in D
immediately below R. If S is a left rule, then the fact that D is blockwise eager leads to a
contradiction: S must be (�!0) or (_ !0) and R must appear along the branch without
local clauses. Meanwhile, if S is a right rule, it follows from the formulation of the rules
that if the end-sequent of DR has nonempty local clauses then the end-sequent of DL must
also. This contradicts the assumption that R is first.

The use of (�!L) exclusively provides a modified calculus SCLB. The correctness of
SCLB over SCLA mirrors the correctness of SCLA over articulated SCL. The soundness
of the (�!L) rule can be established by weakening SCLB derivations to match the SCLA
(�!) figure. Completeness is demonstrated by a hierarchical copying strategy, as outlined
in Lemma 11.
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Lemma 11 Any SCLA derivation that is blockwise eager and strict can be transformed to
an SCLB derivation with the same properties.

The proof is by induction on the number of occurrences of (�!) rules in a given
derivationD (possibly also including (�!L) inferences). The induction hypothesis returns
a blockwise eager, strict SCLB derivation D0, where also D0 applies no inference to any
right formula in its end-sequent in its lowest block unless the same inference is applied to
the same principal formula in D in its lowest block.

In the base case D is just D0, and all these conditions are immediately satisfied.
Suppose D is a derivation in which the (�!) is used n+1 times. Let L be some

occurrence of (�!) with no other application of (�!) closer to the root ofD. Follow the
path below L to the highest sequent that lies immediately above a right rule or a (�!L) rule
on the left branch or the root of D; and let R be the rule immediately above this. Suppose
L applies to a formula A � B and H is the rule immediately above L on the left branch.
R marks the beginning of the current segment of left rules, and H marks the beginning of
the next segment of right rules. The subderivation ending with the inference R, from the
end-sequent of L—DL

R abstracts the left rules performed in this segment (and any resulting
search). By Lemma 10, DL

R ends with a sequent of the form : : : . Π; - ∆; Θ. By the
identification of R, we have the same succedent ∆; Θ at R and at L.

We use DL
R to construct a derivationD0 corresponding to the subderivation of D rooted

at H, DH, by induction on the structure of derivations. The induction uses cases to keep the
proof blockwise eager. If the derivation ends in a right rule, the corresponding derivation is
constructed by obtaining corresponding subderivations and recombining them by the same
right rule.

Otherwise, our construction first weakens DL
R by appropriate formulas, constraints and

introductions of terms, and then identifies the open leaf in DL with the input derivation.
By gluing two eager derivations together at places where left rules could apply in both,
this gives an eager derivation; it has at most n uses of (�!). If necessary, Lemma 9
can be applied to reduce this derivation to a strict, linked component. Then the induction
hypothesis applies to give a derivation in which only (�!L) is used. This is the needed
result.

Now we substitute the proof D0 for DH in D, obtaining a new proof D00 in which the
occurrence of L now represents an application of (�!L) and which therefore contains at
most n uses of (�!). D00 remains locally eager since no inference appearing in D0 can
be delayed (in D00) unless a corresponding inference appearing in DH is delayed (in D).
The replacement is limited to D00R, and no right rule applies higher in the same block to a
formula in the end-sequent ofD00R. This ensures that right rules apply inD00 and in D to the
same formulas from the end-sequent in the same block as the lowest inference. Now the
induction hypothesis applies to give the needed overall derivation.
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3.4.5 Modularity

The final step in the justification of the calculus is to enforce modularity. This again is
accomplished by adapting the rules of the sequent calculus in several stages. First, we
refashion (! 2) to use path eigenvariables instead of Skolem terms. These specialized
rules are:

(50) a
Π; Γ - G��;∆; G��;Θ

Π; Γ - 2iG�;∆; Θ ! 2i (� : i new)

b
Π;F��; Γ - G��;∆; G��;Θ

Π; Γ - F >i G�;∆; Θ !>i (� : i new)

The element � is new iff it is distinct from any other element in the input declaration Σ.
This suffices because, in proving Herbrand’s theorem, Skolem terms are needed because a
single rule which belongs early in the ground proof may be delayed. This won’t happen
with (! 2) rules in (blockwise) eager proofs.

To work this out formally,we first describe a transformation on derivations that describes
conditions when eigenvariables can be introduced into derivations.

Lemma 12 Given a pure-variable SCLB proofD; � with empty input constraints and speci-
fication and output constraints Cf and specification Σf. SupposeD contains a subderivation
E ending:

Σ; � : i=Σ0; C=C0 . Π; (B��); Γ! A��;∆; A��;Θ

Here � is some term representing a modal transition, such that the only occurrences of
�� when � applies to the end-sequent are those explicitly indicated above and others in Σ0

and C0. Then for any other term � a derivation D0 can be constructed with the following
properties. The inferences of D0 correspond to D. The equalities generated by D0 are a
list of occurrences from C00 [ (CfnC0) (suppressing the initial list structure). Similarly, the
declarations generated byD0 occur in Σ00[(ΣfnΣ0). D0 is solved by a unifier �0, and, finally,
the subderivation of D0 corresponding to E ends

Σ; � : i=Σ00; C=C00 . Π; (B��); Γ! A�� ;∆; A��;Θ

Again, we can describe this transformation by an informal argument about where substi-
tutions must be performed on the derivation. In this case, we can simply replace � by �

throughout E (and propagate the change to the records of equations and declarations as
necessary in D). The new substitution is obtained by replacing � by � in the values of
all and only the logic variables introduced in E . Since we have an overall pure-variable
derivation, these variables will not occur outside equations C00.

The new rules are introduced by exploiting this result.

Lemma 13 For any strict, blockwise eager SCLB derivation D and any unifier � solving
its constraints, there is a corresponding strict, blockwise eager derivation D0 using SCLB
with the revised rules of (50) and a unifier �0 solving its constraints.



96 MATTHEW STONE

We begin by observing a consequence of Theorem 2, as it applies to D.

Definition 12 Say a multiset of formulas Π is spanned by a multiset Θ under � iff every
prefix of a label of a formula in Π is equal under � to the label of some Θ formula.

Consider a proof D; � whose end-sequent

Π; Γ - ∆; Θ

is spanned by Θ under �. Then every sequent

Π0; Γ0 - ∆0; Θ0

in D is spanned by Θ0 under �. Because rules introduce new prefixes into the global
workspace, and because the proof can adopt a regime where the global workspace is only
extended by subderivations, the only step at which this could fail is that where some logic
variable x is introduced:

: : :A�x - ∆; Θ
: : :2A� - ∆; Θ 2!

By Theorem 2, this inference contributes to an axiom; this must lie in the current segment,
since x represents local work. Because the derivation is blockwise eager, no higher rules
apply to ∆ or Θ formulas within the segment. Therefore the right term of whatever equation
x first appears in is the label of a ∆ formula. This shows that � equates �x (and every prefix
of it) with some label of a Θ formula.

Using this observation, we transform D to use the new rules by induction. For most
cases we just apply the transformation to subderivations and recombine; the only exceptional
cases are (! 2) and (!>). Let �(X) be the variable introduced at the rule in question.
Consider whether the conditions for replacing�(X) by a fresh variable� apply for the unifier
�. If they do, perform the replacement and continue. Otherwise, � finds an occurrence of
�(X) outside of the principal formula of the rule. Therefore, by the previous argument, a
formula whose annotation ends in �(X) must already be an element of Θ. Because Skolem
functions are uniquely associated with connectives, and because of their global preservation,
this means that the side formulas of the inference are already present in the end-sequent.
The inference can therefore be eliminated (by applying the contraction transformation or
introducing a restart rule, as appropriate).

We now turn to the second step in establishing modularity. We rewrite inference figures
so that every sequent in the proof has at most one formula in the left and right local areas, and
further if a right rule applies the left local area is empty. This rewriting is likewise achieved
by straightforward induction on proofs. Multiple formulas in sequents are needed only for
passing ambiguities and work done across branches in the search; but this is precisely what
the use of (_ !L), (_ !R) and (�!L) prevents.
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Lemma 14 Given a strict, blockwise eager derivationD using SCLB with the revised rules
of (50), we can construct a corresponding derivation using the inferences schematized in
Figure 3.11 and 3.12 (ignoring restrictions of modularity).

Proof. We construct by induction on the structure ofD a derivationD0 with the property
of the lemma plus three additional invariants. D0 will contain in each segment all and only
the axioms of the corresponding segment of D (and likewise for blocks); whenever D0

contains a sequent of the form : : :! F; Θ then F will be the only right formula which is the
ancestor of the right principal formula of an axiom in that block; and whenever D0 contains
a sequent of the form : : : .Π; F! : : :, then F is the only left formula which is the ancestor
of the left principal formula of an axiom in that segment.

In the base case, D is
Π; Γ;A�

X
- B�

X;∆; Θ

and D0 is
Π; A�

X
- B� ; Θ

Supposing the claim true for proofs of height h, consider a proof D with height h+1.
We consider cases for the different rules with which D could end.

The treatment of (! ^) is representative of the case analysis for most right rules. D
ends

: : : - A; : : : : : : - B; : : :
: : : - A ^ B; : : : ! ^

We observe from Lemma 10 that in the initial derivation there is an empty local area. We
simply apply the induction hypotheses to the immediate subderivations. If the resulting
derivations end with (restart), consider the immediate subderivation of the results, otherwise
consider the results themselves. They end

: : : - C; : : :
: : : - D; : : :

We must have C = A; we know from the structure of D that A is linked, and A could not be
linked in D unless C = A since D0 shows that all of the axioms in D derive from C. For
the same reason D = B. So we can combine the resulting proofs by (! ^) rule.

For the case of (!>), we need to make an additional observation. When induction
gives us a derivation of

.Π;A��; - C; B��;Θ

we know from the structure of D only that one of A and B must be linked. However, since
� must be new, if A is linked then so is B.3 But if C is different from B, B cannot be linked.
So C = B.

3This is a consequenceof the introduction of an eigenvariable here cf. [Stone, to appear, lemma 2]. Consider
a derivation D using the new rules which has a unifier � for which some left formula A in the end-sequent has
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Now suppose D ends in a left rule other than (�!) or (_ !). Apply the induction
hypothesis to the immediate subderivation(s), and strip off the lowest (decide) rule, if there
is one. That gives new derivation(s) with an end-sequent of the form:

Π; T - A; Θ

In all cases, T must be a side formula of the left rule; otherwise the original left rule could
not have been linked in D. The corresponding rule from the system of Figure 3.11 applies
to extend the induction hypothesis.

For (�!), applied to A � B, we first apply the induction hypothesis to the left
subderivation. After stripping off any (restart), we get a proof of some new right formula
C; by linking, this must in fact be A. We then apply the induction hypothesis also to the
right subderivation. Again, after stripping off any (decide), we get a proof from some new
left formula D; by linking this must in fact be B. Otherwise, we can combine the two
derivations by the (�!) rule of Figure 3.11.

Finally, for (_ !), applied to A _ B, we first apply the induction hypothesis to the
subderivation in the current block. By linking, there is a local program consisting of the side
formula of this inference in the resulting subderivation. We apply the induction hypothesis
to the other subderivation. Since both local areas are empty in the input subderivation, they
remain empty in the result subderivation. The two subderivations can be recombined by
the appropriate rule of Figure 3.11.

Finally, we enforce modularity, using the following observation. Using these rules,
whenever D0 contains a sequent of the form Π;! G� ; Θ then G� will be the only right
formula which is the ancestor of the right principal formula of an axiom in that block.
Induction on path logic proofs shows that if a left formula P� from Π is the ancestor of a
principal formula of an axiom in such a block, � must equal a prefix of �. Now we have
ensured that each time a (_ !) rule applies, any disjunct P� has such a cancellation. Thus,
in search, we can restrict the subsequent (restart) rule to goals G� with � a prefix of �.

The calculus SCLP that we obtain is shown in two parts: Figure 3.11 shows the rules
for decomposing program statements; Figure 3.12 shows the rules for decomposing goals.

The discussion of the previous subsections represents an outline of the proof of the
following theorem.

Theorem 3 There is a proof of Γ - ∆ in SCL exactly when there is a proof of Γ; - ; ∆
in SCLP.

3.5 Summary

The action the interpreter specified by SCLP can be summarized as follows. A distinguished
formula on the right in sequents represents the current goal at any state in proof search;

an annotation � that is not a prefix of any annotation of any (locally) linked right formula in the end sequent.
Induction shows that no descendant of A can ever be labeled in a higher (local) sequent with term equal by � to
a prefix of the label of any (locally) linked right formula. So this occurrence of A is not (locally) linked in D.
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Γ; P� - A� ; ∆(P� = A�)

Γ;P�; P� - A� ; ∆
Γ;P�; - A� ; ∆ decide

Γ; P� - A� ; ∆
Γ; P^ Q� - A� ; ∆ ^ !L

Γ; Q� - A� ; ∆
Γ; P^ Q� - A� ; ∆ ^ !R

Γ; P� - A� ; ∆ Γ;Q�; - ; ∆
Γ; P_ Q� - A� ; ∆ _ !L

Γ; Q� - A� ; ∆ Γ;P�; - ; ∆
Γ; P_ Q� - A� ; ∆ _ !R

Γ; - Q�; ∆ Γ; P� - A� ; ∆
Γ; Q � P� - A� ; ∆ �!L

Γ; P�x - A� ; ∆
Γ;2iP� - A� ; ∆ 2i ! (LV x : i)

Γ; P[u=x]� - A� ; ∆
Γ; 8x:P� - A� ; ∆ 8 ! (LV u : �)

Γ; P[h(X)=x])� - A� ; ∆
Γ; 9x:P� - A� ; ∆ 9 ! (SK h(X) : �)

Figure 3.11: Logic programming sequent calculus—programs (abbreviated). Further re-
strictions maintain and exploit cancellations: For (decide), in current block, P� must not
be forbidden and if P� needs cancellation, record its contribution.

if possible, the interpreter first breaks this goal down into its components. In particular,
as claimed in section 3.2, modular goals like [C]c and [T]t are processed by considering
transitions to fresh possible worlds where only the information from that module is available.

Once an atomic goal is derived, the program is consulted by applying (decide); the
chosen clause is decomposed and matched against the current goal by applicable logical
rules. In particular, at (_ !), the second case analysis allows the current goal to be chosen
flexibly by the (restart) rule. The (restart) rule is modular in that it limits the work that is
reanalyzed to the scope of the ambiguity just introduced; this conforms to the description
in section 3.2.

The SCLP presentation may be delicate to construct, but it works according to a simple
intuition. A modular goal can be thought of as an assignment of a problem to a new
independent agent that has access to precisely the information in the corresponding modu-
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Γ; - G� ; G� ;∆
Γ; - ; G� ;∆ restart

Γ; - F�; ∆ Γ; - G�; ∆
Γ; - F ^ G�; ∆ ! ^

Γ; - F�; ∆
Γ; - F _ G�; ∆ ! _L

Γ; - G�; ∆
Γ; - F _ G�; ∆ ! _R

Γ;F��; - G��; G��;∆
Γ; - 2i(F � G)�; ∆ ! 2i � (New � : i)

Γ; - G��; G��;∆
Γ; - 2iG�; ∆ ! 2i (New � : i)

Γ; - G[h(X)=x]�; ∆
Γ; - 8x:G�; ∆ ! 8 (SK h(X) : �)

Γ; - G[u=x]�; ∆
Γ; - 9x:G�; ∆ ! 9 (LV u : �)

Figure 3.12: Logic programming sequent calculus—goals (abbreviated). Further restric-
tions maintain and exploit cancellations: For (restart) find Q� needing cancellation in
current block with � � �; if R�0

forbidden in current block, check that R�0

contributes only
to G� in the previous block. For (_ !L), it’s Q� that needs cancellation in the new block.
For (_ !R), R�0

needs cancellation in current block; it’s P� that needs cancellation and
R�0

that’s forbidden in the new block.

lar statements. This intuition provides a powerful handle on the close connection between
modularity and ambiguity, proof size and search control in deductions. As suggested in sec-
tion 3.2, modularity can mean the difference between efficiently executable specifications
and prohibitive search in reasoning tasks involving partial information.



4
Constraints for Possible Worlds

Thus far, this dissertation has emphasized the modularity of modal logic. Chapter 2 de-
scribed the modularity of modal logic, particularly as it is operationalized in restrictions
on the possible inferences and the possible structures in modal proofs. Chapter 3 showed
how these kinds of modularity could be supported in a logic programming language based
on modal logic. In both chapters, we saw illustrations in logic programming and artificial
intelligence of how modularity informs the control and analysis of search for declara-
tive representations. This suggests that modal logic offers an interesting and promising
representation for practical problems.

In attempting to exploit modal logic for such purposes, however, we are immediately
confronted by a further computational problem: how to compute with path-based represen-
tations of possible worlds. In the explicitly-scoped modal proof systems which we reviewed
in Chapter 2 and refined in Chapter 3, each formula is labeled by a string recording the
sequence of embedded operators along the path to the possible worlds where the formula
holds. EQUATIONAL UNIFICATION is one technique that allows the label of a formula to be
partially instantiated as the formula is used during proof search.

This process is complex, and too expensive for practical use. Even for a small putative
modal proof—containing one step for each symbol in the theorem to be derived—it can
be intractable to find a unifier that correctly instantiates inferences at appropriate possible
worlds. Moreover, the ambiguities involved arise as a result of the equational theory
governing modal terms, and are therefore difficult to avoid by judicious reformulation of
logical statements (of the sort familiar to Prolog programmers). This kind of ambiguity has
no analogue in ordinary first-order deduction without equality. The intractability it brings
provides a profound obstacle to the general use of modal logic for efficient, declarative
search control.

Not every feature of the complexity of modal logic represents such an obstacle to its use
in specification languages. For example, it is well-known that many propositional modal
logics involve (putatively) higher complexity than propositional classical logic. PSPACE-
completeness results for propositional modal logic [Ladner, 1977; Halpern and Moses,
1985b] show that proofs must in some cases be unreasonably large. Global problems with
the possible size of proofs are familiar from ordinary first-order deduction without equality.
Indeed, they are an inevitable concomitant of any attempt to specify algorithms in a logical
way, if no fixed limit is to be placed on the number of states in the computation. Moreover,
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the proofs found under a logic programming search strategy already involve an explosion
in size compared to other proofs, and the addition of modality will not increase the size of
logic programming proofs in particular.

This chapter extends the proof-theoretic investigation begun in Chapter 3 to describe
reasoning about possible worlds more precisely. This chapter shows that the final logic
programming calculus SCLP exhibits two properties that allow efficient constraint-based
reasoning about possible worlds. The first is the constrained use of variables described in
Theorem 2, made possible by the logical fragment in which logic programming takes place;
the second is the use of atoms in place of Skolem terms to represent modal transitions,
made possible by the search strategy which logic programming adopts. By analyzing the
unification problems that respect these constraints, I show that solutions respect the order
in which modal transitions are introduced into the proof.

With a single modal operator, this constraint resolves all essential ambiguities in equa-
tional unification. Unifiability can therefore be determined in polynomial time; moreover,
the constraints encountered at any point in proof search can be represented by a partial-order
mechanism that avoids the need to backtrack among alternative unifiers. The same strategy
generally applies in logics with multiple modalities, although the correctness of this strategy
requires constraints on the interactions between modal operators. The ability to invoke this
algorithm means that the logic programming language described in Chapter 3 does not in
fact suffer from general intractability in its basic operations—and so using the language in
practice is not a ridiculous idea. Later chapters reinforce the utility of these algorithms for
a range of practical problems, including temporal reasoning and automatic planning, and
reasoning about the knowledge of communicating agents in dialogue.

The organization of the rest of the chapter is as follows. I begin in section 4.1 by
describing the problem of equational unification for modal proof in more detail. In section
4.2, I review the proof-theoretic properties which distinguish logic programming search
from more general kinds of modal search. A constraint algorithm exploiting these properties
is presented in section 4.3.

4.1 The Problem
Using explicitly-scoped modal proof systems, modal inference is as tractable as classical
logic in the following sense: just as in classical logic, proof search can be carried out modulo
permutations of rules, using unification. In particular, unification rather than explicit choice
can be used to determine the scoped locations at which modal operators must be introduced.

However, these results do not make modal logic practical, because the unification
involved is not ordinary unification, but STRING UNIFICATION. General algorithms exist
for such problems (see [Schulz, 1993] and references therein). These procedures typically
extend transformation-based algorithms for ordinary unification [Martelli and Montanari,
1982] by guessing inclusion relations between initial free variables in equal strings and
possibly backtracking. Existing modal inference systems use nondeterministic equational
unification algorithms of this sort [Debart et al., 1992; Otten and Kreitz, 1996]. These
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methods are extremely expensive.
To illustrate, we return to the proofs shown in figures 2.17, 2.18 and 2.19 of the formulas

2(a � 2b) - 22(a � b)
2(a � 2b) - 2(a � 2b)
2(a � 2b) - a � 22b

In light of Chapter 3, we can observe that these proofs illustrate logic programming search;
in particular, a logic programming interpreter will begin by constructing the right branch
which addresses the b goal. Completing this branch requires solving an equation xy = �� in
all cases. For this problem, string unification algorithms will return unifiers corresponding
to the three different solutions exhibited in the three proofs (x = �; x = �; x = ��).
Which possibility is needed is resolved only when the next axiom is reached and the final
equation processed. Branching among the possible unifiers is prohibitive (it is easy to see
the number may be exponential in the length of the strings being unified). Yet there is also
no effective way to exploit unifiability as a constraint. Because of the backtracking internals
of equational unification algorithms, they frequently fail to solve systems of equations more
efficiently than would a backtracking program that called the algorithm in sequence on each
equation in the system.

As we shall see in this section, determining appropriate values for modal variables by
unification is in fact an intractable problem. Before presenting this result, I observe that
this problem is quite different in nature and origin from the well-known space complexities
of modal logic. Although classical propositional logic is co-NP complete, Ladner [Ladner,
1977] and Halpern and Moses [Halpern and Moses, 1985b] have shown that a number of
propositional modal logics, including all those considered here, are PSPACE-complete. The
proof that these logics are PSPACE-hard relies on describing large objects concisely using
modal theories. Such descriptions apply the same formula across a number of possible
worlds in a modal proof; when statements of possibility introduce several worlds, a proof
may have to proceed by applying necessary information in each. First-order quantifiers
provide a good point of reference in interpreting these results about quantifiers over worlds.
In first-order logic, the number of instantiations of a universal statement needed to complete
a proof cannot be bounded at all. This makes first-order logic undecidable.

Because what matters for the proof is the sheer number of instantiations, modal prov-
ability can be PSPACE-complete even when instantiating modal variables by unification
is easy. For example, since K variables can only be instantiated to single terms, modal
equations for K can be solved using ordinary (linear-time) unification. But K provability is
PSPACE-complete. Moreover, as in first-order logic, the number of instantiations and size
of proof depends greatly on the logical theory, and often much better bounds can be easily
derived—arguably in most cases of interest. Prolog programmers can analyze theories
to ensure efficient proof-search; [Kanovich, 1990] reports an application of a PSPACE-
complete deduction system for intuitionistic logic in which proof size corresponds to the
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number of interacting subtasks and is rarely problematic. When bounds on proof-size
are known for a given theory, general PSPACE-completeness results have nothing to add.
However, complexity results for unifying modal terms continue to apply. In fact, the com-
plexity of this unification is likely to pose the most significant obstacle to the use of modal
logic in practical applications, because alternatives in unifying modal terms arise because
of the very axioms for relating kinds of information that make modal logic attractive as a
representation in the first place.

It is also noteworthy that the complexity of unification for modal terms cannot be
established by the usual encodings of hard problems using string unification, such as those
presented in [Kapur and Narendran, 1986; Kapur and Narendran, 1992]. These encodings
repeat variables in different contexts to enforce constraints. Such repetitions are unavailable
because of the UNIQUE PREFIX PROPERTY on occurrences of variables in modal equations
(cf. [Wallen, 1990; Auffray and Enjalbert, 1992]).

The unique prefix property makes reasoning about equations between modal paths
much easier than reasoning about string equations in general. A polynomial amount of
information specifies the tree corresponding to any unifier; therefore, annotation equations
have only a finite number of most general solutions, which is not guaranteed in general for
string unification problems. Moreover, since an efficient algorithm can determine whether
a set of strings are equal under a polynomial size substitution, the problem of solving the
modal unification problem associated with a modal logic proof attempt is in NP.

Nevertheless, the problem is hard.

Theorem 4 For propositional modal logic of a single modality governed by (VER), in the
lifted, explicitly-scoped sequent calculus, the problem of determining whether there is a
proof containing a given derivation as its first component is NP-hard (as a function of the
size of the derivation).

Proof. We proceed by reduction from three-partition, a standard NP-complete problem
defined as follows (cf. [Garey and Johnson, 1979] p. 96). We are given a finite set A
containing 3m elements, a positive integer B and a size function s such that B=4 < s(a) <
B=2 for each a 2 A, and such that

P
a2A s(a) = mB. We are to determine whether A can be

partitioned into m disjoint sets such that the sizes of the elements of each set sum to B.
We proceed in two steps. The first is to construct a unification problem that corresponds

to the instance of three-partition; the second is to describe a modal sequent Γ - ∆ such
that a proof attempt for Γ - ∆ gives rise to this unification problem.

First, the unification problem is this. For each element a 2 A, we construct a string Qa

of the form XaCaYa. Xa and Ya are strings containing m(B + 1) variables; Ca is a string
containing s(a) constants. We also construct a string G containing m successive sequences
of B variables Zi followed by a constant Ki. All of the variables in Xa, Ya and Zi are distinct,
as are all of the constants in Ca and Ki. All constants and variables are governed by an
equation �; 1 = �; this corresponds to assigning each to a T modality 1 (governed by the
(VER) axiom 2iA � A). The unification problem is the set of equations Qa = G for each
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a 2 A.
Three-partition is NP-complete in the strong sense, which means there is a polynomial

p in the LENGTH of the problem specification such that the problem remains NP-complete
when the VALUES of the bound and the size function are bounded by p. Our encoding
depends on this, because we represent the size s(a) of each element as a string of length
s(a). Since we can bound s(a) by a polynomial in the length of the three-partition instance,
the length of the unification problem is also a polynomial in the length of the instance.

The unification problem has a solution if and only if the original three-partition problem
has a solution. Suppose there is a solution �. Note that each variable can be bound to a
string containing either zero or one constant, and that all the constants of the Qa must appear
in G�. Since there are mB constants in the Qa and mB variables in G, each variable in G
must be bound to exactly one constant, and each constant appears exactly once in G�. Now
look at Zi. If Zi� contains any of the constants from Qa, it must contain all of them, because
the constants in Qa are adjacent, and Zi is bordered by the beginning of the string, or by
Kj constants. Thus, the needed partition is given by taking for each i the set of elements
of A whose constants appear in Zi�. Meanwhile, suppose the three-partition problem has
a solution. Naming the elements of each Si Si1, Si2 and Si3, we can construct a unifier �
such that G� = QS11

QS12
QS13

K1 : : :QSm1
QSm2

QSm3
Km. Solutionhood ensures that we can let

Zi� = QSi1
QSi2

QSi3
: we assign the jth variable in Zi to the jth constant in QSi1

QSi2
QSi3

. Now
let l(a) be the prefix of Qa in this string, and let r(a) be the suffix of Qa, and let p(a) be
the length of l(a). To complete �, we assign the first p(a) variables in Xa to l(a) and the
remainder the empty string; we assign the last p(a) + s(a) variables in Ya to the empty
string, and the remainder to r(a).

Now, the second step: designing a proof attempt which gives rise to this problem. We
assign a distinct proposition letter pa for each element a of A. We prove the formula

∆ = (3B
121)

m
^

a2A

pa

(The notation 3k
i' represents a formula in which ' is preceded by k nested 3i operators;

and similarly for 2i and sequences of operators.)
As we shall see, it is important that this proof attempt use the proof rules for the

possibility operator31. We omitted these proof rules from the presentation of SCL for the
2-only fragment in Figure 3.10. Of course, the additional rules are:

Γ;3iA�;A��(X) - ∆
Γ;3iA� - ∆ 3i ! (SK �(X) : i)

Γ - A�x;3iA�;∆
Γ - 3iA�;∆ ! 3i (LV x : i)

Thus, each 31 in this goal formula introduces a fresh variable, while each 21 introduces
a Skolem term with a unique head function constant. Thus, proving the goal ensures that
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each pa is established at a world denoted by the string G. For each a, we include available
the following assumption in Γ:

2
m(B+1)
1 3

s(a)
1 2

m(B+1)
1 pa

Each axiom makes available an assumption of pa at a world that can be represented by Qa,
as the 21 and 31 operators will introduce the correct sequence of variables and distinct
constants represented as Skolem terms. Now proving Γ - ∆ generates a proof attempt
in which each goal pa at world G is matched with the assumption of pa at world Qa. This
is precisely the unification problem considered above.

4.2 2-only Logic and Variable Introduction

The proof systems reviewed in Chapter 2 make possible streamlined deduction procedures,
but their efficiency is limited by the inherent ability of modal theories to express hard
problems. Building a proof requires choosing the right intercalation of modal operators
among an exponential number of possibilities; in some cases, such choices make for
intractable search problems. To support efficient, sound and complete inference, modal
specifications must avoid the expressive features that give rise to these problems.

This section identifies possibility and classical negation as the problematic features of
modal logic. In the absence of possibility and negation—in 2-only logics—a simple rule
suffices to determine the order of modal Skolem terms in unifiers: When the interpreter
finds a string in which either � must follow � or � must follow �, the one that comes later
in the string is the one that is introduced later in the proof. This theorem follows from the
Theorem 2, the variable introduction theorem presented in section 3.4.3. The restriction
on negation is not as dire as it may seem, as shown in section 4.2.2: in K, K4, T and
S4, negation can be encoded using a scoped constant ?. The effect of this encoding is to
transform certain alternatives for unifying modal terms into alternative axiomatic links in
proof search, so that the remaining modal alternatives can be managed efficiently. Anyway,
the 2-only restriction naturally describes the logic programming fragment of Chapter 3.

Why does the invariant on the introduction of terms hold? Informally, the invariant
is combined effect of two properties that proofs in SCL enjoy in virtue of omitting pos-
sibility and negation. First, the terms representing the world where a formula holds can
only grow through the application of modal rules. Accordingly, all the terms labeling a
formula will appear in the label of any formula derivable from it. This is a property of
the equational theory and typing rules governing paths of accessibility—a consequence of
logical modularity—and can fail in accounts of additional axiomatic relationships between
modalities. For example, adding the (NI) axiom 3A � 23A to S4 gives the system S5
in which a necessary formula (irrespective of its own label) can be applied at any world
whatsoever.

Second, when 2 alone appears in the proof, variables are introduced on annotations
precisely when annotations change in LEFT rules, while Skolem terms are introduced on
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annotations only when annotations change in RIGHT rules. This fails if possibility is added to
the language. Moreover, only the left� rule allows new variable positions to be transferred
to the right of a sequent from the left. But the left � rule leaves these positions on the
left of the sequent also. In contrast, the sequent rule for classical negation simply moves a
formula from right to left.

Together, these two conditions propagate variables so that the first occurrence of a
variable in an equation appears in a left term. From this, we can conclude using induction
that each left term must be assigned a ground string of Skolem terms introduced earlier in the
proof in order to be unified with the corresponding right term. Skolem terms, meanwhile,
are introduced only on right terms, so there is no way for a newer Skolem term to represent
a world closer to the real world than any older one. This constraint rules out or resolves
search ambiguities such as those investigated in section 4.1.

4.2.1 Substitution Ordering

Recall that Theorem 2 shows that any 2-only derivation can be transformed into one that
satisfies the VARIABLE INTRODUCTION PROPERTY.

Definition 13 D has the variable introduction property if and only if every modal logic
variable x that occurs in some equation term ri also occurs in some equation term lj with
j < i.

The variable introduction property represents a strong constraint on equations, as the
following result shows.

Lemma 15 (substitution ordering) Suppose D is a proof attempt in SCL (or its variants
SCLA, SCLB, SCLP) that enjoys the variable introduction property, and suppose the end-
sequent of D is

=Σ; =C . Γ - ∆

Let � be a substitution that unifies the strings in each equation of C (whether or not �
respects the typings in Σ). Then for any variable x appearing in C, first used in lj, x� is a
string of Skolem terms, and if x� contains Skolem term c there is a Skolem term f in some
term ri such that i � j and f� = c.

Proof. By induction on the number of equations in C.
In the base case, there are no equations and nothing to show.
Suppose the proposition is true for the first i� 1 equations of C and consider a solution

� for the first i equations of C. Naturally, � is a solution to the first i� 1 equations, so by the
induction hypothesis, variables introduced in the last i � 1 equations are bound to earlier
Skolem terms. But the proposition on variable introduction asserts that any variables of
ri all occur earlier. Therefore ri� is a string of Skolem terms; � must associate any new
variable in li with some of them; and li� can contain no new Skolem terms.

With these two results, we can establish the main result:
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Theorem 5 (constant ordering) For any proof D; � in SCL (and its variants) there is a
proofD0; � whereD0 enjoys the variable introduction property and satisfies the substitution
ordering property.

Proof. By the variable introduction theorem, we can construct a D0 satisfying the variable
introduction property fromD. The only difficulty is to show that in obtaining the smallerD0

we have not eliminated any premises needed to show that � respects types. Since � unifies
the modal equations imposed inD, and a subset of these equations are imposed inD0, � also
unifies the modal equations imposed in D0. By the substitution ordering lemma, � assigns
strings of Skolem terms to each modal logic variable (that appears in the equations of D0).
Every modal Skolem term and logic variable � mentions is introduced in D0 and therefore
assigned identical types in D and D0. And, as for first-order variables, eliminating typing
premises only eliminates typing requirements. It follows from this that D0; � is a proof.

In 2-only logics, a number of proof strategies allow transitions in modal terms to be
represented as constants that are distinguished before unification (instead of as Skolem
function applications with free variables). The obvious example is the logic programming
inference of SCLP, developed in Chapter 3. But for example the mating theorem-proving
method also does this, via the method of multiplicities [Andrews, 1981; Bibel, 1982]. We
take SCLP as a reference.

In SCLP, we can define the following ordering on transitions in advance of solving
unification equations:

Definition 14 (<) Let the equations corresponding to an SCLP proof attempt be ordered
as before, and let c and d be ground elements appearing in these equations. c < d if and
only if

1. c’s first occurrence is in term Ci1 and d’s is in term Cj1 with i < j, or

2. Both c and d’s first occurrences are in term Ei1, in which c precedes d.

< is a TOTAL ORDER on constants. Moreover, the substitution ordering property entails that
for any solution � for C, if (�cc)� is a proper substring of (�dd)�, then c < d. For this can
occur only if d follows c in the same term in some equation, or d appears in a term after
some variable x such that x� includes c.

4.2.2 Encoding Negation

In general, we can describe:A as A � ? using a propositional constant? governed by the
inference below:

Σ . Γ;?� - ∆

If A is the original formula,we denote by At the result of recursively replacing its subformulas
:B by B � ? and its subformulas3B by2(B � ?) � ?. (We return to ground, explicitly-
scoped modal sequent calculi. Lifting these rules is straightforward; presenting the lifted



CONSTRAINTS 109

versions is distracting.) This encoding also describes a correspondence between proofs.
The original rule-instances:

Σ . Γ;:A� - A�;∆
Σ . Γ;:A� - ∆ : !

match encoded rule-instances:

Σ . Γ;A � ?� - A�;∆ Σ . Γ;A � ?�;?� - ∆
Σ . Γ;A � ?� - ∆ �!

The right subproof is an instance of the new ? rule. Meanwhile, the encoding puts rule-
instances:

Σ . Γ;A� - :A�;∆
Σ . Γ - :A�;∆ ! :

in correspondence with patterns:

Σ . Γ;A� - A � ?�;?�;∆
Σ . Γ - A � ?�;∆ !�

Since the ? rule is in fact the only rule that can establish? on the right and it can establish
anything, the addition of? on the right does not change the provability of the end-sequent
of the immediate subderivation. The new constant? is unscoped. Because it can establish
any ∆, it breaks the invariant used in the variable introduction theorem.

However, for K, K4, T and S4, it in fact suffices to introduce a SCOPED constant ?
governed by the rule:

Σ . Γ;?� - A�;∆

The use of this rule is clearly sound, because it is a specialization of the more general
unscoped ? rule. The completeness of the rule is a consequence of the fact that any
provable sequent in K, K4, T and S4 has a proof where all modal rules extend modal
terms by strings of eigenvariables introduced lower. Under this circumstance, whenever
we establish ?� on the left, there will in fact be some formula A� on the right. Therefore
no generality is lost by the scoped ? rule. However, with the scoped ? rule, the variable
introduction theorem goes through, and the hence the algorithms of section 4.3 may be
correctly applied.

I present presently a formal proof of correctness of the encoding of K, K4, T and S4
proofs using a scoped constant ?. But first I want to show that there is no magic involved
in the translation. In the original proof, there are ambiguities in which modal constants
are nested under which. The translation does not eliminate these ambiguities. Instead, it
recodes them at the level of proof search as ambiguities in which rule inferring ? is used
to deduce which conclusion of ?. In accordance with the constant ordering theorem, the
modal constants introduced by whichever rule is used first appear first.
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The proof search in S4 for the sequent below illustrates this point:

232A; 232B - 3(A^ B)

There are two kinds of proof. In the first, we first apply sequent rules to establish 2A�,
then establish2B��. From this follows A�� and B�� and hence3(A^B). The other proof
is similar, but we instantiate2B� , and then A��.

The translation of this sequent is:

2(2(2A � ?) � ?);2(2(2B � ?) � ?) - 2(A^ B � ?) � ?

Consider proof search now. We reduce the end-sequent by (!�) to

2(2(2A � ?) � ?);2(2(2B � ?) � ?);2(A^ B � ?) - ?

At this point, we may use either the A-formula or the B-formula to establish ?. If we use
the A-formula, we can simplify to:

2(2(2B � ?) � ?);2(A^ B � ?);2A� - ?�

Now we use the B-formula:

2(A ^ B � ?);2A�;2B�� - ?��

Finally, we use the negation of possibility at ��, and the remainder of the proof becomes
clear:

2A�;2B�� - A ^ B��

It is clear how this proof corresponds to the original proof with A first. We can likewise
find a translated proof with B first. Note that by translating the deduction problem we have
introduced a number of new dead-ends for proof search, corresponding to early instantiation
of the negation of possibility. Here these can be quickly dispensed with, since early on
there are no possibilities for establishing A or B. As translation of possibility and negation
proliferates, we will obviously start to need faster mechanisms for identifying and ruling
out these new alternatives.

Translation of negation using the scoped ? rule is not without its pitfalls, but is is
correct. Informally, what underlies its correctness is the following observation. K, K4, T
and S4 proofs need never instantiate necessary formulas at arbitrary accessible annotations.
In T and S4, this is because the current annotation can always serve as a witness possibility
at which to apply a necessary formula. In K and K4, this is because there need not be such
a possibility, and hence such instantiation would actually be incorrect. This is a property of
these particular logics. Note that in KD and KD4 logics, which support consistency but not
veridicality, one sometimes must instantiate necessary formulas at new, arbitrary accessible
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worlds.
This informal observation falls out formally as follows. Suppose D is deduction in an

explicitly-scoped ground sequent system for L2m;T, with end-sequent .Γ - ∆. Consider
any rule-application of (2 !) or (! 3) in D. The rule extends the modal annotation of
the principal formula � by a string �, where � is a string of modal variables introduced
at lower (! 2) and (3 !) rules in D. This observation is a consequence of the sequent
rules, which extend the typing contexts only by declarations of variables and only at (! 2)

and (3 !) rules; and of the rules of figure 3.9, which only combine the terms declared
in Σ into longer strings. Because of the unique prefix property, we can assume that �� in
fact annotates some lower formula. Then, because lower formulas are preserved as logical
rules are applied, �� must be the label of some formula on the sequent itself. So whenever
we apply a necessary formula, we apply it in a world that is already under consideration.

We exploit this observation in the following lemma.

Lemma 16 (encoding negation) To any proofD with end-sequent Γ - ∆ in the ground,
explicitly scoped system of figure 2.11, there corresponds a proof of Γt - ∆t using the
scoped ? rule.

Proof. We define a translation T(D;E;F) recursively on the structure ofD; the end-sequent
of D must be Σ . Γ - ∆, where every Γ annotation and every E annotation is a prefix of
some ∆ or F annotation—E specifies additional formulas to add to Γ, F additional translated
formulas to add to ∆.

We consider 3 and : rules explicitly. (The other cases are straightforward in light of
these cases.) If D ends by applying (! :) with principal formula :A� and subderivation
D0, T(D;E;F) is:

T(D0;E; (F;?�))

Σ . Γt;E - ∆;A � ?�;F !�

Observe that, even in a system with a contraction rule instead of preservation, the presence
of ?� ensures that the annotation of the Γ side formula A� is OK.

IfD ends by applying (: !) to principal formula:A� and subderivationD0, T(D;E;F)
is:

T(D0;E;F) Σ . Γt;E;A � ?�;?� - ∆t;F
Σ . Γt;E;A � ?� - ∆t;F

�!

By assumption,� appears on some ∆ or F formula, so the right subderivation is an instance
of the scoped? rule. (Since no new left formulas appear in the subderivation, the translation
applies there.)

If D ends by applying (3i!) to3iA� with subderivationD0, T(D;E;F) is:

T(D0;E; (F;2i(A � ?)�;A � ?��;?��))

Σ; � : i . Γt;E;2i(A � ?) � ?� - A � ?��;∆t;F
!�

Σ . Γt;E;2i(A � ?) � ?� - 2i(A � ?)�;∆t;F
! 2 Σ .?� - ∆t;F

Σ . Γt;E;2i(A � ?) � ?�; - ∆t;F
�!
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The final step follows from the assumption that � appears on some ∆ or F formula; as with
(! :), even with contraction replacing preservation, the root invocation of T satisfies the
needed invariant.

Finally, ifD ends in an application of (! 3) to3iA� with subderivationD0, T(D;E;F)
is:

T(D0; (E;2i(A � ?)�;A � ?��); (F;?�)) Σ .?�� - ∆t;F;?�

Σ . Γt;E;2i(A � ?)�;A � ?�� - ∆t;F;?� �!

Σ . Γt;E;2i(A � ?)� - ∆t;F;?� 2!

Σ . Γt;E - ∆t;2i(A � ?)�;F
!�

The key step here is to establish that �� occurs on some ∆ formula. But � is a string
of eigenvariables introduced by lower modal rules, by our observation. Thus, by the
unique prefix property of annotations, �� must be the annotation of some formula used
lower—which remains in ∆ because of preservation.

4.3 Constructing Trees from Constraints

With the constant ordering theorem, we have established an invariant that eliminates one
source of nondeterminism in the unification of modal equations. Given Skolem terms �
and � which appear on modal terms that must be equal, the one that is introduced first into
the proof must appear first in the unified term. However, even in 2-only proofs, modal
equations may still have an exponential number of unifiers; the constant ordering theorem
leaves open how strings of Skolem terms should be partitioned among matching LOGIC

VARIABLES. We have already seen a concrete example of this, in the unification problem
common to the proofs of figures 2.17, 2.18 and 2.19: xy = ��. In order to complete those
proofs, we need to be able to assign any of the possible prefixes of �� to x. So there are
still too many possibilities for brute force search.

This section develops a constraint algorithm that finds representative unifiers for a set
of equations efficiently, and which allows additional equations to be added incrementally.
This algorithm relies on viewing the set of equations as describing a tree in terms of simple
relationships between nodes. These constraints are operationalized as simple, local rules.
The rules enforce constraints by making the smallest possible changes to the structure of
the tree and to the representation of variables and constants within it. We develop the
algorithm in three steps, deferring some technical complications so that the essentials of
the algorithm can be presented as accessibly as possible. In 4.3.1, we present and analyze
a basic version of the algorithm which solves constraints over a single modal operator;
we illustrate the action of this algorithm on the proofs of figures 2.17, 2.18 and 2.19 in
4.3.2. The complications come in 4.3.3, where it is observed that inclusion axioms may
introduce hard problems even into variable ambiguities. Accordingly, in 4.3.4 we consider
restrictions on interaction axioms to rule out the problematic cases observed in 4.3.3, and
provide a constraint solver for multi-modal logics under these restrictions which uses the
algorithm from 4.3.1 as a subroutine.
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4.3.1 Mono-modal Languages

Our strategy will be to recast the unification problems for K, T, K4 and S4 in terms of
constructing a tree to satisfy three types of constraints:

1. The relation u � v, meaning that u is an ancestor of v in the tree representation
(corresponding to the constraint that �uu be a prefix of �vv as a string equation).

2. The relation u 6� v, meaning that u is not an ancestor of v.

3. The relation u) v, meaning that the parent of u is an ancestor of v.

The encoding depends on the assumption introduced in the last section that equality of
Skolem terms can be determined in advance of unification, as in SCLP or the matrix proof
method. The encoding consists of a way to describe annotations and substitutions, a way
to impose equalities between annotations, and a way to manage the domain constraints on
the values of first-order variables. The encoding is described and justified as follows.

Substitutions. The set of images of prefixes of equations under � describes a tree by
the unique prefix property. We associate each modal Skolem term or logic variable u is
mapped to a node in the tree û.

To derive a substitution from a tree, we identify each node n in the tree with some
canonical symbol c such that n = ĉ. By reading the canonical symbols along the path in
the tree from the root to û, we obtain the value of �uu under �; the path from the node v̂
representing �u to û (not including v̂ itself) therefore encodes u�.

