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1.1 Introduction

The appeal of dialogue as an interface modality is its ability to support open-
ended mixed-initiative interaction. Many systems offer rich and extensive capa-
bilities, but must support infrequent and untrained users. In such cases, it’s
unreasonable to expect users to know the actions they need in advance, or to be
able to specify them using a regimented scheme of commands or menu options.
Dialogue offers the potential for the user to talk through their needs with the
system and arrive collaboratively at a feasible solution.

Dialogue, in short, comes into its own in potentially problematic interactions.
We do not expect the user’s conceptualizations of the task and domain to align
with the system’s. The system cannot count on some fixed regime to recover the
meanings of the user’s words, their reference in the domain, or their contribution
to ongoing activity. The system must be prepared for incorrect or incomplete
analyses of users’ utterances, and must be able to pinpoint users’ needs across
extended interactions. Conversely, the system must be prepared for users that
misunderstand it, or fail to understand it. This chapter provides an overview of
the concepts, models and research challenges involved in this process of pursuing
and demonstrating understanding in dialogue.

We start in Section 1.2 from analyses of human–human conversation. Peo-
ple are no different from systems: they face potentially problematic interactions
whenever they must sort out issues that some find unfamiliar. In response, they
avail themselves of a wide range of discourse moves and interactive strategies,
suggesting that they approach communication itself as a collaborative process of
agreeing, to their mutual satisfaction, on the distinctions that matter for their
discussion and on the expressions through which to identify those distinctions.
In the literature, this process is often described as grounding communication, or
identifying contributions well enough so that they become part of the common
ground of the conversation [Clark and Marshall, 1981, Clark and Wilkes-Gibbs,
1986, Clark and Schaefer, 1989, Clark, 1996].

For a computer system, grounding can naturally be understood in terms of
problem solving. When a system encounters an utterance whose interpretation is
incomplete, ambiguous, unlikely or unreliable, it has to figure out how to refine
and confirm that interpretation without derailing the interaction. When a sys-
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tem gets evidence that one of its own utterances may not have been understood
correctly, it has to figure out how to revise and reframe its contributions to keep
the conversation on track. Solving such problems means coming up with ways
building on partial understandings of previous contributions, while formulating
utterances with a reasonable expectation that they will be understood correctly
no matter what, and will move the conversation forward. We call this reason-
ing process contribution tracking. It is a core requirement for natural language
generation in dialogue.

In Section 1.3, we describe a preliminary version of contribution tracking in
a prototype dialogue system, COREF [DeVault and Stone, 2007, 2006, DeVault
et al., 2005], and offer a new assessment of the qualitative capabilities that con-
tribution tracking gives the current version of COREF. We emphasize how con-
tribution tracking influences all the steps of planning and acting in dialogue
systems, but particularly the process of natural language generation. Our analy-
sis suggests that dialogue systems designers must be wary of idealizations often
adopted in natural language generation research. For example, you may not be
able to specify a definite context for generation, you may not be able to formulate
an utterance you can guarantee that the user will understand, and you may have
a communicative goal and content to convey that overlaps in important ways
with the communicative goals and content of previously-formulated utterances.

Relaxing these idealizations remains a major challenge for generation and
grounding in dialogue. In particular, in Section 1.4, we use our characteriza-
tion of contribution tracking as problem solving to analyze the capabilities of
grounding models in current conversational systems. Many applied frameworks
restrict grounding actions to simple acknowledgments, confirmation utterances
and clarification requests. This narrow focus lets systems streamline the reason-
ing required to generate grounding utterances, through approaches that abstract
away from aspects of the system’s uncertainty about the conversational state and
its consequences for system choices.

On the other hand, as we survey in Section 1.5, a wide range of emerging appli-
cations will require a much more sophisticated understanding of the grounding
work that systems and users are doing. A conversational agent that generates
communicative gestures and facial expressions will need to model how nonverbal