A first set of constraints ensures that Skolem terms are mapped to themselves under this
induced substitution. We impose on t constraints of the form d 6� c whenever c < d (as
earlier< refers to the order of introduction of Skolem terms in the proof). Since< is a total
order, these constraints ensure that any pair of Skolem terms are associated with distinct
nodes in the tree. The constant ordering theorem allows us to impose this constraint on
trees and substitutions without loss of generality. For, the constant ordering theorem says
that it is indeed impossible in any solution � for a path (�dd)� to be a prefix of (�cc)� when
c < d.

We may now assume that the symbol identifying each node n in t is the unique Skolem
term c for which ĉ = n (if one exists). This ensures that c� takes the form xc. To ensure
that x is the empty string, we add further constraints. To describe the node for constant c
with prefix �c, we find the node u representing �c and add the constraint u <I c, meaning
that c is a child of u. u < v—meaning u is a proper ancestor of v—can be defined as the
conjunction of u � v and v 6� u. Then u <I v can be defined as the conjunction of u < v
and v ) u. With this constraint, ĉ must be the unique node on the path from the node
representing �c to ĉ.

A similar constraint manages the values of variables. To introduce a node for variable
v with prefix �v, we find the node u representing �v and we add a constraint appropriate to
the logic: u <I v for K, u < v for K4, u � v for S4 and u ��1 v for T. u ��1 v—meaning
v is u or a child of u—can be represented as the conjunction of u � v and v) u.
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As a final step, we should stipulate arbitrary symbols to correspond to each node in the
tree to which no Skolem term is assigned. In fact, however, the constant ordering theorem
ensures that any substitution that solves the equations includes no such arbitrary symbols.
This step is therefore superfluous; the constraints identified thus far describe only trees t
that encodes possible solution substitutions of values to variables.

Equations. The equations themselves that � must solve are likewise realized as simple
constraints on t. To equate �uu and �vv, we add the constraint u = v—u = v is equivalent
to the conjunction of u � v and v � u.

Domain constraints. Modal constraints on first-order unification are represented by
associating a node ut with each first-order variable or term t. Each first-order Skolem term f
is introduced at some world �, as recorded in an typing pair f : �. Because the arguments of
f are introduced from the same formula as f at wider scope, the arguments will be associated
with prefixes of �. Thus, uf is just the node corresponding to �. Meanwhile, each first-order
variable x is associated with a new node ux which represents the first world in which the
value of x is defined. The typing pair x : � is represented by the constraint ux � v, if v is
the node corresponding to �. This constraint may also be represented as an equation, given
access to S4 variables: for ux � v we introduce a new variable lx and add the equation
uxlx = v. The variable lx has a unique occurrence in the resulting set of equations. For
proofs analyzing unification problems in terms of equations, it will be convenient to adopt
this representation and give domain constraints and modal equations the same treatment.

Now, to impose the correct domain constraints, we simply extend any ordinary first-
order unification algorithm so that when first-order terms t and s are unified, the correspond-
ing nodes ut and us are constrained to be equal. If modal variables appear as arguments of
first-order Skolem terms, they can also be unified by imposing equality constraints. When
the overall unifier is computed, the domains of definition of all unified terms will refer to
the same, correct nodes in the tree; and necessary constraints on the values of variables will
be respected.

The problem of unifying annotations is therefore equivalent to the problem of solving
a set of simple tree constraints. I now present an efficient algorithm to solve this problem.
The algorithm extends the tree construction algorithm of [Aho et al., 1981], which handles
� and 6�.1 In the algorithm, the node corresponding to a variable or constant u is represented
as the least common ancestor of a distinct pair of leaves u1 and u2, denoted (u1; u2). The tree
is constructed by grouping leaves into sets according to the constraints. A set of disjoint sets
is constructed for each depth in the tree; nodes in the same set at depth n indicate leaves that
must be descendants of the same node at depth n in any tree that solves the constraints. In
this process, we need only consider N levels of partitions, where N is the number of leaves
of the tree. If a tree satisfying the constraints exists, a tree satisfying the constraints exists
that has only branching nodes—because all constraints refer to least common ancestors,

1Be warned: [Aho et al., 1981] use u � v with the opposite sense I do; their notation conflicts with the
present intuition that the tree represents a collection of paths from the root to leaves, ordered by the prefix
relation.
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which must be branching nodes. So the tree has depth at most N. Correspondingly, should
we discover the need to merge two cells at depth N, we will know that the constraints have
no solution.

Given a set of constraints C, algorithm A computes a tree by applying the following
rules for merging partitions:

1. Initial. All leaves are in the same cell at depth 0.

2. (i; j) � (k; l). If i and j are in the same cell at depth n, then i, j, k and l are in the same
cell at depth n.

3. (i; j) 6� (k; l). If i, j, k and l are in the same cell at depth n, then i and j are in the same
cell at depth n+1.

4. (i; j)) (k; l). If i and j are in the same cell at depth n+1, then i, j, k and l are in the
same cell at depth n.

These rules respect the following natural property:

Lemma 17 (sanity) If i and j are in the same cell at depth n+1 (because of a proof of
length h), then i and j are in the same cell at depth n (because of a proof of length at most
h).

Proof. By induction on the length of the proof that i and j are in the same n+1 cell.
Accordingly, A ends by building an internal node at depth n+1 for each non-unit cell

there, and making it a child of the internal node at depth n which it is a subset of. (The
sanity lemma ensures that there will be at least one such node; the disjointness of partitions
ensures that there will be at most one.) Leaves attach to the greatest depth non-unit cell to
which they belong.

Theorem 6 (correctness) Any tree t so constructed satisfies the constraint set C.

Proof. As in [Aho et al., 1981], by consideration of constraints. For example, for a
constraint (i; j) ) (k; l), let S be the partition associated with (i; j) in t. Rule 4 must have
fired, putting i, j, k and l in the partition of the parent of (i; j). Since (k; l) must be a
descendant of this node, the constraint is satisfied.

We prove that the algorithm is complete by means of a lemma:

Lemma 18 (descendants) Let t be any tree satisfying constraint set C, and let S be a cell
at depth n containing more than one leaf. Then there is a node b in t of depth n such that
every leaf in S is a descendant of b.

Proof. As in [Aho et al., 1981], by induction on the number of steps of rule-application in
constructing partitions. For example, consider a step for (i; j)) (k; l) causing i, j, k and l
to be in the same cell at depth n. By induction hypothesis, there is a node b1 at depth n+1 in
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t which dominates all leaves in i and j’s cell in S at depth n+1. Moreover, nodes in t at depth
n must dominate the unmerged cells of i, j, k, and l in S. Now we can show that it must be
a single node that dominates all of them: the parent b0 in t of node b1. Since t satisfies the
constraints, (k; l) is a descendant of the parent of (i; j) in t; since b1 � (i; j), b0 � (k; l) in t.

In fact, the proof of the descendants lemma is straightforwardly extended to the fol-
lowing least commitment property. Let T be any set of trees satisfying constraint set C.
Initialize algorithmA with nodes i and j in the same cell at depth d according to any relation
r(i; j; d) which holds only if every tree in T assigns (i; j) to a node at depth d or greater, and
run algorithmA to completion. Then for any cell in S containing more than one leaf at any
depth n, there is in every tree in T some node b of depth n such that every leaf in S is a
descendant of b.

Theorem 7 (completeness) If algorithmA returns no tree, no tree satisfies the constraints.

Proof. The procedure succeeds unless two nodes are in the same partition at depth N—in
which case we terminate the algorithm and report failure. By the descendants lemma, this
means that any solution has two nodes together at depth N—so any solution has depth
greater than N. But we’ve already observed that if there is a solution, there is a solution
with depth at most N, so in this case there must in fact be no solution.

Algorithm A can be performed in time O(MN log N), where M is the number of con-
straints and N is the number of leaves in the tree. Cells are represented using a union-find
algorithm [Hopcroft and Ullman, 1973]; each cell stores not only a set of nodes but also a set
of productions that may be triggered when this set is merged with another set. Considering
only the shorter list when two cells are merged ensures that only O(M log N) productions
are considered in merges of cells at any given depth in the tree.

If a proof attempt D contains K rule-applications, this means that algorithm A con-
tributes time O(K3 log K) toward constructing a unifier under whichD is a proof. There can
be no more modal constants and variables than rule applications, since each has its origin
in some rule application, so N is O(K). Likewise, there are O(K) first-order variables,
which can be unified by imposing a linear number of equalities between terms by standard
algorithms [Martelli and Montanari, 1982]. There are O(K) equalities imposed by axioms.
However, the simple presentation of algorithmA above requires adding O(K2) constraints
to enforce the distinctness of constants.

This running time can be brought down to O(K2 log K) by a specialized representation
of the distinctness constraints. Only the distinctness constraints corresponding to the <-
least constant pair in a cell need be triggered at each step. The other distinctness constraints
will only duplicate their effects. If we can identify the relevant constraints, we can ensure
that only O(K) production-firings are needed to keep constants distinct. But the <-least
constant pair in each cell is easily maintained, since < is given and inspection of the rules
shows that a pair (c1; c2) are together in any cell dominating c1 and any other leaf.
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Figure 4.1: Tree for xy = ��.

In algorithm A, constraints corresponding to additional equations can be added dy-
namically, because the trees this algorithm produces make the least possible commitment.
This is a consequence of the (generalized) descendants lemma. The only commitments the
algorithm makes are that strings �uu and �vv share a prefix of a given length. That is, if
u1; u2; v1; and v2 are members of a common cell at depth k in the tree, we know the value
of �uu and �vv share a prefix of length at least k. Other features of the tree, for example
the ancestor or command relation of prefixes �uu and �vv, may be changed if possible by
merging the appropriate cells later. Now, because of the descendants lemma, we know that
any nodes in the same cell at depth k in algorithmA are children of some node of depth k in
every tree that satisfies the constraints. That means that if algorithmA constructs a unifier
that assigns �uu and �vv a common prefix of length k, EVERY unifier assigns �uu and �vv a
common prefix of length at least k.

4.3.2 An Example

Let us return to the simple example of figures 2.17, 2.18 and 2.19. We start with the equation
xy = ��. In S4, this corresponds to the following constraints, if (r1; r2) names the root (or
real world):

(r1; r2) <I (�1; �2) (�1; �2) <I (�1; �2)

(r1; r2) � (x1; x1) (x1; x2) � (y1; y2) (y1; y2) = (�1; �2)

The algorithm computes the tree shown in figure 4.1. The first <I constraint causes �1 and
�2 to merge at depth 1; then the second <I constraint causes �1 and �2 to merge under �1

and �2 at depth 2; finally, the = constraint merges y1 and y2 with this cell at depth 2. At
this point, the tree satisfies all the constraints, and solves the needed equation. Note that x
is provisionally identified with the root, in keeping with the algorithm’s policy of leaving
the endpoints of path variables as close to the root as possible.

Recall that we had to impose one of three equations on x to finish the proof: x = 1,
x = �, or x = ��. Each of these can be imposed by adding additional constraints to the
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problem in progress. The first causes no further merges; the second merges x1, x2 and �1 at
depth 1; the third merges x1, x2 and �1 at depths 1 and 2.

4.3.3 Problematic Interactions in Multi-modal Languages

Efficient multi-modal deduction requires some limitations on introspection axioms, because
some combinations introduce ambiguities that allow hard problems to be encoded into
unifications of modal indices. These ambiguities are not associated with the problem of
determining what types a string has. As the following result shows, the type interactions in
the multi-modal language remain quite simple.

Lemma 19 (subset lemma) If � : j is derivable, and �0 is a nonempty string containing
only symbols that appear in �, then �0 : j is also derivable.

Proof. By induction on the height of derivations of typing judgments. For (AXt) and (VERt),
there is nothing to prove, since only atomic strings are involved. For (INCt), we derive � : j
from � : i. Apply the induction hypothesis to the derivation of � : i to show �0 : i. Then
reapply (INCt) to show �0 : j. For (PIt), � has the form �� and we derive � : j from � : j and
� : j. Each symbol � in �0 appears either in � or �, so by applying the induction hypothesis
to the appropriate subderivation, we may derive � : j. The new proofs, one for each symbol
in �0, may be combined in the appropriate order by successive applications of (PIt).

Instead, the problematic ambiguities of multi-modal deduction arise in logical theories
which force a modal path to have SEVERAL DIFFERENT TYPES because of the different
formulas which must apply along the path. As a characteristic example, consider the
following interaction axioms:

2Y A � 2YT A 2Y A � 2YF A
2Y* A � 2Y* 2Y* A 2Y* A � A

2Y* A � 2Y A

These axioms relate K modalities YT and YF to a more specific K modality Y and to a
still more specific S4 modality Y*. The following theory provides an illustration of an
associated ambiguity:

2Y 2Y* C ^ 2Y* (2YF C � 2Y* B) ^ 2YT B � A

To prove A, we backchain against2YT B � A, introducing constant�. Applying the second
clause introduces a two variable string uv that must match � and a new goal C to be proved
at world u�. The first clause introduces variables yz that reach this world. Thus, the proof
attempt for A gives rise to equations:

uv = �; yz = u�
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These equations are governed by the typing context:

u : Y*; v : Y*; y : Y; z : Y*; � : YT; � : YF

There are two solutions:
fu = �; v = �; y = �; z = �g

fu = �; v = �; y = �; z = �g

In these solutions, the variable y must be bound to exactly one of � and �. In a mono-modal
language, there is no problem with such ambiguities in values; as long as different values
of a variable have the same length, the only way to force a particular resolution of the
ambiguity is to impose an equation that specifies exactly which value the variable should
have. These explicit equations can be included straightforwardly into a set of constraints.
In the multi-modal language, we have a more general method of forcing such ambiguities
to be resolved. Since � has type YT and � has type YF, we can think of y as encoding a
boolean variable whose value is determined by the type of the string unified with y. If we
add additional conditions for establishing C, the multi-modal language could allow us to
impose new equations that TEST which kind of value y has. Interaction axioms allow these
tests to impose disjunctive constraints on the values of several variables at once. We obtain
the following result by following this strategy of describing possible assignments of values
to a variable using types, and by using types to impose disjunctive constraints on those
values:

Theorem 8 It is NP-hard to determine whether there is a solution to the equations resulting
from a proof attempt in a 2-only modal where S4 and K modalities interact by unrestricted
(INC) axioms.

Proof. By reduction from 3-SAT. In 3-SAT, we are given a set of disjunctions, each
containing three propositional literals (letters or negations of letters). The problem is to
determine whether there is an assignment of true or false to the letters under which each
disjunction is true. As with the proof of Theorem 1, we describe the proof in two steps,
giving first a set of equations corresponding to the 3-SAT instance, then a proof search
problem that gives rise to these equations.

The string equations first construct a string � constrained so that its possible values
encode assignments of truth-values to proposition letters. Meanwhile, each disjunction is
associated with a string �i which unifies with � if and only if the disjunction is true on the
assignment � represents. Thus, the unification problem is completed by equating � with
each �i.

In particular, the encoding uses the following definitions of modalities. For each
proposition letter y, we have modalities YT, YF, Y and Y* related by the axiom schemata
described in the previous example. An additional S4 modality * has inclusions to all of
these modalities. For each disjunct i, we introduce add a K modality I with inclusion axioms
to the modal types corresponding to the cases when i is true. For instance, if the ith disjunct
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is (u _ v̄ _ y), we get:

(2I A � 2UT A)^ (2I A � 2VF A)^ (2I A � 2YT A)

Given these inclusions, we can represent �i by a string uitivi, where ui, ti and vi are fresh
variables governed by the typings:

ui : *; ti : I; vi : *

For any string � that contains no constants of type I, �i is unifiable with � if and only if � is
a string containing a constant whose type characterizes an assignment, specifying truth or
falsehood for a literal, under which the ith disjunction is true.

To construct a single, overall assignment string, we repeatedly invoke the equations of
the preceding example. If �k�1 is an assignment to the first k-1 proposition letters, we can
extend the assignment to the kth letter by adding the equations:

mk1ukvk = �k�1�k; mk2ykzk = mk1uk�k

Under the typing context:

mk1 : *; mk2 : *; uk : Y*k; vk : Y*k; yk : Yk; zk : Y*k; �k : YTk; �k : YFk;

For the reasons described above, mk2yk includes the string�k�1 as the value of mk2, followed
by either �k or �k as the value of yk. This establishes an assignment � and completes the
construction of a unification problem that corresponds to the 3-SAT instance.

We now present a logical theory Γ where proof search for Γ - G gives rise to this
equational unification problem. The theory refers to propositions Ay, By and Cy for each
variable y and a proposition Di for each conjunct i. For the first variable, we add Ay � G.
For consecutive variables y and z, add statements of the following form:

2* 2Y (Az � 2Y* Cy) ^2* 2Y* (2YF Cy � 2Y* By) ^2* (2YT By � Ay)

For the last variable, for which there is no successive z, replace Az with the conjunction of
the Di. Finally, for each disjunct i, add:

2*2I2*Di

In this theory, the proof attempt for G gives rise to the unification problem observed above.
The successive proofs for Ay, By and Cy chain together to construct an assignment as
outlined in the example; the need to prove each Di in the ultimate, nested world introduces
equations �i = �.

The practical relevance of this result is unclear, as the axioms involved in this construc-
tion are rather pathological. The example of section 2.1.1, involving the Navy and GE, is
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a typical example of a useful modal representation that exercises a variety of introspection
axioms on related modalities without introducing the kinds of pathologies that Theorem
6 exploits—a point which we justify more carefully presently. Because of the rarity of
problematic examples, the response of [Debart et al., 1992; Baldoni et al., 1993] would
seem natural: they provide a complete solution and to trust that programmers will never
unwittingly hack hard problems into2manipulations. However, since algorithmA exploits
an invariant that no longer holds in this domain, it is problematic to make it complete for
these cases without spoiling its performance for easy problems. The next section adopts a
different approach: it gives broad syntactic conditions on the interaction axioms for modal-
ities and axioms about those modalities that ensure that unification of modal paths remains
easy.

4.3.4 Restrictions for Multi-modal Languages

Problems arise in multi-modal languages when the same variable may be unified with
constants of different types under different unifiers. Under these conditions, variables can
take on binary values, and a constraint algorithm that computes a simplest unifier becomes
impossible.

I have found that the theories needed for many practical applications have syntactic char-
acteristics that eliminate such ambiguities. This section explores two such characteristics.
In the first, typing conditions in fact reduce to length conditions; this is representative of
typing in planning representations. In the second, conditions can be satisfied by relaxation;
this is representative of typing in logic programming representations.

Typing by Length Constraints

We first observe that a simple but useful syntactic restriction of HOMOGENEITY on the
multi-modal language allows algorithm A to be used directly. The restriction starts from
a distinguished negative modality 2N. The theory T specifying relations between modal
operators is homogeneous just in case it contains an inclusion 2i A � 2N A for every
modality 2i. Further, the sequent Γ - ∆ to be proved is homogeneous just in case the
Γ formulas have P-syntax and the ∆ formulas have N-syntax according to the definitions
below:

P ::= A j P _ P j P ^ P j N � P j 2iP j 8x:P j 9x:P
N ::= A j N _ N j N ^ N j P � N j 2N N j 8x:N j 9x:N

(A schematizes over atomic formulas.) Thus, any modality may appear in positive positions,
but only2N may appear in negative positions.

If Γ - ∆ is homogeneous, then all modal Skolem terms in the proof must represent
arbitrary 2N transitions. If also T is homogeneous, then each of these Skolem terms match
variables of any modal type whatsoever. The different types of modal operators may
therefore be specified completely in terms of the length of sequences of 2N operators they
match. There are only four possibilities for introducing a node for variable v with prefix
�v, depending on whether the variable matches sequences of 2N variables of length 0 and
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length 2. (In any demonstration that the variable matches a sequence of length 2, we must
have applied (PIt); we can repeat the step to match any longer sequence.) To represent the
variable, therefore, we find the node u representing �v and add: (1) u <I v (only length 1);
(2) u < v (only length 1 or greater); (3) u � v (any length); and (4) u ��1 v (only length 1 or
less). Thus, we again obtain a sound and complete specification of the unification problem
by incorporating first-order and distinctness constraints as in section 4.3.1. Algorithm A
computes a solution or reports that none exists in time O(K2 log K).

Typing for Least Commitment

A different kind of restriction is to enforce a strict uniformity in solutions that allows a
unifier to be constructed by local modifications of a prospective solution. The central notions
involved in this restriction are those of FORCED modalities and SEPARATE modalities. Given
a theory T specifying relations between modal operators, we say a modality i is FORCED if
i is not governed by (PI), or equivalently that � : i cannot be derived. By extension, we say
constants and variables are forced when they can be assigned a forced modality as a type.
Forced variables are the ones that may insist on binary values. Modality i is SEPARATE from
j (under T) if for every typing context Σ, there are no terms c and d for which we can derive
c : i, d : j, and cd : i. The significance of separate modalities is this. Given variables u of
type i and v of type j with i separate from j, there is at most one solution of any equation
uv = �. For suppose we had u� a proper prefix of u�0 for two unifiers � and �0. Then v�
has a nonempty overlap d with u�0; by the subset lemma d : j. And now u� : i, d : j and
u�d = u�0 : i. Separate modalities are to be distinguished from DISJOINT modalities: i and
j are disjoint if there is no context Σ and term c for which c : i and c : j.

We apply forcedness and separateness in three auxiliary notions. First, a modality i
is SIMPLE if i is separate from i. A simple modality looks like a K modality even taking
possible inclusions into account. Second, a modality i is CLEAN if whenever2iA � 2jA for
forced j, then j is separate from i. A clean modality can never be responsible for ambiguities
in the number and identity of forced constants on a string: it either always matches none
or always matches exactly one. Finally, given the goal of proving Γ - G, modality i
is UNAMBIGUOUS if G is a G-formula and Γ is a multiset of D-formulas, according to the
following grammar:

G ::= P j G _ G j G ^ G j D � G j 2kG j 8x:G j 9x:G
D ::= P j D _ D j D ^ D j G � D j 2i Di;fg j 2k D [k 6= i] j 8x:G j 9x:G

Di;S ::= P j Di;S _ Di;S j Di;S ^ Di;S j G � Di;S j 8x:G j 9x:G
2k D [i separate from k, each j in S disjoint from k] j
2k Di;S[fkg [K simple]

(P schematizes over atomic formulas.) An unambiguous modality is one whose interactions
might be problematic in general, but happen not to be, given the manipulations of modalities
in the particular logical theory in question.

Given interactions T and desired end-sequent Γ - G, we will require every modality
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to be either clean or unambiguous. Intuitively, because of the role of separateness in the
definitions, by imposing the restriction, we ensure that the forced SKOLEM TERMS do not
vary across unifiers. In turn, this ensures that forced VARIABLES have the same values across
all unifiers; ambiguous forced variables are impossible. It is a consequence of this that
equations have simplest solutions—not just in terms of lengths of values of variables but
also in terms of the constants that appear on the values of variables. This result is in fact
stronger than the least commitment result for mono-modal languages. Formally, we have:

Theorem 9 (agreement) Let � and �0 be two substitutions that solve the equations arising
from 2-only proof search for Γ - G with interactions T, where every modality is either
clean or unambiguous. Then for every forced Skolem term c, �uu� contains c if and only if
(�uu)�0 does.

Proof. By induction on the number n of equations. For the base case, there are no equations,
no Skolem terms, and nothing to prove.

Suppose the claim is true for the first n � 1 equations and consider solutions � and �0

for the first n equations. Apply the induction hypothesis to show � and �0 agree on the
forced Skolem terms in the the first n � 1 equation, and consider the nth equation, E. By
the variable introduction theorem, E has the form l~x = r~c, where l and r contain only terms
which appear earlier, ~x is a sequence of new variables and ~c is a sequence of new Skolem
terms. From the induction hypothesis, we know that the same forced Skolem terms appear
on l� and l�0, and likewise for r� and r�0: so E� has the same such terms as E�0. If E is an
equation representing a domain constraint we are done: there is a unique new variable x
and hence no new prefixes.

For other equations, we show by contradiction that there cannot be a Skolem term c, a
forced modality j such that c : j , and a variable x of type i such that c appears in (�xx)�
but not in (�xx)�0. Suppose otherwise, and consider the first counterexample; we have two
cases according to whether i is clean or unambiguous.

Suppose i is clean. Then j is separate from i, and since c : i and c : j we cannot have
� : i. So i is forced. This means x�0 includes a forced Skolem term c0, which precedes c
since c does not appear in (�xx)�0. By the constant ordering theorem, c0 must precede c
in (�xx)� also. But x� cannot include both c0 and c, since j is separate from i. And �x�

cannot contain c0: if so, some earlier variable would contain c0 on one substitution but not
the other, and we know c is first. Thus, if i is clean, our assumptions about c are incoherent.

Suppose i is unambiguous; this ensures that x is followed by a string ~vz where z is a
variable of type h with i separate from h, and~v is a sequence of n variables vk each of simple
type Mk disjoint from h. Why is this? The sequence of variables following x is constrained
by the sequences of modalities permitted in Dfig formulas; the only alternative~vz is for the
equation to end before any z. But since c does not appear in (�xx)�0 and appears in r�, x
cannot be final. Nor can any vk be final: since each matches exactly one Skolem term, any
(�xx~v)� must contain forced Skolem terms that (�xx~v)�0 does not.

So, given this string of variables x~vz, we compare (x~vz)� with (x~vz)�0. Observe that
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v1�
0 = c since v1�

0 must be forced and c is the first forced Skolem term from x� not to
appear in x�0. Continuing, we find ~v�0 = ~c, for some string of n Skolem terms ~c, and z�0

begins with some constant d. By separateness, d cannot appear in x�, so it must appear
afterward. By disjointness, d cannot appear in ~v�, so it must appear later still. But ~v� must
include n constants following c; d must be one of them. This is absurd: we conclude that
no counterexample can exist.

Theorem 10 (least commitment) Given a set of equations U arising from a 2-only proof
attempt for Γ - G without possibility or negation, and with every modality clean or
unambiguous. Then if E has a solution, it has a solution � such that if c appears on (�uu)�
then c appears on (�uu)�0 for any other solution �0.

Proof. The proof to a relation � between unifiers; � � �0 holds if and only if any c that
appears in (�uu)� also appears in (�uu)�0. This relation is well-founded, since each unifier
assigns values to only a finite number of variables, and those values are finite strings. Thus,
it suffices to show that for any two unifiers �0 and �00 there is a unifier � with � � �0 and
� � �00.

We show this by induction on the number of equations in U; we show simultaneously
that for any u, (�uu)� = (�uu)�0 \ (�uu)�00. That is, under �, (�uu) contains exactly the
constants it has both under �0 and under �00, in the order dictated by the constant ordering
theorem.

For the base case, zero equations, there is nothing to show.
Now, suppose we have constructed such a � for the first n� 1 equations, and consider

equation n, E, which involves k additional variables. As before, for each xi : i, construct
the value xi� inductively as follows:

xi� = ((lx1 : : :xi)�
0 \ (lx1 : : :xi)�

00) minus (lx1 : : :xi�1)�

xi� either only contains Skolem terms from xi�
0 or only contains Skolem terms from

xi�
00. Otherwise there would be a Skolem term a that appears in (lx1 : : :xi�1)� but not

(lx1 : : :xi�1)�
0 and a Skolem term b that appears on (lx1 : : :xi�1)�

0 but not (lx1 : : :xi�1)�,
and where moreover a and b appear in both (lx1 : : :xi)� and (lx1 : : :xi)�

0. This means that
a precedes b in the �0 solution but b precedes a in the �0 solution—in conflict with the
constant ordering theorem. So as long as xi� is nonempty, the subset lemma shows that xi�

has type I. Meanwhile, if xi� is empty then I cannot be forced. If I is forced, the value of x�0

shares the forced Skolem terms with xi�
00; this follows by the previous result. These will

appear on xi�. Again, E� is the intersection of E�0 and E�00, and � solves E.

Relaxation for Least-Commitment Multi-modal Languages

This section outlines a relaxation algorithm for computing modal matches that repeatedly
performs algorithm A and modifies the result to make progress toward type-checking.
This progress is achieved using a straightforward procedure that computes the next-larger
well-typed modal match for a particular equation. The arguments of section 4.3.4 show
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why an overall simplest global solution exists and are easily adapted to show why local
improvements toward it are always possible.

We begin by presenting an algorithm for computing small well-typed modal matches.
In principle, we will need to match the left term l and right term r of an equation. The value
of r and the match for the variables and constants from l that appear in earlier equations will
already be determined; this fixes a final string of Skolem terms from r that are unaccounted
for. We need only match the final string of new variables in l against these constants, subject
to any constraints on the values of those variables that we have already identified. Thus,
we have the following task: we are given a string ~v of variables and a string ~c of Skolem
terms, and a base substitution �0 with~v�0 = ~c. The problem is to find a unifier � where for
each variable vi, vi� is well-typed and (�vivi)� is as short as possible while still including
(�vivi)�0 as a prefix. As in the proof of the least commitment theorem, an argument from
intersecting substitutions shows that if any match exists, one match assigns fewer Skolem
terms to each prefix than any other; so we describe � as the least match above �0 of~v against
~c—lm(�0;~v;~c). Observe that � restricted to the first i variables must be the least match
above �0 of �vivi against (�vivi)�. Otherwise we could use � and the smaller prefix match
to construct an smaller match on the whole string.

Thus, we characterize lm(�0; �vivi;~c) as follows. No match exists unless (�vivi)�0 is a
prefix of~c. If this prefix condition is met, let ~d be the longest string of constants matching
the type of vi such that there is a � where~c = �~d and a �i�1 = lm(�0; �vi ; �). If no such ~d
exists, there must be no match. Otherwise, lm(�0; �vivi;~c) is the substitution that sends vi

to ~d and otherwise agrees with �i�1. Given �0, this characterization can be operationalized
directly as a dynamic programming algorithm that maintains a table of lm(�0; �; �) values
for prefixes � of~v and prefixes � of~c.

This procedure can be combined with algorithm A to construct unifying trees for
multi-modal languages. The combination, algorithm B, goes as follows:

Construct constraints for the input equations U and the domain restrictions on first-order
variables as in algorithm A and propagate the consequences of those constraints. Then,
while changes occur: consider the equations in order until some sequence of variables lies
lower than their next least match against the constants to which they are bound; perform
merges of cells in A so as to bump those variables up into the least match configuration;
and recompute A. Whenever some sequence of variables has no next least match, fail.

Theorem 11 (correctness and completeness) If algorithmB produces a tree, it is the least
solution to its input equations U and the associated domain constraints; if there is a solution,
B produces it.

Proof. Any tree that algorithmB produces corresponds to a correct unifier � of U. The fact
the tree is a fixed point of algorithmA means that a substitution that solves U and satisfies
the domain constraints can be extracted from the tree. Since the algorithm terminates only
when every sequence of variables matches a path of the appropriate type, this substitution
respects the types of variables and constants.
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Moreover, any other correct unifier �0 assigns no prefix � a string ��0 shorter than ��;
and if B returns failure, there is no unifier. We establish this using a somewhat stronger
claim and induction on the number of equations k so far solved.

Call a relation r CONSERVATIVE FOR U when r(�; �0; n) entails that �� and �0� share a
common prefix of length n in any solution � of U. As remarked in section 4.3.1, the proof
of correctness of algorithmA can be adapted to show that if A is initialized with leaves of
nodes put in common cells according to a conservative relation and run to completion, then
the output relation includes the input one but remains conservative. Given any conservative
relation that solves the first k equations, we will show that the new relation induced by
bumping up a sequence of variables ~x from equation k+1 to match ~c (by match �) also
includes the old one and remains conservative.

We use the claim to show by induction that input a conservative relation for U, algorithm
B returns a conservative relation that includes the input and represents a solution to the first
k equations. For 0 equations, there is nothing to show. Suppose the claim is true when
running B on k � 1 equations and consider solving k equations. Following algorithm B,
we first use this induction hypothesis to solve the first k� 1 equations and extend the input
relation conservatively. Then, we bump up the variables in the kth equation as dictated by
the least match; by the claim, also extends the relation conservatively. We continue this
process as needed until a fixed point is reached or until we discover the need to place a
variable impossibly deep in the tree. Since the relations remain conservative, we lose no
solutions. As no variable can be bumped past depth N in the tree, we must reach a fixed
point which gives a least solution extending the input relation for the k + 1 equations, if a
solution exists.

We are left with the claim that including the match of~x against~c by � keeps the relation
conservative. Consider an arbitrary solution �0 in which~x is matched against some different
string~d. Because the d terms must appear in the first k equations, which have been solved
conservatively, ~d must include at least the constants of ~c in order. Further, ~d must contain
exactly the same forced constants that appear in ~c, by the agreement theorem. We now
know enough about the string~c and the match �0 against ~d to construct a match of~x against
~c at least as small as �0, by intersection (as in the least commitment theorem). Thus, if no
match against ~c exists, there can be no other solution to the earlier equations which allows
a match in this equation; so local progress is complete. Meanwhile, since we compute � as
the least match against ~c, we can conclude � is smaller than �0 as needed, so local progress
is conservative.

Algorithm B runs in time worst case O(N4), where N is the number of variables and
constants in U. The analysis given earlier is general enough to show that the multiple
invocations ofA require total time only O(N2 log N). Meanwhile, algorithm B requires no
more than O(N2) iterations to converge (otherwise some node must be bumped to depth
N+1), and in each iteration there are at most O(N) nodes to check. There are two kinds of
checks; we shall see that these have different complexities. The first case, the easy case, is
when the input substitution �0 is identical to the output substitution �. All but the last of the



CONSTRAINTS 127

O(N) checks that we perform fall into this class, since they introduce no changes. In the
other case, we compute a new � different from �0. Thus, if the time of an easy check is f(N)
and the time of a hard check is g(N), algorithmB takes O(N2 log N+N3f(N)+N2g(N)). To
compute the time each check takes, observe that successive variables must originate in the
same formula occurrence. Thus the maximum number k of successive variables needed to
be matched in each equation is bounded statically by the complexity of axioms. For current
purposes, k can be considered constant. Likewise, since the possible interactions between
modalities must be specified in advance (and hence can be computed in advance), we may
assume that the relationship between the type of a constant and the type of a variable can
be computed in constant time. Meanwhile, the string of constants matched has worst-case
length O(N). In principle, given these bounds on the input, computing � requires filling a
table of size O(kN), where each entry may require checking O(N) earlier entries. So g(N)
is O(N2). On the other hand, if the table is filled in by demand and the input match �0 is
well-typed, we access (and compute) only O(k) entries of the table. The easy checks thus
require time O(N). Thus, we conclude that algorithm B has worst-case complexity O(N4).

4.4 Summary
To achieve modularity in practice, we need more than a unification-based proof method
that allows modularity to be enforced, like the SCLP calculus of Chapter 3. We also need a
good way to reason about possible worlds. Section 4.1 puts the need for such a method into
relief, by providing a new, formal demonstration of the complexity inherent in equational
approaches to reasoning about possible worlds.

The positive results of this chapter identify a new invariant for deduction problems
in modal logic, which naturally applies to SCLP in particular. This invariant leads to
fast algorithms for correctly applying axioms in modal proofs, described in section 4.3.
Presentations of modal logic in terms of modal equations thus provide both a theoretical tool
for analyzing proofs and proof search in new ways and a practical tool for implementing
fast deduction. The next chapter looks at the empirical impact of these techniques for
implemented deductive procedures.



5
Evaluating Modal Deduction Methods

Chapters 3 and 4 have introduced two new techniques for modal deduction. We can now
combine unification-based search with structural modularity of proof; and we can enforce
modularity using a constraint algorithm over possible worlds. The DIALUP search engine
employs both to interpret modal logic programs.

This chapter looks concretely at what advantages these techniques afford, and when.
This evaluation partly involves comparing DIALUP as implemented against alternative ver-
sions without modularity or without constraints. These alternatives are easy to obtain, at
least in simple cases. Structural modularity is disabled by eliminating the locality condi-
tion on the (restart) proof rule. Constraint reasoning is disabled by incorporating a modal
equational unification module instead [Otten and Kreitz, 1996].

The evaluation also involves comparing DIALUP against theorem provers from different
paradigms. One kind of competitor involves general first-order equational reasoners based
on resolution. Another involves specialized proof methods based on structurally-scoped
sequent calculus. As we shall see, to put the comparison fairly, one must augment DIALUP’s
distinctive constraints and modularity—where possible—with the other strategies applied
in these systems for pruning search.

The bulk of the chapter, section 5.1, addresses performance on a benchmark problem of
deciding the validity of formulas in propositional minimal logic. We close in section 5.2 by
discussing DIALUP in light of the specific fit we intend for DIALUP in the context of Natural
Language Generation (NLG). Speed isn’t everything; NLG seems a task where the new
approach provided by DIALUP is valuable just from a conceptual point of view.

5.1 A Case Study in Deduction Efficiency

To look concretely at questions of efficiency, we investigate the problem of deciding the
validity of formulas of a particular logical language, minimal propositional logic. This
problem is studied directly in some detail in [Tennant, 1992], but—because minimal logic
is the negation-free fragment of intuitionistic logic which is in turn a fragment of S4 modal
logic—research on intuitionisticand modal deduction also applies; here we will particularly
refer to [Sahlin et al., 1992; Dyckhoff, 1992].

The organization of this section is as follows. We briefly introduce propositional
minimal logic in section 5.1.1, and motivate why its decision problem requires special-
purpose search techniques. Then, in section 5.1.2, we describe these search techniques,
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and show how they improve performance on simple problems. Finally, in section 5.1.3
we consider broader evaluations—corpora of sample problems, random problems, and
exponential series. Each has its bias, and its technical difficulties—and unfortunately, none
is particularly representative of the queries a system is likely to face in practice (for example
in NLG).

5.1.1 Propositional Minimal Logic

From a proof-theoretic point of view, propositional minimal logic (MPC) can be described
as a restriction of propositional classical logic; see e.g. [Troelstra and van Dalen, 1988].
MPC modifies classical natural deduction by eliminating two rules:

...
?

p

[:p]
...
?

p

The first allows anything to follow from a contradiction. The second is the strong classical
version of reductio ad absurdum, according to which, if it is impossible for p to be false,
p must be true. Formally, the rule infers p from a contradiction while simultaneously
discharging an assumption of :p. This regime gives MPC proofs an attractive structure
that recommends them for many applications. For example, Kanovich uses minimal logic
deduction to synthesize programs [Kanovich, 1990]. Tennant relies on minimal logic
deduction as a module in an envisaged system for commonsense and scientific reason-
ing [Tennant, 1992]. Because of these applications, MPC deduction (and the closely related
system of deduction in propositional intuitionistic logic) is an important and well-studied
problem.

Semantically, MPC can be viewed as a modal logic. Without the second rule, the MPC
statement p � q has the same meaning as a scoped statement2(p0 � q0) in S4 modal logic.
Without the first rule, :p becomes equivalent to p0 � 2f, where f is a distinguished (but
ordinary) proposition letter representing falsity in place of ?. (This latter change embeds
minimal logic in intuitionistic logic.) Overall, we get a translation T from MPC to S4:

T(A) = 2A
T(A _ B) = T(A) _ T(B)
T(A ^ B) = T(A) ^ T(B)
T(A � B) = 2(T(A) � T(B))
T(:A) = 2(T(A) � 2f)

Because of this modal interpretation, MPC provides a good test for the different approaches
to modal deduction described in section 2.3, as well as the new strategies developed in
Chapters 3 and 4.

The first lesson of MPC is that wholly general methods, which ignore key features of
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the MPC search space, are doomed to failure. The remainder this subsection illustrates this,
by comparing how the general systems OTTER [McCune, 1994] and SPASS [Wiedenbach
et al., 1996] compare to FT [Sahlin et al., 1992] on Pelletier’s propositional problems.
The problems are seventeen theorems of classical propositional logic reported in [Pelletier,
1986] as having proved problematic for past deduction systems, particularly those that used
natural deduction directly for proof. Only four of the seventeen (numbers 9, 10, 11 and
13) are valid in MPC. Even when Pelletier’s paper appeared, none represented a difficult
problem for sophisticated deduction systems. This is confirmed by the performance of FT.

Clever special-purpose techniques

FT [Sahlin et al., 1992] is an intuitionistic theorem prover founded on a structurally-scoped
proof system much like that described in section 2.3.2. Search in FT is streamlined in several
ways. FT implements a number of optimizations naturally available to any framework for
MPC deduction (see section 5.1.2); and it also adopts some distinctive strategies to mitigate
some of the redundancies in search associated with structurally-scoped proof.

For current purposes, the most important of these distinctive strategies is a device called
IMPLICATION LOCKING. Implication locking reduces alternatives for search by enforcing
a canonical order for reasoning involving implications; this order in fact commits FT to
perform a cascade of forward-chaining inferences at each scope (or possible world) in
the proof, and to delay transitions to nested scopes (or possible worlds) as long as this
cascade proceeds. Note then that implication locking embodies a strategy different from
logic programming. Because there are few distinct propositional symbols and identity is
easily tested, the forward chaining set up by implication locking is clearly a good idea
on propositional problems. However, a similar strategy would be difficult to mirror on
an explicitly-scoped system, because of the increase in distinct symbols and matching
complexity that would come with explicit management of worlds.

FT includes a decision procedure for MPC. On LINC, FT returns the correct result for
each of the propositional Pelletier problems without measurable CPU time; in fact it solves
them all within 30 milliseconds.

General equational techniques

The obvious alternative is is to translate the Pelletier problems into first-order equational
logic and solve them using a general system. (This is exactly the methodology proposed
in research on semantics-based translation; recall section 2.3.3.) Good general systems are
OTTER [McCune, 1994] and SPASS [Wiedenbach et al., 1996]. These systems are freely
available; they were the top performing general first-order theorem provers at the CASC-
13 competition in 1996. These programs are the product of years of effort; their search
strategies have been carefully pruned and their representations involve highly-optimized C
implementations.

OTTER and SPASS both accept input in clausal form and reason primarily using resolu-
tion; SPASS also includes a splitting rule for case analysis. To deal with equations, OTTER

and SPASS combine REWRITING TECHNIQUES, to transform ground terms to canonical repre-
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sentations, and inference by PARAMODULATION, in which any subterm of a derived fact can
be unified with one term in an equation and then replaced by the other term.

In comparison to FT, the cost of solving the provable problems can be significantly
increased under the general methods; (51) reports LINC CPU times in milliseconds.

(51)
program 9 10 11 13
OTTER 290 820 60 220
SPASS 30 150 10 50

But these are the good results. On a large fraction of the problems that are not provable—11
of 13 for OTTER and 9 of 13 for SPASS—neither program is able to return a result given
several seconds of computation time.

The contrast in performance between FT and SPASS in particular offers a striking contrast
with [Hustadt and Schmidt, 1997]. They report results where SPASS vastly outperforms a
tableau prover (with similar inference to FT). The difference is that [Hustadt and Schmidt,
1997] are working with K modal logic, which has easy and deterministic unification. The
equational theory of S4—at least as treated by OTTER and SPASS—is causing trouble.

First, because of the equational theory, OTTER and SPASS are missing important infor-
mation about the finiteness of the search space. The equational theory permits paths of
unbounded length, so it is not surprising that OTTER and SPASS might fail to terminate in
some cases. In fact, however, something even more basic is going wrong with OTTER and
SPASS. On many examples the programs get caught in loops in which the general equational
methods they use wind up enumerating terms for possible worlds in a very simple-minded
way. Under paramodulation, a path xy can be unified with the associativity equation and
replaced by a longer path u(v; y) with x = (u; v) for two new variables u and v. The logical
apparatus counts the resulting formula as different from the original one, but the rule of
paramodulation can apply to it again in the same non-productive way.

Such absurd dead ends can be avoided by taking the constraints of modal languages
into account in unification. [Otten and Kreitz, 1996] provide one way to do that; their
procedure, T-string unification, is a specialized algorithm for equational unification that
takes the unique prefix property path terms into account (section 4.1). ([Schmidt, 1998]
offers another alternative, which is less efficient but allows certain optimizations in the
representations of path terms.) The T-string unification procedure takes two modal paths
as input and returns a substitution that equates them as strings by nondeterministically
reducing the strings according to the transformations in Figure 5.1. (Each step transforms an
equation into a possible further equation to solve and a possible substitution to apply.) A key
advantage of this formulation is that a prover need never derive alternative representations
of paths except as part of a resolution step.

T-string unification has a number of further advantages. It uses the separator j as a
bookkeeping device to ensure that variables are never split—as x = u; v—unless splitting
is necessary. Meanwhile, the different cases of transformation ensure that the set of
unifiers is MINIMAL; no substitution is an instance of two unifiers, so the search space



132 MATTHEW STONE

R1 f� = �j�g !fg; fg
R2 f� = �jt+g !ft+ = �j�g; fg
R3 fXs = �jXtg !fs = �jtg; fg
R4 fCs = �jVtg !fVt = �jCsg; fg
R5 fVs = zj�g !fs = �j�g; fV zg
R6 fVs = �jC1tg !fs = �jC1tg; fV �g
R7 fVs = zjC1C2tg!fs = �jC2tg; fV zC1g
R8 fVs+ = �jV1tg !fV1t = Vjs+g; fg
R9 fVs = z+V1tg !fV1t = V0js+g; fV z+V0g
R10� fVs = zjXtg !fVs = zXjtg; fg

X,V,V1,C,C1,C2 denote single characters with X unconstrained, V and V1 are variables,
C,C1,C2 are constants, and V0 represents a new variable which does not occur in the
substitution computed so far. s, t and z denote (arbitrary) strings and s+, t+, z+ non-empty
strings. �For R10, we must have V 6= X as well as one of s = �, t 6= � or X a constant.

Figure 5.1: T-string unification algorithm from [Otten and Kreitz, 1996, p. 251].

is explored systematically. (T-string unification has drawbacks as well; the steps differ
greatly depending on the kinds of values that a modal operator can take, and no algorithm
is yet available for multiple modal operators—much less for operators with interactions as
covered in Chapter 4.)

The use of refined unification techniques like those of [Otten and Kreitz, 1996] already
demands that we depart from general methods when performing translation deduction.
Section 5.1.2 shows that this is only one illustration of a pervasive phenomenon.

5.1.2 Invariants of Search in MPC

We have already noted several features of modal proof that general equational resolution
methods like those in OTTER and SPASS do not exploit, including structural modularity
(section 2.3.3) and the unique prefix property of path terms. But there are a number of
optimizations that have been independently identified that turn out to be extremely important
in narrowing the MPC search space. Collectively, they have the effect of rewarding
approaches like tableau or sequent calculus provers, which (by contrast to resolution, at
least) explore the MPC search space in a highly-structured way. Tennant offers a systematic
exploration of many of these regularities (and others) [Tennant, 1992].

First, MPC provers can enforce a prohibition on identical nested assumptions; this
guarantees decidability. Second, MPC allows provers to place strong constraints on back-
tracking, because failures on separate branches are typically independent (and are always
independent in some proof systems). Third, the structure of MPC can be exploited in
translation methods to radically cut down the number of sequence variables involved in
translation. Finally, there are some simple but effective ways to reuse saved results.



EVALUATION 133

Prohibitions on Identical Nested Assumptions

Assumptions in MPC search can often be avoided. Here is why. In an MPC model, if a
formula A is true at a world �, A must also be true at any world �� accessible from �.
So suppose that in some branch of the search space, we have assumed A at �, and we are
considering proving a formula A � B at a world ��. Semantically, A � B requires that B
be true at any accessible world where A is true. But because of our assumption, we know
that A is in fact true at all accessible worlds. So it suffices show B true at all accessible
worlds. Thus, in this context the goal A � B reduces to B.

This observation shows that MPC is decidable; exploiting this observation in proof
search guarantees termination. The reason is that, according to this observation, paths in a
proof will only grow as long as new assumptions can be made. But only special formulas
can introduce new assumptions along a path: formulas containing a negative occurrence of
an implication (like an assumption (A � B) � C). Once each such formula has been used
along a path, the path can no longer be extended. Thereafter, propositional reasoning will
settle what formulas can be proved true along that path—resulting in a proof or failure.

There are many ways to exploit this observation in search. Dyckhoff realizes it in a
sequent calculus with revised rules for implication [Dyckhoff, 1992]. This calculus builds
in the constraint into the structure of sequent calculus rules, a way that dispenses with
testing for redundant assumptions. Alternatively, Korn and Kreitz propose a translation
of MPC to classical propositional logic based on using this observation to constrain enu-
meration of relevant worlds [Korn and Kreitz, 1997]. Unfortunately, both Dyckhoff and
Korn and Kreitz’s proposals turn out to interfere with goal-directed search—Dyckhoff’s
calculus requires inferences to appear in a special configuration while Korn and Kreitz must
enumerate possible worlds before it is known whether those worlds will contribute to any
proof. FT implements the test on nested assumptions directly, and our implementations will
do the same.

Strong Constraints on Backtracking

The second optimization, called SIFTING in [Sahlin et al., 1992], refines the use of back-
tracking. In general, backtracking is a bookkeeping method for exhaustively exploring the
search space for proofs. For binary rules, which decompose an overall problem into two
subproblems, backtracking enumerates all the ways that a solution for the first problem can
be combined with a solution for the second. In the case of a propositional problem, such
exhaustiveness is superfluous. The problems will be independent. Sifting is an optimization
of backtracking that reflects this.

This optimization is quite perspicuous in the sequent calculus, particularly under a
logic-programming discipline. For example, suppose a (structurally scoped) MPC prover
encounters the goal A ^ B, and breaks it down into subproblems of proving A and proving
B. Suppose a proof is found for A, the prover moves on to prove B, and there fails. After
this failure, ordinary backtracking will look for alternative proofs of A, expecting to search
again afterwards for a new proof of B. (It must exhaust all ways to combine proofs of A
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with proofs of B.) This is hopeless. No matter what other way A is proved, the proof of
B afterwards will still fail. Sifting allows the goal of A ^ B to fail immediately, once the
subgoal B fails.

With semantics-based methods, sifting remains possible, but must be argued for and
implemented more carefully. Conjunctive goals are no longer so obviously independent,
because it might be possible to bind modal logic variables by unification as part of finding a
proof. Actually, with logic programming search and incremental equational unification, we
can show that this worry is unfounded. As we observed in Lemma 13, whenever right rules
apply under logic programming search, all of the path variables in the sequent must equal
labels of some current, global goal. Thus, the variables will be set to ground values by
whatever unifier is being maintained along with the proof. There can be no communication
between the proof of A and the proof of B using such variables. So if the proof of B fails,
the whole proof still must fail.

The argument is still more subtle in the case of a constraint unification method. Indeed,
it will be necessary to admit some backtracking; the values of variables are now significant.
However, we can still see sifting as a strong optimization. Conceivably a change in the
value of any variable might be enough to move to an unexplored part of the search space,
making the sifting test very expensive. However, in fact, only the label of the goal formula
needs to be examined. We know that if any formula contributes to the proof of A, that
formula must be labeled with a prefix of the label of A. Under logic programming search,
every assumption ends in a constant, so an assumption cannot be used in the first proof of
A unless the constant it ends with appears on the value of the label of A.

When the proof of B fails, we have in fact derived that any proof of B is incompatible
with the presence of these constants on the label of A and B. However, a proof of B
might succeed if the prefix associated with A contained fewer or different constants. So the
thing to do in the constraint-based method is to post this distinctness constraint and then to
backtrack into the proof of A.

Streamlined Translations

In the case of translation systems, it is possible to effect a further simplification by refining
the translation itself. The idea is to insert transitions to new possible worlds only where
they are strictly needed. For example, (a � b) is currently translated 2(2a � 2b). This
translation makes for expensive path reasoning. To use this as an assumption first involves
unifying a path term xy—sure to introduce ambiguities into the solution space. Then the
new subgoal involves considering yet another new possible world. Now, in the minimal
logic translation, a is provable exactly when 2a is. That means that the translation of
(a � b) could be simplified just to 2(a � b). This simpler formula introduces no new
possible worlds and involves a path term x which does not introduce equational ambiguities.
This formula therefore puts a much lower demand on path reasoning.

Let Q(A) be A if A occurs negatively (as a goal) and 2A if A occurs positively (as an
assumption). Then the we can use the optimized translation G given below to convert from
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MPC to S4.

G(A) = Q(A) L(A) = A
G(A^ B) = G(A) ^ G(B) L(A^ B) = L(A) ^ L(B)
G(A_ B) = G(A) _ G(B) L(A_ B) = G(A) _ G(B)
G(A � B) = 2L(A � B) L(A � B) = G(A) � L(B)

G stands for GLOBAL—it checks that the formula is true at any accessible world. L stands
for LOCAL and performs a more restricted check against the current world.

An interesting consequence of the use of G is that Hereditary Harrop formulas—in
this fragment, formulas without disjunction [Miller et al., 1991]—have very attractive
translations. Path logic variables can occur at most once on any positive path through the
formula, which means that no ambiguities will result in solving path equations, even with
equational unification. Under logic programming discipline, search in the G-translation
will mirror �Prolog search on the untranslated formula. Unfortunately, this result cannot
be taken to confirm that equational unification is a good idea in these cases; rather it shows
that for Hereditary Harrop formulas we ought to dispense with worlds altogether, and use a
purely propositional search strategy (indeed, most likely a forward-chaining one, as in FT).

Recording Results

Two optimizations for saving results can also be used. Tennant reports that they are very
important to his provers. One involves saving successful proofs for possible reuse. The
other involves recording failed attempts at proof so that they can be immediately dispatched
if they recur. These optimizations could be applied more or less the same way in any sequent
proof system. What differs is the complexity of bookkeeping involved in recording a search
result and accessing it later. (This again depends on the order in which search proceeds and
the abstraction at which search problems are represented).

In fact, FT does not apply either of these optimizations. This is the main reason why
Korn and Kreitz are able to show dramatic speedup over FT on pigeonhole problems [Korn
and Kreitz, 1997]. With saved results, proofs for pigeonhole problems can be exponentially
shorter than any proof available without saving results [D’Agostino, 1992]. For widest
coverage, however, avoiding these optimizations seems reasonable. For example, antici-
pating (52), I have found that the bookkeeping involved in these methods on the constraint
method costs more in execution time than it saves in pruned search. (What’s more, with
expressive representations, the bookkeeping becomes rather difficult to code correctly.)

Tracking the Improvement of Proof Search

For the special case of MPC deduction, I implemented the logic programming search
strategy described in Chapter 3, the constraint algorithm described in Chapter 4, and the
T-string unification algorithm described in [Otten and Kreitz, 1996]. The implementations
are written in SML, and are parameterized by the optimizations introduced in this subsection
(obtaining a decision method by restricting assumptions, sifting search problems, optimized



136 MATTHEW STONE

translations, and saving results). (52) shows total run time in LINC CPU milliseconds for the
propositional Pelletier problems, as these optimizations are factored in.

(52)
technique decision sifting translation saving
unification 330 80 60 70
constraint 560 160 110 310

Saving results is clearly not worth the trouble on such simple problems. Otherwise, we
arrive at methods that are well within the ballpark of FT and don’t suffer nearly the difficulties
of general translation methods.

The reader may perhaps be disappointed that the T-string unification implementation
runs in half the time that the constraint method requires. The performance difference is
inevitable. The overhead of the T-string method is much lower than the constraint method,
and these problems are easy. (Recall the discussion of Hereditary Harrop formulas earlier.)
In fact, in solving the entire suite of problems, there isn’t one occasion on which the T-
string unification method finds a first unifier for an equation, rejects it, and actually has to
backtrack to consider an alternative unifier for the equation!

5.1.3 Broader Comparison and Evaluation

We now have three provers for MPC—the benchmark FT, a new unification-based prover
UNI and a new constraint-based prover CON—that cope well against a simple baseline. This
section compares these provers more systematically. Three paradigms are common in the
literature: banks of test examples, as in [Pelletier, 1986; Tennant, 1992; Sahlin et al.,
1992]; construction of difficult random problems, as in [Mitchell et al., 1992; Giunchiglia
et al., 1997; Hustadt and Schmidt, 1997]; and the construction of families of problems of
increasing complexity [Sahlin et al., 1992]. We consider each in turn.

Test examples

For MPC, a suite of provable examples is documented in [Tennant, 1992]; 32, the ASSET

problems, are derived from [Thistlethwaite et al., 1987] and 33, the MINLOG problems, are
derived from [Slaney, 1994]. Both sets have a similar form: each problem is an implication
p ? (q ? r) � (p ? q) ? r, where ? is a binary operation on propositions. The problems run
100–150 symbols.

Performance on these test suites is greatly variable, and on the whole rather disappoint-
ing. The reason is the structure of the formulas involved. (53) examines performance on
the first five ASSET problems.

(53)

1 2 3 4 5
FT 0 0 0 0 0

UNI 750 50 – – –
CON 6290 260 – – –

FT solves all without measurable CPU time. Meanwhile, for both UNI and CON, the first two
take disturbingly long, the latter three unacceptably long. It turns out, however, that these
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problems are all Hereditary Harrop formulas; there is no ambiguity in the representation
of worlds. The difference between UNI and CON derives entirely from the overhead of the
(unnecessary) constraint solver, and much of the difference between UNI and FT derives
from the unnecessary overhead of representing worlds in the first place. (The remainder
must be due to the difference in search strategy.)

With the MINLOG problems, the results are rather more encouraging. Performance for
the first ten is summarized in (54).

(54)

1 2 3� 4� 5 6 7� 8� 9 10
FT 0 0 60 50 10 0 20 0 10 0

UNI 20 190 10 20 110 20 30 80 – 50
CON 70 790 50 50 580 100 90 290 – 190

At least now there are four examples that genuinely go beyond the Hereditary Harrop
fragment (3, 4, 7 and 8). These examples show weakness in FT for the first time, while both
UNI and CON do relatively well. In the MINLOG set, too, there is still the occasional disaster
(e.g., number 9) when a Hereditary Harrop formula gets long and backward chaining search
gets misled.

The test problems in [Tennant, 1992] are not uninteresting; they derive from certain
mathematical investigations of minimal logic. But they are not the kinds of problems that
we should expect the research of Chapters 3 and 4 to apply well to. They have a complex
structure but with very few distinct propositions (three or four, counting falsehood) and
very little ambiguity about worlds.

Random problems

Several recent research results report performance results for deduction on random for-
mulas of (multimodal, propositional) K modal logic [Giunchiglia and Sebastiani, 1996;
Giunchiglia et al., 1997; Hustadt and Schmidt, 1997; Giunchiglia et al., 1998]. This
paradigm of evaluation follows on the tradition of using random formulas to test algorithms
for propositional satisfiability begun in [Mitchell et al., 1992].

I have not run random tests, for three reasons. First, random tests are computation-
ally expensive. It makes little sense to run a small number—they are random—and the
convention in the literature is to allow examples to run for 1000 seconds each. Second,
random tests are also difficult to get right. It is important to work in a class of formulas
which contains diverse and interesting problems—and few problems that can be solved
trivially. At the same time, the random construction of formulas most easily follows the
syntax of formulas. This is a tough balance. Even in the case of K, proposals for generating
hard problems have been the subject of dramatic refinement from [Giunchiglia et al., 1997]
through [Hustadt and Schmidt, 1997] and [Giunchiglia et al., 1998] in an attempt to find
more uniformly difficult problems. It is an open problem to construct difficult random
problems in S4, and seems likely to require a change in methods. The syntax is much less
of a guide to how constrained an S4 deduction problem is, because S4 (unlike in K) allows
necessary formulas to apply both at the present world and at distant worlds. With MPC, the
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restricted syntax of clauses compounds the problem; without negation clauses must take
the form C � D with C a conjunction of negative literals and D a NONEMPTY disjunction
of positive literals.

Third, the literature on evaluation of modal decision procedures is equivocal. Or,
more precisely, the literature emphasizes that large disparities in performance—in both
directions—can result from seemingly small steps of preprocessing and simplification,
and shows that researchers are typically surprised by (and in the case of alternatives to
their favorite deduction method, quite unsympathetic to) these differences. Think of the
improvements reported in section 5.1.2, which cannot exhaust the cascade. With this in
mind, there seems little point on running the big evaluations until proof procedures are
relatively refined.

Exponential series

We are left with the possibility of showcasing particular problems or classes of problems
where the representations of UNI or CON are particularly valuable.

Here is one such class of problems. We write a collection Γ of k axioms of the form
Ai ^ Gi � Gf(i) _ Tf(i), parameterized by the function f : k ! k. We will interpret these
axioms operationally in the following way. In the antecedent, Ai names ASSUMPTION

number i, and it will link with an atom we’ll assume later. Gi names GOAL number i, and
will link either with an initial axiom G1 which we assume, or with the consequent of another
of these axioms. Finally, in the consequent, Tj names the test number j, which we will look
for as the assumptions are introduced. Thus, to flesh out this interpretation, we also design a
query formula Q of the form A1 � T1 _ (A2 � T2 _ : : :E � Tk _Gk : : :). This successively
adds an assumption, introduces the possibility of making a test, or alternatively continuing
on, until finally the last test and goal are reached. Again, for k and f, the inference problem
here is

G1;Γ ?- Q

What is search like on this class of problems? Ultimately, we must try to chase back the
final Gk through to the assumed G1 using the axioms from Γ. It becomes possible to make
one step in the chase if we are currently looking at Gf(i) and we can link to an earlier Gi.
(The disjunct Tf(i), which we must link with the corresponding disjunct in Q, will prevent
us from linking to a later Gi, by modularity.) So this query is provable exactly when there
is an increasing sequence 1; f(1); f(f(1)); : : : ; k.

This is query is far from the Hereditary Harrop fragment. In fact, every axiom in Γ
involves a matching a pair of transitions, while every step of the goal Q introduces another
modal transition. So equational unification methods, and the implicit ordering search of FT,
will encounter many possibilities on this method—most of them redundant. However, the
only ambiguity the constraint method sees is in applying the (restart) rule.

The informal analysis of this query is confirmed by timing. I generated a few random
problems of this form, with k increasing, and tried them out. (Drawing on our abstract
characterization of these examples, it is not hard to balance provable and unprovable ones.)
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The average results are given in (55).

(55)

k: 12 14 15 16 18
(#) (8) (4) (8) (16) (8)
FT 710 1010 1530 11370 –

UNI 120 90 370 660 29500
CON 50 90 80 90 110

FT and UNI are clearly growing exponentially, as expected. CON, as expected, is not.
Modularity is also a key factor in allowing CON to fail on unprovable examples as

quickly as it does. Disabling modularity yields uniformly unacceptable results.
The form of this query seems arbitrary at first, but it can be motivated from planning

domains. Suppose we have k actions where any might fail, but where each will establish
the precondition of another if it succeeds. The query supposes that we try these actions in
a particular order, and demands that two things follow. Firstly, if a sufficient number of
actions succeeds, then the overall goal of the plan should be accomplished; secondly, if any
of those actions fails, we should know that it fails right away. To solve this kind of problem,
formalized in this kind of way, the constraint algorithm of Chapter 4 is a clear win.

5.2 Logical Specifications and Reports of Success and Failure

While section 5.1 emphasized the use of constraint modular reasoning on independent hard
problems, the language DIALUP for which I developed the techniques first and foremost offers
a tool that applications can draw on to execute specifications of knowledge and modularity.
For example, in NLG, as motivated in Chapter 1 and described in detail in Chapter 9, a
generator can use DIALUP to construct and assess its options for extending a contribution to
conversation. In such applications, two features of the reasoner are particularly important.
The reasoner must be able to obtain for any query a result that accurately reflects the
input specification, and it must be able to present its results in a simple form useful to the
application. These design goals are furthered by DIALUP’s modularity and constraints.

Consider how these two goals apply to NLG, for example. First, to guide decision-
making, the reasoner must be prepared to respond automatically to whatever questions of
grammar and interpretation are put to it. These questions will have a range of different
answers in different contingencies; otherwise there is no decision to make. Providing a
result in accord with the input specification is also crucial to NLG. NLG is an engineering
enterprise, and assuring the quality of its results is important and difficult [Reiter et al.,
1995]. With logic programming, we get a theoretical starting point for such validation of
NLG systems: a guarantee that output content reflects input content exactly.

Second, in NLG, logical queries often characterize the interpretation that the hearer is
to derive from an utterance. Such queries demand answers that make only linguistically
relevant distinctions. If the reasoner itself reports results more finely, it will have to be
layered beneath an additional module that collapses and transforms answers to a form
appropriate to NLG, perhaps at a significant computational penalty.
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Many theorem provers result from a different perspective on the goals of reasoning.
“We should be seeking cybernetic extension of our deductively extracted beliefs” [Tennant,
1992, p. 13]. By these criteria, the system counts as a success not if it can settle contingent
questions for another application, but if it does a good job finding proofs of valid mathe-
matical statements. Theorem-proving test sets are illustrative of this; there are compilations
of difficult or interesting TRUE statements, but rarely of difficult or interesting FALSE state-
ments. Reflecting the same perspective, many methods for modal deduction—particularly,
resolution with equational unification—transform statements and results into the internal
representation dictated by the theorem proving method rather than the application.

In contrast to a typical theorem prover, DIALUP’s logic programming strategy is particu-
larly suited to these two requirements. This section reviews some reasons why. Section 5.2.1
describes why DIALUP can be made to deliver reliable answers to a range of questions when
you view DIALUP as a programming language. Section 5.2.2 suggests that DIALUP’s con-
straint representations allow the work of delivering answers with natural structure to be
done at programming or compile time.

5.2.1 Modularity: Exhausting the search space

An NLG system needs to construct messages that reflect the knowledge and goals of the
hearer. One role of logic, which we return to in Chapter 9, is to facilitate these assessments
of the hearer. For example, as part of evaluating a description intended to refer to a given
object, an NLG system might need to assess what other objects the hearer thinks will match
the description. For such queries, the best thing would be to exhaust the search space and
find all proofs. Any proof we miss now is a possible source of misunderstanding later.

This kind of assessment depends on a representation of partial information, both to
characterize gaps in the hearer’s knowledge (so the system knows what new to say) and
gaps in the system’s knowledge of the hearer. Partial information is of course difficult
to handle by restricted inference, particularly when partial information is described by
disjunctions and existential quantifiers. Prolog is out; so are simple strategies like the
global restart rule of Near-Horn Prolog. (Recall from section 3.3 that when the global
restart rule of Near-Horn Prolog is admissible, then proof search never finishes as long as
there are two independent relevant disjunctions. The interpreter can continue to construct
new proofs indefinitely, by alternating between blocks.)

Without any way to describe constraints on search in partial information, the only choice
is to use an open-ended prover and end search not by failure but simply by timing out. This
is not a terrible strategy—especially in that it seems to automatically account for the fact
that the inferential capacities of people, as presupposed in conversation, are limited [Walker,
1993]—but it is clearly a compromise.

DIALUP gives a careful programmer an opportunity to avoid such compromise. Struc-
tural modularity is an important technique for constraining and controlling proof search for
knowledge bases with independent partial information. By keeping case analysis separate
and modular, you can more easily use logic programming search to exhaust the search
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space by keeping case analysis separate. Once cases are separated, a simple cancellation
mechanism provides all the bookkeeping needed to run through all the possibilities for
search. It becomes possible to try to get exact answers in a simple way to questions such
as NLG systems will ask.

5.2.2 Constraints: Reporting results concisely

Another aspect of hearer assessment required in NLG is uniqueness. NLG often requires
objects or inferences to be identified or agreed on; this is a key step for a speaker and hearer
to arrive at shared understanding. This means that NLG not only involves finding all proofs
of certain forms, but also counting those proofs. The most attractive way to count is to use
the number of results returned from proof search. If there is only one, you know you have
satisfied things uniquely. Otherwise, there is ambiguity.

This strategy fails when there are multiple derivations with the same content. Then an
NLG system may have achieved its goals of uniqueness even when many derivations are
available. Under these circumstances, the system must apply a filter whenever a logical
query is posted. Before analyzing the answers, the filter must match them pairwise and
keep only a single representative of each type. This indirection and filtering can become a
burden.

The equational approach to possible worlds is one case where indirection is required.
Proof search will return many unifiers that differ, not in what rules were applied or what
objects the rules were applied to, but only in how variables over possible worlds are
interpreted. These separate solutions will not be interestingly different from the point of
view of NLG. What’s more, collapsing the results is particularly complicated, because
to determine which objects are identical, it may be necessary to consult that expensive
equational theory of paths.

On the other hand, the constraint representation of possible worlds alleviates the need for
indirection. Any time the same set of inferences apply across a range of cases, constraints
provide a useful tool for deriving meaningfully distinct proofs. This is especially true when
it comes to possible worlds; the constraint algorithms of Chapter 4 eliminate all ambiguity
in worlds.

5.3 Summary

When it comes to quantifying performance of modal decision procedures, particularly
for the case MPC studied in section 5.1, there is no easy answer and plenty of room
for further research. But from the test examples and families of problems considered in
5.1.3, we can tentatively identify a range of problems where modularity and constraints for
deduction are important ideas for maximizing performance. These are problems that make
meaningful use of disjunction. (In fact, we anticipate that this extends to problems that
require partial information more generally, based on informal experiments with existential
quantifiers.) As we shall see in the remaining two parts of the dissertation, disjunction
and other specifications of partial information have an important role to play in reasoning
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about knowledge and action. In planning, partial information about the world underlies
many useful behaviors where an agent performs a possibly redundant action, just to be safe
(see section 6.5). Moreover, disjunctive characterizations of the information available to
an agent allow an agent to use sensed information about the world to make conditional
decisions in carrying out a plan (see section 7.1). Finally, in NLG, partial information
about the hearer can be crucial to designing effective instructions that take the hearer’s
knowledge into account (see section 9.2). So the ability to reason more efficiently about
modular disjunctive specifications directly impacts the tasks that motivate this research.

Ultimately, MPC deduction represents the simplest language for which modularity and
constraints advance the state of the art. In first-order languages, exponential series which
motivate constraint analyses are rampant. Problems (1.1–1.3), (1.4–1.6), (1.7–1.8) and
(2.1–2.4) from [Sahlin et al., 1992] illustrate four different series involving quantifiers;
at the top of each scale FT requires tens of seconds to complete a proof. None of these
examples cause any problem (in translation) in DIALUP; running time grows slowly and no
problem takes even 100 milliseconds. With examples such as these, we can look forward
to continuing to characterize the strong range of applicability of the techniques proposed in
Chapters 3 and 4.

This extension to first-order problems supports the general observations about the value
of exploiting modularity and constraints which we offered in section 5.2. We will return to
these observations with concrete examples in Chapter 9. But first we need to look in more
detail at how the specifications about action and knowledge that we need for NLG can be
constructed. That is the subject of the next three chapters.
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6
Action and Deliberation, Ontology and Search

Having completed our study of the technical side of modal deduction in Part I, we are
brought to the question of how algorithms for modal deduction respond to the demands
of concrete applications like the problem of reasoning in NLG introduced in Chapter 1
and examined in more detail in Chapter 9. This part of the dissertation provides a bridge
between the modal formalism and its applications, by studying modal logic as a general
tool for specifying and reasoning about problems of knowledge and action in AI.

This investigation of modal knowledge representation has three goals. One goal is to
study the power of modal languages to describe planning problems according to purely
expressive criteria. Planners are often based on special-purpose languages for describing
actions (and occasionally knowledge, too). To provide an alternative, a modal approach
must settle whether and how such descriptions can be recast in a modal language, and what
inferences the modal language supports.

The second goal is to investigate the algorithms for modal proof search devised in Part I
as they apply to planning problems. The results of Part I can be applied to derive a constraint-
based, logic programming search strategy for reasoning about modal specifications of
knowledge and action. An important and pervasive result of Part II is that such search
procedures can be seen as natural generalizations of the search strategies designed and
implemented in special-purpose planning algorithms.

The final goal is to lay the groundwork for reasoning in NLG by better characterizing the
information for planning and acting that a hearer expects to find in an NL action description.
We take the view that a plan is a complex object that describes not only a course of action to
perform but also the purposes of the actions and the reasons why the actions will (or might
not) achieve these purposes. In other words, plans should be characterized generally as
guides to the action and deliberation of rational agents. Thus, particularly in instructions,
the hearer must look for the information required to form, evaluate and adopt such a plan.

We begin this chapter by exploring the support for this view of plans and its implications
for the design of a planner. These implications are taken into account later in the chapter as
we write modal specifications of action and causality and deploy the techniques of modal
deduction developed in Part I to reason about those specifications in planning. This chapter
opens, in section 6.1, with an examination of the various uses to which plans can be put.
We briefly review proposals that rely on the complex structure of plans to communicate and
negotiate what to do [Ferguson, 1995; Chu-Carroll and Carberry, 1995], to ascribe plans
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to agents [Pollack, 1990], to adapt plans to new or changing circumstances [Kambhampati
and Hendler, 1992; Hanks and Weld, 1995] and to control deliberation [Pollack, 1992].

In section 6.2, we consider how the view motivates a temporal ontology for planning that
links the representation of time and the representation of inferences with the representation
of action and causality.

In section 6.3, we reconcile this view with the practical task of constructing plans. We
review three kinds of proposals for deriving a planner from a declarative theory of the
effects of actions. The first is the use of the event calculus and negation-as-failure from
[Shanahan, 1989; Missiaen et al., 1995; Shanahan, 1997]; the second is Ferguson’s use of
explanation closure axioms and defeasible argumentation [Ferguson, 1995]; the third is the
use of generalized logic programming to reason about action [Gelfond and Lifschitz, 1993;
Baral and Gelfond, to appear; Baral, to appear; Lobo et al., 1997]. These systems all bear
a tantalizing similarity to the restricted inference of implemented planners like [McAllister
and Rosenblitt, 1991; Penberthy and Weld, 1992]. In reasoning about the effects of actions,
all recognize and accommodate the need to strike a balance between leaping to tentative
conclusions and checking the assumptions that underlie tentative conclusions.

In section 6.4, we use the results on modal logic and modal deduction presented in
Part I to describe a concrete formal system that synthesizes these conceptual, ontological
and computational considerations. We provide a class of intended models that describe
precisely the circumstances under which the reasoning formalism derives provably correct
conclusions. By representing plans directly as modal proofs, this system gives plans the
complex structure required for the varied uses of plans seen in section 6.1. Meanwhile, the
desiderata of section 6.2 are met by deriving results using modal logic, which facilitates
description of successive stages of deliberation and action, and then combining results
using argumentation, which facilitates the recognition and report of conclusions based on
the common-sense law of inertia.

Section 6.4 also establishes the kind of connection between valid reasoning and planning
motivated in section 6.3. Using logic programming proof search, a constraint algorithm
for reasoning about event sequences, and a system of defeasible reasoning for validating
conclusions based on inertia, we find an exact parallel between the steps of modal proof
search and the steps of special-purpose planning algorithms.

6.1 The structure and use of plans

A good plan is a reflection of its designer’s causal knowledge. This causal knowledge
ensures that the plan arranges appropriate circumstances for the execution of each action
and guarantees (insofar as possible) that each action in the plan will then bring about
the effect or effects intended for it. Take the simple blocks-world plan to move block A
onto block B. This plan is useful only if it describes a coherent course of action, so the
requirements of the domain must be taken into account in constructing it. For example,
the plan must ensure that neither block has another on top when the move takes place.
Similarly, since this plan will be adopted for what it achieves, the results of the plan in the
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domain must be accounted for. Here, these results will include the new, taller stack that the
move will establish.

We adopt the view that each plan not only reflects the causal knowledge that goes into
building it, but in fact explicitly records that knowledge. In other words, we model plans
as data structures that encapsulate a sequence of actions that could occur, together with a
justification of the possibility of those actions and a demonstration of their consequences.
The motivation for this view lies in the natural account it gives of the different uses of plans.
This section explains a variety of such uses for plans, both in guiding private deliberation
in section 6.1.1 and in contributing to collaborative deliberation in section 6.1.2.

These different uses of plans arise for similar reasons; they share important features.
A social agent in a dynamic world is always deliberating in response to these new snags
and opportunities. It will need not only to build new plans, but also to change its existing
ones—whether in response to changes in the world or the demands of coordination—so
that the agent’s plans can still be trusted to lead the agent towards the goals it planned them
for. By explicitly representing causal relationships in its plans, an agent can better use and
reuse them in this constant deliberation. Moreover, with an explicit causal representation,
an agent can also assess the compatibility or incompatibility of independent new actions
which the agent considers as new goals arise. Compatibility is a causal notion; it depends
on the complex of conditions and constraints by which a plan is to achieve its intended
effects. So testing compatibility also depends on giving plans a full, causal representation.

6.1.1 Plans in mental life

Pollack [Pollack, 1992], drawing on [Bratman, 1987; Bratman et al., 1988], illustrates a
first such role for plans in the deliberation of a bounded agent in a dynamic world: an agent
can use the plans to which it is committed as a filter for reasoning. The agent seriously
considers only those actions that are compatible with its plans.

As an example, Pollack describes arranging one summer to attend a distant conference
while simultaneously undertaking a major move (a task whose difficulty and universality
one increasingly appreciates). She began by fixing her flight dates to the conference. This
facilitated further deliberation by limiting the alternative actions and new opportunities that
needed to be considered. Thus, the flight plans were a guide to fleshing out the rest of the
plans for the summer, for example constraining when the movers should come [Pollack,
1992, p. 51]. And the flight plans helped organize Pollack’s response to unforeseen
circumstances: when she was invited to give a class lecture during the middle of her
planned absence, Pollack “quickly determined that giving the lecture was incompatible
with my existing plans, and that it was not prima facie the kind of thing worthy of serious
consideration nonetheless” [Pollack, 1992, p. 53].

We can see in Pollack’s intuitive examples how compatibility must be measured against
the entire causal complex that justifies a plan. Just assuming that the scheduled flying
occurs, the movers still COULD come any time. The movers are separate agents who could
be authorized to act freely and independently of Pollack. For that matter, just assuming
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the scheduled flying occurs, Pollack COULD still arrange to attend the class: her trip is long
enough that she COULD just fly back for the class. The incompatibility is not just with the
actions in the plan, but with its causal structure. To achieve planned effects, the flights come
with preparatory intentions designed to ensure a successful conference—for example that
preparations for the conference are to be taken, with as little disruption as possible. This
IS incompatible with the movers coming too early. And the flights come with the effects
for which they were undertaken—a continuous stay in Australia between them. This IS

incompatible with an intervening attendance in class. If the movers must be supervised
to ensure a successful move (another causal condition), this is also incompatible with the
movers coming too late.

Where Pollack’s argument shows how plans for one goal, richly represented, can guide
deliberation for separate goals, Kambhampati and Hendler show how old plans can guide
deliberation when attacking novel problems [Kambhampati and Hendler, 1992]. These
new problems may be quite similar to those previously solved. Perhaps a task must be
repeated; perhaps a task arises out of mistakes or exogenous events that slightly disrupt
the execution of an old plan. Reusing an old plan requires assessing the compatibility of
the plan with the new circumstances: again, the compatibility must respect the causal and
intentional structure of the plan, not just the actions it contains. Accordingly, Kambhampati
and Hendler’s algorithms require plans to be represented with a VALIDATION STRUCTURE

that annotates steps in the plan with concise records of what they do and why. In fact,
subsequent research has shown how replanning can and should exploit exactly the same
causal data structure used to construct a plan in the first place [Hanks and Weld, 1995].
It has shown, moreover, that the causal structure of plans is an important resource for the
other reasoning tasks—which plan to adapt, and how to go about the adaptation—that must
be solved to reuse plans effectively [Veloso, 1994; Koehler, 1994].

Kambhampati and Hendler illustrate the use of validations in refitting a blocks-world
plan for a new task involving the positioning of a few extra blocks. As might be expected,
refitting requires the addition of the new goals that ensure that the new blocks end up in
the right place. Refitting also requires the preconditions for actions to be rechecked. To
accomplish this, a validation in the plan must record when preconditions are satisfied in the
initial state in one problem; that way a goal to satisfy the precondition can be inserted in a
refit plan if the corresponding fact does not hold in the new problem.

It is important to observe that this rechecking is necessary even if the action could still
be performed in the new situation. When executed in a changed state, the effects of the
action will change. These different effects must also be checked for causal and intentional
compatibility with the plan. Such examples highlight most compellingly Kambhampati
and Hendler’s need for a complete causal representation of plans. In their blocks-world
refitting example, one such case involves the move of one block, K, onto another, J. In the
new problem this still gets K onto J. However, in the earlier problem K was on the table,
but now K is on block I. Because the move will now clear block I, the move has to be
reconsidered. In fact, this consequence makes moving block K directly onto block J the
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wrong choice. Because block J eventually goes on block I, the new problem requires that
block I be cleared by a different action: block K must be moved first to the table and then
to block J.

6.1.2 Plans in public life

In deliberation, even a solitary agent must assess what actions are compatible with its own
plans using a rich causal representation. When an agent can communicate or cooperate
with other agents, it must also determine what plans are compatible with THEIR observed
statements and actions. Because of the causal nature of compatibility, this PLAN RECOGNI-
TION problem also involves not only anticipating the further sequence of the other agent’s
actions but also attributing a complex of beliefs and intentions to that agent [Pollack, 1990].

Pollack’s dialogue in (56) illustrates both the range of attitudes that should be attributed
to an agent in plan recognition and the value of doing so.

(56) a A: “I want to talk to Kathy, so I need to find out the phone number of St.
Eligius.”

b S: “St. Eligius closed last month. Kathy was at Boston General, but she’s
already been discharged. You can call her at home. Her number is 555-1238.”
[Pollack, 1990, p. 78]

To account for A’s utterance, we need to assume first that A intends to phone St. Eligius
and that A intends to talk to Kathy. But we also need to assume that A believes that Kathy
is at St. Eligius, that St. Eligius has a working phone, and hence that whoever answers the
phone at St. Eligius when A calls will put A through to Kathy. These beliefs together lead
A to the conclusion that phoning St. Eligius will lead to his talking to Kathy; the beliefs
represent the causal basis for the plan.

We saw earlier why A would need this causal basis to guide deliberation and adapt this
plan. Here we see that S must attribute this causal basis to reply to A’s question. Two
components of S’s reply—St. Eligius closed; Kathy was at Boston General—correct the
causal beliefs that A has used to form the plan. Without attributing causal beliefs to A, S
would not recognize the need to present this information. The remainder provides not only
an alternative action, calling 555-1238, but also the correct causal knowledge to account
for why this alternative action will accomplish A’s intention of talking to Kathy. Only by
recognizing that A must reestablish the causal basis for his plan can S determine that this
information is necessary.

In (56), the plan recognition is intended. In formulating his contribution, A intends to
describe the full causal basis underlying his plan. If S doesn’t get the connection, S hasn’t
fully understood what A means. For example, A’s use of words like so and need shows
A’s intention to make his deliberation public. Now, Pollack [Pollack, 1990] considers only
plans to which an agent is committed. However, talk about hypothetical courses of action
has a parallel structure and vocabulary; this indicates that such talk likewise intended to
report causal connections. Consider (57)
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(57) I might want to talk to Kathy, so I might need to find out the phone number of
St. Eligius.

Accounts of public deliberation like [Ferguson and Allen, 1994; Ferguson, 1995; Chu-
Carroll and Carberry, 1995] therefore model reports of POTENTIAL PLANS, even contributions
to dialogue made hypothetically for the sake of argument, as complex objects with causal and
inferential structure. As with (56), these accounts use the complex structure of contributions
to discourse to better describe the relations between successive utterances and to better plan
cooperative responses. An important virtue of these accounts is that they allow alternatives
to weighed based on this causal structure, so that two conversational partners can arrive at
a genuinely collaborative resolution of differences.

For example, Ferguson and Allen provide a formal model of the the planning discussion
reported in (58). The conversation concerns a logistics problem in which freight must be
transported first to the coast, by truck or rail, and then transported onward by ship.

(58) a Agent A suggests shipping the supplies by train;
b Agent B points out that the ship might leave at 4:00, and thus the supplies

would miss today’s ship;
c Agent A points out that the ship might not leave until 6:00, and thus the

supplies would make today’s ship. [Ferguson and Allen, 1994, (1–3)]

Each contribution is represented as a logical deduction about a hypothetical course of future
events. Each deduction makes particular assumptions and exploits particular defaults; a
formal system for comparing deductions on the basis of these assumptions allows the
different proposals to be evaluated. In this example, as you might guess, neither agent
comes out a clear winner.

[Chu-Carroll and Carberry, 1995] analyze a similar debate in a planning assistant
designed to advise a student about what courses to take. Their analysis also treats a
contribution to dialogue as a deduction with assumptions and defaults; they show how
this allows the design of a more convincing response that challenges just the relevant
assumptions on which system and user disagree.

6.2 The temporal and inferential ontology of planning
To build, extend, adapt, communicate or compare plans, we must take into account the
causal connections that describe how the plan works. In describing [Ferguson and Allen,
1994; Ferguson, 1995; Chu-Carroll and Carberry, 1995], we found a representation of plans
that gives these connections a central place. In this view, a plan is a formal demonstration,
constructed according to some theory of events and their consequences, that a sequence of
actions will achieve some goal.

In this chapter, we will use modal logic to articulate this view. We will appeal to
modal operators [N]p, meaning that p holds in the next state (after a single transition),
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and [H]p, meaning that p holds now and will continue to hold indefinitely into the future.1

Using this modal language, we can write the causal theory as a set of statements T and
use another set of statements I to describe the initial conditions of the planning problem
(and perhaps to supply further available information about future conditions and events).
More interestingly, with this language we can use a formula G—which perhaps refers to
states in the future using [N]—to characterize the goal that the plan should achieve, and
we can represent the actions in the plan by a set of statements P—again formulated using
[N] to describe states in the future—which records our assumptions about what actions are
undertaken as part of the plan and how those actions do (or don’t) interact.

Thus, in our a deductive theory of plans, the demonstration that the plan achieves the
goal takes the form of a deductionD with conclusion

(59) T; I;P - G

(59) mirrors the sequent calculus notation introduced in Chapter 2 and used to describe the
state of a logic programming interpreter in Chapter 3. Here it indicates that in the deduction
D, the formulas in T, I and P are used to derive the formula G. It should be clear from this
abstract presentation that the formulation of planning in (59) is substantially independent
of the details of the modal language we use to describe plans, goals and causality.

The basic problem of building a plan is to find an appropriate set of actions in P, given
the specification of T, I and G. As we shall see in more detail shortly, deduction from T
together with the abductive assumption of premises in P can give an effective way to derive
plans together with an appropriate rich causal structure.

6.2.1 Deduction, abduction and the uses of plans

Abduction is not the only formalism for describing planning in logic; in fact, abduction
is contrasted unfavorably with a purely deductive view of planning in [Reiter, 1996]. In
planning applications,however, I would view abduction and deduction as notational variants
that differ primarily in how they organize the search space for inference. I substantiate that
view here by examining the grounds for Reiter’s objections to abduction. In Chapter 7, I
substantiate it by presenting two formalisms, one based on deduction and the other based
on abduction, which are obviously related this way.

In deductive planning, we again use the causal laws of the domain and the initial
description of the world to prove that carrying out some action sequence p leads to the
goal. However, we now represent those actions as a first-order term rather than a set of
assumptions; the condition that the goal will obtain in a state where p has been carried
out is formalized as a special statement [p]G. This description suffices to suggest the
close relationship between abductive and deductive planning. The action term employed
in deductive planning can be expanded into a set of facts describing how each component

1We have reasons for using an operator [N]p that does not identify which kind of transition is made; but the
most important ones dependon connections between planning, modal deduction and reasoning about knowledge
that we cannot yet present.
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action takes place at its designated time. Conversely, if the form of abductive assumptions
is restricted (as it must be) and the range of action terms is sufficiently expressive (as
it too must be), then abductive action assumptions can be compacted into corresponding
deductive action terms.

Despite this link, the deductive account may still seem simpler than the abductive one.
As Reiter observes, abduction requires the planner to leave the deductive object-language
to identify appropriate assumptions at the meta-level and to perform expensive—perhaps
even impossible—consistency tests on the set of assumptions found. But these worries are
misplaced.

The problem of consistency is by no means unique to abductive planning. A deductive
plan that the goal will hold after the agent carries out an impossible sequence of actions is
no more useful than an abductive plan that invokes inconsistent assumptions. Deduction
thus involves the same checks and the same complexities as abduction. Indeed, Reiter’s
proposal in [Reiter, 1996] includes an explicit axiomatization describing which terms for
action sequences refer to possible states, and builds in explicit and repeated checks to ensure
that only such terms can figure in a deductive plan. But if we have this axiomatization
of possibility, we ought to be able to use it just as well in abduction to determine which
combinations of action assumptions are possible.

Likewise, the need to ascend to the meta-level to compute with plans is not a pecu-
liarity of abduction but an inevitable concomitant of the broad use of plans reviewed in
section 6.1.1. Even if a plan is built at the object-level by deduction, an agent must invoke
meta-level reasoning to adapt that plan to changing goals or circumstances or to test the
compatibility of that plan with others.

We can see this by considering—impressionistically—the use of demonstrations of the
consequences of causal theories after these plans are first constructed. For example, in the
dynamic deliberation described in [Pollack, 1992], we start with one demonstrationD of

T; I;P - G

In light of some new opportunity, we recognize that it might be worthwhile to consider
an elaboration of our goals—although we are committed to our present actions and their
purposes. As part of this, we must construct some other demonstration D0:

T; I;P0 - G ^ G0

Then we make a comparison: if D0 is preferable to D, we will abandon D and adopt D0.
Because of the similarity between these two problems,D can guide the construction of D0

both by allowing the premises P of D to be preserved in the augmented premises P0 of D0

and, more importantly, by allowing the inferences in D to be preserved in D0. Reusing
inferences in this way is an inherently meta-level task. So is the application of Pollack’s
filters of compatibility, which, in this view of planning, rule out hypothetical actions which
must disrupt these old inferences.
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In adapting and reusing plans, meanwhile, we exploit the initial planD—which assumes
one set of goals and initial conditions—to construct another demonstrationD0 whose goals
and initial conditions are related but distinct:

T; I0;P0 - G0

Again, the similarity between I0 and I and between G and G0 suggests not only that many
of the actions in P can be preserved in P0 but that much of the structure and inferences of
D can remain in D0. In regarding a plan as deduction, we would reconstruct replanning
procedures as transducing the structure of D into a provisional structure for D0 in which
inferences inapplicable to I0, P0 or G0 are eliminated and replaced (when necessary) by new
goals for proof search.

Consider now plan recognition, as needed to interpret discourses like (56). In (56a),
it is clear that A describes some intended actions P and goals G. However, in light of the
overall complex of interrelated beliefs that A means to convey in (56), it is more economical
to assume that A in fact intends to communicate an entire deduction, which concludes:

T0; I0;P - G

In other cases where plan recognition is needed in interpretation, the speaker may intend
to identify the plan only partially, or to leave the particular plan chosen to the discretion of
the hearer; such possibilities are explored in [Young, 1997].

A’s identification of a plan in (56a) is possible because A provides enough information
about the causal reasoning underlying it for S to fill out the rest. Taking up a point introduced
in Chapter 1 and revisited in Chapter 9, if an action description omits the causal laws and
other facts about the world needed to to justify the choice it proposes, it is frequently
because their role in the underlying plan is obvious in context. (This is particularly true in
instructions that the addressee is meant to carry out.) Indeed, when conversationalists share
knowledge and expertise, we will often expect the theory T0 and the initial conditions I0 to
be given by the context of communication and planning.

As Pollack’s example shows, in the presence of misconceptions the speaker’s domain
knowledge and assessment of the present situation may differ from that of the audience.
This naturally requires more flexible and more open-ended reasoning from the audience.
Conversely, when generating descriptions of plans, as in [Chu-Carroll and Carberry, 1995]
for example, a speaker must be sure to give enough information that the intended deduction
is easily recovered. This means taking into account the knowledge shared with the audience
and the opportunities the audience has to deploy that knowledge. Assessment of shared
knowledge offers another natural opportunity to exploit modal knowledge representation
and modal inference; we look carefully at the one-sentence case in Chapter 9.
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6.2.2 Planning and argumentation

This representation of plans as formal demonstrations obviously requires further specifica-
tion and refinement. What structure do these demonstrations have? How do they represent
the sequences of deliberation and action that an agent undertakes? In addressing these
questions, we can find a promising starting point from previous informal work drawing out
our intuitions for how people reason about the future. In the remainder of this section, we
review first Konolige’s motivations and suggestions for formalizing temporal reasoning in
a system of defeasible argumentation [Konolige, 1988] and then Steedman’s motivations
and suggestions for using a dynamic logic based on the situation calculus for connecting
temporal talk and temporal reasoning [Steedman, 1995; Steedman, 1997]. Then in section
6.3 we turn to the task of operationalizing this view of planning as reasoning.

It is natural to view the temporal reasoning required in plan construction, plan modi-
fication and plan recognition as DEFEASIBLE REASONING—reasoning that allows plausible
conclusions to be inferred initially even though these conclusions may have to be retracted
as more information arrives or more reasoning is performed. After all, as a plan is sketched
out action by action, adding new actions may require some adjustments to compensate, and
the successful future execution of that plan is never an absolute certainty. In particular, the
fact that states affairs tend to persist unless changed by an event, seems an important but
defeasible principle of temporal reasoning.

In [Konolige, 1988], Konolige suggests performing this defeasible reasoning in a DIRECT

system of ARGUMENTATION. In such a system, conflicting conclusions are resolved by
explicitly comparing the chain of reasoning or ARGUMENT that led to each. The argument
(and conclusion) adopted is the one that fares better on the basis of general principles of
reasoning or on the basis of specialized knowledge about reasoning in the domain. Konolige
suggests that such argumentation is both natural and flexible.

An argument provides a natural record of temporal reasoning and planning because it
concisely encodes the evidence for the success of a plan. Konolige observes that this makes
an intuitive output for debugging a knowledge base. [Ferguson, 1995; Chu-Carroll and
Carberry, 1995] substantiate this result by describing contributions to dialogue in terms of
argumentation. More immediately, a concise record of the evidence for a course of action
is precisely what is needed if this reasoning is to continue to guide further deliberation.

Argumentation is a flexible framework because the comparison of arguments so easily
accommodates reasoning principles for a particular domain. Comparable specifications
in indirect formalisms for default reasoning, such as circumscription [McCarthy, 1986],
default logic [Reiter, 1980] and autoepistemic logic [Moore, 1985b], can be very difficult to
devise. The system of section 6.4 illustrates this in its successful use of direct principles of
attack for inertia and occlusion. Konolige illustrates this with a more picturesque example—
which, since our later mathematics excludes it, perhaps can convey compellingly only how
perilous it can be to shift assumptions about the world while motivating formalisms for
common-sense reasoning. Konolige considers whether arguments for change based on
causal laws are always preferable to arguments for persistence based on inertia. Generally
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shooting kills its victim, but what if we know of a shooting and know the victim is alive
some time later? We have the argument from change that the victim should have been dead
immediately after the shooting, and the argument from persistence that the victim should
have been alive earlier if it was alive later. These arguments conflict. Given our knowledge
of what it means to be alive and dead, we prefer the explanation that something went wrong
with the shooting than the explanation that some unknown event reanimated the victim. As
Konolige sees it, then, this is a special case where the domain specifies that an argument
from persistence can defeat an argument from causation.

In addition to this ease of specification, another advantage of direct systems of argu-
mentation over indirect formalisms for default reasoning is that with argumentation, causal
default reasoning can be implemented using ordinary deduction as a module. For example,
we can readily design a system of argumentation around the results for modal deduction
described in Part I.

Following [Konolige, 1988] (and [Ferguson, 1995; Chu-Carroll and Carberry, 1995]),
then, we would prefer to regard the deductions D involved in planning as acceptable
arguments that a goal can be achieved by a specified course of action.

6.2.3 Planning, action and temporal reference

To facilitate continued deliberation, the representation in which planning is carried out
should not only represent reasons for actions in a salutary way, it must also represent the
actions themselves well. That is, the representation of action and time should match the
choices an agent has and the framework in which it makes those choices. This section
presents reasons to perform this reasoning in a modal framework, broadly inspired both
by the situation calculus of [McCarthy and Hayes, 1969] and the functional translation of
modal logic of [Ohlbach, 1991] presented in section 2.3.3.

It is natural to think of most, if not all, deliberation as occurring in discrete stages. In
each stage, the agent draws on a stable body of information about the world to evaluate
and choose among alternative courses of action as best it can. Stages are punctuated by
intervals during which the information available to the agent is unreliable or in flux. During
these transitions, the agent will not attempt deliberation, or will be forced to abandon effort
toward deliberation in the face of unanticipated changes.

During periods of deliberation, an agent would seem to gain little from monitoring the
impact of elapsed time on the information by which it evaluates its choices for action. It
can view this information simply as true now. (Here we distinguish the content of the
evaluation from the means by which the agent arrives at that content; clearly the agent’s
schedule of evaluation and choice can benefit from taking into account how much time is
likely to be available.) Finer temporal indexing of facts would be required only if an agent’s
deliberation kept track of judgments based on pieces of information too divergent to apply
to a single time. In such a case, the new information would likely trigger a new round of
deliberation anyway. Such monitoring must be dispensed with to some degree regardless.
An agent that had to explicitly apply the law of inertia to extend its prior thought into the



156 MATTHEW STONE

present moment would probably succumb to the bookkeeping.
For these reasons, a temporal ontology which maps a set of continuously passing numer-

ical instants each onto a distinct state might needlessly complicate an agent’s reasoning for
many tasks (particularly those that are characteristically deliberative). A view that breaks
time down qualitatively into a series of states and transitions seems more appropriate. States
encapsulate the circumstances in which the agent deliberates. They encode the invariants
that an agent can exploit to select an appropriate action during those circumstances. States
are linked by transitions; each transition may abstract into a single jump both changes ini-
tiated by actions selected by an agent and changes initiated by the exogenous occurrences
of the agent’s dynamic environment.

One implementation of this qualitative ontology is the situation calculus [McCarthy
and Hayes, 1969]. The situation calculus provides a set of types which allow statements
of sorted first-order logic to describe qualitative change in the world over time. Temporal
states of the world are encoded in a type of situations. Properties that vary across situations
are known as fluents. Actions are transitions from situations to situations. Typically,
we reify actions and describe the situation reached after transitioning by action a from
situation s as result(a; s), using an all-purpose result function. We can relax this to allow
nondeterministic actions—or to see terms such as a as describing types of transition which
a particular transitions might instantiate—by appealing to a relation result(a; s; s0).

If states and relations among them provide a basic temporal ontology for planning,
however, then there is a very tight fit between planning and modal languages. In fact,
under the functional translation [Ohlbach, 1991], modal logic can be seen as a natural
generalization of the situation calculus. The situations correspond to the worlds, and
actions correspond to types or instances of the accessibility functions that relate worlds in
translation-based deduction. On this scheme, if s denotes a situation then for any f in F,
the term s; f—the result of sequencing f next in s—provides a modal path term that denotes
another situation. [Steedman, 1995] explores this idea from the perspective of dynamic
logic.

We will adopt and adapt this ontology for the rest of this dissertation. In using this
kind of ontology, we must keep in mind the intended functions and inevitable limits of this
representation. McCarthy and Hayes present the situation calculus as a general ontology
for making predictions about the future; their examples range from predicting the motion
of a continuously falling block to reasoning about the effects of the atomic transition of
dialing the phone. The situation calculus, with its discrete representation of transitions
and awkward connection to linear time, is clearly much more suited to the latter kind of
reasoning than the former. There is no reason to use the situation calculus for continuous
problems where little is to be gained from its strengths—representing and reasoning about
points where an agent can and must make discrete deliberative choices among alternative
actions. There are plenty of better formalisms for such problems, based on metric intervals,
notably including [Allen, 1983; Allen and Hayes, 1989; Allen and Ferguson, 1994].

Frameworks based on the situation calculus do have clear strengths, however. An
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agent’s choices are basically discrete. The qualitative temporal model of the situation
calculus makes it quite easy to describe these successive choices in more detail, including
limits on an agent’s knowledge and inference. (We describe such models in Chapters 7
and 8.) The use of continuous time makes it substantially more difficult to describe these
discrete stages of deliberation and choice. (In fact, I don’t know how to do so.)

These strengths give us ample reason to try to accommodate a limited range of contin-
uous reasoning within the situation calculus. [Steedman, 1995; Steedman, 1997] proposes
one way to do this, using a taxonomy inspired by natural language aspectual categories.
Using this taxonomy, an agent’s participation in continuous activities can be broken down
into stages. For example, in a given stage, a continuous event might be in progress (in
a state corresponding to English progressive aspect), or it might be completed, with its
effects remaining in force (in a state corresponding to the English perfect). Links between
these stages are accomplished by special transitions whose interpretation matches English
aspectual verbs like start, stop, finish and continue. With this added aspectual structure,
transitions that might formerly have been represented as instantaneous are broken down in
a qualitative way that better reflects their continuous nature. By keeping to the situation
calculus, however, the aspectual approach continues to incorporate the limits in deliberation
and choice inherent to the agents that execute these transitions. In particular, each stage of
execution of a continuous activity offers the agent a pause for deliberation and choice. The
theory offers invariants characterizing what holds at this stage and, as always, allows the
agent to use these invariants to deliberate and select the appropriate next action (possibly
an aspectual one).

6.3 Planning and proof search

The most immediate worry with this temporal and inferential ontology for planning out-
lined in section 6.2 may be whether such an abstract characterization can support efficient
computation. By considering several efforts to connect deduction with planning algorithms,
we can arrive at substantial optimism on this question. At the same time, we can extract
some important principles for formalizing specifications of actions in such a way as to
accommodate a better fit with the action of specialized planning algorithms. As we shall
find in the next chapters, a still more expressive language is required to guide an agent’s
deliberation in the presence of information-gathering and hierarchical action. The solution
to simple planning problems using deductions that we describe in this section will help us
find similar deductive solutions to richer problems there.

6.3.1 Specifying a planner

To analyze the gap between logical and algorithmic planning, we must begin by considering
the different ways the process of planning can be formalized. Classic descriptions of
planning algorithms like SNLP [McAllister and Rosenblitt, 1991] or UCPOP [Penberthy and
Weld, 1992] first define the data structures that the planner maintains, and then characterize
a series of updates that can be applied nondeterministically to these data structures until a
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fixed point is reached. The soundness and completeness of the planner is established by
proving that these fixed points describe all and only the sequences of actions that solve the
input planning problem.

A logical approach puts more emphasis on its data structures—they take the form
of a collection of syntactic objects, derivations, that trace how the consequences of a
specification of a domain are to be calculated. The key step in showing correctness for
a logical approach is to demonstrate that derivations yield exactly the conclusions true
in all the models that describe how state can evolve as events occur, according to the
intended meaning of the domain specification. Proofs along these lines for theories of
action begin with [Lifschitz, 1987] and are now common; they can be found for example in
[Lin and Shoham, 1991; Gelfond and Lifschitz, 1993; Reiter, 1991; Sandewall, 1994b]. In
formalizing soundness and completeness of inference, these methods draw on and extend
corresponding methods from logic, for example correspondences between modal proofs
and Kripke models.

In a logical approach, the planning algorithm is then just a search procedure for con-
structing derivations. This procedure may be streamlined by applying optimizations analo-
gous to those available for other proof methods. For example, we can appeal to transforma-
tions that allow derivations to built incrementally, by using a Herbrand theorem along the
lines outlined in section 2.3.5. We can try to reuse repeated steps and keep proofs compact
by using a cut rule or resolution, as in section 2.3.3 or 5.1.2. We can reduce nondeterminism
by applying rules in fixed but general orders—such as the logic programming order studied
in Chapter 3. Nevertheless, once such optimizations are justified at the level of derivations,
the correctness of the search procedure is immediate because it searches by applying exactly
the formal rules by which derivations are defined.

When it comes to their idealizations of the world, these two approaches are already
close. Both interpret causality very strongly, by ruling out exceptions to effect axioms for
actions and ruling out exceptions to inertia apart from effects of specified actions. This view
of causality is built into the correctness definition of problem solutions for planning algo-
rithms and the characterization of intended models for logical approaches. It is an obvious
approximation; it fails in many common-sense world histories (like Konolige’s example
of shooting survival). Such approximations, although unsatisfying, seem necessary at this
stage of research in order to obtain comprehensible and precise results. Sandewall antici-
pates that these approximations will gradually be relaxed as the field matures [Sandewall,
1994a].

These characterizations of the two different approaches lead to a concise statement of
the challenge of reconciling the two frameworks: How can we see the ad-hoc data structures
maintained in planning as partial representations of logical derivations? And how can we
regard the incremental updates performed by planners as steps in constructing derivations?

One part of the answer can be presented immediately: planners’ use of BINDINGS and
CAUSAL LINKS for means-end reasoning. Planners use these data structures to encode how
the effects of some actions in the plan establish the preconditions of others; a list of goals
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maintains the open preconditions that have not yet been accounted for in the plan. At each
step, the planner may discharge a goal by adding to bindings and causal links. It is easy
to imagine how this process corresponds to the construction of a logical derivation. If the
successful occurrence of an action logically entails the further persistence of its effects,
then these data structures and updates are just what is needed to construct a proof that each
action in the plan achieves its intended effects. Thus, Penberthy and Weld write, “UCPOP is
a theorem prover that resolves step preconditions against effect postconditions” [Penberthy
and Weld, 1992, sec 4].

But the rest of the answer is problematic. In addition to these steps that are rather
straightforwardly seen as proof search, planners perform additional steps of THREAT RES-
OLUTION. Whenever any change is made to the plan, a check is made as to whether some
action might interfere with a needed causal link, by disrupting the desired effect before the
action that depends on it takes place. Obviously, in a proof of classical logic—or modal
logic, for that matter—there is no need to protect inferences against threats.

Research towards a logical reconstruction of both causal linking and threat resolution
(including this one) generally involves two steps. One step is to reconstruct threat resolution
in terms of one of two similar simple approaches to default reasoning: negation-as-failure
and argumentation. The second step is to link these defeasible notions with established
deductive techniques to derive a correct, computational account of reasoning about action.
We now review several ways such reconstructions have been sketched.

6.3.2 Planning in the event calculus

The event calculus, developed in [Kowalski and Sergot, 1986; Kowalski, 1992] is a for-
malism for reasoning about action based on logic programming and negation-as-failure.
Shanahan summarizes the basic system in two logic programming clauses.

(60) a holds-at(P,T) if
happens(E) and E < T and
initiates(E,P) and not clipped(E,P,T).

b clipped(E,P,T) if
happens(E0) and terminates(E0,P) and
not T � E0 and not E0 < E. [Shanahan, 1989, 1.1 and 1.2]

Clause (60a) describes when a consequence P persists to time T. There must be some
earlier event E which we know of, and which regularly causes P according to the definition
of the initiates relation in our domain theory. Moreover, we cannot know of any reason
why the persistence of P from E to T should be disrupted or clipped. The appearance of
negation-as-failure in this clause endows persistence with a default character.

Clause (60b) defines the disruption of persistence of P, by any other event E0 known
to occur and to disrupt P according to the definition of terminates in our domain theory,
provided its occurrence is not known either to precede or to follow the interval over which
P should persist. (These negations make disruption eager and thus make the conclusions of
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the calculus correctly conservative in the presence of incomplete temporal information.)
In 6.2, we introduced a characterization of planning as inference: to build a plan is to

find a collection of actions whose occurrence entails the eventual truth of the goal. Taking
this approach using the event calculus—as first suggested in [Eshghi, 1988] and followed
up in [Shanahan, 1989; Missiaen et al., 1995; Shanahan, 1997]—means assuming facts of
the form happens(Ex) and Ey < Ez constraining the occurrence and orderings of events,
so as to prove holds-at(G; t). The result is a natural procedure with close affinities to the
action of hand-coded planning algorithms.

Like planning algorithms, event-calculus planning involves two kinds of steps. One
kind of step matches goals of holds-at(P; t) with premises of the form initiates(E;P) in
applying clause (60a); at the same time it assumes steps and orderings between them. This
of course corresponds to the resolution of preconditions with effects found in UCPOP.

In keeping with clause (60a) these connections involve a burden of showing by negation-
as-failure that the persistence of effects is not disrupted. When using the event calculus to
deduce the consequences of a set of known events, any of them may potentially trigger such
disruption; thus in planning with the event calculus, the not clipped goals in the derivation
of a plan must be repeatedly rechecked as more events and orderings are assumed into the
plan. These checks are the second kind of step required by event-calculus planners; they
correspond closely to the detection and resolution of threats performed by partial-order
planning algorithms.

In particular, when a consequence depends on some clipped fact failing, a threat cor-
responds to a way of constraining the plan so that the clipped fact instead is provable. So
constrained, the plan would no longer correspond to an event-calculus derivation. Event-
calculus planners, like algorithmic planners, make assumptions to resolve threats. By
assuming constraints T � E0 or E0 < E, the clipped proof can be defused at the level of
clause (60b); planners also impose these constraints in the promotion and demotion steps of
threat resolution. More generally, Shanahan’s [Shanahan, 1997] event calculus planner can
also defuse a clipped proof by defusing the conditions that justify the terminates relation
in clause (60b). This corresponds to the separation strategy of UCPOP for resolving a threat
caused by a conditional effect of an action.

While the event calculus offers a framework for drawing out the more general logical
underpinnings of planning, it is quite a constrained formalism, particularly when it comes
to reasoning with incomplete specifications of the state of the world. Such reasoning
requires the possibility of case analysis to consider the alternative possibilities in which
an unknown fact holds and in which it does not, and classical negation to describe the
content of these alternatives. It is unclear how to add classical negation perspicuously to
the event calculus—it appears rather mysteriously at certain points in [Shanahan, 1997]. It
is unclear how to incorporate reasoning by cases at all. The formalisms we turn to next give
examples of how such expressive power can be achieved in approaches to planning based
on defeasible reasoning, but they do not achieve the simplicity or faithfulness to planning
algorithms found in event calculus planning.
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6.3.3 Planning with explanation closure and argumentation

Explanation closure [Schubert, 1990; Reiter, 1991; Allen and Ferguson, 1994] can be
thought of as a purely deductive version of the event calculus. We follow [Allen and
Ferguson, 1994] here. As in the event calculus, they assume an ontology of linear time
and events whose occurrence drives change. Although events drive change in explanation
closure, as in the event calculus, rules describing persistence are formulated in terms of
the property that persists or changes rather than the event that changes it. Explanation
closure associates with each property a statement of classical logic that specifies all the
events that can change that property. The persistence of the effect of an action can then
be established by proving or assuming that no events occur that would interfere. However,
because explanation closure is based on classical logic, that is the only way to conclude
persistence.

For example, in the blocks world, suppose a block a is clear over interval � and not clear
over an abutting interval �0. Explanation closure says that some event in which another
block was put on a must have finished as � ended—formally:

(61) clear(a; �)^ :clear(a; �0) ^ � : �0 � 9ex:puton(e; x; a) ^ time(e) : �0

Such axioms provide a way to reason about persistence as follows. Suppose we know that
a starts out clear at some time, and that nothing is put on a before some later time. If a is
not clear at the later time, then there must be earlier adjacent intervals where a goes from
clear to not clear. Then the antecedent of (61) is satisfied but the consequent is not, which
is absurd. Thus a must still be clear at the later time.

With explanation closure, then, to ensure that a remains clear over an interval, a planner
can and must assume explicitly that nothing is put on a during that interval. More generally,
for any explanation closure rule for property P, a planner can ensure that P does not change
over the interval between �1 and �2 by adopting the assumption that the consequent of the
explanation closure rule is false during the interval. Ferguson writes such assumptions in
the form NC(P; �; �0), for nochange [Ferguson, 1995].

In planning with explanation closure, then, we view steps in the plan as assumptions
about the occurrences of events, ordering constraints as assumptions about when events
occur, and causal links as nochange assumptions. The action of a planner in backward
chaining from goals and preconditions to effects is to construct a classical deduction that
the goal will eventually hold by combining these strong assumptions with the causal axioms
and explanation closure axioms that describe evolution of state in the domain.

Thus, while the construction of an explicit explanation closure deduction may follow
a planning algorithm in outline, explanation closure requires detailed reasoning for tasks
that planning algorithms implement with a simple atomic step. The added complexity of
explanation closure is to be expected, because explanation closure axioms are designed
with a richness that allows them to describe many domains and inferences that lie outside
the scope of usual planning algorithms. For example, [Allen and Ferguson, 1994; Fergu-
son, 1995] provide explanation closure formalizations of domains where actions can have



162 MATTHEW STONE

nondeterministic effects, and where actions can occur simultaneously and externally to the
action of the planning agent.

The explanation closure characterization of planning may seem to leave no room for
the problematic steps of threat detection and resolution. Explanation closure views plans as
classical proofs, and the conclusion of a classical proof stands once and for all. Nevertheless,
a problem of threat detection and resolution continues to arise under explanation closure.
The reason is that not all combinations of assumptions and proofs constitute sensible plans.
In some cases, an agent would have no consistent way to act in accordance with the
assumptions. In explanation closure planning, threats are potential demonstrations of this
inconsistency. Ferguson gives two ways to characterize this problem more precisely and
to solve it using a non-monotonic formalism that uses ARGUMENTATION to rule out the
consequences of inappropriate proofs.

In the first characterization [Ferguson, 1995, ch. 3.3], a threat to a plan represents a
set of constraints on the ordering of events under which it becomes inconsistent to assume
the successful execution of the plan. In the blocks world, for example, suppose you have
assumed that block a is to remain clear in some interval, and that you have also assumed
that at some point you put something on a. Then by assuming that event to occur during
the protected interval, you wind up with an inconsistent plan. Argumentation can be used
to rule out the consequences of proofs that can be refined inconsistently this way. Then to
maintain a good argument, such threats must be addressed by adopting further assumptions
so that the actions in the plan can be executed successfully as long as their occurrence
respects the assumed order.

This proposal uses the explanation closure semantics of causal links to explicitly moti-
vate the behavior of a planner in threat resolution. As with the account of the means-end
reasoning of planners in explanation closure, this account interprets the relatively simple
behavior of the planner in terms of potentially much more open-ended mechanisms of
detecting and resolving inconsistencies.

In the second characterization [Ferguson, 1995, ch. 3.4], nochange assumptions are not
explicitly interpreted by the planner. They are assumed simply as atomic formulas. Threats
continue to arise, because putative plans making use of nochange assumptions can be
threatened by counterarguments. Counterarguments express the possibility that something
in the plan might go wrong if the events transpire in the wrong order; formally, no plan can
be accepted while it has an undefeated counterargument. Counterarguments are defeated by
more specific rules that show that a potential disaster cannot arise because the steps in the
plan have been reordered to avoid it. Thus, at each stage the planner must check whether
new assumptions permit the construction of new counterarguments to its plan. To defeat
each counterargument and thereby resolve its threat, the planner is led to impose additional
constraints on the plan.

This reconstruction seems like a more faithful reconstruction of the action of planners
in the style of SNLP. However, it loses much of the logical transparency and immediacy
of the more straightforward explanation closure account. Effectively, the data structures of
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the planner are encoded as premises in the logic and threat resolution is encoded in rules
for arguing about these premises. So, like Ferguson’s first characterization, this one is
suggestive but not compelling as a logical reconstruction of implemented planning.

6.3.4 Planning with logic programming theories of action

A third strategy for reconciling logic and planning uses generalizations of logic program-
ming as a way of striking a balance between the perspicuity of the event calculus and the
expressive power of explanation closure. The idea can be seen from the clauses for inertia
proposed in [Lobo et al., 1997] and given in (62). When combined with axioms for the
effects of actions and given an appropriate semantics as a generalized logic program, these
clauses contribute to a provably correct model of inference for strict inertia.

(62) a holds(F,res(A,S)) if
holds(F,S),
not ab(op(F),A,S).

b : holds(F,res(A,S)) if
: holds(F,S),
not ab(F,A,S).

c holds(F,s0) or : holds(F,s0).

Similar logic programs can also be found in [Gelfond and Lifschitz, 1993; Baral and
Gelfond, to appear; Baral, to appear]. The ontology used is that of the situation calculus:
from an initial situation s0, taking action A results in a new situation res(A; s0), and so on
(this use of res corresponds to McCarthy and Hayes’s result). Apart from this ontological
difference, clause (62a) encodes essentially the same generalization as clause (60a). The
reasoner should as a default assume that positive facts persist into the future by inertia,
except when it knows of something unusual—an abnormality—in the persistence of a
fluent across an action.

Clause (62b) licenses complementary inferences about negative facts; the clause appeals
both to negation-as-failure to make default conclusions and to classical negation : to
characterize negative facts. Finally, clause (62c) licenses case analysis for resolving partial
information about the initial state of the world. These clauses address the two gaps that we
observed informally in the event calculus. So it is not surprising that by computing with
them, an agent will draw sound and complete consequences from its partial information.

The only difficulty lies in characterizing what it means to compute with them. Each
clause in a generalized logic program takes the form shown in (63).

(63) a1 or : : : or ak  p1; : : : ; pn; not e1; : : : ; not em

Each variable in (63) represents a literal—an atomic proposition or its negation. The force
of such a clause is described in terms of a nondeterministic interpreter that assumes a
consistent set of literals that represent a possible set of consequences for the program. If
(63) is in force, then whenever the interpreter has constructed an output containing all of
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p1; : : : ; pn, the interpreter either must have assumed one of the e1; : : : ; em for an independent
reason, or must also assume one of the a1; : : : ; ak. Given a program containing many such
clauses, the compatible sets of assumed literals are codified in the definition of an ANSWER

SET [Gelfond and Lifschitz, 1991]. Informally, in computing an answer set, the interpreter
makes exactly the assumptions it needs and no more: an answer set is a set of literals S,
such that S itself constitutes the minimal set of assumptions needed to comply with the
directives of each clause in the program after S is assumed. The consequences of a program
are those literals present in every answer set.

This is an obscure definition with no obvious computational content. To clarify its
semantics, papers like [Gelfond and Lifschitz, 1993; Baral and Gelfond, to appear; Lobo et
al., 1997] give an alternative characterization of the content of answer sets in terms of a set
of intended models of a specification of action. These intended models rely on a domain
specification in terms of a simple high-level language A (or one of its extensions); it is
straightforward to describe the evolutions of state compatible with such a domain specifi-
cation directly in terms of mathematical constraints on the situation calculus res function.
The next step is to translate the high-level language into a logic program incorporating
clauses like those in (62), and consider its answer sets. The correctness result of [Baral and
Gelfond, to appear; Lobo et al., 1997] is that the literals present in every answer set for
the translated specification are exactly the literals present in every intended model of the
original specification. This strategy validates the logic programming approach but further
challenges its computational relevance; the classical specification of the intended mod-
els bears a close resemblance to result of applying predicate completion to the high-level
language, or introducing explanation closure axioms. Given the resemblance, the natural
approach would just be to reason with the classical characterization—such an approach to
reasoning about transitions is in fact advocated in [Reiter, 1991; McCain and Turner, 1997].

There is indeed no interesting computational theory for the consequences of a general-
ized logic program. However, the answer set semantics for clauses like (63) does generalize
the STABLE MODEL SEMANTICS of ordinary logic programs with negation-as-failure [van
Gelder, 1986; Gelfond and Lifschitz, 1988; van Gelder, 1989]. There is therefore some
hope that interpreters for generalized logic programming might be constructed on the basis
of ordinary logic programming interpreters. Moreover, in [Baral and Gelfond, to appear],
it is shown that the more expressive clauses from generalized logic programs like (62)
can be omitted while maintaining a sound system for reasoning about action. The re-
stricted programs remain complete for many reasoning tasks, in fact. Consequences of the
restricted programs can be calculated using ordinary logic programming interpreters; for
planning tasks, as [Baral, to appear] observes, the action of an ordinary logic programming
interpreter on a restricted specification will bear a close resemblance to the behavior of a
special-purpose planning algorithm. Since the restricted programs look a lot like the event
calculus, this is not surprising given the results discussed in 6.3.2. In fact, the event calculus
goes a step further by building in a partial-order theory of time that planners use but that is
not immediately available in the situation calculus ontology used in (63).
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6.3.5 Summary

The different threads summarized here converge on the following observation about plan-
ning. Planning requires leaping to conclusions about the persistence of effects. So, in lock
step with the inferences needed to link effects with goals, a planner needs a threat resolu-
tion mechanism to check its assumptions and repair them if necessary. This is a common
feature of the different accounts we have seen, although they accomplish it by the different
mechanisms of negation-as-failure and the defeasible assumptions of explanation closure.

In justifying planners logically, we find the need and opportunity for other kinds of
reasoning than planners typically do. We can see this in the classical reasoning introduced
in explanation closure and the classical negation and disjunction required for correctness in
logic programming theories of action. From the work we have seen, it is clearly difficult
to reconcile this additional reasoning with the constrained reasoning that planners do in
special cases.

Difficult, but not impossible. The reconstruction of [Ferguson, 1995, 3.4] suggests how
argumentation can exploit domain knowledge to drive the reconciliation of assumptions,
even with expressive reasoning; and the logic programming theories of action show how
to validate such special inference mechanisms generally by relating computed conclusions
to a set of intended models. Combining the strengths of both approaches should lead to a
more faithful and powerful reconstruction of planning as computational logic. This is the
aim of the next section.

6.4 Branching time, proof theory and validation

We now describe and validate a simple formalism for reasoning about action called ACCH.
ACCH uses a framework of argumentation to reconcile competing deductions in modal logic.
The presentation that follows is based on [Stone, 1997b]. The definitions and proofs of this
validation owe an obvious debt to previous validations, particularly the program of logic
programming theory of action discussed in section 6.3.4.

Why the combination? Modal logic represents the inferences we need explicitly but
compactly. We use modal operators to describe both change and persistence; we use
modal introspection axioms to capture inertia. ([Ginsberg, 1995] also suggests an analogy
between frame and modal operators.) Argumentation leaves the leap to planners small,
as we saw in the discussion of [Ferguson, 1995]’s parallel between argumentation and the
SNLP planner. More importantly, it allows us to reason with standard proofs, and to apply
the proof-theoretic results about modal logic obtained in Part I to give interesting insights
into the system.

The particular formalism presented here uses prefix semantic translations for modal
logic proof [Wallen, 1990; Ohlbach, 1991] and Dung’s presentation of argumentation
frameworks for defeasible reasoning [1993]. However, modal logic is a general logic of
possible states (see [Halpern and Moses, 1985b]), while argumentation provides a general
framework for defeasible reasoning (see [Lin and Shoham, 1989; Pollock, 1992; Simari
and Loui, 1992]). Thus, we expect the techniques presented here to continue to apply as
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richer non-monotonic theories of actions are constructed and validated.

6.4.1 A Modal Semantics and a Modal Translation

This section describes a set of intended models for a theory of action; it is based roughly
on the semantics of A from [Gelfond and Lifschitz, 1993]. We introduce a set F of fluent
names and a set A of action names; a fluent literal has the form f or :f, with f 2 F. (The
opposite of a literal � f is g if f is :g, :f otherwise.) A domain theory is specified by a set
R of causal rules and a set O of observations. A causal rule takes the form:

a causes f if P1; : : : ;Pn

where a is an action name, and f and all Pi are fluent literals. An observation takes either
of the forms:

a happens at t f holds at t

where a is an action name; f is a fluent literal; and t is a natural number. For the purposes of
counting times, the first moment in time is time 1, the second moment in time is time 2, and
so forth. (This means that the index of a time is one more than the number of steps of change
involved in reaching that time; this indexing might have been made more perspicuous by
indexing the first time—perhaps counterintuitively—as time 0.)

The models we work with are Kripke models hW;AFi where W is a set of worlds and
AF is a nonempty set of functions from worlds to worlds encoding accessibility. A world
is represented as a pair hS;Ei where S (the state) is a set of fluent names and E (the event)
is a set of action names; a fluent f holds at hS;Ei iff f 2 S; :f holds at hS;Ei iff f 62 S; and
an action a happens at hS;Ei iff a 2 E.

Definition 15 A model hW;AFi represents an inertial model of causal rules R if each
function � 2 AF respects the following constraints for any state hS;Ei:

� For any rule in R of the form a causes f if P1; : : : ;Pn: if a happens at hS;Ei and P1

through Pn hold in hS;Ei, then f holds at �(hS;Ei).

� Otherwise, f holds at �(hS;Ei) iff f holds at hS;Ei.

Two actions may occur concurrently if their effects do not interfere with each other;
otherwise accessibility functions respect the inertial meaning of causal rules just as transition
functions do in [Gelfond and Lifschitz, 1993].

Definition 16 A model hW;AFi is a model of an observation at a world w according to the
following criteria:

� f holds at 1 at w iff f is true at w; otherwise f holds at t iff for all � 2 AF,
f holds at t� 1 is true at �(w).
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(a happens at t)T = [N]t�1 ha
(f holds at t)T = [N]t�1 [H] f
(a causes f if P1; : : : ;Pn)T (l) =

[H] (P1 ^ : : :^ Pn ^ ha � [N] [H] f)
^ [H] (ha � ab(� f; l))

Figure 6.1: Translation �T to modal logic

� a happens at 1 at w iff a happens at w; otherwise a happens at t iff for all � 2 AF,
a happens at t� 1.

Definition 17 A model hW;AFi is an exact model of O at w iff it is a model of O at w,
and for every finite sequence �1; : : : ; �m of elements of AF (possibly empty), whenever any
action a happens at �1(: : :(�m(w)) : : :), there is an observation a happens at m + 1.

Definition 18 A model hW;AFi is an intended model of R and O at w, iff it is an inertial
model of R and an exact model of O at w.

Definition 19 R and O entails an observation o iff every intended model of R and O at any
w is a model of o at w.

The truth-conditions above mirror those of modal formulas. For example, if [N] (next)
is a modal operator interpreted with reference to accessibility functions AF, and the formula
ha is true of an action a in world w iff a happens there, then a happens at t corresponds to
the formula [N]t�1 ha.

The role of holds in inertia can also be modeled as a modal operator. If f holds
at a certain world, then f is true there, and f will continue to hold in accessible worlds
until further notice. By this analogy, we introduce a modality [H] to represent holding until
further notice; it is subject to the formal axioms [H] f � f, [H] f � [H] [H] f and [H] f � [N] f.
Since [H] only has these properties “by default”, we won’t assign models an explicit set of
accessibility functions to interpret it. Instead, we simply use this intuition in designing the
representations of the proof system.

The proof system represents assumed facts by a translation �T. Under the translation,
f holds at t becomes [N]t�1 [H] f. Causal rules are interpreted (1) by a clause establishing
effects: [H] (P1 ^ : : : ^ Pn ^ ha � [N] [H] f); and (2) by a clause triggering abnormality
formulas for occlusion: [H] (ha � ab(� f; l)). (Each causal law is given a distinct symbol
l to index the source of occlusion.) These translations are summarized in Figure 6.1.
Meanwhile, to prove an observation, the weaker translation (f holds at t)Q = [N]t�1 f
suffices.

This approach is similar to other translations of A. The differences are the distinctive
use of modal operators to encode inertia, the use of facts to encode the occurrence of actions,
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� = �
Γ; f� - f� ;∆ axiom

�� = �
Γ; f�;:f� - ?� ;∆ !?

Γ - A ^ B�;A�;∆ Γ - A ^ B�;B�;∆
Γ - A ^ B�;∆ ! ^

Γ;A^ B�;A�;B� - ∆
Γ;A^ B� - ∆ ^ !

Γ - A _ B�;A�;B�;∆
Γ - A _ B�;∆ ! _

Γ; [H] f - ∆ Γ; [H] :f - ∆
Γ - ∆ cut

Γ;A � B� - A�;∆ Γ;A � B�;B� - ∆
Γ;A � B� - ∆ �!

Γ; [N] A�;A�� - ∆
Γ; [N] A� - ∆ [N] !

Γ; [H] A�;A�� - ∆
Γ; [H] A� - ∆ [H] !

Γ - [N] A�;A��;∆
Γ - [N] A�;∆ ! [N]y

Figure 6.2: Path-based, explicitly-scoped sequent calculus for modal logic. y For (! [N]),
� must not appear in the conclusion.

and the elimination of occurrences of negation-as-failure that appear in logic programming
theories of action. The effect of negation-as-failure will be restored by an explicit operation
of comparing deductions. This allows an ordinary modal logic proof system to apply in the
base case.

6.4.2 Proof Theory

Figure 6.2 shows an explicitly-scoped proof system that ACCH uses to construct arguments
about entailment in intended models. This calculus adopts the same conventions as the
ground calculus for S4 presented in Figure 2.11; however, the calculus is specialized to the
logical fragment into which causal and observational statements are translated, and takes
into account the interacting behavior of the [N] and [H] operators. Like the calculus of
Figure 2.11, the calculus of Figure 6.2 interleaves the steps of the functional translation of
modal logic into classical logic, as in [Wallen, 1990; Ohlbach, 1991; Auffray and Enjalbert,
1992], with the inference rules for classical reasoning. Each formula is labeled with a string
that represents the path of accessibility to the possible world where the formula must be
shown true.

Figure 6.2 is specialized to describe the modal fragment for inertia more precisely. The
axiom rule applies to any fluent literals or atomic action occurrence statement. The (! ?)

rule encodes how contradictory fluents derive a contradiction. Since the contradiction
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records the paths of the terms that introduce it, we must test for contradiction “when all is
said and done”. The cut rule formalizes the fact that at the initial state, either f or :f is true,
and whichever is true will tend to stay that way. The cut is tractable because it applies only
to fluent names and can be restricted to “pseudo”-analytic uses—cases where either f or :f
is a subformula of the sequent already [D’Agostino and Mondadori, 1994]. Finally, the left
modal rules build in the axioms relating them: [N] matches any constant; [H] matches any
string.

Given a set of causal rules R and observations O, translated to logic via the rules in
Figure 6.1 as RT and OT, we can analyze the structure of deductions ending with a sequent
RT;OT - ∆ to restrict the kinds of proofs that need to be constructed and compared,
to a space that can be searched more easily, using the kind of result about proof form
presented in Chapter 3. In particular, we can show that any deduction has an equivalent
form where cuts occur at the root and only one formula appears on the right in sequents.
In such deductions, which we shall term DIRECT, we can distinguish as an ATTACK SITE

each subproof that is an input to a (cut) rule but which is not itself obtained by applying a
(cut) rule. Without loss of generality, the end-sequent Γ - A of an attack site gives a
representative set of assumptions Γ under which any conclusion obtained anywhere in the
subproof may be challenged.

6.4.3 Argumentation

Following [Dung, 1993], we define an ARGUMENTATION FRAMEWORK as a pair F =

hAR; attacksiwhere AR is a set (of arguments) and attacks is a binary relation on elements of
AR. For two arguments D and E, attacks(D;E)means that D argues against the acceptability
of E.

ACCH is an argumentation framework in this sense. In ACCH, AR is the set of direct
modal proofs as given in the previous section. The relation attacks of ACCH is defined as
the union of two relations, attacksI for inertia, and attacksO for occlusion.

Definition 20 attacksI(D;E) if D has end-sequent Γ - ab(f; l)� , E has an attack site
with end-sequent Γ - ∆, and the attack site contains a rule application ([H]!) deriving
fluent literal f�� from [H] f�, where � is a prefix of � and � is a proper prefix of ��.

Because inertia is handled by an introspection axiom, we can propagate a fluent forward
inertially from the result-situation of the action that establishes the fluent to the result of
an arbitrary sequence of subsequent actions in a single step of instantiation. However,
propagation into the result state of each action is subject to occlusion by abnormality; an
abnormality at a given step challenges both application of inertia at that step and subsequent
inertial propagation of the fluent. Definition 20 encodes this.

Definition 21 attacksO(D;E) if D has end-sequent Γ -� Pi
� and E has an attack site

with end-sequent Γ - ab(f; l)� for a rule l with precondition Pi.

An argument that an action occludes a fluent is challenged by showing that the conditions
where the action occludes the fluent are not actually met, because some fluent Pi is sure not
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to hold.
To describe the consequences of an argumentation framework requires the following

definitions [Dung, 1993].

Definition 22 An argument D is acceptable wrt a set S of arguments iff for each argument
E in AR: if attacks(E;D) then there is a D0 in S with attacks(D0;E).

Definition 23 A set S of arguments is admissible if there are no arguments D and E in S
with attacks(D;E), and every argument in S is acceptable wrt S.

Definition 24 A preferred extension of an argumentation framework AF is a maximal (wrt
set inclusion) admissible set of arguments of AF.

Dung proves that every argumentation framework in which no infinite sequence of attacks
is possible has a unique preferred extension, which can be obtained by a least fixed-point
construction. This extension, denoted GEAF, represents the natural consequences of the
framework. Dung’s theorem applies to attacks defined by definitions 20 and 21, because
each argument can be assigned a finite grade, based on the prefixes that appear in it, such
that only arguments of lower grade attack it. In particular, ab(f; l)� arguments can be
attacked by arguments for fluents true at �, but such arguments can only be attacked in turn
by other ab(f0; l0)� arguments with � a proper prefix of �.

Argumentation is closely connected to logic programming. Search for an acceptable
argument in GEAF can be captured as a logic program by the meta-interpreter:

(64) acc(D) not defeated(D):

defeated(D) attacks(D;E); acc(E):

6.4.4 Validation

We can now prove the following theorem:

Theorem 12 (Correctness) Let O be a set of observations in which the latest time men-
tioned is t, and let R be a set of rules. Then R, O entails every observation from a finite set
O0 iff GEAF contains an argument with end-sequent RT;OT - (

V
o2O0 oQ) _ [N]t ?.

We present only a sketch of the proof of this result. Soundness is proved directly, by double
induction on the grade of arguments and the structure of proofs. Completeness appeals to
a lemma that the models of R and O can be partitioned into a finite set of types, where each
type is a finite description of the initial state that determines what formulas change when
during the observations. Thus we can apply the cut rule repeatedly until each attack site in
the derivation specifies the type of all of the models of the attack site. We then show that by
induction that if all of the models have the same type, then cut-free inference is complete:
the observations can be used to determine which causal rules are triggered by each action.
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6.5 Examples and problems
In this section we explore the behavior of the argument system ACCH on some interesting
examples of reasoning. By presenting the structure of basic common important inferences,
we can draw out how ACCH captures the intuitive ontology and reasoning of action and time.
We can also compare the formal inferences by which the theory captures particular cases to
the data structures typically maintained in planning for them. The assessment of the theory
suggested by these examples is not uniformly positive: these examples offer motivation to
enrich and streamline the approach. We will consider this task in later chapters.

6.5.1 Arguments: formal and informal

We begin with a comparison between the arguments of ACCH and the argumentation moti-
vated by Konolige and Ferguson [Konolige, 1988; Ferguson, 1995]. Argumentation based
on forward persistence is built into our system. Whenever you have a state p—whether
it is given or established by causal inference—it comes as [H]p. The [H] allows p to be
instantiated to an arbitrary future point. It is also straightforward to construct forward
arguments about the resulting state of an action given a specification of the initial state.
These types of arguments exactly correspond to arguments in Konolige’s system—and of
course also to arguments in Ferguson’s.

Konolige also has an explicit rule of backward persistence as a primitive way of
constructing an argument. Backward persistence applies when a state holds at one time; it
allows us to conclude that the state must also have held earlier, provided nothing caused an
intervening change. In ACCH, we can also construct arguments for backward persistence,
but they are not primitive. They start with case analysis based on whether the persistent
fluent is true initially. If the fluent starts out false, and nothing occurs to change it, then
this case will be inconsistent with the available evidence that the fluent is true later. The
other case is that the fluent starts out true. Because its alternative is inconsistent, the system
supports any acceptable conclusion drawn after making this assumption.

A simple example will illustrate this structure in full. Given only that a fact p holds
in the third state, we want to infer by backward persistence that it must also have held in
the initial state. The correctness theorem says that to establish this conclusion is to find an
acceptable argument

[N]2p - p _ [N]2?

The proof begins by introducing cases using the (cut) rule: we assume either [H]p or [H]:p.
If [H]p—if p holds until further notice—then in particular p holds in the initial state

and hence p _ [N]2?. Otherwise, we consider two arbitrary [N] transitions ��. From
the assumption [H]:p we conclude :p�� by forward inertia. The given fact [N]2[H]p can
likewise be instantiated to p��. This establishes?�� , and hence [N]2? and hence p_[N]2?.

This argument is represented by the following formal object.
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(65)

:::p - p:::
:::[H]p - p:::

[H] !

[N]2[H]p; [H]p - p _ [N]2?
! _

:::p��;:p�� - ?��:::

:::p��; [H]:p - ?��:::
[H] !�

:::[H]p��; [H]:p - ?��:::
[H] !

:::[N][H]p�; [H]:p - ?��:::
[N] !

:::[N]2[H]p; [H]:p - ?��:::
[N] !

:::[N]2[H]p; [H]:p - [N]?�:::
! [N]

:::[N]2[H]p; [H]:p - [N]2?:::
! [N]

[N]2[H]p; [H]:p - p _ [N]2?
! _

[N]2[H]p - p _ [N]2?
cut

As used in (65), forward persistence determines not only what tentative conclusions follow
from backward persistence but also what counterarguments can be used to defeat those
conclusions. Here, for example, the topmost ([H] !) inference is starred to indicate that
it represents a default instantiation where this argument could be attacked. An attack there
could establish an abnormality of :p in the initial state or in state �.

Konolige describes a second kind of primitive argument for reasoning backward in
time. These arguments draw conclusions about the initial state in which an action was
performed given a description of the action’s result state. For example, Konolige considers
the infamous action of shooting: if a shoot occurs when the gun is loaded, the result is that
the target is dead. In addition to this rule for forward argumentation, Konolige explicitly
specifies a rule for backward argumentation: if the target is not dead (d) after a shoot (s),
then the gun must be initially not loaded (l).

As with backward persistence, ACCH captures this causal backward reasoning by a
combination of inferences for forward reasoning together with case analysis describing the
initial state. For example, here is how we duplicate Konolige’s backward argument that the
gun must have been unloaded. Initially, the gun is either loaded or not. If it is loaded, then
the shooting leads to death, by forward reasoning. This is impossible, because we know
that there is still life after the shooting. Thus, the gun must not be loaded.

Again, we can supply the formal argument in ACCH that expresses this reasoning:

(66)

::::l - :l:::
:::[H]:l - :l:::

[H] !

:::[H]:l - :l _ [N]?! _

:::hs; [H]l - l ^ hs

:::d�;:d� - ?�; :::

:::[H]d�;:d� - ?�; :::
[N] !

:::[N][H]d;:d� - ?�; :::
[N] !

:::l ^ hs � [N][H]d; hs;:d�; [H]l - ?�; :::
�!

:::l^ hs � [N][H]d; hs; [N]:d; l - ?�; :::
[N] !

:::l ^ hs � [N][H]d; hs; [N]:d; [H]l - ?�; :::
[H] !

[H](l ^ hs � [N][H]d); hs; [N]:d; [H]l - ?�; :::
[H] !

[H](l ^ hs � [N][H]d); hs; [N]:d; [H]l - [N]?; :::
! [N]

[H](l ^ hs � [N][H]d); hs; [N]:d; [H]l - :l _ [N]? ! _

[H](l ^ hs � [N][H]d); hs; [N]:d - :l _ [N]?
cut

By deriving backward reasoning from forward reasoning and case analysis, ACCH offers
a more parsimonious formalism that Konolige’s. (As we shall see, case analysis cannot
be avoided in building reliable plans from partial descriptions of the world.) The fact that
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such reasoning can be performed at all, however, highlights another important difference
between ACCH and both Konolige’s and Ferguson’s frameworks for argumentation.

Both Konolige and Ferguson take it for granted that arguments that yield contradictory
conclusions are incompatible. This means that whenever a derivation of? is constructed in
their systems, some component of the derivation must be rejected. This principle is difficult
to reconcile with reasoning by a process of elimination. Each eliminative step consists of
a derivation of ?; so the reasoning system is compelled to reject some component of each
step.

In ACCH, arguments involving backward reasoning and other processes of elimination
are possible because ACCH completely separates contradiction from compatibility. The
logical rules describing negation and ? determine contradiction. The domain-specific
definition of attack determines compatibility.

Pollock’s distinction between rebuttal and undercutting in argumentation can help pro-
vide an intuitive clarification of the distinction between the different frameworks [Pollock,
1992]. Two arguments rebut each other if they derive opposite conclusions. One argument
undercuts another if it challenges the regularity that connects a premise of the argument and
its conclusion. Pollock has developed systems of argumentation that include both rebuttal
and undercutting. The reasoning framework proposed by [Simari and Loui, 1992] and used
in [Ferguson, 1995] includes only rebuttal, and Konolige certainly emphasizes rebuttal (it is
unclear whether he would restrict himself to it). On the other hand, the framework proposed
in [Dung, 1993] and used in ACCH involves only undercutting.

In some sense, undercutting is more general that rebuttal; we can imagine adapting
every rebuttal (showing that the present case is a genuine exception to a generalization) into
an undercutting argument (showing that we shouldn’t apply the generalization to the present
case). [Dung, 1993] uses this idea to reconstruct Pollock’s proposals in his framework.
The ability to express rebuttal might seem crucial because of the importance of allowing
an agent to handle exceptions to generalizations it knows. An agent must be resilient
to the occurrence of unexpected and strange events. It can’t respond by wallowing in
inconsistency. Incorporating rebuttal in the agent’s reasoning is a sure way of avoiding this.

Obviously, the agent must somehow respond when it finds an inconsistency in its own
beliefs, but it is not clear that the right answer is to throw out conclusions, as dictated
by rebuttal. Perhaps what should go is the principles those conclusions are drawn from.
Rebuttal seems therefore not a general solution to inconsistency. But the success of ACCH

suggests that rebuttal is not even a partial solution to the problem of inconsistency. Rebuttal
gets in the way of simple, useful inferences. In fact, as soon as you specify a set of intended
models for a logical theory of action, the possibility arises of describing courses of events
that cannot occur in any intended model. Detecting the inconsistency of these descriptions
is part and parcel of reasoning correctly in the theory. Moreover, as we have seen, often the
most perspicuous way to determine that something must have held is to recognize that no
alternative to this could have been possible in an intended model.
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6.5.2 Argumentation and conflicting predictions

Any interesting problem of temporal reasoning involves potential conflict between defaults.
The argumentation performed in ACCH resolves such conflicts in strict accord with explicit
causality and inertia, in an appealingly simple way.

The classic example of the problem of conflicting defaults in temporal reasoning is
the Yale shooting problem [Hanks and McDermott, 1987]. The task in this problem is to
conclude that a victim, initially not dead (d), ends up dead when a gun starts out loaded (l),
then there is a delay (w: we wait), and then the gun is fired (s). The causal description of
this scenario is this:

s causes d if l
:d holds at 1
l holds at 1
w happens at 1
s happens at 2

Using our modal translation, this corresponds to the collection of axioms below:

[H](hs � ab(:d; 1)); [H](l ^ hs � [N][H]d); [H]:d; [H]l; hw; [N]hs;

This scenario requires us to choose which of two instances of inertia to preserve. If
we assume that the event of shooting succeeds in killing the victim, then this will be an
exception to inertia later. On the other hand, we could assume that there is an earlier
exception to inertia, so that the gun is effectively unloaded magically during the wait. Then
there will be no exceptions to inertia later, because attempting to shoot won’t do anything.
In reasoning formalisms that have a limited capacity to resolve conflicting defaults or use
global minimization of the number of exceptions, these two alternatives can seem equally
valid. As a result, these frameworks give the Yale Shooting Problem an unintended or
surprising treatment.

Argumentation avoids such surprising behavior by specifying how conflicting defaults
are to be resolved on the basis of local information. For example, in the Yale shooting
problem, we conclude that the gun stays loaded during the wait because the scenario does
not allow us to build a counterargument to inertia for that fluent at that moment. Similarly,
we cannot conclude that the victim stays alive after the shoot because the occurrence of
the shooting forms the basis of an argument attacking, and defeating, this argument from
inertia. We conclude that the victim in fact dies by combining the argument that the gun
stays loaded with the effects axiom for shoot.

We briefly observe how this argumentation plays out formally. First, the argument by
inertia that the victim never dies looks like this:

(67)

:::;:d�� - :d��

:::; [H]:d; - :d��
[H] !�

:::; [H]:d; - [N]:d�
! [N]

[H](hs � ab(:d; 1)); [H](l ^ hs � [N][H]d); [H]l; [H]:d; [N]hs; hw - [N]2:d
! [N]
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Again, we star the ([H] !) step of instantiation that encodes the default of inertia. This is
a place where the argument can be—and is—attacked. Here is the attacker:

(68)

:::; hs� - hs�; ::: :::; ab(:d; 1)� - ab(:d; 1)�

:::; hs � ab(:d; 1)�; hs�; - ab(:d; 1)�
�!

:::; [H](hs � ab(:d; 1)); hs�; - ab(:d; 1)�
[H] !

:::; [H](hs � ab(:d; 1)); [N]hs; - ab(:d; 1)� [N] !

This argument indicates that we expect aliveness to be abnormal at � given that a shooting
occurs then. Now, either this occlusion argument must be defeated or the first inertia
argument will be defeated. The only way to defeat this argument by occlusion would be
to show that the conditions do not hold where shooting would cause death. That would
require an argument for :l�. No such argument is available, so the occlusion is acceptable
and the inertia is defeated.

The more interesting argument, for death, is this:

(69)

:::; l�; hs� - l ^ hs�; :::

:::; d�� - d��; :::
:::; [H]d�� - d��; :::

[H] !

:::; [N][H]d� - d��; :::
[N] !

:::; l^ hs � [N][H]d�; l�; [H]:d; hs�; hw - d��; :::
�!

:::; l^ hs � [N][H]d�; [H]l; [H]:d; hs�; hw - d��; :::
[H] !�

:::; [H](l ^ hs � [N][H]d); [H]l; [H]:d; hs�; hw - d��; :::
[H] !

[H](hs � ab(:d; 1)); [H](l ^ hs � [N][H]d); [H]l; [H]:d; hs�; hw - d��
[N] !

[H](hs � ab(:d; 1)); [H](l ^ hs � [N][H]d); [H]l; [H]:d; [N]hs; hw - d��
! [N]

[H](hs � ab(:d; 1)); [H](l ^ hs � [N][H]d); [H]l; [H]:d; [N]hs; hw - [N]d� ! [N]

[H](hs � ab(:d; 1)); [H](l ^ hs � [N][H]d); [H]l; [H]:d; [N]hs; hw - [N]2d
! [N]

This cumbersome notation indicates just that we expect death at �� because at � we fire a
loaded gun. The only defeasible step in this structure, again starred, leaps by inertia from
[H]l to l�. To attack this, we must find an event that happens in the initial state and that
might occlude the fluent l. Since waiting is the only thing that happens in the initial state
and waiting occludes no fluent, we cannot build such a counterargument. And hence this
argument for death is also acceptable.

This discussion of the Yale shooting problem in ACCH may leave one question. As soon
as we see the shooting event, we’re skeptical of the victim staying alive, because we can
derive the argument in (68). So what if the gun initially isn’t loaded? We had better be able
to show that the victim does stay alive in that case.

As before, we have a variant of arguments (67) and (68) showing inertia—you should
stay alive because you were alive—and occlusion—aliveness should be abnormal when the
shooting occurs:

(70)

:::;:d�� - :d��

:::; [H]:d; - :d��
[H] !�

:::; [H]:d; - [N]:d�
! [N]

[H](hs � ab(:d; 1)); [H](l ^ hs � [N][H]d); [H]:l; [H]:d; [N]hs; hw - [N]2:d
! [N]
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(71)

:::; hs� - hs�; ::: :::; ab(:d; 1)� - ab(:d; 1)�

:::; hs � ab(:d; 1)�; hs�; - ab(:d; 1)�
�!

:::; [H](hs � ab(:d; 1)); hs�; - ab(:d; 1)�
[H] !

:::; [H](hs � ab(:d; 1)); [N]hs; - ab(:d; 1)� [N] !

These arguments are different from the earlier ones only because of the different set of
premises they appeal to. However, now we also have the following argument:

(72)
:::;:l� - :l�

:::; [H]:l - :l� [H] !�

Argument (72) presents an attack on argument (71) on occlusion; s depends on the pre-
condition l to cause d, and this argument shows l does not hold when s occurs. Argument
(72) involves a defeasible step which propagates :l from the initial state to � by inertia.
Since the only thing that happens in that interval is a wait, no argument challenges this step.
Argument (72) is therefore acceptable. It follows that argument (71) is defeated, which
reinstates argument (70). That is how inertia can be maintained even in the presence of an
event that is executed safely but could have been potentially disruptive.

These examples illustrate the general way in which ACCH manages causality and inertia.
With this same generality, the examples also highlight how strong the idealization is that
gives us the intended models of a theory of action. The idealization elevates our specification
of the domain to an absolute. Misfires and jams become absolutely impossible when not
mentioned; so do all other causal failures of shooting. And there is no room for good citizens,
who if they chanced upon a loaded gun would unload it, nor for any other unpredictable
failures of inertia. Given the force of causality and inertia, we must never forget that they—
and not some unanalyzed idea of common-sense—govern the meaning of ACCH domain
specifications.

The reasoning we have just seen in the Yale shooting problem and its alternative can
be recast as a problem for reasoning backward, in a variant known as the Stanford murder
mystery. The reasoning required to solve the Stanford murder mystery in ACCH underscores
the close connection we have observed between forward reasoning and backward reasoning
in ACCH.

The Stanford murder mystery assumes the same events and the same causal laws as the
Yale shooting problem. The difference is that instead of knowing initially that the gun is
loaded, we know that ultimately, the victim ends up dead. We want to be able to CONCLUDE

that the gun must have been loaded initially. In causal language, the scenario is this:

s causes d if l
:d holds at1

w happens at1
s happens at2
:alive holds at3

The argument in ACCH that solves this problem is the following formal object:
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(73)

:::; l - l; :::
:::; [H]l - l; :::

[H] !

:::; [H]l; - l _ [N]2?
! _

:::; d��;:d�� - ?��; :::

:::; d��; [H]:d - ?��; :::
[H] !�

:::; [H]d��; [H]:d - ?��; :::
[H] !

:::; [N][H]d�; [H]:d - ?��; :::
[N] !

:::; [N]2[H]d; [H]:d - ?��; :::
[N] !

:::; [N]2[H]d; [H]:d - [N]?�; :::
! [N]

:::; [N]2[H]d; [H]:d - [N]2?; :::
! [N]

:::; [H]:l; [N]2[H]d; [H]:d - l _ [N]2?
! _

[H](hs � ab(:d; 1)); [H](l ^ hs � [N][H]d); [H]:d[N]2d; [N]hs; hw - l _ [N]2?
cut

In words, this argument suggests a separate consideration of the two cases where the gun
starts out loaded and where it starts out unloaded. In the first case, clearly the gun is loaded;
in the second, there is a contradiction, because the victim ought not to die.

In light of the previous discussion, it is easy to see why this argument is acceptable.
According to the definition of attack, the subarguments for the two cases will be judged
separately, each according to the assumptions it makes. These cases correspond to the
two scenarios discussed earlier. In particular, when the gun is not loaded, we accept the
argument by inertia that the victim lives. As we saw, the only potential attack against it is
based on the shooting and is defeated because of precondition failure.

In ACCH, unlike most other frameworks, this computation is unaffected by the knowl-
edge that the victim must be dead after two steps. Because the definition of conflict in
ACCH is so restrictive, the contradiction between the victim being dead in two steps and the
victim being alive in two steps does not constitute an attack on either conclusion.

6.5.3 Argumentation and Planning: Connections

With this appreciation about how ACCH decomposes and accomplishes reasoning tasks,
we can revisit the deductive formulation of planning introduced in section 6.2, recast
it explicitly in ACCH’s terms, and undertake a detailed comparison with special-purpose
planning algorithms.

In planning, we want devise a reason why some course of action should lead to a desired
state of affairs, so that we can use this reason to guide further deliberation and action. In
ACCH, we will represent the goal G as a conjunction of fluent literals g1 ^ : : : ^ gm.
Meanwhile, we will represent the domain by a set of causal rules R and a set of observations
O about the initial state. To construct a plan to achieve G after n actions, using ACCH, we
find an acceptable argument with end-sequent

RT;OT;H - [N]n G

Here H consists of a set of at most n formulas of the form [N]k ha with k < n. This
collection H specifies the actions taken as part of the plan.

When we introduced this idea in section 6.2, we had only an informal way of talking
about the kind of derivation that went into an argument, the temporal ontology the argument
appealed to, and how the argument was judged good. With the development in section 6.4
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and thus far in 6.5, we now have a more precise characterization of what these objects are
and how they work. This precise characterization allows us to establish more concretely
that these arguments match the data structures maintained by a partial-order planner, and
that the actions that must be taken to flesh out an argument and ensure its acceptability
correspond to the steps taken by partial-order planning algorithms.

Let’s begin by recalling some observations from Part I. Proof search is undertaken
by building a sequent proof from bottom up, applying applicable rules until the proof is
completed or until the possible rules are exhausted. To implement such a strategy, we
need to use variables to abstract the choices of instantiated terms during the constructed
proof, and we need to accumulate and solve the constraints on the values of variables that
are imposed in completing the proof. In argumentation, we may also need to accumulate
constraints that defuse attacks on the argument that arise only under particular values of
variables. To implement the strategy, we also want to consider sequent rules in a restricted
but general order, so as to cut down branching in search where possible. We will see
in planning a restriction on search similar to the logic programming restriction on search
explored in Chapter 3.

With this in mind, let’s look at the structure that ACCH gives an argument that a goal can
be satisfied. The claim is that this argument will represent all of the information maintained
in a partial order planner constructing a corresponding plan.

The argument records the actions that occur in the plan, using the premises H. We
can think of these premises as containing action variables that are constrained as the
proof is constructed, or we can suppose that these premises are actually assumed as proof
search proceeds, as in abductive event-calculus planning [Shanahan, 1989]. The argument
represents bindings in terms of the associated constraints on instantiations of ordinary
variables. It also represents ordering constraints between actions in the plan in terms of the
associated constraints on the instantiations of temporal variables—variables representing
transitions of causal change and inertial persistence.

Finally, the argument records CAUSAL LINKS, by a certain recurring pattern of inference
steps in the argument. In a partial-order planner like SNLP, a causal link records the fact that
the effect p of action e1 is used in the plan to achieve a precondition q of another action e2.
(This is represented using the notation e1

p;q- e2.) Whenever such a record is required in
a plan, the corresponding argument will contain an inference chain of the form illustrated
in 6.1.

:::; he�1
- q0�; ::: :::; he�1

- he�1 ; :::
:::; he�1

- q0 ^ he�1 ; :::
�!

:::; p�ux - q� ; :::
:::; [H]p�u - q� ; :::

[H] !�

:::; [N][H]p� - q� ; :::
[N] !

:::; he�1 ; q0 ^ he1 � [N][H]p� - q� ; ::: �!

:::; he�1 ; [H](q0 ^ he1 � [N][H]p) - q� ; ::: [H] !
(6:1)

The precondition q, to be established at the time � at which e2 occurs, appears on the right
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of the sequent arrow; on the left appear the fact that e1 occurs at some time � and the
translation of the causal law according to which events such as e1 lead to effect p under
circumstances q0. The proof decomposes the causal law according to the rules for temporal
and propositional connectives so as to refer to the occurrence of e1 at � and to link the
effect p with q in an axiom; establishing the preconditions q0� of the law is left open in the
leftmost node of the subproof.

The form of the causal link shown in 6.1 accounts not only for the planner’s representa-
tion of the causal link itself but also for the processing that the planner undertakes when it
puts the causal link in the plan. In planning by proof search, elaborating a proof to include
such a causal connection imposes a number of requirements. A first-order equality con-
straint p = q must be adopted to ensure that the rightmost axiom link is correct. Planners
adopt similar bindings. The axiom also requires a temporal equation �ux = � . In this
equation, � represents the time when action e1 occurs, � represents the time when action
e2 occurs, u represents the causal transition with e1, and x is an inertial variable that ranges
over any series of subsequent steps (in which p remains unchanged). As a constraint, this
is very suggestive of the planner’s ordering of e1 before e2 which must be adopted with the
causal link. Further, this elaboration introduces a number of new open nodes in the proof,
associated with the new open subproof : : : - q0�. The planner posts analogous goals in
its means-end analysis.

The representation of the causal link in 6.1 also includes a starred, default application of
([H]!). The instantiation of x in this inference represents a new point where this argument
can be attacked by a counterargument. Building and defusing these counterarguments
corresponds to the threat resolution phase of planning. In particular, counterarguments
arise with any action e3 in the plan that could occur at a time z to establish ab(r; n)z where
�uy = z and zy0 = � and r = p.

One way to resolve such threats is to add additional constraints to e3 in the plan to rule
out these conditions. This eliminates the potential attack relationship. For example, we
could constrain first-order variables using inequalities so that r = p had no solution. In
SNLP and UCPOP, this strategy is called separation. Alternatively, we can constrain temporal
variables using inequalities, by imposing z � � or z 6� � . Such constraints correspond to
the promotion and demotion strategies of SNLP and UCPOP.2

The alternative is to accept such constraints, adding to the plan �uy = z and zy0 = �

and r = p. Instead, we defeat the counterargument by finding the opposite :q00 of some

2As is explained in [Stone, 1997b], this is slightly imprecise, in that logic programming proof search could
introduce a fresh variable any time an action occurrence is used. When an attacking argument depends on the
order in which some action occurs, constraining this variable would not prevent the attacker from arising again
using a new fresh variable and the same instantiation. Technically, this should be resolved using constraints
that refer only to the number of steps taken, like jzj � j�j or jzj � j� j, since the number of steps taken is
independent of the instantiated variable used. This wrinkle is smoothed by the alternative representation of
action assumptions developed in Chapter 7, but I leave the correct notation here.
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Rules:
(1) puton(X; Y) causes on(X; Y)

if clear(X) ^ clear(Y)
(2) puton(X; Y) causes :clear(Y)

if clear(X) ^ clear(Y) ^ :table(Y)
(3) puton(X; Y) causes clear(Z)

if clear(X) ^ clear(Y) ^ on(X; Z)
(4) puton(X; Y) causes :on(X; Z)

if clear(X) ^ clear(Y) ^ on(X; Z)

Figure 6.3: The blocks world. Causal rules are obtained by substituting distinct values in
fa; b; c; tg for X, Y and Z.

precondition of e3 disrupting p and constructing an acceptable argument that

: : : - :q00z

As a new open node for proof, this takes the same form as any other goal and becomes
part of the requirements for argumentation. This strategy corresponds to UCPOP’s special
separation rule for conditional effects.

A simple example

Consider how this characterization of plans describes the Sussman anomaly. We have an
initial state description O in which blocks a and b are on a table t, with block c on block b.
The problem is to use the theory of action consisting of the rules R in Figure 6.3 to bring
about a state where a is on b, and b is on c. In fact, this can be achieved in three steps, by
finding an acceptable argument D with end-sequent:

RT;OT;M;N;P - [N] [N] [N] (on(a; b) ^ on(b; c))

The actions of the plan are M = [N]i hputon(c; t);N = [N]j hputon(a; b), and P =

[N]k hputon(b; c). The basic structure of D is as follows. We must prove the goal at a path
� = ��. By propagating the initial state inertially along a path x of length i, we establish
[N] [H] clear(b)x as a result of putting c on t. By applying inertia along a path y of length
j to this result and the initial state, we show that putting a on b results in [N] [H] on(a; b)y.
This introduces the constraint x < y; using the result to help establish the the goal adds
the constraint y < �. Meanwhile, by propagating the initial state inertially along a path
z of length k, and combining this with [N] [H] clear(b)x (from putting c on t), we get
[N] [H] on(b; c)z as the result of putting b on c. This finishes the proof of the goal, with the
constraints x < z < �.

This proof is subject to attack, because we can use the success of putting a on b to prove
ab(clear(b); 2)y. This attacks the plan’s inertial propagation of [N] [H] clear(b)x to z, if
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Rules:
(0) hide causes enabled (3) dunkA causes :enabled if bombA
(1a) hide causes bombA if hidingPlaceA (4) dunkB causes :enabled if bombB
(1b) hide causes :bombB if hidingPlaceA
(2a) hide causes bombB if :hidingPlaceA Observation:
(2b) hide causes :bombA if :hidingPlaceA (5) hide happens at 1

Figure 6.4: The bomb in the toilet problem.

x < y < z. Since z cannot precede x, we must add the constraint jzj � jyj to the plan. This
ensures the linear order x, z, y, �.

Planning for cases

This discussion of the Sussman anomaly illustrates how ACCH captures familiar reasoning
from a well-known planning domain. By reconstructing planning representations in a
validated logical formalism, we can now also apply them to other kinds of reasoning. For
example, we saw in section 6.5.1 that this framework is compatible with reasoning for
explanation as well as prediction. A related new ability of ACCH is reasoning by case
analysis in planning.

Here is the motivation for such reasoning. An agent typically has limited knowledge
of the world; in many domains these limits are unavoidable. The agent may be unable to
determine facts about the world—perhaps even facts that are very important to its success
and well-being. Just because an agent is blind in this way does not mean that it must
become unable to derive and carry out successful plans. However, it needs to build its plan
bearing in mind the different ways things might turn out compatible with its information.
Such reasoning is not possible in SNLP or UCPOP, but the validated case analysis in ACCH

allows it to capture such reasoning naturally in a simple extension of partial-order planning
data structures.

An example of this reasoning, couched in a domain that underscores its importance,
can be found in the famous “bomb in the toilet” problem. This scenario is defined by the
rules R and observation O of Figure 6.4. A bomb is hidden in one of two packages. We
must make a plan to disable this bomb (achieve :enabled) with some dunking, assuming
that dunking any bomb disables it.

The solution to this planning problem is an acceptable argument D with end-sequent:

RT;OT; [N]i hdunkA; [N]j hdunkB - [N]3 :enabled

The structure of D is as follows. The lowest inference is a cut, to consider separately the
case where hidingPlaceA is true and that where :hidingPlaceA is true. Either case begins
by introducing a path � of length 3, where we show :enabled�. In the first case, rule
(1a) establishes bombA after step 1. Instantiating the occurrence of dunkA to a path x of



182 MATTHEW STONE

length i and including step 1, hdunkAx establishes [N] [H]:enabledx. Assuming x < �,
inertial instantiation then establishes :enabled�. In the second case, rule (2a) establishes
[H] bombB at step 1; inertial instantiation propagates this to the occurrence of dunkB; that
achieves the goal by rule (4)—with analogous constraints.

No constraints need be imposed to show that this argument is acceptable. The only
potential attackers are the use of rule (0) to occlude inertial propagation for [N] [H]:enabledx

or [N] [H]:enabledx. These attacks are ruled out by the constraint that the dunkings follow
the hiding.

6.6 Summary
In this chapter, we have described planning as the task of finding and maintaining reasons
for (and against) possible courses of action. Such reasons are needed for single agents to
guide their deliberation, to update or extend their plans, or to arrive at collaborative plans
with other agents. These reasons are naturally captured using direct systems of defeasible
inference; moreover, since they guide deliberation, they are most naturally organized around
the key points in time where an agent can initiate a deliberative action.

Formalizing these reasons calls for a delicate balance. On the one hand, for robust
and general reasoning, we need a rich inventory of logical operators, including negation
and disjunction, with their usual meanings (as in explanation closure or logic programming
theories of action). On the other hand, we require a computationally attractive formalism
for making and checking assumptions (like the use of negation-as-failure in event calculus
planning). We strike this balance by developing reasons in a logical calculus with the
usual proof rules but evaluating these reasons using a domain-specific regime for arbitrating
between conflicting inferences. The resulting system, ACCH, builds reasons in concrete steps
in the style of SNLP or UCPOP, but generalizes to draw sound and complete conclusions—
including explanations—from incomplete descriptions of the state of the world.

ACCH ties together a number of threads of research into a clean package. But it lacks an
important piece of expressivity. The “bomb in the toilet” problem hints at this limitation.
The reasons provided by ACCH guide future deliberation, but they only take into account the
information the agent has in the present state. A more flexible plan would allow the agent
to choose among possible actions in a future state on the basis of its future information.
Despite its “incompleteness”, such a plan would continue to provide a useful guide to
deliberation by limiting the actions that the agent needs to consider or the properties of
the world the agent needs to assess to decide among them. We can’t begin to derive such
guiding reasons until we have a formal characterization of the changing knowledge the
agent has and the knowledge it needs to choose. We now turn to the problem of developing
such a characterization.
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Action and Knowledge

In this chapter, we continue to explore the view of planning as ABDUCTION introduced in
section 6.2. According to this view, a plan is (or at least comes with) a logical demonstration
that a desired goal will be achieved, assuming the agent follows a specified course of
action. To build a plan is simply to prove the goal, abductively assuming the occurrence of
appropriate actions as necessary. As we saw in sections 6.3 and 6.4, this framework allows
special-purpose planning algorithms, as in [McAllister and Rosenblitt, 1991; Penberthy and
Weld, 1992], to be faithfully reconstructed and then extended to richer kinds of action using
frameworks such as the event calculus (see e.g. [Shanahan, 1997]), explanation closure (see
e.g. [Ferguson, 1995]), and, of course, defeasible argumentation.

In the abductive planning frameworks we considered in Chapter 6, and indeed most
implemented planners, the plan shows that the agent can now commit to a specified sequence
of actions that will achieve the goal. But a rational agent need not make all its decisions
immediately. It can just as well defer choices of future actions to later steps of deliberation.
Plans can and should guide these later steps of deliberation, but only if they anticipate the
NEW reasons to act afforded by the agent’s increased future information. This chapter, based
on [Stone, 1998], describes an abductive planning model that does so.

Traditional theories of action and knowledge [Moore, 1985a; Morgenstern, 1987; Davis,
1994] suggest that searching for plans becomes vastly more complicated when information
about knowledge is taken into account. The problem is that these theories are based on
NAMING plans, using object-level terms that must be specified in advance without reference
to the agent’s knowledge. This introduces two new search problems, both of which turn
out to be artificial.

The first problem is that actions must be described indirectly in the plan. For example,
suppose an agent plans to look up Bill in the phone book, then call him. From the agent’s
point of view, when it makes the call, it will just dial some number n. But since the value
of n is settled in a future situation, n cannot be included in a term that specifies the plan
fully in advance. Instead, the plan must include a characterization that indirectly describes
this action, like dialing Bill’s phone number. This means that even after the right action
is found, a planner still has to search to find an independent description strong enough to
show that the action achieves its intended effects.

The second problem is that planners must reason about FOLLOWING THE PLAN, not
simply about acting in the world. Not every description corresponds to an action or plan

183
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that the agent can carry out: the description might appeal to a fact that the agent will not
know. To avoid this, plan reasoning must map out the control structure of the plan in
advance and compare the knowledge required by that control structure and the knowledge
the agent can expect to have, at each step of execution.

One approach is to avoid these problems using heavy limitations on the syntax and
semantics of parameterized actions [Levesque, 1996; Goldman and Boddy, 1996; Golden
and Weld, 1996]. This chapter takes a very different approach. We simply add the idea of
CHOICE directly into the characterization of achieving a goal. Any future situation offers
the agent a number of concrete actions to take. To choose one of these, an agent simply
consults its knowledge of these actions to find a good one. Thus, in our basic formulation,
a plan is a demonstration that a goal state will follow a series of such feasible choices.

This definition allows plans to be constructed in which each choice is represented as it
will be made. This is even true for the new, parametric actions that become available with
more information. This account thus dispenses with object-level descriptions of actions
and reasoning about following plans; instead, the account parameterizes actions using
local Skolem constants, corresponding to the run-time variables of implemented planners.
At the same time, the proof itself specifies how choices depend on one another. For
example, conditional plans are realized as proofs that use case analysis to reason separately
about alternative states of knowledge for the agent. Thus, proof search allows the control
structure of the plan to be derived incrementally—in a way that mirrors the introduction
and exploration of branches of alternative executions in implemented planners.

The structure of this chapter is as follows. Section 7.1 describes a new way to account
for an agent’s future information and deliberation explicitly in the logical representation of a
plan. Section 7.2 examines the logical underpinnings of the new account. It first motivates
the principles of inference that the account should respect and then outlines a model theory
and inference techniques that realize these principles of inference. In contrast to previous
approaches, we separate the ontology of knowledge and time, yielding models that might
seem awkward but in fact admit more straightforward search.

Section 7.3 describes how the reasoning formalism presented in sections 7.1–7.2 yields
an abductive planning framework; in this framework, the dependence of actions and reason
on an agent’s information is realized as a simple constraint on the possible form of assump-
tions about action occurrences in a planning argument. We conclude this chapter in section
7.4 with illustrations of the formalism at work.

7.1 Choice and Future Reasons to Act
In this section, we introduce a characterization of reasons to act that explicitly refers to
the successive stages of information in which an agent deliberates and chooses its future
actions. This characterization can be formulated in intuitive language, as follows. A reason
to choose a particular next action consists of a demonstration that this choice is the first
step in a sequence of steps of deliberation and action—where the agent knows at each state
what action to do next, and does it—which allows the agent to achieve its goals, thanks to
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a specified set of causal connections.

7.1.1 Choice

We derive and formalize our characterization by a running example, the “bomb in the toilet”
problem, described earlier in section 6.5. It goes as follows: Given that one of two packages
is a bomb, and that an agent R can defuse a bomb-package by dunking it, how can R defuse
the bomb? The solution is for R to successively dunk both packages (two actions); the
one-action plan in which R dunks whatever package is the bomb is not a solution, because
R cannot choose to carry it out.

In the purely temporal theory of Chapter 6, a plan is a formal demonstration, constructed
according to some theory of events and their consequences, that a sequence of actions will
achieve some goal. We continue to assume that this demonstration takes the form of a
deduction D with conclusion:

T; I;P - G (7:1)

Again, this notation indicates that in the deduction D, the formulas in T, I and P are used
to derive the formula G. (The deductive approach matches previous work on knowledge
and action, and suggests an explanation-closure approach to reasoning about inertia, as
in [Reiter, 1991; Scherl and Levesque, 1993] for example.) G is a logical statement that
some goal or goals hold at various points in the future. T is a theory describing the causal
effects of actions in the domain. I describes the initial conditions for the planning problem
(and perhaps further available information about future conditions and events). P records
assumptions describing the occurrence and interactions of actions in the plan. In this
framework, the basic problem of building a plan is to find an appropriate set of actions in
P by abductively assuming premises, given the specification of T, I and G.

(7.1) provides a model in which the agent makes a SINGLE CHOICE OF ACTION, and
evaluates the consequences of that choice of action in the different possibilities compatible
with what it knows. Given a choice of P, we can make assumptions for the sake of argument;
for example we can consider the different cases for which package is the bomb. However,
assumptions in P are made once-and-for-all and cannot depend on what is assumed for the
sake of argument; thus, P cannot name whatever package is the bomb.

A logic of knowledge can make the idea of choice explicit. We treat a single-choice,
single-step plan as a proof of

[K]T; [K]I - 9a[K]([K]ha � [N][K]G) (7:2)

([K]p represents that the agent knows p; [N]p, that p is true after one step of time; ha
means that a is the next event to happen.) The goal formula says that the agent knows, of
some concrete action a, that if a patently occurs, then as a result G will patently hold—in
philosophical shorthand: the agent KNOWS WHAT WILL ACHIEVE G [Hintikka, 1971]. The
assumed theory T and facts I are now explicitly represented as part of the agent’s knowledge.

(7.2) matches (7.1) because of the wide scope of 9a with respect to the operator [K].
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Our discussions of the modularity of modal logic in Chapters 2 and 3 give us the intuitions
we need to understand the correspondence. In the consequent of (7.2), the quantifier 9a
invites us first to choose an action in the real world, at root scope. Then the modal operator
[K] creates a new modular subgoal for proof. Because of the modularity of this goal, and
because of the parallel modularity of the formulas that can be used to prove the goal, no
ambiguities introduced in this modular subproof can affect the choice of a. Thus, like P in
(7.1), a in (7.2) must specify a concrete action that cannot depend on assumptions in the
argument assessing a’s known result.

Moore’s definition of ability to act [Moore, 1985a] also works by giving a quantifier
wide scope over a modal operator. However, Moore’s definition also includes a requirement
that an agent must knowingly select its concrete action under a given abstract description,
d. Moore’s condition can be reformulated in our notation for comparison:

[K]T; [K]I - 9a[K](a = d ^ ([K]ha � [N][K]G)) (7:3)

The equation a = d greatly increases the complexity of building a proof, by introducing
cumbersome reasoning about known equalities between terms. Since we have grounded
(7.2) in (7.1), we discover that it is not essential to derive an abstract description d, and then
perform the equational reasoning to show a = d; naming the action abstractly does not help
analyze an agent’s ability to choose an appropriate action from among its concrete options.

7.1.2 Dependent Choice

The definition in (7.2) allows us to specify not only ambiguities in the state of the world but
also ambiguities in the information that the agent might have. If what the agent knows is
specified partially, proofs will permit an agent’s chosen action to depend on its knowledge.
By supporting correct reasoning about these dependent choices, proofs already allow us
to describe conditional plans and plans with parameterized actions. There is thus no need
for explicit, object-level constructs describing the structure of complex plans. Moreover,
we continue to avoid the explicit abstract description of actions and plans using terms in
the language. This allows us to maintain a very simple definition of achieving a goal by a
sequence of choices.

To describe our representation of dependent choices, we return to the “bomb in the
toilet” scenario. If we suppose that the agent knows which package is the bomb, we can
conclude that the agent knows enough to defuse the bomb. The agent can dunk the package
it knows is the bomb.

Formally, this inference might play out in one of two ways. We can add the condition
[K]b1 _ [K]b2 to say that the agent knows whether package one is the bomb or whether
package two is. Using case analysis, we can prove

[K]T; [K]I; [K]b1 _ [K]b2 - 9a[K]([K]ha � [N][K]G)

If the agent knows package one is the bomb, it can conclude that dunking package one will



KNOWLEDGE 187

defuse the bomb; otherwise, it must know that package two is the bomb and be able to
conclude that dunking it will defuse the bomb.

This proof instructs the agent to make a CONDITIONAL choice of action, depending on
what it knows. To see that this proof implicitly represents a conditional choice, imagine how
the agent might use the proof directly to select an action while executing a plan. According
to our specification, the agent will have one of two facts as part of its concrete knowledge:
either [K]b1 or [K]b2. The proof maps out the reasoning that shows what to do in either
case. Thus, the agent need only match its concrete knowledge against the cases in the proof
to find which applies, then extract the appropriate component. For practical execution,
we might want to use such analysis in advance, to recover an explicit conditional from a
proof. Nevertheless, for efficient search, we must represent dependent choices implicitly
rather than explicitly. Case analysis can be performed incrementally in proof search, so it is
straightforward to derive the conditions for performing different actions piece-by-piece, as
needed. Moreover, logical case analysis always interacts correctly with scope of quantifiers,
so there is no possibility of proposing a conditional expression that could not form the basis
of the agent’s choice.

The other alternative is to add the condition 9x[K]bomb(x), to say that the agent knows
what the bomb is. Then we prove that the agent has a plan by picking a witness c that the
agent knows is a bomb and showing that the agent knows dunking c defuses the bomb. We
can regard this proof as instructing the agent to make a PARAMETERIZED choice of action,
depending on what it knows.

Again, as with an abstract, symbolicdescription of a parameterized action, this proof has
enough information for the agent to choose a successful action. If the partial specification
of its knowledge is correct, its concrete knowledge includes a fact [K]bomb(x) for some
object x. The proof spells out what to do with that value x: use it in place of the arbitrary
witness c that the proof assumed. Doing so allows the agent to derive from the proof a
concrete reason for a specific action. Again, by comparison with an explicit description, we
see that the logical treatment, in terms of scope, naturally guarantees that only information
the agent has can affect its choices. There could be no possibility of proposing a described
action whose referent the agent did not know.

7.1.3 Sequenced Choice

We can call these arguments indirect assessments of an agent’s plan. Indirect assessments
allow an agent to determine the options available to itself in the future. Here is an example.
Suppose we equip an agent R with a bomb-detector in the initial bomb-in-the-toilet scenario.
R can describe what would hold after it used the bomb detector in the indefinite way just
outlined: R would know which package is the bomb. Therefore, in the next step, R could
choose to defuse the bomb. Thus, R already knows that in two steps of deliberation and
action (choosing first to detect and then to dunk) the bomb will be defused.

This argument gives R an indirect reason to use the bomb detector now. The proofs
we accept as plans must have a staged structure to reflect this staged introduction of future
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reasons to act. We should represent R’s goal thus:

9a[K]([K]ha � [N]9a0[K]([K]ha0 � [N][K]G))

This fits R’s argument. R first chooses a based on what R knows now. R’s choice of a
must enable R to choose a good action a0 in the next step, based on what R knows then.
There, R will choose a0 by reasoning that a0 brings about G. In all, G is nested under three
[K] operators. Each inserts a boundary corresponding to a new stage of deliberation as R
assesses its progress toward the goal. Each may be preceded by an existential quantifier for
any action selected at that stage.

We can generalize this to longer plans using a recursive definition. At each step, we
identify an action to do next based on information then available, and assume this action
occurs; we then make sure that any remaining actions will be identified when needed,
until the goal is finally achieved. We use can(G; n) to denote the condition whose proof
constitutes a plan to achieve the goal G in n further steps of action; can(G; n) is defined
inductively:

can(G; 0) � [K]G
can(G; n + 1) � 9an[K]([K]han � [N]can(G; n))

This recursive definition directly reflects the staged process by which successive actions
are selected and taken.

In describing the knowledge an agent needs to follow a plan p, [Davis, 1994] uses a
similar staged definition. Simplifying somewhat, and adapting the notation of (7.3), the
agent satisfies can(G,p) to follow p and achieve G:

9an[K](an = next(p) ^ ([K]han � [N]can(G; rest(p))))

As with Moore, this presupposes an overall abstract description of the course of action being
carried out and appeals to complicated reasoning to determine the next action to match that
course of action. We have seen that we can give a logical analysis of what an agent can
choose to do without separately constructing or reasoning about such a description of a
plan.

7.2 Logical Foundations

In the model of section 7.1, a (k-step) plan is a proof of

[K]T; [K]I - can(G; k)

This section describes the underlying logic in which such proofs are to be constructed. In
7.2.1, we look at the idealizations of knowledge involved in the planning task. In planning,
inferences about knowledge represent not an empirical description of an agent’s mental state
but a specification in advance of the mental actions needed for carrying out the plan. If the
planning agent can perform these actions, the corresponding axioms should be available;



KNOWLEDGE 189

we thus argue for a strong model of an agent’s knowledge in planning.
In 7.2.2, we provide a model-theory for a monotonic language that satisfies these

axioms. It is as easy as section 7.1 suggested: we interpret temporal operators by reified
translation to a first-order language and introduce an S4 logic of knowledge with increasing
domains on top of this extended first-order language. As with the temporal ontology of
Chapter 6, this modal ontology for knowledge can be understood informally as describing a
state qualitatively, in terms of the transitions that take you there. And, as with the temporal
ontology of Chapter 6, we can expect to apply results for modal proof theory like those
outlined in Chapter 2 and derived in Chapters 3 and 4. We contrast this model theory with
some prior approaches in 7.2.3.

7.2.1 The axioms of knowledge and time

In anticipating future reasons to act, it is appropriate to use an idealization of the information
on which future deliberation will be founded. This idealization involves these four second-
order principles: deduction; memory; positive introspection; and veridicality. If [K]A
represents the condition that the agent knows a formula A, and [N]A represents the condition
that A is true after the next action takes place, then these conditions can be formalized as
follows.

[K]A ^ [K](A � B) � [K]B DEDUCTION

[K][N]A � [N][K]A MEMORY

[K]A � [K][K]A POSITIVE INTROSPECTION

[K]A � A VERIDICALITY

These conditions are sometimes viewed as controversial, because it is clear that no agent
with finite resources could satisfy them in their full generality in all cases. However,
the way these principles are used in planning defuses such objections. Only particular
instantiations of these principles need be used in a plan; those instantiations that are used
completely specify the mental actions that need to be performed in carrying out the plan.
Since a bounded agent can keep up with the limited idealizations required in any particular
plan, it makes sense to leave open the full space of idealizations in searching for a plan.
That’s what adopting these second-order principles does.

Consider the deduction axiom. No finite agent can exhibit perfect deduction for all
theories at all times. However, any particular instance of deduction represents a correct
inference that the agent could draw if it devoted its resources to it. A plan that makes use
of a particular instance of the deduction axiom can be seen as a plan to make the particular
needed deduction at the proper point in executing the plan. This is likely to be well within
the capacity of a bounded agent, especially if the agent devised the plan in the first place. At
the same time, representing knowledge explicitly and reasoning about it using the deduction
axiom ensures that all inferences that an agent needs to make are included in its plans. This
will actually help a bounded agent, by allowing it to know in advance (to some extent)
interactions it need not think about in executing the plan.

The memory axiom works similarly. Finite agents must forget. Still, we want an agent
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to be able to recognize that a particular fact now known will be needed again in the future,
and to take the necessary mental steps to ensure that that fact therefore is not forgotten.
Particular assumptions of memory used in a plan-proof identify such facts in advance so
that this process can take place. At the same time, a plan also includes facts for which
memory is not required; a bounded agent can use that information to know in advance (to
some extent) what it can safely forget.

Positive introspection plays a role in hypothetical reasoning about knowledge in the
present not unlike the role memory plays in reasoning about knowledge in the future. It is
used in a plan to show that an agent will know A under certain assumptions by showing that
the agent already does know A. So again the particular inferences licensed by the axiom
are not unreasonable for a real agent to make or plan to make—even though the recursive
form of the axiom suggests that it requires the agent to know an infinite collection of facts.

Veridicality, finally, is the condition that gives this characterization of planning teeth.
By veridicality, an agent’s knowledge that it knows what plan to follow to achieve a goal
entails that the agent will realize its goal if it follows the plan. Conversely, in adopting the
plan, the agent commits to a set of instances of veridicality that it depends on for success.
As with the other axioms, formalizing these commitments and recording them can guide
the agent in keeping up the fiction that its reasoning is ideal. This is compatible with the
inevitability that a real agent will be mistaken about some of what it thinks it knows.

Many logics of knowledge also adopt the principle of NEGATIVE INTROSPECTION:
:[K]A � [K]:[K]A. Moore refrains from adopting it, claiming it is FALSE: an agent
that believes A erroneously seems intuitively to lack negative introspection about failing
to know A. I don’t know how seriously to take that argument, given the idealizations
about error we have already made. But I too will omit this axiom, partly because of the
considerations of modularity observed in section 2.1.3, and partly just because negative
introspection does not seem to buy very much in planning. If you might not know, the thing
to do is find out, regardless of whether you actually know you don’t know.

7.2.2 A model for the axioms

Because we accept the deduction axiom, we can build a MODAL LOGIC of knowledge and
time to satisfy these principles. (Recall from the discussion of Hilbert systems for modal
proof in 2.3.1 that all modal logics respect the deduction axiom.) By making [K] an
S4 modal operator—constraining its underlying accessibility relation to be reflexive and
transitive—we account for positive introspection and veridicality.

This leaves only memory to account for. In other approaches, memory represents a
special stipulation on the model (see 7.2.3). Here, however, we propose to exploit the close
connection between modal operators and quantifiers to reduce memory to the ordinary
principles governing quantifiers under increasing domains.

Recall (from 2.2.2) the content of the increasing domain constraint: if an object e exists
at world w and Rww0, then e exists at world w0, but the converse is not necessarily so. This
makes (74a) a strictly stronger statement than (74b).
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(74) a [K]8xP(x)
b 8x[K]P(x)

Both statements are true at w only when some set S of entities all share property P at
accessible worlds w0. The difference is that for (74a), S is D(w0) (the entities that exist at
w0) whereas for (74b), S is D(w). (74a) is stronger because D(w) � D(w0).

Now, we already have cause to view the temporal operators [N] and [H] as special kinds
of quantifiers: universal quantifiers ranging over the action transitions between temporal
states. Suppose then that we treat temporal states and action transitions as ordinary first-
order entities in a modal model subject to increasing domains. (That means each world will
specify a full and distinct branching structure of alternative futures.) Then the relationship
of the sentences (75) in the memory axiom will mirror the relationship of the sentences
(74).

(75) a [K][N]P
b [N][K]P

That is, on this assumption, memory—like deduction, veridicality and positive
introspection—will fall out of the model.

There is a certain paradox to this approach. The model postulates a single timeless
epistemic accessibility relation between worlds, yet nevertheless accounts for an agent’s
memory and the possibility for growth in an agent’s information. How can this work?

We can best see by considering the following simple example. Our hero knows initially
that the next action to affect the world will be taken by his arch nemesis and will be to
produce a penny, turned either to heads up or to tails up. Our hero doesn’t know which
will occur, nor does he know whether his nemesis will hide his action or not. In fact, his
nemesis cannot hide the action. Thus, after the action is taken our hero will know what his
nemesis did.

This scenario can be represented using a the model shown in Figure 7.1. Each dot in the
picture represents a state in a possible world; a common state, labeled 0, is the initial state
in each possible world. Arrows between dots indicate a transition relationship between
one state and another by some action; the labels of arrows indicate the correspondences
between transitions across worlds. In this case, we can read the action that the adversary
performs off the label (h or t) that indicates whether the penny is heads up or tails up the
resulting situation; each result is also labeled with a proposition p indicating that the coin
in question is a penny.

Each tree in the model represents a possible world; open dots represent parts of the
real world—the entire leftmost tree represents the alternative possible courses of reality.
The two rightmost trees represent epistemic alternatives to the real world. The nested box
structure is a reminder that these two worlds have each other as their only alternatives;
you cannot return to the real world once you have left it. As dictated by the increasing
domain constraint, the accessibility functions a and b reappear in each of these two worlds.
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Figure 7.1: Model of knowledge and action using reified temporal transitions

Moreover, as made possible by the increasing domain constraint, two new accessibility
functions, c and d, are introduced.

Suppose we start at point 0 in the real world. To determine that the agent will know
that his nemesis shows heads if his nemesis does show heads, we evaluate the formula
[N](h � [K]h). First we obtain all the worlds reachable by local temporal accessibility, 0; a
and 0; b. We narrow to 0; a, since h is true there, and consider its epistemic alternatives—the
states found along the path 0; a in all three worlds. Since h is true in all of them, the overall
formula is true.

On the other hand, to determine that the agent does not yet know this, we evaluate the
formula [K][N](h � [K]h). We find the epistemic alternatives, and consider the possible
temporal continuations in all of them: a and b applied to 0 in all three worlds, AS WELL

AS c and d applied to 0 in the two new worlds. Again, we eliminate the t worlds, leaving
the states reached by 0; a in all three worlds (where as we have seen our hero knows h) AS

WELL AS the states reached by 0; c in the second world and 0; d in the third. The epistemic
alternatives to these worlds include the states 0; c in the third world and 0; d in the second
world. In these worlds, h is false. So the whole sentence is false.

We can adapt the definitions of models and truth from section 2.2.2 to describe this
ontology in a variety of ways. The simplest is just to describe a modal logic whose first-
order component is sorted so that temporal formulas like [N]p (and if appropriate [H]p) are
interpreted as abbreviations for sorted first-order quantifiers.1

We briefly sketch the technical development of this approach now. We need separate

1An alternative would be to have multi-modal logic where modalities had different dimensions. The
advantage of this alternative would be to allow a first-order domain to be assigned to each state of each world
separately, so that the existence of entities could be restricted by time as well as by possibility. The disadvantage
of the alternative is that the corresponding mathematics is less well-explored.
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sorts for ordinary entities e, temporal states t, and temporal transitions (indexed when appro-
priate by temporal operators) ai. This sorting requires some extensions to the language—we
want a signature that includes a binary function symbol ; combining a state and a transitions
to yield a state and that assigns sorts to constant symbols and sorts for the arguments of rela-
tion symbols. Relation symbols will take all first-order arguments except for a distinguished
temporal state argument (which we continue to indicate by superscript terms).

The model tuple M = hW;R;D;Fi is interpreted with slightly more structure. D is
broken down into a set of functions De, Dt and Dai ; each associates worlds with nonempty
increasing sets of objects of the appropriate sort. We extend F to include a function
interpreting the elements of transition type as rigid designators for transitions between
states. The argument of this function will be a pair in [fDt(w)jw 2 Wg � [fDai(w)jw 2
W; i an operator g; its result will be an element of [fDt(w)jw 2 Wg. We also extend F so
that the interpretation of constant and relation symbols respects the sorts specified by the
signature. The semantics and truth-definition is otherwise unchanged.

We can define a translation to eliminate temporal operators as in [Ohlbach, 1991]. At
subterms, translation of p depends on a term t of type t and is denoted T(p; t). If 2 is a
temporal operator then T(2p; t) is 8xT(p; t; x) where x is a new variable not occurring in p
or t. Other logical and modal operators are unaffected; e.g., T([K]p; t) � [K]T(p; t). Atomic
relations make explicit their dependence on t: R becomes Rt. Using some a variable or
constant 0 for the initial state, we translate a formula p as T(p; 0).

Now, since [K] is an ordinary modal operator, reasoning with [K] is correctly described
for example by the proof rules given in Figure 3.10 in section 3.4.1:

Γ; [K]At;�;At;�x - ∆
Γ; [K]At;� - ∆ [K] ! (LV x:K)

Γ - [K]At;�;At;�f(X);∆
Γ - [K]At;�;∆ ! [K] (SK f(X):K)

(Recall that LV and SK abbreviate the steps taken to rewrite the sequent to introduce a new
logic variable or Skolem term.) The dependence on t anticipates that we can use proof rules
for temporal operators that combine the translation with ordinary first-order proof rules. Of
course, these look much like what we already have—for example:

Γ; [N]At;�;At;�t - ∆
Σ . Γ; [N]At;� - ∆ [N] ! (LV t:N(�))

Γ - [N]At;�;At;�f(X);∆
Γ - [N]At;�;∆ ! [N] (SK f(X):N(�))

The main difference is that we must now keep track of both the sort of a temporal transition
and the possible world where it first is known to exist.

Because the temporal model theory and proof theory is no different from that outlined
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in Chapter 6, we can continue to regard this ontology as describing time in a qualitative
way that promises to fits well with linguistic analysis. Since we also reason about [K] in
terms of paths of accessibility, we have a parallel ontology describing the evolution of the
agent’s information in a qualitative way. If anything, this ontology is even more natural for
information.

In [Stone, 1998], I go a step further and illustrate the double application of prefix
theorem-proving techniques for modal logic to this system. Both temporal and epistemic
modal operators are replaced by explicit quantifiers. After translation, modal reasoning
follows directly from the classical case.

The only trick in the translation is the handling of the increasing domains of individuals
across possible worlds. We use compound terms t@w where w names the world at which
the referent for t is first defined—the DOMAIN of t. This representation in fact mirrors
the constraint treatment of domain restrictions described in section 4.3. As arguments
of relations involving individuals and states, any constant symbol or free variable t is
immediately translated as t@w0, where w0 represents the real world. Bound variables are
assigned an appropriate domain as quantifiers are translated. This translation depends on
whether the quantifier is instantiated or Skolemized. At a world w, Skolemized quantifiers
introduce a term t@w that cannot be assumed to exist before w. So at Skolemized quantifiers
we replace (argument occurrences of) the old bound variable x by a new term x@w. Other
quantifiers are instantiated; at a world w they may take on any value t@u, provided that this
t exists at w (given it first exists at u). To meet the proviso, we must find a path u; v = w,
showing that u is a prefix of w, written u � w. So at instantiated quantifiers we replace the
old bound variable x by a new term x@u where u is a new restricted variable over worlds.

For completeness, the translation that we have just outlined informally is given precisely
in Figure 7.2. The translation turns a modal formula A into a classical formula [A]s0@w0;w0;�

depending on the initial state s0, the real world w0 and whether A is assumed (+) or to be
proved (-). It looks more complicated than it is: the translation just annotates terms and
quantifiers with explicit domains and annotates atomic relations with an explicit world and
state of evaluation. The translation requires us to reason with the equations

E � w; (� ? �) = w;�; �; w; 1 = w

Using this translation, a plan is just a classical deduction with the following conclusion:

E; [[K]T; [K]I]s0@w0;w0;+ - [can(G; k)]s0@w0;w0;�

7.2.3 Some other representations of knowledge and action

Prior integrated models of time and knowledge have not made available the streamlined
principles described in section 7.2.2. This section looks at two notable examples. We
begin with [Moore, 1985a]; Moore explicitly sets out to devise models that respect the
axiomatization of knowledge and time from section 7.2.1. Moore develops a logic where
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[R(t1; : : : ; tk)]d;w;� � R(t1; : : : ; tk; d;w)
[A ^ B]d;w;� � [A]d;w;� ^ [B]d;w;�

[:A]d;w;� � :[A]d;w;�

[[K]A]d;w;� � 8�[A]d;w;�;�

[[N]A]s@v;w;+ � 8�8u(u � w � [A]s;�@u;w;+)
[[N]A]s@v;w;� � 8� [A]s;�@w;w;�

[8xA]d;w;+ � 8e8u(u � w � [A[e@u=x]]d;w;+)
[8xA]d;w;� � 8e[A[e@w=x]]d;w;�

Figure 7.2: Translation [�]�;�;� to classical logic
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Figure 7.3: Moore’s model.

worlds represent snapshots of a possible history and are subject to different accessibility
relations representing knowledge and time. In this approach knowledge and time interact on
the same level of a model. At each moment in time, knowledge is described by a reflexive
transitive accessibility relation to alternative time-slices.

How the world w changes when action e is performed is represented by a new world
res(e;w), as in the situation calculus [McCarthy and Hayes, 1969]. This is reconciled with
modal terminology by requirement that there be a unique e such that he is true at each
world, and that there be at most one world w0 for each world w and each action e such that
w0 = f(w) for any f 2 AFn and he is true at w0.

In this setup, our simple scenario will be represented in terms of a model such as that
shown in Figure 7.3.

Moore’s basic ontology is consistent with forgetting. World 6 in Figure 7.3 shows this.
In world 0, our hero thinks that either world 0 or world 1 is possible; following a step of
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time, we discover that our hero thinks that any of worlds 2, 3, 4 or 5 could come next. In
all of these worlds p is true, so the agent initially knows that p will be true. On the other
hand, if the nemesis transforms reality to world 2, our hero will have one accessible world,
namely world 2 itself, where p is true, but another accessible world, namely world 6, where
q is true instead (the coin is a quarter, say). So our hero could forget p.

Therefore, Moore imposes an additional principle to guarantee memory. It is a com-
mutativity condition: anywhere you get by transitioning on time and then knowledge, you
could have gotten to by transitioning on knowledge and then time. Logically, for any world
w0 with K(a; res(e;w);w0), there must be a world w00 with K(a;w;w00) and w0 = res(e;w00).
World 6 doesn’t meet this condition, and gets crossed out. Moore’s condition takes the
model further from a free structure, and requires complicated equational reasoning to cap-
ture [Gasquet, 1993].

With the deletion of world 6, the model of Figure 7.3 captures the scenario fully. In
particular, note that world 2 is a world where our hero knows that h holds, world 3 is a
world where our hero knows that t holds, and worlds 4 and 5 are worlds where our hero
does not know which holds. Since worlds 2 and 3 are the real possibilities, our hero will
know which action his nemesis takes. But since worlds 4 and 5 are epistemic possibilities
for our hero, he doesn’t know that he will know.

Fagin, Halpern, Moses and Vardi present an alternative modal logic of knowledge and
time [Fagin et al., 1995]. It applies many of the same principles as Moore’s logic, but works
by combining knowledge with linear time rather than the situation calculus. Formally, each
model or SYSTEM is divided into a series of RUNS, each of which consists of a series of states
ordered on a linear time line. In their notation, (w; t) represents the state at time t in run
w. Because time is linear, each run specifies a unique and complete evolution of history.
However, many several runs may have compatible histories up to some later moment of
divergence. This gives the formalism a notion of branching: the choices of an agent or
nondeterministic events are modeled in terms ignorance about which run the system is on.

As in Moore’s proposal, an agent’s knowledge is represented by a time-varying acces-
sibility relation between points. Two points are related by K(a; (w; t); (w0; t0)) when agent
a cannot distinguish between its internal information in time t of run w and in time t0 of
run w0. On this view, K(a;�;�) must be an equivalence relation. Thought of in terms of
accessibility functions, this requires that each f 2 AFk be a constant function.

The picture this gives for our scenario is given in Figure 7.4, which follows the same
conventions as Figure 7.3. Now both world 0 and world 1 are represented by open circles,
because for all anyone knows before the nemesis acts, either run could represent the real
world. Given this characterization of reality, states 4 and 5 are the true possible next
states—just as two worlds are true possible next states in Figure 7.3. In each of these
two possible next states, our hero can see what his nemesis has done. In Figure 7.4, as
in Figure 7.3, there are additional futures that our hero thinks possible but which are not
actually possible. Those are the ones where his nemesis hides the coin from him. So
Figure 7.4 correctly reflects a case where the agent learns something unexpected, and does
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Figure 7.4: Fagin, Halpern, Moses and Vardi’s model

so in much the same way that Figure 7.3 does.
If Fagin, Halpern, Moses and Vardi’s model has a similar structure to Moore’s model, it

has similar drawbacks for our purposes. In particular, it happily accommodates cases where
the agents forget, as illustrated by the presence in Figure 7.4 by state 8. Once again, the
only option is to impose an additional, and possibly expensive, commutativity constraint to
implement perfect memory.

7.3 A New Abductive Presentation of Planning

In this section, we recast this DEDUCTIVE approach to planning as an ABDUCTIVE problem,
in which action occurrences are assumed as needed. The recursive definition of can already
outlines a sequence of assumptions with a common content: at a particular stage of action
and deliberation, the agent selects and performs an appropriate action. More precisely,
proving can(G; k) introduces, in lock-step with the introduction of temporal transitions,
action assumptions that all take the form

8�:h( ei@ui| {z }
real action

; ti@mi| {z }
real state

; mi; ai; �| {z }
known world

) (7:4)

Here ui � mi. mi represents the agent’s view of what is REAL when the action is chosen;
ti@mi is a real state introduced at mi by a goal quantifier; and ei is some real action.
Meanwhile, because the assumption is applicable at any world mi; ai; �, it can contribute
only to what is KNOWN at mi. By encoding the evaluation of a CONCRETE action for KNOWN

effects, this form concisely distills the notion of choice.
Because the assumptions are indistinguishable, we can make them as needed. Thus, we

can offer a purely abductive presentation of the proof search problem for building a plan to
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achieve G after k steps of deliberation and action. We simply prove ([K][N])k[K]G, making
action assumptions of the form in (7.4) where necessary. This abductive approach eliminates
ambiguities in proof search: there is only one way to assume a new action but there are many
ways to match a sequence of uninstantiated actions (assumed independently). It also helps
strengthen the connection between this theory and implemented planners: implemented
planners also add actions one by one, as necessary.

The derivation of this abductive characterization in part depends on how formulas are
represented using Skolem terms, logic variables and unification, according to a particular
theorem-proving technique. Not surprisingly, we prefer to follow a LOGIC PROGRAMMING

proof search strategy, as characterized in Chapter 3. In logic programming proofs, the
first actions taken are always to decompose goals; this matches the strategies of special-
purpose planning algorithms, and moreover allows modal operators in planning goals to be
processed by introducing fresh constants independent of actions. (On the use of constrained
constants for Skolem terms more generally, see [Bibel, 1982].) As we prove can(G; k) by
this strategy, the formula is decomposed level-by-level. Level n requires us to decompose a
goal translated from 9a[K]([K]ha � [N] : : :); the implication introduces a new assumption
of the form in (7.4).

This explains the source of the assumptions in (7.4). But is abduction sufficiently
restricted? Suppose an assumption instantiates the sequence ti to a particular time sj@wj.
Then ei first exists at some world ui � wj. If the assumption contributes to the ultimate
proof of G, moreover, ai can only equal �j. Thus the instantiated assumption could just as
well have been explicitly made in decomposing the formula can(G; k).

7.4 Key Examples

The last three sections have outlined a logical approach to planning based on an analysis
of an agent’s ability to choose. To plan, an agent describes its goal in a form that indicates
that the goal can be reached after a sequence of steps not only of action (corresponding to
temporal updates) but also of deliberation and choice (corresponding to modal transitions).
At each step, an agent must choose a concrete next action based on its known properties;
this restriction corresponds directly to constraints which distinguish the possible worlds
where actions and times are defined from the worlds where action assumptions can be used.

7.4.1 Run-time variables and knowledge preconditions

In this section, we first show how our framework allows the results of one action to provide
parameters for later actions—unlike [Levesque, 1996; Goldman and Boddy, 1996]. We
return to the example of the bomb-in-the-toilet, formalized as in figure 7.5. The agent
knows there is a bomb, knows it has a detector and knows it can dunk. The agent must
defuse something in two steps. (In figure 7.5, [H]p abbreviates that p is true indefinitely;
explanation closure axioms are omitted as this proof goes through without them.) This
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1 [K]9b:bomb(b)
2 9a[K][H]8x(bomb(x)^ ha � [N][K]bomb(x))
3 [K]8x9d[K][H](bomb(x) ^ hd � [N]defused(x))

Figure 7.5: Bomb-in-the-toilet with detector.

translates into the goal:

defused(b(�)@w0;�; s0; � ; � 0@w0;�;�0; w0;�;�0; �)

b(�) Skolemizes b; other first-order terms will be Skolemized similarly; here, b(�) could
also be found by unification during proof search. The proof requires two actions:

8�:h(a@w0; s0@w0; w0;�; �)
8�:h(d(�; b(�))@w0;�; s0; �@w0;�; w0;�;�0; �)

The first assumption considers the result of the immediate real action a of using the detector,
assessed in worlds w0;� compatible with what we know initially. The second assumption
considers the result of dunking the hypothetical object b(�)—a real action in world w0;�—
in worlds w0;�;�0 compatible with what we know after one step. The reader can readily
flesh out this proof along the outlines suggested earlier, after first computing the translation
and Skolemization of the clauses of figure 7.5.

Note how we represent the choice of dunking b(�) directly. The agent will learn from
using the detector that b(�) is a bomb; the proof relies on the fact that the agent has
this knowledge. Encoding this into the proof is enough—for, as we saw earlier, this is
enough information to allow the agent later to extract what to do, by matching its concrete
knowledge against the abstract knowledge the proof supposes. So we need not describe the
dunking, as do [Moore, 1985a; Morgenstern, 1987; Davis, 1994].

A comparison is instructive with a representative implemented planning language with
similar plans, SADL [Golden and Weld, 1996]. In SADL plans for such examples, sensing
introduces a RUN-TIME VARIABLE storing the observed value; these run-time variables can
be then appear as arguments to later actions. The terminology suggests some inherent
departure from logic. On the contrary, such variables correspond exactly to Skolem terms
like b(�), naming new abstract entities that exist only at remote worlds. Recognizing this
logical status for run-time variables explains why such variables are treated existentially and
why—in view of the “knowledge precondition” that only concrete actions can be chosen—
they can serve as parameters only to actions chosen in future deliberation. At the same
time, it confirms our contention that an agent’s internal representation of its future actions
need not be a timeless, abstract description of that action.
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4 [K]8sv9o[K][H](closed(s)^ combo(s; v)^ ho �
[N][K]open(s))^

[K][H](closed(s)^ :combo(s; v) ^ ho �
[N][K]closed(s))

5 [K](closed(d0))
6 [K]([H]combo(d0; n0) _ [H]:combo(d0; n0))
7 [K]8s[H]:(open(s) ^ closed(s))

Figure 7.6: Safe problem

7.4.2 Knowledge preconditions for actions and plans

The next example shows, as [Golden and Weld, 1996] argue, that actions may have to be
performed with different knowledge in different circumstances. However, it also shows that
this variation is a natural component of a logical approach to planning—not an argument
against it.

Consider a domain with a safe. If the agent dials the combination to the safe, the safe
patently opens; if the agent dials something else, the safe patently remains closed. The safe
starts out closed, has a constant combination, and can’t be open and closed at once. We
formalize the situation in figure 7.6. Suppose the agent wants to open the safe d0 in one
step—in our theory, to build this plan requires proving:

open(d0@w0; s0; �@w0;�; w0;�;�0)

This cannot be proved abductively unless the agent knows the combination to the safe.
Let’s add that assumption:

9v[K]combo(d0; v)

Then we can assume the real action of dialing this combination for assessment according
to what the agent knows:

8�:h(o(1; d0; v)@w0; s0@w0; w0;�; �)

This allows us to complete the plan straightforwardly, by applying the first rule of clause 4.
By comparison, suppose the agent merely wants to determine in one step whether

the combination to the safe is n0 or not. This goal is represented in modal logic as
[K]combo(d0; n0) _ [K]:combo(d0; n0). It translates into a planning problem to prove

combo(d0@w0; n0@w0; s0; �@w0;�; w0;�;�0; �)_
:combo(d0@w0; n0@w0; s0; �@w0;�; w0;�;�0; )

This is a weaker statement than the goal for the previous problem—for starters, it contains
disjunction. We can prove this abductively—without assuming knowledge of what the
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combination of the safe is—by considering the known consequences of attempting to dial
n0:

8�:h(o(1; d0; n0)@w0; s0@w0; w0;�; �)

The proof is interesting. At world w0;�, we perform the case analysis licensed by clause 6,
and consider separately what happens when the combination is right and when it’s wrong.
In either case, we prove our goal by ANTICIPATING our ability to EXPLAIN the observed
results of dialing the combination. For example, suppose we have the combination right.
Then by clause 4, we can derive the safe’s opening as part of our final knowledge:

open(d0@w0; s0; �@w0;�; w0;�;�0; �)

Now, we perform the case analysis licensed by clause 6 afresh at world w0;�;�0; �: we
have seen the door open, what will we then think about the combination? If the combo is
right, we know the combo is right; that takes care of the first case. But the combo cannot
be wrong: we could apply clause 4 to conclude

closed(d0@w0; s0; �@w0;�; w0;�;�0; �)

(As known facts, the occurrence of the action and the initial closure of the safe remain
available.) But this is impossible by clause 7. By parallel reasoning, we can show that if
the combo is in fact wrong, after acting we will know it.

7.5 Summary
In this chapter, we have added an ontology of qualitative transitions in information to the
ontology of qualitative temporal transitions presented in Chapter 6. This extension allows
an agent to calculate reasons for present action that take into account the new choices the
agent will be able to make in later states. The development of this extension has been dense.
However, a summary will emphasize the continuity of the planning framework developed
here with that developed in Chapter 6.

In both cases, plans are proofs that record the causal connections by which an agent can
choose actions to fulfill goals. In both cases, the proofs introduce the goal as a conclusion to
be derived after a series of steps. Now those steps are recorded both in a sequence of action
transitions that describe how physical actions contribute to the goal and in a sequence of
epistemic transitions that describe how steps of deliberation and choice contribute to the
goal. Each goal and conclusion in the proof is labeled by sequences of both types. These
parallel kinds of entities provide an abstract ontology for planning.

In both cases, the proofs begin by allowing a domain theory and a set of initial conditions
to be used as assumptions. Then they allow action statements of a special form to be assumed
to represent what the agent will do as part of the plan. As in Chapter 6, the form of these
assumptions guarantees that a concrete action is always chosen, in that the parameters of the
action can and will be settled by deliberation before the action takes place. We check this
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by enforcing the temporal and first-order entities in the action to take concrete values—as
represented by the earliest world where they are known to exist—in the step of deliberation
when the action is considered—represented by a more distant world (containing additional
new, abstract objects).

In Chapter 6, we were able to provide a detailed reconstruction of the data structures,
operation, and expressive power of implemented planners. By contrast, the planning
framework developed in this chapter has substantial gaps. We can regard the abductive
scheme of section 7.3 as providing a way to construct arguments about the consequences
of the action and deliberation of a single agent. To match the presentation of Chapter 6,
we should also provide and validate a system for reasoning correctly but defeasibly using
these arguments. This remains an important topic for future work.



8
Modular Specifications of Knowledge

The modal account of planning with information-gathering presented in Chapter 7 depends
on the modularity of modal logic, as follows. The account describes how an agent’s actions
are determined by successive stages of deliberation. Modularity is used to isolate these
stages of deliberation. By introducing each stage using a strongly modular modal operator,
the account ensures that any deliberation makes recourse only to the information that the
agent has at that stage, and that any deliberation can only impact future decisions.

We saw in Chapter 3 that modal operators are useful not only to correctly describe a
domain, but also to encode knowledge about the structure of proofs and proof-search in
a domain. Viewing the treatment of planning from Chapter 7 as an example of a modal
description of a domain, then, suggests that this description could be augmented so as
to specify the structure of and search for plans more precisely. This chapter presents
some speculations about how this might be done, drawing on an analogy between modular
specifications and the HIERARCHICAL specifications of actions and plans commonly used in
practical planners.

The planning formalisms of Chapters 6 and 7 allow only one general way to achieve
a goal, namely, to orchestrate appropriate circumstances for the execution of multiple
actions by sequencing actions together. Because of this uniform structure, these plans
can be described as FLAT. In hierarchical planning, the task of achieving a goal can be
accomplished by another strategy: the task can be recursively decomposed into a series
of smaller problems at a lower level of abstraction. Representative hierarchical planners
include NOAH [Sacerdoti, 1975], SIPE [Wilkins, 1988] and O-PLAN [Currie and Tate, 1991].

Hierarchical planning offers improvements in search along at least two dimensions.
First, the set of actions required to perform an action can be specified directly in a hier-
archical decomposition. This can avoid the search a flat planner takes to identify these
actions by backward chaining through their effects and preconditions. Second, in many
cases, hierarchical planners are designed to solve subproblems independently. Because
the interactions among subproblems are limited, hierarchical planners can avoid much of
the search for possible threats and threat-resolutions that a flat planner would carry out to
reconcile sets of actions with one another. These advantages for search make hierarchical
planning very attractive.

In this chapter, I establish the link between hierarchical planning and modular specifi-
cations by looking closely at the knowledge that must underlie a hierarchical plan. Recall

203
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from Chapter 6 that any plan should reference the causal generalizations that allow the
plan to work; this causal structure is required to allow plans to play a broad role in an
agent’s deliberation. For hierarchical plans, this knowledge must in part establish causal
relations between actions at different levels in the hierarchy. Pollack was the first to point
this out, in her work on the knowledge attributed to agents in virtue of their plans [Pollack,
1990]. A modular structure is imposed on plans in deriving a proof in modal logic that
these requirements are satisfied. Because such plans exploit the modularity of modal logic
in a new way, this formalization of hierarchical plans can result in exponential reductions
in the size of the proofs that represent plans and the complexity of finding them.

By connecting with logical modularity, this reconstruction of hierarchical planning re-
tains both of the improvements (introduced above) that hierarchical planning can provide.
In contrast, previous proposals for hierarchical extensions of flat planners [Yang, 1990;
Young et al., 1994; Barrett and Weld, 1994] accommodate only the first potential improve-
ment in search. These proposals essentially build ordinary flat plans, and treat hierarchical
decompositions as restrictions on the search space that constrain which actions may appear
in the plan, and which order actions may appear in. These restrictions in search do not
allow these planners to attack subproblems independently, however. All pairs of actions
must still be checked for possible interactions. This compromises these planners’ ability
to capture the full intended effect or the full empirical advantages of hierarchical action
decompositions.

8.1 Motivating Hierarchy
HIERARCHICAL plans are plans in which the actions to be taken are specified at various
LEVELS. Clark provides a handy example ladder of actions at different levels ([Clark,
1996], p. 147):

(76)

Level Action in progress

5 A is getting an “up” elevator to come
4 A is calling an “up” elevator
3 A is activating the “up” button
2 A is depressing the “up” button
1 A is pressing the right index finger against the “up” button

In this ladder, terms at higher levels factor out or presuppose causal connections that lower-
level terms encode explicitly. In this sense, actions at different levels are distinguished by
the abstraction of the causal reasoning which governs them. In Clark’s example, the basic
level 1, with pressing, describes the action only at the level of the primitive forces applied
in the action. The next level, with depressing, packages the event at a coarser granularity,
which explicitly signals the kinematic change that the force is intended to bring about.
Level 3, with activating, describes an intended change to the internal state of the button and
abstracts away from the movement that triggers that state change. Level 4 abstracts further,
describing the action in terms of its intended effect on the internal state of the elevator
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system as a whole. Finally, level 5 describes the action as it affects A’s intended interaction
with the elevator system.

Organizing actions in hierarchical levels as in (76) seems to help people plan and carry
out more complicated tasks. Writing computer programs is a good example. The program-
ming practice of modular design involves breaking down large tasks into successively more
fine-grained ones, in just this way. The ultimate result of this process is a complete program
with a modular, hierarchical structure. The hierarchical structure allows lower levels of the
implementation to be encapsulated, providing an interface to some needed functionality but
hiding how that functionality is actually achieved. This encapsulation enables programmers
to construct programs more easily, and to make those programs easier to debug, maintain
and extend.

In programming—and in deriving and maintaining large plans, generally—a crucial
contribution of hierarchical organization is to constrain the interactions among actions
that are possible in a large plan. Let us review why interactions cause problems, and
consider why we might want to eliminate the possibility of interactions by strengthening
the specification of a planning domain.

The formal accounts of planning presented in Chapters 6 and 7 involve two difficult
cases for managing interactions among actions. Threats to plans, as arise when one action in
the plan interferes with the desired effects of another, are one computationally problematic
case. As described in Chapter 6, detecting threats requires an exhaustive examination of the
possible consequences of each action in the plan. And resolving threats requires adopting
further constraints on the plan in one of several ways that must be explored nondeterminis-
tically. Meanwhile, choices in plans, as arise when an agent’s partial information about the
world will be resolved in one of several different ways, also induce explosive interactions
among actions. In conditional plans, interactions can induce dependencies among choices.
In general, any choice can influence all subsequent ones; thus, when there are multiple
choices to make, the size of the plan will grow exponentially in the number of choices.

The search problem associated with these interactions can be eliminated by specifying
the independence of actions and decisions in advance as part of the domain. In particular,
organizing actions into levels signals such independence by abstracting and encapsulating
key features of causal reasoning. In assessing whether sets of actions can be executed in
a consistent sequence, a planner can avoid searching for potential threats when the actions
have been specified as independent. (At the same time, of course, it avoids search to resolve
threats too.) In a hierarchical action domain, for example, actions might be specified as
independent in this way when they contribute to orthogonal subtasks of a decomposed
high-level action; thus, the planner can avoid considering threats that cross subtasks.
Similarly, in planning for partial information, the planner need not propose decisions that
take all previous decisions into account—it can restrict itself to independent decisions that
are made on the basis of restricted or encapsulated information. In a hierarchical action
domain, decisions that arise in one subtask may specified as independent from decisions
that arise in other subtasks. Then the flow of control of the plan can be collapsed from a
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single large and nested branching process to a sequence of small decisions.
When considering ways such as these to streamline a planner’s response to interactions

within a plan, it is vital for any independence in the domain to be explicitly specified. For,
the mere possibility of interaction among actions—whether as threats or as dependencies in
choice—directly impacts the search space for planning. A search space that takes account
of potential interactions remains large even when actions happen not to interact. So, an
organization of actions into levels can signal independence by abstracting and encapsulating
key features of causal reasoning—it can thereby lead to more tractable planning problems—
but this organization can do so only if this independence is an explicit part of its content.

We close this section by considering how these arguments play out in a concrete
example. Consider subway travel in New York City. Certain lines run two kinds of trains in
the same direction on parallel tracks. On one side of the platform, local trains come; on the
other side of the platform, express trains come. For many destinations, you can take either
kind, and the sensible thing to do is just to take the first train that arrives. Suppose your
journey might involve a number of changes in lines, and you wish to codify your policy for
getting on trains into a plan. (As a tourist in a big city, one may, at the very least, derive
some considerable peace of mind from a conclusive demonstration that one will reach one’s
destination.) Without knowledge of what choices interact, this plan must be constructed by
first supposing that the express train comes first and planning the remainder of the journey
in that case, and then supposing that the local train comes first and planning the remainder
of the journey in that case. As the plan extends from stop to stop, it grows exponentially in
size.

In this example, however, it is obvious that choices cannot interact in the way this
plan allows for. The decision criteria you adopt in selecting the local or express train at a
particular station are independent of the choices of trains you took on previous legs of the
journey.

Informally, a hierarchical specification of actions in the subway gives rise to a planning
strategy that respects this independence. Suppose the domain describes two levels of
action. One level describes the high-level actions of getting from one station to another.
Elaborating a plan for a journey at this level means outlining a sequence of legs leading
you through a sequence of station stops and line changes from your current position to
your final destination. The other level describes the lower-level actions and decisions
involved in finding an appropriate platform in each station, and in deciding on, boarding,
and disembarking from an appropriate train. Each leg of the journey can be expanded into
a conditional plan that sequences these lower-level actions together. In particular, part of
each plan could include a decision to take the first train—local or express—that arrives at
the platform while you wait there. Once the plans for the lower-level goals are included at
the appropriate spots in the higher-level plan, one arrives at a detailed prescription for the
whole journey. But because this plan has been built so as to respect the independence of
local decisions, the size of this plan grows linearly with the number of legs in the journey.

The most salient feature of this hierarchical reasoning is its use of DECOMPOSITION
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to transform the problem of planning a journey into a series of problems of planning
smaller legs. More generally, in decomposition, actions are fleshed out level by level
and the domain rules specify directly what should be the SUBACTIONS of each action—the
actions at the immediately lower level that contribute the it. Specification and reasoning
about decomposition is characteristic of hierarchical planning; the research of [Young et al.,
1994; Barrett and Weld, 1994] presents alternative methods of implementing decomposition
in formal, partial-order planners. In [Young et al., 1994], operators can directly specify
a decomposition whose effect is to add additional actions, preconditions and effects to
the plan under construction. Apart from a requirement to realize the intended higher-
level action, these actions, preconditions and effects are subject to ordinary plan reasoning
(including search for threats). In [Barrett and Weld, 1994], ordinary action specifications are
complemented by a context-free specification of possible plans against which any possible
plan must be parsed. Parsing the plan corresponds to recognizing how decomposition could
in fact sequence the actions in the plan. Again, actions at lower levels in different subtasks
may interact arbitrarily.

In the subway plan, decomposition can show a system that its plan for a journey across
town should consist of a series of plans for legs, where each leg describes a trip between
stations on a single line. But this in itself does not distinguish a large tree-like plan in which
decisions about trains interact from the smaller linear plan with independent decisions.
In fact, the fully branching plan will still specify how the journey is to be broken up—
conditionally—into a series of legs. Thus, any execution trace of this branching plan will
consist of a sequence of actions that can be grouped according to the decomposition.

What allows the subway plan to be kept concise is that the decomposition not only
specifies subtasks to perform but specifies how those subtasks do and do not interact. The
planner must know not only that a subway journey can be accomplished by a sequence of
legs of travel along a single line but also that each leg of travel stands on its own. Choices
made on that leg of the journey are independent of others, and need neither be anticipated
nor remembered. Since other accounts of hierarchical planning, like [Young et al., 1994;
Barrett and Weld, 1994], do not model this independence, one might expect this feature of
specifications to be very difficult to represent. Fortunately, we shall find otherwise: once
the relationship of actions at different levels in a hierarchical specification—as an agent
must rely on it in planning—is spelled out precisely, it naturally allows planning problems
at lower levels to be attacked by independent, modular search.

8.2 Hierarchy and Causality
Recall from Chapter 6 that complete plans include the causal connections by which actions
achieve their intended effects. In particular, a plan which contains a ladder of actions
must specify the causal connections among actions at different levels. So the first step
in describing a hierarchical plan is to describe this causal connection. We provide such a
specification in this section.

The relation between actions in a hierarchy is known as GENERATION [Goldman, 1970]—
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or more properly conditional generation. Pretheoretically, generation names the relation
that holds between an agent a’s low-level action l and a’s high-level action h when the
statement a did h by doing l holds. This kind of statement indicates not only that a did l
and that a also did h; it indicates that there is some systematic, general regularity in the
world that leads from occurrences of l to occurrences of h. The notion of CONDITIONAL

GENERATION makes the grounds or conditions for this regularity explicit.
Formally, Goldman characterizes a conditional law-like relationship between l and h in

part using the formula in (77).

(77) 9C:C ^ [H](C ^ hl � hh)

(Here we have reformulated Goldman’s requirement to use the notation introduced in
Chapters 6 and 7.) The formula identifies a proposition C which holds at the current time
and about which we can make a further general statement. At any other time (here for
economy restricted to the future using the operator [H]), if those conditions were to hold,
and l were to occur (hl), then h would also occur (hh).

The condition in (77), which we abbreviate by CGEN(h; l; s), must be further refined in
order to describe a real law-like relationship between l and h. In fact, if l and h both occur,
(77) can be verified just by taking C to be the implication hl � hh. So we have not ruled
out a purely accidental relationship between l and h. Apparently the choice of C must be
restricted so that C includes only the kind of information about the present situation on
which law-like generalizations can be based.

Goldman accomplishes this restriction by defining conditional generation in terms of
(77) and a pair of further components. These are: first, if the agent had not done l, the
agent would not have done h; and second, if C had not obtained, then the agent would not
have done h despite doing l. To motivate the first requirement, Goldman considers the case
of piano-playing that puts Smith to sleep but awakens Brown. The piano-playing should
conditionally generate both results, but awakening Brown should not generate putting
Smith to sleep. Formally, it could, if the conditions C could specify that the only kind
of Brown-awakening that might occur at the relevant time is the piano-playing kind. The
first additional requirement patches the gap. If Brown had stayed asleep Smith still could
have fallen asleep too. After all, the piano piece could have been a mellower one. We can
describe the effect of the first requirement as ensuring that C is not so specific as to explain
h not based on l but instead based on inappropriate features of what actually happened.

To motivate the second requirement, Goldman considers the problem of the DIRECTION

of conditional generation. There is no bound on how specific we can make C. So suppose
the conditions C could be specified so precisely that, given C, the occurrence of l was
EQUIVALENT to the occurrence of h. Then Brown-awakening would generate piano-playing
just as surely as piano-playing generated Brown-awakening. The second counterfactual
rules this out, because even if this stronger C didn’t hold (but some weaker regularity did),
the agent could have done both l and h. So this requirement forces C to be weaker than the
conditions of this extreme example—indeed, it forces C to be as weak as possible. Only
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then will it be true that S could not have done h by doing l WITHOUT C.
If we see Goldman’s definitions primarily as ways to constrain C, we are free to

accomplish the restriction by other means than the addition of counterfactual clauses.
We need only a logical expression that holds of a proposition C when C provides a true
characterization of the situation in which l and h take place, in terms of appropriate features
that establish a law-like relationship between l and h. In the setting provided by our earlier
study of the use of modal logic to structure common-sense specifications, a natural avenue
is to rely on modality to supply such an expression: 2C. We regard 2 here as indicating
the context or module in which the relationship between l and h is assessed.

To make sense of this idea, let us recall from Chapter 2 the link between modality and the
modular or contextual structure of a body of knowledge. Suppose we intend to evaluate a
specific query Q in a system for common-sense inference, and want to more directly control
the performance of a system and the results it finds. We can accomplish this by restricting
the premises which the system can access in evaluating the query. One approach is to divide
up the system’s knowledge into modules, as in modal logic programming [Miller, 1989;
Giordano and Martelli, 1994]; another approach is to divide the knowledge into contexts or
microtheories, as in [Guha and Lenat, 1990; Guha, 1991]. With these strategies, we allow
the system to use only facts from applicable modules or contexts when proving the query.
As suggested in Chapter 2, we can leverage such ideas by viewing the query as a modal,
modular query 2Q and then specifying selected premises in the form 2P, to indicate that
they alone can be applied towards this modular query.

To review: Goldman’s generation relation requires us to identify a restricted class of
information to use in assessing the hierarchical relationship among actions. We need to
identify all and only the conditions C that support a law-like relationship between low-level
and high-level actions. But to structure any common-sense knowledge base, we already
expect to make use of contexts or modules, whose function is to restrict the premises that
are available to the system when assessing common-sense relations like causality. This
modularity is already organized to group together the factors in a situation that support
causal generalizations. So we can factor this structure into our treatment of the generation
relation between actions.

To elucidate, it is illustrative to follow CYC’s terminology of microtheories and consider
the use of microtheories in inference. The general flavor is given by Guha’s description of
different microtheories that might be used when modeling a device with multiple compo-
nents [Guha, 1991, p. 117ff.]. We are given a query about the device’s behavior. Based on
the query, we recursively construct a problem-solving context which provides a specialized
microtheory of the device. Constructing the theory involves ignoring or abstracting some
components of the device, ignoring and abstracting some behaviors of the components, and
considering only causal properties of the components and behaviors that are relevant to the
query.

Such a specialized theory naturally brings to bear exactly the regularities and features
of the device that impact the query. This theory is identified modally (or contextually)
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as a set of facts of the form [PSC]A. Now, suppose that the query describes a possible
generation relation between a lower-level action and a higher-level action. We can now
formulate this query as simply as [PSC](hl � hh). By assessing the query with respect to this
specialized microtheory, it is as though the microtheory supplies precisely the background
C for conditional generation. Grounding C in independent causal knowledge gives a way to
avoid the overly weak or overly strong conditionalizations for which Goldman introduces
his additional counterfactual conditions.

We can abstract away from Guha’s notions of constructing a problem-solving context,
and restate this idea purely at the level of the modal logic of structured specifications. We
describe an agent’s knowledge of the world in terms of a series of SOURCES OF INFORMATION,
each of which is represented by a modal operator. Each fact that an agent knows comes
with a specification of the source or sources of information from which it has been or can be
obtained. For example, a fact about the agent’s environment that it learned through visual
perception would be recorded as a result of this perceptual source. More interestingly,
causal laws are partitioned based on the experience, training or institution from which the
agent derived its knowledge of those laws. By relating the operators associated with these
kinds of information by inclusion axiom schemes, we can specify useful combinations of
facts. In particular, for each type of high-level action we can assume a source that combines
the various kinds of information needed to relate that high-level action to its low-level
realizations. By combining this type of information with information that specifies the
events that actually occur, we obtain a complete specification of the causal interactions.

Notate by [K]h the agent’s source of knowledge to be taken into account in determining
the relation of action h to lower actions. Then the condition that the agent knows that h is
conditionally generated by l in s simplifies to (78)

(78) [K]h(hl � hh)

Here, instead of existentially quantifying some proposition C—subject, as we have seen, to
further conditions—and asserting it of an arbitrary accessible situation, we identify C as the
totality of information available in the present by knowledge-source [K]h. Since we thus
obtain a restricted characterization of the current situation, there is no need to introduce
an arbitrary alternative one. Moreover, we can eliminate the need for Goldman’s further
restrictions on C by setting up [K]h in the right way.

To see this, let’s return to Goldman’s piano example. To determine what generates
changes in sleep, we invoke the theory of sleep and the relevant factors about sleep available
from the knowledge-source [ZZZ]. In Goldman’s example, as the piano-playing is about
to begin, this source includes facts such as: that Brown sleeps while Smith is awake; that
Brown is disposed to hear piano music as an engaging disturbance while Smith is disposed
to hear it as a soothing rhythmic sound; and that their dispositions will lead to the expected
changes in wakefulness upon the initiation of piano-playing. Formally, if simply, we might
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have:
[ZZZ]sleeps(brown)
[ZZZ]wakes(smith)
[ZZZ][H](h(piano) � h(bugs(brown)))
[ZZZ][H](h(piano) � h(soothes(brown)))
[ZZZ][H]8x(h(bugs(x)) � [N]wakes(x))
[ZZZ][H]8x(h(soothes(x)) � [N]sleeps(x))

It is a logical consequence of this that that the piano wakes Brown up:

[ZZZ](h(piano) � [N]wakes(brown))

and that the piano puts Smith to sleep:

[ZZZ](h(piano) � [N]sleeps(smith))

(Equivalently, by considering a wider source of information [ZZZR] that includes both our
theory of sleep and the real event of piano playing that in fact happens here, we derive
[ZZZR][N]wakes(brown) and [ZZZR][N]sleeps(smith).) Now, the specification itself identifies
what the conditions C should be for this judgment of generation, namely

V
p[ZZZ]p. Thus,

as long as the theory of sleep and current data give no role to one person’s waking in
enabling another’s sleep or vice versa (as it will not), the judgments of generation under
the conditions thus identified will fall in line with both Goldman’s additional tests and with
naive judgments.

Why, meanwhile, does the sleeping not generate the piano-playing? Again, what
generates piano playing is computed according to a theory of musical performance and
relevant data in the current situation, as captured by a knowledge-source [[]]. This source
provides that our pianist, John, intends to play a certain piece and has some requisite skill;
and that anyone who hit the keys similarly would indeed play the piano. Formally, if simply:

[[]]musical-intentions(john)

[[]]piano-skilled(john)
[[]][H]8x(musical-intentions(x)^ piano-skilled(x)^

h(hits-keys(x)) � h(plays-piano(x)))

So it is hitting the keys that generates playing the piano. And as long as the wakefulness
of the audience does not figure in [[]] (as it will not), there can be no counterintuitive
judgments of awakening generating piano-playing.

8.3 Knowledge, Hierarchy and Choice
We now have a natural modal formalism for the causal connections between hierarchical
levels of actions. We need to integrate this formalism into the framework introduced in
Chapter 7 for describing an agent’s knowledge and choice. Recall that this framework is
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based on a recursive definition of an agent’s ability to achieve a goal G in some number k
of steps of decision and choice:

can(G; 0) � [K]G
can(G; n + 1) � 9an[K]([K]han � [N]can(G; n))

This definition describes a series of sequenced choices of atomic actions. Further knowledge
is required when actions in the plan are taken at different levels at different times. [Pollack,
1990] arrives at a characterization of this knowledge from the beliefs people must assume
to underlie one another’s hierarchical plans, given their contributions to dialogue. Pollack
argues that when people adopt a plan for doing h by l, they know that l conditionally
generates h. In fact, they typically assume a generating expansion of h all the way down
to atomic actions. Of course, it may be useful for an agent to commit during deliberation
to a plan that counts as partial under this definition—perhaps as an intention to perform a
specific high-level action [Bratman, 1987]. However, Pollack gives examples of dialogues
that show that quite detailed planning decompositions are assumed by conversationalists.

Why should agents need to establish knowledge of generation as part of knowing that
their plans will work? The different abstractions of causal knowledge involved in generation
suggest an answer. Each sequence of high-level actions represents some abstract changes in
the world, but obliterates the more concrete changes of lower-level actions. Such abstraction
might be designed to suppress irrelevant changes, or to allow the concrete realizations of
successive hierarchical actions to be described by different properties and relations whose
mutual impact can be left unspecified. To ensure that a hierarchical decomposition will
work, an agent must know that the low-level sequence accomplishes the intended abstract
effect no matter how these unknown lower-level details are resolved. This is nothing other
than the knowledge of generation just presented.

To formalize this recursive requirement of expansion, we want to define a predicate
spec(h) which is true when the agent can fully specify how to carry out h. The base case
is when the agent knows that h is an atomic action in the agent’s repertoire. To handle the
recursive case, it is convenient to specialize the definition of generation presented in (78).
We assume that each high-level action h is defined in terms of some condition Fh that we
plan h for. We will leave any causal connection between h and Fh implicit in the pragmatics
of planning (if Fh is already true, why plan h to achieve it?), and define:

hh � [N]Fh

Fh complements the specification of a source of information [K]h that describes information
to be taken into account for h. Both specifications can be encapsulated in the following
clause defining what it takes do flesh out h:

(79) [K]complex(h) ^ [K]h9n:can(Fh; n) � SPEC(h)

This just says that the agent knows that h is complex, and has a plan—at the lower level of
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abstraction governed by the modular theory [K]h—to achieve the result of h Fh.
The overall definition of spec is thus:

[K]atomic(a)_ ([K]complex(a) ^ [K]h9n:can(Fh; n))

Finally, we revise the definition of can to reflect the requirement of specifying the component
actions:

can(G; 0) � [K]G
can(G; n + 1) � 9an(spec(an) ^ [K]([K]han � [N]can(G; n)))

Inspection of these definitions reveals that they call for hierarchical relationships not
only among the actions but also among the causal theories governing them. Each barrier
between one level of action to the next lowest one imposes a restriction on available
information. Treatments of levels are nested, so the barriers of information accumulate
as deeper levels are examined. Lower-level theories must therefore be included in the
information that can be taken into account in higher-level theories. The reader should bear
this in mind.

8.4 Modality, Modularity and Disjunction

We now have a logical characterization of hierarchical planning. The question to ask is
whether this characterization supplies information about interaction that can be operational-
ized to reduce the size of proofs. This section invokes our earlier study of modal proof
theory and logic programming to show that the answer is yes. The key reason is that our
new specification of planning invokes strongly modular modal operators in two ways in
building plan proofs. We retain the modal operators that segment the stages of deliberation
in which an agent makes successive choices at one level in the plan. But we also introduce
nested modal operators to implement the definition of conditional generation when expand-
ing actions. This added modular structure breaks up what would otherwise be a single
flat sequence of stages of choice into independent subsequences, in just the way suggested
above by our informal discussion of planning for the subway. Indeed, the two subsections
of this section are organized so as to present that subway example in its full formal detail.

8.4.1 The construction of a conditional plan

We begin by considering the plan for a single leg of the journey. The domain is described in
Figure 8.1. Here we have class of situations in which a conditional plan may be necessary
to achieve the goal of moving to the next station. We use exp to represent the condition
that an express train comes first and loc to represent the condition that a local one comes.
For now, we will build a flat plan; however, the use of the modality [TRAIN] to encode
a source of the agent’s knowledge anticipates use of the specification in the hierarchical
setting. Since the plan involves two steps, the planning problem corresponds to the formula
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1 [TRAIN][H](exp _ loc)
2 [TRAIN][H](exp ^ h(look) � [N][TRAIN]exp)
3 [TRAIN][H](loc ^ h(look) � [N][TRAIN]look)
4 [TRAIN][H](exp ^ h(take-exp) � [N][TRAIN]g)
5 [TRAIN][H](loc ^ h(take-loc) � [N][TRAIN]g)

Figure 8.1: Domain specification for conditional planning

can(g; 2), abbreviated for flat plans to the following statement:

9a[K]([K]ha � [N]9a0[K]([K]ha0 � [N][K]g)

This formalizes that you know what action a to do, such that after doing a you will know
what action a0 to do, such that doing a0 achieves g.

The solution to the problem is a plan to test whether exp or loc is true using look,
and then if exp is true doing take-exp and if loc is true doing take-loc. The formal proof
corresponding to this solution goes as follows (from the perspective of the agent who will
execute it). We show there is an a by using witness look. Consider only what I know, but
assume also that I know I will look. I know either exp or loc is true by (1); consider the
cases separately. In the first case, if exp, then after I look I will know exp. Thus there is a
b, namely take-exp such that I know that take-exp achieves g. For, considering only what I
know, assuming I know I take-exp, I use rule (2) to establish that (I know) I achieve g. In
the second case, if loc, the same reasoning applies for take-loc.

The role of knowledge is to force the disjunction between exp and loc to be treated
in the scope in which the test look is assumed. If the disjunction is used at root scope to
describe the real world, it does not make available the premises on which look depends,
because those premises must be part of the agent’s knowledge.

The analysis of knowledge preconditions uses the modularity of S4 modal logic to
link the scope in which alternatives are considered, the scope at which testing actions
are assumed, and the scope at which the results of the tests are used to make decisions.
The modular structure induced by proving a plan correct does not create a modular plan,
however. The results of a test make an ambiguity known only within a scope, but in fact
all subsequent actions in the plan are nested within that scope, so arbitrary interactions
remain possible. This is precisely where the difference will arise from the encoding of a
hierarchical plan.

8.4.2 The construction of a hierarchical plan

To describe a space of hierarchical planning problems, we can combine the rules in Fig-
ure 8.1 with those in Figure 8.2. An overall journey is now described as a sequence of
transitions of type go(x,y), following links, that get you from at your start to at your des-
tination. We associate the action go(�;�)—defined as complex by clause 11—with the
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6 [K]at(p1)
7 [K][H](link(p1; p2))
8 [K][H](link(p2; p3))
9 [K][H](link(p3; p4))
10 [K][H]8xy(link(x; y) ^ at(x)^ h(go(x; y)) � [N]at(y))
11 [K][H]8xy(complex(go(x; y)))

Figure 8.2: Definitions for a Hierarchical Specification

modality [TRAIN], which describes the theory of how go(�;�) actions are generated, and
with the fluent g, which holds after the action succeeds. Thus, each go transition is realized
by solving a planning problem in terms of the causal theory of lines. Since we know that
those plans have length two at worst, we can invoke the planning formula presented above,
and resolve to a specialized rule which governs spec(go(�;�)) in this domain:

[TRAIN][H]8xy([TRAIN]9a[K]([K]ha � [N]9a0[K]([K]ha0 � [N][K]g))
� SPEC(go(x; y)))

Meanwhile, to construct a two step plan to travel to p3 we obtain the following condition
and construct a proof of it:

9a(spec(a)^ [K]([K]ha �
[N]9a0(spec(a0) ^ [K]([K]ha0 � [N][K]at(p3)))))

As with the example of section 8.4.1, there is a unique way to prove this formula given
this specification. Not surprisingly, this proof involves instantiating the high-level actions
a and a0 respectively to go(p1; p2) and go(p2; p3). It can then be shown directly from the
knowledge of link facts, the knowledge of the occurrences of the actions, and rule (10) of
Figure 8.2 that finally we know at(p3). Each SPEC fact, meanwhile, can only be derived by
the reasoning discussed in section 8.4.1. As before, the disjunction introduces an ambiguity
that persists for the remainder of the plan AT THAT LEVEL. However, because the remainder
of the higher-level plan is sequenced in the scope of the higher-level action, rather than its
decomposition, this low-level ambiguity is limited to the scope of the low-level plan.

8.5 Conclusion
Hierarchical plans have a distinctive content. The relationship between actions at different
levels of abstraction is a causal relationship which must be known before a hierarchical plan
can be successfully undertaken. The fact that agents must obtain this knowledge explains
why hierarchical plans have a more constrained structure than flat plans. This structure
may be exploited for efficiency.

The next step for both theoretical and practical development is to adapt the ideas
presented here to a more efficient theory of time, using explanation closure [Schubert,
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1990; Reiter, 1991] or defeasible reasoning [Lin and Shoham, 1991; Sandewall, 1994b].
Both strategies have yet to be extended to logics of knowledge, so there is a lot of work to
do. Still, it seems like this approach already offers a promising first step toward a practical
system based on these ideas.
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9
Modal Logic and Reasoning in NLG

In Chapters 6, 7 and 8, we investigated how reasoning tasks involving action and knowledge
can be formalized in terms of modal logic and modal deduction. The techniques developed
in Part I suggest simple, predictable procedures for evaluating these specifications while
exploiting the essential modularity of modal reasoning. We thus have an expressive but
constrained framework in which to describe both the subject matter and knowledge state of
a conversation. This chapter returns to the problem of reasoning in NLG, first introduced
in Chapter 1, and shows how this framework can be applied in constructing concise and
precise descriptions of actions.

The context for this demonstration is the SPUD system for sentence generation [Stone
and Doran, 1996; Stone and Doran, 1997; Stone, 1997a; Stone and Webber, 1998; Bourne,
1998]. SPUD adopts a view of sentence generation as goal-directed activity, like [Appelt,
1985; Dale, 1992] before it. On this view, the task of the generator is to use the words
and constructions of the language to design a message that fulfills a set of communicative
intentions. SPUD works with two kinds of intentions in particular: intentions to uniquely
identify the entity designated by a referring expression, and intentions to establish a propo-
sition as part of the content of the conversation. SPUD fulfills these intentions incrementally,
using a grammar in the LTAG formalism [Joshi et al., 1975; Schabes, 1990] to add units of
meaning and syntax word-by-word into an incomplete sentence.

This chapter begins by introducing SPUD; section 9.1 describes informally how SPUD

works and why it is particularly suited to generating appropriate descriptions of actions under
realistic assumptions about input and context. This introduction, adapted from [Stone and
Webber, 1998], highlights three tasks that SPUD must solve: evaluating possibilities for
reference, assessing the content it has managed to communicate, and determining which of
its options best fits the context. Section 9.2 then shows how DIALUP can supply answers to
these tasks from specifications of language and context formulated declaratively as modal
logic programs. Finally, in section 9.3, we discuss some concrete, detailed examples of the
uses of SPUD and DIALUP in generating concise, contextually-appropriate descriptions.

9.1 An Overview of SPUD

An NLG system must satisfy at least three constraints in mapping the content planned for
a sentence onto the string of words that realize it [Dale, 1989; Meteer, 1991; Rambow and
Korelsky, 1992]. Any fact to be communicated must be fit into an abstract grammatical
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structure, including lexical items. Any reference to a domain entity must be elaborated into
a description that distinguishes the entity from its DISTRACTORS—the salient alternatives to
it in context. Finally, a surface form must be found for this conceptual material.

In one architecture for NLG systems that is becoming something of a standard [Reiter
and Dale, 1997], these tasks are performed in separate stages. For example, to refer to a
uniquely identifiable entity x from the common ground, first a set of concepts is identified
that together single out x from its distractors in context. Only later is the syntactic structure
that realizes those concepts derived.

SPUD integrates these processes in generating a description—producing both syntax and
semantics simultaneously, in stages, as illustrated in (80).

(80) a NP#:x
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Each step adds to the representation a lexicalized entry encoded as an elementary tree in
Feature-based Lexicalized Tree-Adjoining Grammar (LTAG) [Schabes, 1990]. Each such
tree is paired with logical formulae that, by referring to a rich discourse model, characterize
the semantic and pragmatic contribution that the element makes to the sentence.

For example, (80a) represents the overall task in planning an NP to refer to entity x.
In the initial pair, the syntactic component is represented by a tree consisting of a single
node NP#:x. As indicated by the # notation, this node is a SUBSTITUTION SITE; this indicates
that another tree must be supplied to specify the structure of the NP before the derivation is
complete. As indicated by the label or index x, this node refers to and supplies information
about entity x. Meanwhile, the semantic component in the initial pair locates this entity x
within a set S of distractors that has been supplied by the discourse context and which is
otherwise unconstrained.

According to the grammar of English, the first step in generating the NP is to choose a
head noun which indicates the type of x, and a determiner which indicates its INFORMATION

STATUS in the sense of [Gundel et al., 1993]. Such a choice is specified by the entry for the
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book specified in (81).

(81) a Syntax:

NP:x
�
�
H
H

DET

the

N:x

book
b Semantics: book(x)
c Pragmatics: unique-id(x)

This entry contributes the lexical item book to the syntactic tree. (Here and elsewhere we
can use LTAG trees that contain multiple lexical items.) Simultaneously, the entry supplies
book as x’s type and uniquely identifiable as x’s information status. As described in [Stone
and Doran, 1997], the concrete choices available to the SPUD generator always consist of
entries that contribute syntactic structure, lexical elements, and semantic and pragmatic
constraints. The triple in (81) is a representative example.

For conciseness and efficiency, however, SPUD accepts separate lexical and grammatical
specifications. An entry like (81) is assembled dynamically from these two kinds of
information. In particular, the word book is specified as in (82), with a lexeme, semantics,
and TREE FAMILY.

(82) a Lexeme: book
b Semantics: book(x)
c Trees: DEF-NP(x), : : :

The tree family specifies a range of syntactic constructions that the word can be used with;
included in this range are pragmatic variations like the choice of definite versus indefinite
forms for NPs, the choice of unmarked versus marked word-order for VPs, etc. Elements
of this tree family include specifications like that given in (83) for the DEF-NP tree used in
(81).

(83) a Tree: DEF-NP(x)

b Syntax:

NP:x
�� HH

DET

the

N:x

31
c Pragmatics: unique-id(x)

The notation31 indicates that the (first) lexeme from the corresponding lexical entry should
appear at this site as an ANCHOR to the syntactic tree.

Thus, the entry in (81) is straightforwardly obtained by combining (82) with (83). When
this entry SUBSTITUTED into (80a), the result is the state shown in (80b). (The operation of
substitution identifies the root of one tree, called an INITIAL tree, with a substitution site in
another tree.) The tree is expanded to include new syntactic material at the same time as
the set of distractors is narrowed to incorporate the new semantic constraint.
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Once the head noun of the NP is selected, further steps can incorporate modifiers into
the NP as needed. The modifier chosen in (80c) is the entry for tuber given in (84).

(84) a Syntax:

N:x
�
�
H
H

N

tuber

N�:x

b Semantics: concerns-tubers(x)
c Pragmatics: (always applicable)

Not surprisingly, this entry adds the semantic constraint that its referent concern tubers
at the same time as it adds the lexical and syntactic specification for tuber to a sentence.
This entry, we assume, has no pragmatic requirements: it is always applicable. (We will
suppress such empty requirements in the future.)

In TAG, any node in a tree potentially offers a point at which further modification of a
sentence can take place. This modification is accomplished by the syntactic operation of
ADJUNCTION. Syntactically, (84) associates tuber with an AUXILIARY tree that contains a
distinguished leaf, the FOOT node. This node is marked with a � in (84). In adjunction, the
old tree is rewritten at a distinguished node, the ADJUNCTION SITE. The subtree rooted at the
adjunction site is substituted into the foot node in the auxiliary tree, and then the old tree
is rewritten so that the new extended version of the auxiliary tree replaces the old subtree
rooted at the adjunction site. (80c) shows what happens once the entry for tuber adjoins at
the N node in (80b). In tandem with this syntactic change, the requirement that x be about
tubers can be factored in as a constraint on reference; (80c) supposes that this distinguishes
x from its distractors in context.

The steps presented in (80) fall out from the general execution of the SPUD algorithm,
which is summarized in Figure 9.1.

The steps of this algorithm refer to abstract notions—ambiguity of reference, infor-
mation conveyed, appropriateness and specificity of descriptors—whose implementation
depends on an approach to meaning and interpretation based on logic.1 Section 9.2 describes
why modal specifications of knowledge and action, together with reasoning methods like
those implemented in DIALUP, provide an attractive computational framework for deriving
such representations. Before diving into these technicalities, we first sketch some of the
motivations for developing an algorithm like SPUD.

In contrast to systems that use a cascade of special-purpose mechanisms to construct
sentences, SPUD derives several advantages from its direct use of LTAG operators to identify

1Indeed, the algorithm given in Figure 9.1 is sufficiently general that SPUD can use similar steps to construct
both definite and indefinite referring forms. The main difference lies in how alternatives are evaluated. When
an indefinite referring form is used to refer to a BRAND-NEW generalized individual [Prince, 1981] (an object,
for example, or an action in an instruction), the object is marked as new and does not have to be distinguished
from others because the hearer creates a fresh “file card” for it. However, because the domain typically provides
features needed in an appropriate description for the object, SPUD continues its incremental addition of content
to convey them.
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� Start with a tree with one node (e.g., S, NP) and one or more referential or
informational goals.

� While the current tree is incomplete, or its references are ambiguous to the
hearer, or its meaning does not fully convey the informational goals (provided
progress is being made):

– consider the trees that extend the current one by the addition (using
LTAG operations) of a true and appropriate lexicalized descriptor;

– rank the results based on local factors (e.g., completeness of mean-
ing, distractors for reference, unfilled substitution sites, specificity of
licensing conditions);

– make the highest ranking new tree the current tree.

Figure 9.1: An outline of the SPUD algorithm

and combine semantic and syntactic elements simultaneously. These advantages include:

� SYNTACTIC CONSTRAINTS ARE HANDLED EARLY AND NATURALLY. In the problem
illustrated in (80), SPUD directly encodes the syntactic requirement that a description
should have a head noun—missing from the concept-level account—using the NP

substitution site.

� THE ORDER OF ADDING CONTENT IS FLEXIBLE. Because an LTAG derivation allows
modifiers to adjoin at any step (unlike a top-down CFG derivation), there is no
tension between providing what the syntax requires and going beyond what the
syntax requires.

� GRAMMATICAL KNOWLEDGE IS STATED ONCE ONLY. All operations in constructing a
sentence are guided by LTAG’s lexicalized grammar; by contrast, with separate pro-
cessing, the lexicon is split into an inventory of concepts (used for organizing content
or constructing descriptions) and a further inventory of concepts in correspondence
with some syntax (for surface realization).

These advantages are observed in [Stone and Doran, 1997], but are echoed in previous
work on using TAG in NLG, such as [Joshi, 1987] and [Yang et al., 1991].

In fact, however, SPUD makes the heaviest demands on its logical representations,
and draws the greatest benefit from them, as it keeps track of its incremental progress
towards multiple goals in generating descriptions. The advantage that accrues from this
process is examined in [Stone and Webber, 1998], where it is observed that SPUD naturally
supports TEXTUAL ECONOMY. Textual economy refers to sentences where a speaker achieves
communicative goals indirectly, by exploiting the hearer’s recognition of inferential links
to material elsewhere within a sentence. Textual economy leads to efficient descriptions
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Figure 9.2: “Remove the rabbit from the hat.”

because the material that supports such inferences has been included to satisfy independent
communicative goals, and is therefore OVERLOADED in the sense of Pollack [Pollack, 1991].

To see how SPUD supports textual economy, consider first how SPUD might derive (85)
as an instruction for the hearer to carry out against the scene pictured in Figure 9.2.

(85) Remove the rabbit from the hat.

Even though there are several rabbits, several hats, and even a rabbit in a bathtub and a
flower in a hat, this command is sufficient to identify the rabbit currently in the hat and
the hat that currently contains the rabbit. It suffices because one of the semantic features
of the verb remove—that its object (here, the rabbit) starts out in the source (here, the
hat)—distinguishes the intended rabbit and hat in Figure 9.2 from the other ones. Because
of the inferential link between the identification of the rabbit and the specification of the
type of action to be performed, (85) is an illustration of textual economy. (85) suggests that
textual economy is a very important feature of concise, natural descriptions of actions.

In its derivation of (85), we assume that SPUD is given a general goal of describing a new
action that the hearer is to perform, by making sure the hearer can identify the key features
that allow its performance. For (85), then, SPUD is given two features of the action to be
described: it involves motion of an intended object by the agent, and its result is achieved
when the object reaches a place decisively away from its starting point. In explaining how
SPUD realizes these goals in (85), our explanation assumes SPUD makes a nondeterministic
choice from among available lexical entries. While we can in fact account for SPUD’s
choices more precisely (see for example section 9.3.2), such an account would distract from
our main point at present: to illustrate how SPUD can realize the textual economy of this
example.

The first time through the loop of Figure 9.1, SPUD must expand an S node. One of
the applicable moves is to substitute a lexical entry for the verb remove. Of the elements
in the verb’s LTAG tree family, the one that fits the instructional context is the entry with
imperative syntax, as shown in (86).
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(86) a Syntax:

S: hTIME,REMOVINGi

�
�
�
�
�
�

H
H
H
H
H
H

NP: hREMOVERi

�

VP: hTIME,REMOVING,SOURCEi

�
�
��

H
H
HH

V

remove

NP#: hREMOVEDi

b Semantics:

nucleus(PREP, REMOVING, RESULT) ^
in(PREP, start(TIME), REMOVED, SOURCE) ^
caused-motion(REMOVING, REMOVER, REMOVED) ^
away(RESULT, end(TIME), REMOVED, SOURCE)

The tree given in (86a) specifies that remove syntactically SATISFIES a requirement to include
an S, REQUIRES a further NP to be included (describing what is removed), and ALLOWS the
possibility of an explicit VP modifier that describes what the latter has been removed from.

The semantics in (86b) consists of a set of features, formulated in an ontologically
promiscuous semantics, as advocated in [Hobbs, 1985]. It follows [Moens and Steedman,
1988] in viewing events as consisting of a preparatory phase, a transition, and a result
state (what is called a nucleus in [Moens and Steedman, 1988]). The semantics in (86b)
describes all parts of a remove event: In the preparatory phase, the object (REMOVED) is
in/on SOURCE. It undergoes motion caused by the agent (REMOVER), and ends up away
from SOURCE in the result state.

Semantic features are used by SPUD in one of two ways. Some make a SEMANTIC

CONTRIBUTION that specifies new information—these add to what new information the
speaker can convey with the structure. Others simply impose a SEMANTIC REQUIREMENT

that a fact must be part of the conversational record—these figure in ruling out distractors.
For this instruction, SPUD treats the CAUSED-MOTION and AWAY semantic features as

semantic contributions. It therefore determines that the use of this item communicates
the needed features of the action. At the same time, it treats the IN feature—because it
refers to the shared initial state in which the instruction will be executed—and the NUCLEUS

feature—because it simply refers to our general ontology—as semantic requirements. SPUD

therefore determines that the only hREMOVED,SOURCEi pairs that the hearer might think the
instruction could refer to are pairs where REMOVED starts out in/on SOURCE as the action
begins.

Thus, SPUD derives a triple effect from use of the word remove—increasing syntactic
satisfaction, making semantic contributions and satisfying semantic requirements—all of
which contribute to SPUD’s task of completing an S syntactic constituent that conveys needed
content and refers successfully. Such multiple effects make it natural for SPUD to achieve
textual economy. Positive effects on any of the above dimensions can suffice to merit
inclusion of an item in a given sentence. However, the effects of inclusion may go beyond
this: even if an item is chosen for its semantic contribution, its semantic requirements
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can still be exploited in establishing whether the current lexico-syntactic description is
sufficient to identify an entity, and its syntactic contributions can still be exploited to add
further content.

Since the current tree is incomplete and referentially ambiguous, SPUD repeats the
loop of Figure 9.1, considering trees that extend it. One option is to adjoin at the VP

the entry corresponding to from the hat. In this compound entry, from matches the verb
and the matches the context; hat carries semantics, requiring that SOURCE be a hat. After
adjunction, the requirements reflect both remove and hat; reference, SPUD computes, has
been narrowed to the hats that have something in/on them (the rabbit, the flower).

Another option is to substitute the entry for the rabbit at the object NP; this imposes the
requirement that REMOVED be a rabbit. Suppose SPUD discards this option in this iteration,
making the other (perhaps less referentially ambiguous) choice. At the next iteration, the
rabbit still remains an option. Now combining with remove and hat, it derives a sentence
that SPUD recognizes to be complete and referentially unambiguous, and to satisfy the
informational goals.

9.2 A Modal Perspective on Conversational State
SPUD’s derivation of sentences such as (85) makes use of detailed reasoning—reasoning
that enables the generator to assess quickly and reliably at any stage how the hearer
will interpret the current sentence, with its (incomplete) syntax and semantics. SPUD’s
incremental assessment and search involves a range of key questions about the sentence,
particularly these:

� what (generalized) individuals might the hearer take the sentence to refer to?

� what would the sentence invite the hearer to conclude about those individuals?

� how tight a link does the sentence establish to the ongoing conversation?

SPUD answers these questions using a declarative specification of the conversational state.
We describe this process in several stages. We begin, in section 9.2.1, by describing
the logical principles by which such a specification can be designed, following [Clark and
Marshall, 1981; Clark, 1996]. As section 9.2.2 argues, these principles provide a framework
that meshes closely with the design of DIALUP. In particular, they systematically exploit
descriptions of nested knowledge and indefinite information, in a way which fits DIALUP’s
expressive power. We use the remainder of this section to show how DIALUP allows such
specifications to be accessed efficiently to settle the questions that SPUD raises.

9.2.1 A Modal Framework for the Common Ground

The management of conversation depends particularly on information that is part of the
COMMON GROUND. Clark, following Lewis [Lewis, 1969], characterizes this information
as in (87).

(87) p is common ground for members of community C if and only if:
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1. every member of C has information that basis b holds;

2. b indicates to every member of C that every member of C has information
that b holds;

3. b indicates to members of C that p. ([Clark, 1996], p. 94)

Clause 2 of (87) is self-referential; it indicates, to whatever agent applies it, that all three
clauses are available as premises for inference for all the other agents in the group. This
recursive structure matches the needs of agents that need to coordinate in tasks like reference;
[Clark and Marshall, 1981] formulate an ingenious series of thought experiments to illustrate
why the recursion is required. In determining the intended referent of an expression,
speakers and hearers should always consider each other’s perspectives. Failing to do so
raises the possibility of misunderstanding. This recursive requirement can be satisfied
only if agents formulate referring acts based on knowledge—such as that characterized in
(87)—which can be assumed in each’s model of the other to any level of embedding.

To embed the definition in (87) in logic, we need to fix a model of the basis that the
definition refers to. For [Barwise, 1988], the basis can be represented directly in situation
semantics as a situation with a circular structure [Barwise and Etchemendy, 1987]. But
little is known about what proof search with such a representation would be like.

In a more standard formalization, the basis is represented indirectly; common knowledge
is viewed as a particular fixed-point. Suppose [E]A represents that everyone in a group knows
that A holds. Then the condition that A is common knowledge within the group, [C]A, is
governed by the two axiom schemes in (88).

(88) a [C]A, [E](A^ [C]A)
b B ^ [C](B � [E](B^ A)) � [C]A

(88a), the fixed-point scheme, ensures that if a fact A is common knowledge, then everyone
knows A, everyone knows everyone knows A, and so forth. (88b), the induction scheme,
ensures that agents recognize as common knowledge everything that follows from their
shared knowledge of what everyone knows. (See [Fagin et al., 1995] for more details.) We
can compare the induction scheme with the self-referential requirement proposed in (87).
In the induction axiom, the proposition B, together with the shared inference from B to
[E](B^A), constitutes the basis on which common knowledge of A depends. The induction
scheme for common knowledge allows the basis to rest on any arbitrary proposition; thus,
like any induction scheme, it gives rise to computationally explosive, open-ended search
problems. Before eliminating the possibility that A is common knowledge, a theorem-prover
must rule out all possible strengthenings of A to B ^ A.

For DIALUP we will adopt a different formalization, following an idea explored already
by [Clark and Marshall, 1981]. Clark and Marshall observe that, in conversation, the
content that can count as the basis in (87) is derived in a small number of stereotypical ways.
For example, one such basis is the shared perceptual environment in which conversants
find themselves; another is the broad background that conversants derive from shared
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interests, experiences or community membership. Inferences about common knowledge
in conversation therefore have a simpler form than suggested by the induction scheme.
The inferences just combine information that is recognized to be available from SHARED

SOURCES; they call these shared sources TYPES OF COPRESENCE.
This idea can be realized directly in DIALUP, by defining an appropriate theory of

interrelated modal operators. We complement the knowledge [S] and [A] of speaker and
addressee by a modality [CP]; [CP]A represents that A follows from the content available
to speaker and hearer from their shared sources. Because this modality represents a kind
of knowledge, it is subject to (VER) and (PI). In addition, the (INC) scheme applies, with
[CP]A � [S]A and [CP]A � [A]A.

This modal theory already suffices to establish [CP] as a special case of common knowl-
edge. For example, we can argue as follows to see that copresent information is available in
each agent’s model of the other at any level of nesting. We can use (PI) (or (VER)) inferences
to reason from a proposition [CP]A into a proposition [CP]kA in which the [CP] operator is
nested arbitrarily deeply. Then the (INC) schemes can be used to replace each [CP] with
either [S] or [A] at our discretion.

The copresence account avoids the pitfalls of arbitrary induction by using a more
structured specification to flesh out the content of [CP]. Clark suggests that human speakers
and hearers can and do arrive at a recognition of their common ground just by identifying
the various sources of information to which both have access. These sources include
the knowledge of a variety of communities to which speaker and hearer both belong.
The different communities may have their origin for example in the different residence,
occupation, interests, etc. of the two participants. Such sources provide the best concrete
examples of types of copresence.

Here is the formalization of this. Each particular type of copresence is assigned a
distinct modality [CPi]; the formula [CPi]A says that the information available from source
i entails A. Because all these modalities describe kinds or sources of knowledge, all are
subject to (VER) and (PI).

To exploit these modalities, we establish an appropriate relationship between them and
[CP]. For example, suppose speaker and hearer recognize themselves to share [CR] describing
their common region of residence, [CJ] describing a common job, and [CI] describing some
common interest. Then they can draw the correct inferences about what they share by
indicating by inclusion schemes that [CP] can take into account any of this knowledge.
Formally, [CR]A � [CP]A, [CJ]A � [CP]A and [CI]A � [CP]A.

Copresence is much more tractable than an inductive definition of common knowledge
because only conclusions of A are needed in showing [CP] A—not more general conclusions
of B^A. In DIALUP, the constraint algorithm for modal prefix matching makes this reasoning
particularly efficient. DIALUP requires no more choice points and no larger proofs for a
copresence theory than Prolog requires for the corresponding first-order knowledge-base.
This is true even for any of the nestings of knowledge that common knowledge entails.
As I show next, handling these nestings efficiently and correctly is a real advantage. By
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contrast, models based on compiling knowledge into partitions [Ballim and Wilks, 1991;
Kobsa and Pohl, 1995; Taylor et al., 1996]—and then maintaining separate databases for
different nestings of operators—achieve efficiency for simple cases at the cost of significant
penalties in completeness of inference and in defining new nested belief spaces.

9.2.2 Specifying the Common Ground

DIALUP offers an attractive set of resources for constructing specifications in terms of
copresence. One simple strategy is already very powerful. This is to lift any formula in a
first-order knowledge-base by prefixing it by a modal operator that abstracts how one would
come to know the formula. Detailed, accurate stereotypes of classes of users can then be
obtained by listing the modalities those users will be familiar with.

By establishing modal relationships among sources of copresence, these simple speci-
fications can incorporate the fact, emphasized by Clark, that communities form nested sets.
Clark’s example contrasts the communities of San Franciscans (whose shared knowledge
is given by [SF]), Los Angelinos (by [LA]) and Californians (by [CA]). We can indicate
the epistemic consequences of community nesting by inclusion schemes among sources of
copresence. In California, [CA]A � [SF]A and [CA]A � [LA]A: shared knowledge of San
Franciscans includes shared knowledge of Californians.

For natural language interaction, characterizing the limits of the common ground can
be as important as itemizing concrete shared facts. Speakers, in formulating questions
and answers to extend the common ground, depend on these characterizations of how their
hearers’ knowledge may go beyond or fall beneath their own. It is in this domain that nested
and indefinite specifications of knowledge come into their own, and where the expressive
advantages of DIALUP become most compelling.

Our knowledge of limits in the common ground is evidenced in Clark’s contrast between
two kinds of information people can have.

(89) a INSIDE INFORMATION of a community is particular information that members of
the community mutually assume is possessed by members of the community.

b OUTSIDE INFORMATION of a community is types of information that outsiders
assume is inside information for that community. ([Clark, 1996], p. 101)

He gives an example contrasting the inside knowledge of New Zealanders—we’ll represent
this by [NZ]—with the information outsiders have about it—which we represent using a
more inclusive source of knowledge [O].

There is a first, obvious difference between insiders and outsiders. If u is an outsider
but v is an insider for community C (New Zealanders for example), then [C]A � [V]A but
not [C]A � [U]A. This prevents u and v from taking information supplied by C as shared,
even when each happens to know that the other knows it. That’s correct.

This exclusion is not the end of the story for an outsider, however. The outsider can
still know quite a bit about insiders’ information; such outsider knowledge can in fact be
shared with insiders. To formalize the different kinds of knowledge involved, we appeal
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to Hintikka’s formulation of knowing the answer to questions using wide-scope quantifiers
[Hintikka, 1971], as in Chapter 7. In Clark’s example, outsiders know that New Zealanders
know who the prime minister of New Zealand is. Here’s what this looks like:

(90) [O]8x(pm(x; nz) � [NZ]pm(x; nz))

This is outside information, as it looks like. Suppose u knows that Jim Bolger is the Prime
Minister of New Zealand:

(91) [U]pm(bolger; nz)

Then u can conclude that v knows who the Prime Minister is (and in fact that this is shared
knowledge among New Zealanders):

(92) [U]9x[V]pm(x; nz)

On the other hand, if v knows the same thing, v knows that the fact is part of HIS shared
knowledge with other New Zealanders. It’s inside information.

We can easily imagine simple reasons why u might derive judgments like (92) in
conversation. For instance, u could use (92) in deciding to ask v who the prime minister of
New Zealand is, or in deciding to ask a wh-question rather than a yes/no question. Both of
these uses presuppose that u has only indefinite information.

The formalization of action and knowledge introduced in Chapter 7 suggests an even
broader range of application for indefinite specifications and queries. Using the techniques
of Chapter 7, statements that describe what an agent knows how to do will be formulated
using existential quantifiers and nested knowledge operators. For example, in instructions,
the speaker must often rely on an outsider’s description of the abilities of the addressee,
using statements with a similar form to (90). Such descriptions cover cases where the
instruction is executed in a future situation which the addressee will be able to perceive
directly but which the speaker can now only characterize abstractly; they cover cases where
the addressee has access to private knowledge that the speaker lacks. In these cases, only
by representing and reasoning with an indefinite description of the addressee’s knowledge
can a speaker knowingly formulate an instruction the addressee will know how to follow.
We give an example of this in section 9.2.4.

With generalizations like (90), we can also inventory the information that internal
sources provide. This also seems to have its uses in NLG. As a QUERY, (90) asks whether a
source of information can settle a general issue. Speculatively, some linguisticconstructions
may depend on the ability to settle an issue in this way. (I am particularly thinking of cases
of reference where the speaker relies on the hearer’s inference to determine whether a
property should contribute to distinguishing an entity from its alternatives.) In such cases,
queries and specifications like (90) will be needed to determine whether these constructions
can be appropriately used.

We now have seen, in sections 9.2.1 and 9.2.2, how the specification of the common
ground not only falls within DIALUP’s range but allows all of that range to be exploited.
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In sections 9.2.3, 9.2.4 and 9.2.5, we look at the queries about these specifications that
SPUD needs DIALUP to assess. This analysis reveals not only a continued close fit between
DIALUP’s expressive power and the needs of NLG, but also a match between DIALUP’s logic
programming search and the practical requirements of an NLG system.

9.2.3 Assessing Reference in SPUD Using Modal Logic

SPUD’s model of reference begins with an explicit representation of the exact content by
which speaker and hearer agree on the referents of referring expressions. We shall call this
part of the meaning of a sentence its PRESUPPOSITION. SPUD relates the presupposition to a
modal specification of common ground, as well as to a modal specification of the attentional
state of the conversation.

In this section, we explain the model of presupposition as implemented in SPUD, and
show how it gives rise to logic programming queries in DIALUP. In SPUD the results of these
queries are managed more efficiently by adopting classic techniques from NLG, like the use
of constraint networks for reference resolution. A logical foundation is straightforwardly
compatible with these optimizations.

Our use of the term presupposition follows the theoretical perspective of [van der
Sandt, 1992] that presuppositions are ANAPHORS that are resolved against an evolving
model of discourse. This view modulates the received view of a presupposition, from
Frege and Russell, as a statement of the uniqueness conditions under which a sentence
refers successfully. For example, the received view famously represents the uniqueness
condition as the presupposition (93b) of (93a):

(93) a The King of France is bald.
b 9x(kof(x) ^ 8y(kof(y) � x = y))
c kof(x)

The anaphoric view replaces the formula (93b), with its logical complexity, by the for-
mula (93c) and a complex process of RESOLUTION against the context. Resolving (93c)
requires not only showing that the logical condition is satisfied in the common ground but
also providing a discourse referent from the context that can serve as the value for the
variable x. For (93c), the uniqueness derives from the fact that the speaker and the hearer
must agree on how the presupposition is resolved; thus this resolution of presupposition
parallels the resolution of other anaphoric elements in the sentence.

Proposals like [van der Sandt, 1992] are developed within the formal semantics of
discourse representation theory [Heim, 1982; Kamp, 1981; Kamp and Reyle, 1993] or
dynamic semantics [Groenendijk and Stokhof, 1990b; Muskens, 1996]. Let us reconstruct
this idea in a computational setting designed around natural language generation, and
investigate its consequences.

First, we describe the interface with sentence meaning. We design the grammar to
deliver the content of each sentence in two parts: the PRESUPPOSITION Px—an open formula
containing free occurrences only of the variables in the sequence x—which is resolved
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anaphorically and the ASSERTION Nx—another open formula containing only occurrences of
variables in the sequence x—which contributes new information to the evolving discourse.

Second, we consider what counts as a possible resolution of the presupposition Px.

(94) A RESOLUTION of the presupposition Px is a proof of [CP]9xPx.

It is clear why (94) appeals to the modal operator [CP]—this implements the requirement that
only the shared common ground can be taken into account in resolving a presupposition.
(In cases of accommodation where presupposition and common ground seem to disagree
[Lewis, 1979], we can follow Lewis in assuming it is the content of the common ground
that is adjusted, not the requirement imposed by the presupposition.)

The narrow scope of 9x in (94) may be more puzzling, however. This choice indicates
that the resolution requires us to find mere discourse referents to satisfy the presupposition—
not concrete entities in the world, as would be required if the quantifier was given wide
scope. To see the difference, consider a conversation that takes place during a murder
mystery. The murder has occurred, so we know there is a murderer: [CP]9x:murderer(x).
But the case is not solved; we do not know who the murderer is. This would be expressed
by 9x[CP]murderer(x), a formula which must be false in this context. Suppose one party
to this conversation wishes to tell the other the murderer used a wrench; the sentence will
carry the presupposition murderer(x). By (94), there is a resolution to this presupposition,
where x is instantiated to whoever our indefinite shared knowledge tells us the murderer
must be. If we were required to prove 9x[CP]murderer(x) there would be no resolution to
the presupposition.

Anticipating the use of Skolemization and unification to derive resolutions to presup-
positions, we can regard a resolution as supplying terms that denote discourse referents for
each of the variables in the presupposition. (Under this view, it is easiest to assume, as does
the implementation, that case analysis is irrelevant to the resolution of presuppositions. In
fact, this assumption is an oversimplification, but in light of the flexibility of pronominal
reference in discourses which describe disjunctive sets of cases [Stone, 1992], we should
expect a proof-theoretic view to persist even after this assumption is relaxed.)

Given the state of the common ground in conversation, some presuppositions cannot
be resolved at all, while others might potentially be resolved in many ways, not all of
which would equally respond to the goals and structure of the ongoing conversation. This
difference among alternative resolutions can be formalized by appeal to the SALIENCE of
discourse referents. The salience of a discourse referent measures the extent to which
the ongoing discourse puts that discourse referent at the center of speaker’s and hearer’s
attention; influential computational accounts of salience in discourse include [Grosz and
Sidner, 1986; Grosz et al., 1995]. Salience constrains reference; a referring expression
picks out the just the most salient referent that the expression describes. We can apply the
same idea to the resolution of presuppositions.

First, we use modal formulas to define a salience ranking among entities. A fact
[CP]d(t; t0) indicates that t0 is a distractor for t. (Here t and t0 are either concrete entities,
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explicit Skolem terms, or bound variables within the scope of an appropriate quantifier.)
Accordingly, to refer to t, we must distinguish t from t0. Equivalently, [CP]d(t; t0) says that
t0 is more salient than t. (Obviously in general these facts should be indexed by time or
utterance.)

This ranking among entities determines a ranking among resolutions. Given a presup-
position Px depending on a sequence of variables x, one resolution is more salient than
another if for any variable x that appears in x, the value the first supplies to x is more
salient than the value the second supplies. Given this ranking, we say a presupposition is
SUPPORTED if it has a unique, maximally-salient resolution. For an utterance to be felicitous,
its presupposition must be supported.

This characterization of presupposition is attractive for NLG, because it accounts for
reference in descriptions of action in a simple and elegant theoretical model. For example,
let us return to the scene of rabbits, hats, flowers and bathtubs depicted in Figure 9.2.
Against this scene, we can refer successfully using the NP the rabbit in the hat. Following
the example of (93c), we view the presupposition of this expression as a flat formula relating
multiple contextually-determined variables, something like (95):

(95) rabbit(x)^ hat(y) ^ in(x; y)

Recall that this formula is viewed as a anaphor which must be matched against the context
rather than as a self-contained statement of the conditions that must hold for the rabbit in
the hat to be felicitous. In particular, given the technical definition of support above, to
support this presupposition (and thereby obtain a felicitous use of the NP) requires the three
combined constraints to be derivable from the shared representation of the common ground
in only one (salient) way. This supporting derivation provides the pair of values for x and y
in which the rabbit and hat referred to are uniquely identified. The value for x is the rabbit
in the hat, and that for y is the hat with the rabbit in it.

Compositional semantics can compose the anaphoric constraint given in (95) straight-
forwardly. Meanwhile, the theory does not require self-contained conditions on felicity
of reference to be built up compositionally. Thus, in contrast to the Russellian account
of reference, there is no need to identify an intermediate syntactic scope—either in the
referring expression or its logical presupposition—at which the uniqueness operators for
the different entities apply.

More generally, if other elements besides noun phrases contribute anaphoric presuppo-
sitions to a sentence (and of course they will), these additional constraints will figure into
the resolutions of referring expressions in the sentence. Indeed, we can see the instruction of
(85)—remove the rabbit from the hat—as contributing essentially the same presupposition
as shown in (95). Theoretically, then, we can account for the support of its presupposition
and the felicity of its reference in exactly the same way.

This model can also be implemented for NLG in an attractive way using DIALUP. (SPUD

contains such an implementation.) The implementation rests on two observations. First,
as observed in Chapter 5, DIALUP’s constraint logic programming search makes it sensible
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simply to count proofs in place of accumulating the distinct combinations of values for
variables under which proofs are possible.

Second, with this model, DIALUP’s logic programming search goes hand in hand with
techniques like constraint satisfaction that are already used for efficient reference resolution
in NLG. Consider a case where DIALUP attempts to find resolutions for a conjunctive
presupposition Px ^ Qx. Following logic programming search on (94), DIALUP introduces
a fresh [CP] transition �, and appropriate new logic variables u with domain �. Then it
attempts two independent goals: showing Pu at �, and showing Qu at �.

Such independent goals are not one of DIALUP’s strengths. Because of backtracking, the
interpreter must iterate through successive combinations of solutions for P and solutions
for Q. This search strategy may be more expensive than needed. Moreover, backtracking
means that solutions for P and for Q cannot be obtained separately and then combined.
Such reuse of work is a natural response to the incremental construction of interpretation
that generators such as SPUD use.

To address these difficulties, we can apply simple constraint-satisfaction algorithms
[Mackworth, 1987]. These techniques are already used to maintain distractors compactly
and efficiently in generation, for example in [Dale and Haddock, 1991]. Using ` A to
indicate that A is derivable from an input specification (in DIALUP), the basic observation
is that fb j ` [C]Pb ^ Qbg = fb j ` [C]Pbg \ fb j ` [C]Qbg. Using this observation,
we can perform the two queries separately using DIALUP, to obtain a pair of constraints.
Then we can combine and resolve constraints as part of a separate, special-purpose module.
Now, a programmer can easily ensure that each query will result in a manageable set of
tuples that puts a relatively small load on the constraint-satisfaction process.

9.2.4 Assessing Content in SPUD Using Modal Logic

Section 9.2.3 showed how possibilities for reference can be maintained declaratively, in-
crementally and efficiently using DIALUP. In this section we look at the complementary
problem of assessing what a partial sentence contributes to the conversation. Again, DIALUP

offers a natural tool to make this assessment in an expressive and efficient way.
Recall that the semantic contribution that the sentence makes to the common ground is

represented by its assertion, a formula Nx. The interpretation of this assertion depends on
how the variables in x are resolved by the presupposition. The most straightforward case
arises when the presupposition associates x with a sequence of concrete entities r. Then
asserting Nx makes a bid that the common ground be updated so that (96) holds.

(96) [CP]Nr

This is the simple account that is implemented in the present version of SPUD. Anticipating
possible extensions to (96), however, in the rest of this discussion we will use a placeholder
R to represent the new information asserted by a sentence.

Any generator can use a logic programming query, formulated in terms of R, to assess
whether a given fact F will be taken as part of the common ground after R is added to
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the common ground. The logical representation for this query implements the following
algorithm. Consider the content of the common ground beforehand. Suppose this content
is extended so that the content of the assertion is also part of the common ground. Then
check whether F now follows from that extended common ground. This algorithm is how
DIALUP processes the query [CP](R � [CP]F).

SPUD uses such queries repeatedly, as it monitors the incremental construction of sen-
tence semantics. Here is how. At each stage, SPUD maintains a list G of facts that it should
communicate but has not yet communicated. So SPUD composes a new query to DIALUP

[CP](R � [CP]g) for each g in G. The results of these queries tell SPUD which goals in S it
has now satisfied; SPUD retains the goals in G and not in S for further iterations of adding
content.

Logic programming leaves the complexity of these queries firmly in the hands of the
designer of the domain. In the simplest case, g is a primitive fact; there are no (shared) rules
in the knowledge base describing how g might be derived by inference. Then DIALUP will
only consider facts from R in trying to derive g. This reduces to a simple unification test
between g and the facts asserted in the sentence. This is a simple test indeed, especially when
the logic programming engine implements discriminating and efficient indexing methods
to retrieve applicable clauses.

Even if g can potentially be established by complex chains of reasoning, logic program-
ming methods are available to reduce the cost of repeated queries. For example, rules can
be rewritten to fail more quickly by first making sure all the new information needed for the
inference has been included in the assertion of the sentence and only after this information
is obtained consulting the shared background to complete the inference.

There is no requirement of simplicity on the goal g. It can be any goal formula accepted
by DIALUP. This offers an exciting opportunity to exploit DIALUP’s nested and indefinite
information to more flexibly control the content of a sentence. For example, it is possible
to consider a goal that the hearer know the answer to a question. For the hearer to know
what satisfies p, we use the goal 9x[A]p(x). This gives rise to the incremental query
[CP](R � [CP]9x[A]p(x)). The query is set to exploit not just the concrete specification of
facts in the common ground but also indefinite characterizations of the hearer’s knowledge.

When we look at assertions that describe indefinite discourse markers, however, further
precision seems to be required to represent the contribution R of the assertion. In the
rest of this section, we describe a natural way to extend SPUD to better represent asserted
contributions, and provide a simple example of how this extension would work. With
indefinite discourse markers, the presupposition picks out terms for entities that may be
defined only at the world � introduced in the proof as representative of the content of the
common ground. Let us write these terms as r�, indicating explicitly their dependence on
the world �. Observe that the assertion cannot refer to the world � itself, because � is
merely assumed for the sake of argument during the resolution of the presupposition and
goes out of scope afterwards.

The interpretation of markers r� in assertion must instead follow the information that
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the hearer has about these markers. The information, and hence the interpretation, will vary
during the incremental construction of a sentence. One possibility is that the presupposition
P of the sentence remains incomplete, in that the context provides alternative salient
resolutions to P besides r�. In this case, we do not yet know whether the description in the
sentence will allow the hearer to identify the referents r on any concrete basis (even using
private knowledge). Thus, we should transfer r� over to the world where the assertion is
made, so as to obtain a condition we write as (97).

(97) [CP]Nry

The notation ry in (97) indicates that dependencies on � in each occurrence of a term
in r must be replaced by references to the world where the matrix of the [CP] formula is
evaluated. For example, suppose the presupposition of a sentence is p(x; y) and the assertion
is r(x; y). Suppose the presupposition refers in context to a concrete individual a and an
indefinite individual f that depends on a and varies from world to world. That means that
the resolution for the presupposition has the form q(a; f(a; �))�—using � to represent an
arbitrary world representative of the content of the common ground. Then the assertion, as
specified by (97), is treated as though it had the following functional translation at world
�:

(98) 8x : CP:r(a; f(a; �x))�x

According to (98), this sentence adds to the common ground the fact that a stands in the
relation r to whatever individual f happens to assign to a.

In contrast, once the presupposition identifies r uniquely, we can use the presupposition
itself to record the basis which might allow the hearer to identify r. The world named by
� can be replaced by any path term which leads to the world where the [CP] formula is
evaluated. We write this as in (99).

(99) [CP](Pr� � Nr�)

The idea behind (99) is to shortcut an inference that might otherwise have to be specified
using equational reasoning. We use (99) when it is part of the common ground that a unique
(salient) sequence of discourse markers satisfies P. In these circumstances, it may happen
that some participants in the conversation have independent information about concrete
individuals that satisfy P. Call these individuals a. By accepting the meaning of the
sentence, these participants therefore discover concrete entities a that satisfy N. To draw
this conclusion using (97), we must use participants’ knowledge that r = a together with
the axiom of indiscernibility of identicals. As we shall see, this inference typically follows
automatically from the management of path terms in (99).

Again, we can adapt the example of p(x; y) and r(x; y) for concreteness. When the
presupposition is resolved as p(a; f(a; �))�, then the assertion as specified by (99) is treated
as though it had the following functional translation at world �:

(100) 8x : CP:8y � �x:(p(a; f(a; y))�x � r(a; f(a; y))�x
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(100) makes a claim of any object u that f happens to assign to a at some world: it is part
of the common ground that if a and u are related by p, then a and u are related by r. (We
can streamline the notation of (100) as [CP](p(a; f(a; �)) � r(a; f(a; �))).)

An example of an indefinite instruction can illustrate the precision that a link between
a generator and DIALUP enables. We consider evaluating the instruction in (101).

(101) Type your social security number.

One of the speaker’s intentions in formulating this instruction is that the hearer know what
number to type.

(102) 9n[A]should-type(n)

Importantly, we do not assume that the speaker would know how to carry out this instruction
concretely; the speaker may not know what number to type.

The common ground for this example must include the two facts formalized in (103).
Everybody (in the domain) has a social security number, formalized as in (103a); and, at
least as applied to the hearer in (103b), one knows one’s own social security number.

(103) a [CP]8x9n:ssn(x; n)
b [CP]8n(ssn(a; n) � [A]ssn(a; n))

With the referring expression your social security number, the instruction in (101) carries
the presupposition in (104).

(104) hearer(u)^ ssn(u; v)

We can suppose that this has a unique resolution; u = a and the term for v is a discourse
referent formulated in terms of the Skolem function f introduced for the quantifier in (103a)
and abstracting a variable possible world path by �—i.e, v = f(a; �).

Thus, when we reach (101), the representation of the content contributed by in the
instruction is:

(105) hearer(a)^ ssn(a; f(a; �)) � should-type(f(a; �))

Overall then, we post this query to DIALUP:

(106) [CP]([CP](hearer(a) ^ ssn(a; f(a; �)) � should-type(f(a; �))) �
[CP]9x[A]should-type(x))

DIALUP uses the following reasoning to show that this query is true. Decomposing this goal
introduces transitions� and � of type [CP], a first-order logic variable y of domain�� and a
further transition  of type [A]. Then we’re looking to prove should-type(y) at world ��.
We can apply the content of the sentence here, by specializing the parameter � to refer to a
prefix of �� so that the f term respects the domain constraint of the variable y; we can take
�� itself as representative (although of course in DIALUP this is abstracted by a constraint).
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This means we are now looking at the goals hearer(a) at �� and ssn(a; f(a; ��) at ��.
The first goal immediately follows from the specification of the conversational setting: it
is part of the common ground who is the hearer now. For the second goal, we can apply
clause (103b), since  is an [A]-transition. This reduces the goal to showing ssn(a; f(a; ��)
at world ��. This just follows from clause (103a).

9.2.5 Guiding Choices in SPUD Using Modal Logic

When SPUD looks to extend a sentence, it uses the queries described in sections 9.2.3
and 9.2.4 to assess how much progress towards SPUD’s goals each option allows. The
greedy strategy outlined in Figure 9.1 dictates that SPUD adopt whatever option fares best
under this evaluation. In particular, in the current implementation, SPUD first narrows
consideration to the options that leave the fewest goals for further content to later steps of
execution; among this set, SPUD considers only those that leave variables’ distractor-sets
for reference the smallest.

These criteria do not always determine a unique entry for SPUD to use, however. Before
guessing randomly, SPUD makes a further determination of which options link most tightly
with the context. This determination, like SPUD’s others, involves a modal logic query
against a declarative specification.

At this stage, SPUD compares two lexical entries, each of which represents a possible
extension of the current sentence at the current stage. Both of these entries are associated
with the presupposition that they impose, which we will write Pu and P0v. Intuitively, the
one with the most specific presupposition makes the most precise demands of the context.

To effect this test in modal logic, we first need to determine what information should be
taken into account. We shouldn’t use [CP]. [CP] contains too much information to compare
these entries meaningfully. By hypothesis, both entries apply and so both presuppositions
are provable in the current common ground.

Instead we need to consider a collection of general background knowledge, which
we can identify with the contents of the modal operator [GK]. This knowledge can include
generalizations about the meanings of words and their relationships, and can include generic
regularities in the world, but should not describe the current situation.

We can determine whether P makes a better fit to the context than P0 by considering
just the information in [GK]. If we look in [GK] at every case where P applies, and see that
it is also a case of P0, then we know that the first lexical item is no weaker a link to the
context than the second. Logically, the query here is (107).

(107) [GK](9uPu � 9vP0v)

(This query also involves nested implication and an indefinite program clause, though one
hardly as impressive as (106).) An advantage of this query is that is determined only by
general and lexical information. The result of this query in SPUD is therefore precompiled
and built into the structure of the lexicon.

A similar query is possible to compare the assertions of different lexical items. Now



NLG 239

it is less clear whether it should take only general information into account or should be
assessed relative to the overall common ground. For now, SPUD uses the general query, for
purely computational reasons.

9.3 Worked Examples
This section provides two sets of detailed examples that illustrate how modal specifications
are supplied to SPUD and what SPUD does with them. The first, presented in section 9.3.1,
investigates a descriptive setting; it focuses on how SPUD can adjust the facts it conveys
and the constructions it uses to respect different specifications of the kinds of information
SPUD shares with its addressee. The second, presented in section 9.3.2, returns to the F-16
maintenance instructions described in Chapter 1. It focuses on how SPUD can produce
concise descriptions of actions by using its logical model of the common ground and
sentence interpretation to recognize when optional descriptive details of path and manner
can be omitted.

[Bourne, 1998] reports another case study of generating instructions in SPUD. She
focuses on generating an appropriate realization of the TERMINATION CONDITIONS which in-
dicate to an addressee when to stop an instructed activity. Describing termination concisely
and naturally demands reasoning about interpretation, because when an activity should stop
can be indicated not only by an explicit temporal modifier but can also follow from how
objects of verbs, paths and purposes of events are described. When termination information
is available from these other sources, it is much less likely to be described explicitly. Bourne
provides a computational account using SPUD, based on appealing to simple and general
logic programming rules that describe the internal structure of events and relationships
among events.

9.3.1 Sources of Information and Customized Text

The first example is an exploration of how to specify the content of the common ground
in a modular way and then reuse this specification to provide different descriptions of an
event to different audiences. The content of the example—an event in a murder mystery
story—is somewhat facetious; the range of variation among addressees—what modality
they communicate in and what background knowledge they have access to—most certainly
is not.

Here is the scene. The speaker and the addressee share mutual familiarity with a
certain country mansion; the speaker is there, engaged with the addressee in a process of
communication (about which more later). Suddenly, from the study, just a few doors down
the hall, an explosive boom blasts out. It could only have come from a gun (this being an
incipient murder mystery). The speaker decides to describe this event to the addressee.

The scenario now ramifies into six alternatives, depending on the medium by which the
speaker is engaged in communication with the addressee and the addressee’s background
knowledge. For condition one (C1), the speaker is writing a letter to the addressee; the
addressee can be assumed to have no access to the speaker’s present situation. For condition
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two (C2), the speaker is talking to the addressee over the phone; the addressee will doubtless
have heard the blast, but may not have perceived more about it. Finally, for condition three
(C3), the speaker and the addressee are engaged in a face-to-face discussion; the addressee
has just the same sensory capabilities as the speaker does. Modulating each of these
conditions is whether or not the addressee has the cosmopolitan (or cynical) upbringing
required to know that a blast under these circumstances can only mean a gun.

The differences and commonalities among these alternatives can be abstracted using four
sources of information. Following section 9.2.1, each source is assigned a modal operator.
There a source [M] encoding familiarity with the mansion—providing information shared
under all alternatives—as well as three others whose status varies: [G], for knowledge
about guns; [O], for awareness of the occurrence of sounds in the environment; and [L], for
awareness of the localization of sounds in space.

Specified in [M], we find that the room in a certain place in the mansion is a study, and
that this is the only study there. In [G] we find that any boom must be caused by a gun. In
[O] we find that a boom has in fact just occurred, and that there has been nothing else like
it recently. In [L] we find that the boom came from the study.

Our six alternatives are now identified simply by the combinations of modal operators
which constitute the common ground in that case. For C1, we have [M] (+[G]); for C2,
[M] + [O] (+[G]); for C3, [M] + [O] + [L] (+[G]). When SPUD is given this specification
and instructed to describe the boom event—making sure the addressee knows the features
the speaker has just learned—the six sentences in (108) are output. ((108c) involves two
sentences because a quirk of the little grammar used here prevents the two facts from being
combined into a single sentence.)

(108) a ([M]) There was a boom made by a gun from the study.
b ([M] + [G]) There was a boom from the study.
c ([M] + [O]) The boom was from the study. The boom was made by a gun.
d ([M] + [O] + [G]) The boom was from the study.
e ([M] + [O] + [L]) The boom was made by a gun.
f ([M] + [O] + [L] + [G]) [silence]

Both the amount of information provided and the linguistic constructions used to present
that information depend on the common ground and change in parallel with variation in the
scenario. (108b) in particular is abbreviated dynamically, using a query that assesses its
incremental interpretation and reveals that the inference to the gun will already be made by
this addressee.

This example is intuitive rather than immense. It aims to illustrate that the notion of
source of information—motivated for dialogue in [Clark and Marshall, 1981] and linked to
modal logic one way here—is simple and flexible. Programmers need not to be intimidated
by the modal notion; with a little patience, they can easily explore it to capture whatever
organizations of information arise from the structure of the domain or the composition and
variation in texts about the domain.
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Figure 9.3: A piping schematic for some instructions.

9.3.2 Semantics, Reference and Lexical Choice

The second example illustrates an interaction of lexical semantics and world knowledge in
NLG that can be modeled using declarative characterizations of interpretation. The goal
of the example is to mirror patterns of description found in the F-16 maintenance manual
(first described in section 1.1). It represents part of a larger effort to characterize the syntax,
semantics and discourse of the F-16 manual as well as some of the logistics of aircraft repair
[Badler and others, 1998].

A common maintenance operation in the fuel system involves accessing and adjusting
fittings between pipes. (Section 1.1 also alluded to this.) The joint between a pair of pipes is
typically sealed using a sleeve and then secured using a coupling that surrounds the sleeve.
Before maintenance, the coupling is removed and the sleeve is slid away from the joint.
Afterwards, the sleeve is positioned over the joint once more and a coupling is installed
around it. The F-16 manual is very consistent in its use of these verbs and nouns to describe
this operation.

In formulating and posing queries to DIALUP that compare lexical semantics and a
domain specification, SPUD offers a declarative model of the decisions that go into the
construction of these consistent descriptions of actions. In this section, we will illustrate
this for two instructions, meant to be executed in succession against the scene illustrated
in Figure 9.3. The instructions are characteristic of actual instructions and the schematic
is a simplified version of a real one. We start with a logical specification of the shared
knowledge schematized in the figure. Note that this specification includes some facts about
the geometry and function of objects in the schematic whose role (and derivation) may
not immediately evident. The two sleeves are shown in the configurations where they
fulfill their usual function of sealing joints. (Only such configurations count as positions
for the maintenance manual.) The sleeves are in contact with the pipes and will stay in
contact with pipes if moved horizontally. The specification also provides a simple theory
for describing the consequences of motion events in the domain; I used a modal presentation
of explanation closure for reasoning about change (since I have not yet implemented the
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defeasible inference described in Chapter 6).
The first instruction is (109).

(109) Slide the sleeve on the elbow.

The key to the instruction is the choice of verb and its impact on reference. Of course,
we need to identify the intended object and path for the hearer to be able to execute this
instruction. However, this setting involves only definite knowledge and in fact the lexical
semantics for any motion verbs will refer to the object and path. So the requirements of
planning reduce to the requirements of reference.

Now SPUD first calls DIALUP to determine which verbs are compatible with this action.
Most are rejected. The case of position is interesting: because of function and geometry in
the domain, the configuration after carrying out the instruction in (109) does not have the
sleeve in position. Of the entries that remain, slide—by contrast with potential alternatives
like move and even place that could also describe the needed action—imposes a lexical
constraint on its arguments. To slide, the object must move along a surface throughout the
path. This constraint is not only met in the schematic, it contributes to the presupposition and
is therefore factored into reference resolution by SPUD (and DIALUP). The more constrained
reference problem provides a decisive reason for SPUD to select slide initially.

The next step adjoins in on the elbow. This distinguishes the elbow from its
alternatives—it is the only elbow in the schematic—and thereby also distinguishes the
path we are taking. Then it suffices to describe the object as the sleeve. While there are
two sleeves in Figure 9.3, only one meets the rest of the presupposition maintained during
sentence construction. Only for it does the path onto the elbow keep it in contact with a
surface.

The second action is described as in (110).

(110) Reposition the sleeve.

The instruction is undertaken in a new context where the current state reflects the result
of performing (109) and the history records the action and its earlier state. Again the
key task is the choice of verb, and again SPUD makes this choice principally by assessing
progress towards reference resolution in conjunction with DIALUP. Again, general verbs
like move and place leave relatively unconstrained problems for reference, while the more
precise lexical entries slide, position and reposition carry presuppositions that immediately
narrow the referential possibilities. In particular, slide describes the relation of contact
during the event between the moved object and another surface; position describes the
relation of geometry and function between the moved object and the end of its trajectory.
But reposition not only demands this functional relation, thanks to re- it imposes a further
presupposition that the object have been moved from its position. Not surprisingly, SPUD

chooses reposition—its lexical position is sufficient to latch on directly to the sleeve moved
in the previous instruction and the position it started from as that instruction began. That
leaves only the syntactic task of substituting an appropriate object description for the sleeve.
(The current version of SPUD has no lexical items for pronouns, as in fact befits this domain.)
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In these examples, the lexical meaning for verbs like slide and position allows the
generator to determine when the entries apply, what the hearer will interpret from them,
and thus which lexical entry to use at each step in augmenting the sentence. These different
uses for the same information testify to the beauty and simplicity of adopting a declarative
framework for NLG and the importance of being able to construct queries that explicitly
access a range of different sources of information in NLG.

9.4 Summary
Chapter 1 argued that NLG is a reasoning task. This chapter has explored what kind of rea-
soning is involved. Reasoning is required to assess alternatives for reference—a particular
theme of sections 9.1, 9.2.3 and 9.3.2. The assessment can benefit from access to a struc-
tured, declarative modal description of the common ground. Different reasoning is required
to determine the contribution of new information—a particular theme of sections 9.2.4 and
9.3.1. This reasoning benefits from queries and specifications involving nested modal
operators and indefinite constructs. Finally, reasoning must test the fit of constructions to
context, as described in section 9.2.5. The abstract discussion and implemented examples of
this chapter show how the studies of reasoning in Part I and representation in Part II together
provide systematic and promising support for the exciting and challenging application of
NLG.
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Conclusion

As observed from Chapter 1 to Chapter 9, natural language generation (NLG) requires
substantial reasoning. This dissertation documents a systematic preliminary effort to show
how inference in modal logic can be used in practice to support this reasoning.

A generation system can produce a concise and precise sentence only by drawing
inferences about how the hearer will interpret that sentence as dependent on, and as an
update to, the common ground. Such inference is naturally founded on a declarative
framework, like modal logic, for describing the effects of actions in the domain and
the knowledge of the participants in the conversation. From a theoretical perspective,
modal logic seems particularly attractive because it so easily accommodates the partial and
indefinite information that underlies so much of conversation and action. This dissertation
has engaged the goal of bringing this theoretical advantage to bear more directly to bear
in the construction of NLG systems. This chapter summarizes our results on this problem,
and concludes with a statement of some of the outstanding problems and questions raised
by these results.

10.1 Overview of Results
The key contribution of this dissertation lies in describing how specifications in modal
logic—even and especially those that appeal to indefinite constructs—can be stated naturally
and executed, using streamlined search techniques, to guide NLG systems. This section
outlines the principles for the execution of indefinite modal specifications derived in Part I
and the principles for constructing indefinite modal specifications derived in Part II.

10.1.1 Executing Indefinite Modal Specifications

To execute modal specifications requires leveraging both the flexibility of efficient classi-
cal theorem-proving and the distinctive modularity of modal logic. This is a significant
problem—as shown in Chapter 2—because the two are at odds. On the one hand, flexi-
ble search strategies impose no constraints on the relationships among inferences and, by
thus ignoring modularity, leave open hopelessly wild possibilities for search. On the other
hand, brute-force modular systems place such overbearing constraints on the order in which
search must proceed that it becomes impossible to guide that search intelligently. The need
to balance these opposing principles is why neither structural tableau methods—heavy on
modularity—nor semantics-based resolution methods—heavy on flexibility—offer the last
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best word on modal deduction; opportunities to balance the principles will remain at the
heart of research on the subject.

One strategy for balancing the flexibility of goal-directed search with the modularity
of modal logic is the design of a modular inference system based on logic programming
search. Such a system, called DIALUP, is derived in Chapter 3. DIALUP combines the use
of logic variables and unification for flexible search with an optimized representation of
possible worlds—as distinct constants—that exploits the eager search of the logic program-
ming interpreter. The proof system permits the use of constraint algorithms, described in
Chapter 4, which efficiently impose modularity directly in the structure of proofs.

The distinctive advantage of this search strategy, in contrast to previous efficient and
modular designs for logic programming or contextual reasoning, is in allowing nested,
modular existential quantifiers and disjunctions. These indefinite constructs get a simple
and powerful treatment in DIALUP; this treatment underlies the construction and executions
of indefinite specifications throughout the dissertation. For a start, as outlined in Chap-
ter 5, DIALUP’s treatment of these constructs makes for highly competitive performance on
benchmark theorem proving problems involving modularity and disjunction.

10.1.2 Constructing Indefinite Modal Specifications

The task of reasoning about action and knowledge, explored in Part II, finds a range of
further uses for indefinite specifications. For example, some sequences of actions achieve
their effects despite possible variation in the state in which they occur. Think of dunking two
packages—one of which is a bomb. As shown in Chapter 6, an indefinite characterization of
this variation, using disjunction, may be necessary to calculate the effects of these actions.

Domains with information-gathering actions, meanwhile, provide another motivation
for indefinite specifications. As described in Chapter 7, partial information, encoded
using existential quantifiers and disjunctions, is needed in such domains to abstract the
knowledge an agent can obtain from sensing actions. These characterizations provide the
logical foundation for an agent’s ability to make choices later in the plan that draw on the
information the agent has learned earlier.

Indefinite characterizations of knowledge allow one agent to assess information that it
lacks but that another agent has. Planning is a special case of this—where an agent assesses
the information available to itself in the future. Conversation requires this ability more
generally. We ran across two simple examples of this in Chapter 9. To ask a question and
expect an answer requires knowing in detail how one’s partner’s knowledge may surpass
one’s own. Likewise, providing an instruction that one’s partner knows how to execute
may involve describing the instruction in terms that the partner will be able to interpret
concretely but that remain indefinite to oneself.

As conversational agents start to think ahead about what they say and what they do,
reasoning about one’s own knowledge for planning and reasoning about other’s knowledge
will both come into play. Ultimately, a flexible conversational agent, of the kind envisioned
for example [Cassell et al., 1994a], must combine both types of reasoning. With such
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reasoning, it will be able to trade off independent action in the world (including ordinary
actions and sensing actions) against joint actions agreed to (or, in the case of questions and
answers, accomplished) in conversation. In formulating and choosing among such options,
the conversational agent’s reasoning can be expected to build on and extend the indefinite
characterizations of planning, knowledge and action developed here.

Modularity itself has a further role in planning. Modular specifications can describe
the independence of planning tasks in the domain and can reduce the number and kinds of
interactions among tasks that an agent needs to plan for. Chapter 8 showed how modularity
can reduce the search space in planning and facilitate the construction of more compact,
natural plans.

10.1.3 Putting Indefinite Modal Specifications into Practice

We saw in Chapter 9 how the guidelines for developing indefinite modal specifications
developed in Part II and the algorithms for executing those specifications developed in
Part I can be put into practice. We examined the particular case of the SPUD system
for NLG. SPUD represents the common ground in conversation using modal logic. This
specification describes the sources of information that constitute the private expertise and
shared background of participants in conversation. The specification includes not just
concrete details but indefinite statements that describe the information available to one
agent but not to the other. SPUD invokes DIALUP at every stage of generation, to consult this
specification, monitor its progress towards its goals, and check the fit between its utterance
and the context. SPUD’s queries involve not just simple checks of what is true, but complex
assessments formulated in terms of hypothetical updates to the common ground, nested
modal operators and indefinite constructs. SPUD uses all of DIALUP’s expressive range.

SPUD’s incremental appeals to modal inference enable brevity in descriptions of actions;
they allow SPUD to check that what it intends to communicate will be correctly recovered
by the hearer from a compact description. Indefinite descriptions and queries, in particular,
allow reference to discourse markers and make it possible for the speaker, in identifying
abstract actions, to recognize that the hearer can realize those actions concretely. The
resulting flexibility means that SPUD can start from independently-motivated descriptions
of actions and still output concise, interesting sentences.

10.2 Issues and Problems

The breadth of this investigation inevitably precludes a definitive treatment of many of the
points it raises. I mention here only a few of the most pressing issues and problems.

One problem is to achieve a more systematic understanding of the relative advantages
of modularity and flexible search order across a range of problems in modal deduction.
The results of Chapter 5 suggest that such understanding can come only with a thorough
study of the different sources of difficulty in modal search—as encountered both in random
problems and in the specifications designed for concrete applications. Thus it can only
develop in parallel with the development of new ways to design hard model deduction
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problems and growth in use of modal languages in practice.
A different challenge is to reconcile default reasoning with the epistemic reasoning

needed to describe conditional and parameterized actions in plans. Here one tack would
be to follow the formalism of argumentation introduced in Chapter 6—with the aim of
connecting with threat-based approaches to reasoning about conditional and parameterized
actions as in [Golden and Weld, 1996]. To nail down such an extension would require
not just extending relations among arguments, such as attack, but also redefining the
intended models which exhibit common-sense inertia in the epistemic arena. To account
for the modularity of independent planning subproblems will require still further extensions.
Indeed, hardly any research has investigated the balance between ignoring what may have
been true and ignoring what may have happened that must go into a description of inertia
across modular subproblems. Faced with the difficulty of these successive reformulations of
argumentation, an alternative would be to build on a different approach to default reasoning,
with the hope of obtaining definitions and results which generalize more straightforwardly
across domains. [Thomason, 1998] represents a preliminary study of one such framework,
based on applying circumscription to a multimodal logic.

Future work is also needed to put SPUD to broader use, exploring the range of input
representations, linguistic descriptions and models of interpretation that can be informed
by modal specifications and reasoning. A relatively straightforward starting point would be
to build a larger grammar fragment and look at the treatment of a greater variety of actions
and instructions. Ongoing analysis of the F-16 instruction corpus for SPUD (referenced in
Chapter 1), conducted with Martha Palmer, Christine Doran and Tonia Bleam, encompasses
only a dozen verbs. There is obviously scope for more, and plenty of room for surprises in
extending the preliminary success of SPUD to a more substantial domain of actions.

A more ambitious goal is to reconcile SPUD’s incremental construction and evaluation
of sentence interpretation with a default theory of knowledge and action. This may raise
new problems and require new mechanisms, for example by introducing the possibility of
inaccurate inferences that can be signaled by the absence of information. For such problems,
a formalism based on abduction—in which hearer and speaker explicitly represent and agree
on their shared assumptions about interpretation—may be preferable to a default logic based
on arbitration among explicit defeasible rules. [Thomason and Hobbs, 1997] offer a first
look at using abduction in NLG, but their proposal is silent on important computational
concerns. Reference resolution is a good example. On the abductive view of [Hobbs et
al., 1988], a referring expression can potentially be explained by any assumption which
supplies a discourse entity for it to refer to. The correct referent is found only because most
of these hypotheses are inconsistent. But detecting and managing these inconsistencies
is a much more open-ended computational task than the intersective constraint resolution
required for efficient NLG. For problems such as reference, then, explicit reference to state
of common ground, as represented in SPUD and DIALUP, seems to provide a complementary
expressive resource that can be usefully combined with an abductive view of interpretation.

Substantial and different as these projects are, all fit into an overarching and ultimate
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one: to provide a computational account of the generation of precise, concise and natural
sequences of sentences—describing reasons to carry out sequences of actions in the coherent
language people use and expect. This project not only relies on the more basic efforts just
described; it also brings exciting issues of its own to explore. Among the most important is
how to lift and connect approaches to content and inference from sentences to discourse more
generally. To do so, we must represent the inferential connections we recover in discourse
at the level of content, perhaps by continuing to explore a connection between plans and
reasoning and formalizations of argument as in [Ferguson, 1995]. We must also represent
the basis for these inferential connections at the level of semantics and other linguistic
structures—a view of cue words and other connectives as referential descriptions, as in
[Knott, 1996], suggests that we can go far by emphasizing the continuity between sentences
and broader discourse. By exploring these connections between such representations—in
an ever more concrete and computational way—we can hope to more tightly reconcile the
representations of language and computational logic, and to thereby obtain a more thorough
and compelling model of what people put into conversation, and what they get out of it.

10.3 Closing Statement
The different sections of this work draw on and extend the contributions of researchers
in different communities. Part I is mathematics: it shows how entities governed by an
equational theory can serve as indicators of modularity in modal proofs, and how in key
cases proof systems can exploit this abstraction to implement the modularity of modal
logic simply, powerfully and flexibly. Part II is artificial intelligence: it describes and
motivates tools using these algorithms that can be used for practical reasoning. And Part III
is computational linguistics: it shows how the computation of sentence interpretation can
benefit not only from declarative representations of lexicon and grammar but also from
declarative representations of the underlying domain of knowledge and action which the
sentence describes.

These algorithms thus connect various theoretical observations to the real requirements
of scaling up reasoning and language to NLG problems of practical size. With this connec-
tion, the trends coalesce to form a single, coherent argument about knowledge representation
and reasoning in natural language processing: formal foundations, linguistic explanations,
efficient deduction and natural specifications do not have to be sacrificed to achieve logical
representations with simple syntax and simple translations from natural language.
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Noûs, 25:513–536, 1991.

[Pollack, 1992] Martha E. Pollack. The uses of plans. Artificial Intelligence, 57:43–68,
1992.

[Pollock, 1992] John L. Pollock. How to reason defeasibly. Artificial Intelligence, 57(1):1–
42, 1992.

[Prince, 1981] Ellen Prince. Toward a taxonomy of given-new information. In P. Cole,
editor, Radical Pragmatics. Academic Press, 1981.

[Prior, 1967] Arthur N. Prior. Past, Present and Future. Clarendon Press, Oxford, 1967.

[Rambow and Korelsky, 1992] Owen Rambow and Tanya Korelsky. Applied text genera-
tion. In ANLP, pages 40–47, 1992.

[Reed et al., 1992] David W. Reed, Donald W. Loveland, and Bruce T. Smith. The near-
horn approach to disjunctive logic programming. In Proceedings of the Second Workshop
on Extensions of Logic Programming, Berlin, 1992. Springer Verlag.

[Reiter and Dale, 1997] Ehud Reiter and Robert Dale. Building applied natural language
generation systems. Natural Language Engineering, 3:57–88, 1997.



REFERENCES 261

[Reiter et al., 1995] Ehud Reiter, Chris Mellish, and John Levine. Automatic generation
of technical documentation. Applied Artificial Intelligence, pages 259–287, 1995.

[Reiter, 1980] R. Reiter. A logic for default reasoning. Artificial Intelligence, 12:81–132,
1980.

[Reiter, 1991] Raymond Reiter. The frame problem in the situation calculus: a simple
solution (sometimes) and a completeness result for goal regression. In Vladimir Lifschitz,
editor, Artificial Intelligence and Mathematical Theory of Computation, pages 359–380.
Academic Press, 1991.

[Reiter, 1994] Ehud Reiter. has a consensus NL generation architecture appeared, and is it
psycholinguisticallyplausible? In Seventh International Workshop on Natural Language
Generation, pages 163–170, June 1994.

[Reiter, 1996] Ray Reiter. Natural actions, concurrency and continuous time in the situation
calculus. In KR, 1996.

[Robinson, 1965a] J. A. Robinson. Automatic deduction with hyper-resolution. Interna-
tional Journal of Computer Mathematics, 1:227–234, 1965.

[Robinson, 1965b] J. A. Robinson. A machine oriented logic based on the resolution
principle. Journal of the ACM, 12(1):23–45, 1965.

[Sacerdoti, 1975] Earl D. Sacerdoti. The nonlinear nature of plans. In Proceedings of
IJCAI, pages 206–214, 1975.

[Sahlin et al., 1992] Dan Sahlin, Torkel Franzén, and Seif Haridi. An intuitionistic predi-
cate logic theorem prover. Journal of Logic and Computation, 2(5):619–656, 1992.

[Sandewall, 1994a] Erik Sandewall. Features and Fluents: Representation of Knowledge
about Dynamical Systems. Oxford University Press, New York, 1994.

[Sandewall, 1994b] Erik Sandewall. The range of applicability of some non-monotonic
logics for strict inertia. Journal of Logic and Computation, 4(5):581–615, 1994.

[Schabes, 1990] Yves Schabes. Mathematical and Computational Aspects of Lexicalized
Grammars. PhD thesis, Computer Science Department, University of Pennsylvania,
1990.

[Schank and Abelson, 1977] Roger Schank and Robert Abelson. Scripts, Plans, Goals and
Understanding. Lawrence Erlbaum, Hillsdale, N.J., 1977.

[Scherl and Levesque, 1993] Richard B. Scherl and Hector J. Levesque. The frame problem
and knowledge-producing actions. In AAAI, pages 689–695, 1993.



262 MATTHEW STONE

[Schmidt, 1996] Renate A. Schmidt. Resolution is a decision procedure for many propo-
sitional modal logics. In AiML, 1996.

[Schmidt, 1998] Renate A. Schmidt. E-Unification for subsystems of S4. In Rewriting
Techniques and Applications, 1998.

[Schubert, 1990] Lenhart K. Schubert. Monotonic solution of the frame problem in the
situation calculus: an efficient method for worlds with fully specified actions. In H. E.
Kyburg, R. P. Loui, and G. N. Carlson, editors, Knowledge Representation and Defeasible
Reasoning, pages 23–67. Kluwer, Boston, 1990.

[Schulz, 1993] Klaus U. Schulz. Word unification and transformation of generalized equa-
tions. Journal of Automated Reasoning, 11(2):149–184, 1993.

[Shanahan, 1989] Murray Shanahan. Prediction is deduction but explanation is abduction.
In Proceedings of IJCAI, pages 1055–1060, 1989.

[Shanahan, 1997] Murray Shanahan. Event calculus planning revisited. In Proceedings of
European Conference on Planning, pages 390–402, 1997.

[Shieber et al., 1990] Stuart Shieber, Gertjan van Noord, Fernando Pereira, and Robert
Moore. Semantic-head-driven generation. Computational Linguistics, 16:30–42, 1990.

[Shoham, 1991] Yoav Shoham. Varieties of context. In Vladimir Lifschitz, editor, Artifi-
cial Intelligence and Mathematical Theory of Computation: Papers in Honor of John
McCarthy. Academic Press, 1991.

[Simari and Loui, 1992] Guillermo R. Simari and Ronald P. Loui. A mathematical treat-
ment of defeasible reasoning and its implementation. Artificial Intelligence, 53:125–157,
1992.

[Slaney, 1994] John Slaney. MINLOG. Technical Report TR-ARP-12-94, Australian
National University, 1994.

[Smullyan, 1973] Raymond M. Smullyan. A generalization of intuitionistic and modal
logics. In Hugues Leblanc, editor, Truth, Syntax and Modality, pages 274–293. North-
Holland, Amsterdam, 1973.

[Steedman, 1995] Mark Steedman. Dynamic semantics for tense and aspect. In Proceed-
ings of IJCAI, pages 1292–1298, 1995.

[Steedman, 1997] Mark Steedman. Temporality. In Johan van Benthem and Alice ter
Meulen, editors, Handbook of Logic and Language, pages 895–935. Elsevier, 1997.

[Stone and Doran, 1996] Matthew Stone and Christine Doran. Paying heed to collocations.
In International Natural Language Generation Workshop, pages 91–100, 1996.



REFERENCES 263

[Stone and Doran, 1997] Matthew Stone and Christine Doran. Sentence planning as de-
scription using tree-adjoining grammar. In Proceedings of ACL, pages 198–205, 1997.

[Stone and Webber, 1998] Matthew Stone and Bonnie Webber. Textual economy through
close coupling of syntax and semantics. In Proceedings of INLG, 1998.

[Stone, 1992] Matthew Stone. ‘or’ and anaphora. In Chris Barker and David Dowty,
editors, SALT II, Columbus, 1992. Ohio State University.

[Stone, 1997a] Matthew Stone. Applying theories of communicative action in natural lan-
guage generation using logic programming. In AAAI Fall Symposium on Communicative
Action, 1997.

[Stone, 1997b] Matthew Stone. Partial order reasoning for a nonmonotonic theory of
action. In AAAI Workshop on Theories of Action, Providence, RI, 1997.

[Stone, 1998] Matthew Stone. Abductive planning with sensing. In AAAI, Madison, WI,
1998.

[Stone, to appear] Matthew Stone. Representing scope in intuitionistic deductions. Theo-
retical Computer Science, to appear. IRCS TR 97-14.

[Taylor et al., 1996] Jasper Taylor, Jean Carletta, and Chris Mellish. Combining power with
tractability in belief models. Technical Report HCRC RP-76, Human Communication
Research Centre, 1996.

[Tennant, 1992] Neil Tennant. Autologic. Number 9 in Edinburgh Information Technology
Series. Edinburgh University Press, Edinburgh, 1992.

[Thistlethwaite et al., 1987] P. B. Thistlethwaite, M. A. McRobbie, and R. K. Meyer. Au-
tomated Theorem-Proving in Non-classical Logics. Wiley, New York, 1987.

[Thomason and Hobbs, 1997] Richmond H. Thomason and Jerry R. Hobbs. Interrelating
interpretation and generation in an abductive framework. In AAAI Fall Symposium on
Communicative Action, 1997.

[Thomason, 1998] Richmond H. Thomason. Intra-agent modality and nonmonotonic epis-
temic logic. In Theoretical Aspects of Rationality and Knowledge (TARK), 1998.

[Troelstra and van Dalen, 1988] A. S. Troelstra and D. van Dalen. Constructivism in Math-
ematics, volume 1. North-Holland, Amsterdam, 1988.

[van Benthem, 1983] Johan F. A. K. van Benthem. Modal Logic and Classical Logic.
Bibliopolis, Naples, 1983.

[van Benthem, 1984] Johan van Benthem. Modal correspondence theory. In Handbook of
Philosophical Logic, volume 2, pages 167–247. D. Reidel, Dordrecht, 1984.



264 MATTHEW STONE

[van der Sandt, 1992] Rob van der Sandt. Presupposition projection as anaphora resolution.
Journal of Semantics, 9(2):333–377, 1992.

[van Gelder, 1986] Allen van Gelder. Negation as failure using tight derivations for general
logic programs. In Proceedings of the International Symposium on Logic Programming,
pages 127–139. IEEE Computer Society,, The Computer Society Press, 1986.

[van Gelder, 1989] Allen van Gelder. Negation as failure using tight derivations for general
logic programs. Journal of Logic Programming, 6(1):109–133, 1989.

[Veloso, 1994] Manuela M. Veloso. Planning and Learning by Analogical Reasoning.
Springer, 1994.

[Walker, 1993] Lyn Walker. Informational redundancy and resource bounds in dialogue.
PhD thesis, Department of Computer & Information Science,University of Pennsylvania,
1993. Institute for Research in Cognitive Science report IRCS-93-45.

[Wallen, 1990] Lincoln A. Wallen. Automated Proof Search in Non-Classical Logics: Effi-
cient Matrix Proof Methods for Modal and Intuitionistic Logics. MIT Press, Cambridge,
1990.

[Ward, 1994] Nigel Ward. A Connectionist Language Generator. Ablex, Norwood, NJ,
1994.

[Webber et al., 1995] Bonnie Webber, Norm Badler, Barbara Di Eugenio, Chris Geib,
Libby Levison, and Michael Moore. Instructions, intentions and expectations. Artificial
Intelligence, 73:253–259, 1995.

[Webber, 1998] Bonnie Webber. Instructing animated agents: Viewing language in behav-
ioral terms. In Harry Bunt, Robert-Jan Beun, and Tijn Borghuis, editors, Multimodal
Human-Computer Communication: Systems, Techniques and Experiments, volume 1374
of LNAI, pages 89–100. Springer, 1998.

[Wiedenbach et al., 1996] Christoph Wiedenbach, Bernd Gaede, and Georg Rock. SPASS
and FLOTTER, version 0.42. In M. A. McRobbie and J. A. Slaney, editors, 13th
International Conference on Automated Deduction, CADE-13, number 1104 in LNAI,
pages 141–145, Berlin, 1996. Springer.

[Wilkins, 1988] D. E. Wilkins. Practical Planning: Extending the Classical AI Paradigm.
Morgan Kaufmann, San Mateo, CA, 1988.

[Yang et al., 1991] Gijoo Yang, Kathleen F. McCoy, and K. Vijay-Shanker. From functional
specification to syntactic structures: systemic grammar and tree-adjoining grammar.
Computational Intelligence, 7(4):207–219, 1991.

[Yang, 1990] Q. Yang. Formalizing planning knowledge for a hierarchical planner. Com-
putational Intelligence, 6(1):12–24, 1990.



REFERENCES 265

[Young et al., 1994] R. Michael Young, Martha E. Pollack, and Johanna D. Moore. De-
composition and causality in partial-order planning. In AIPS, 1994.

[Young, 1997] R. Michael Young. Generating Concise Descriptions of Complex Activities.
PhD thesis, University of Pittsburgh, 1997.


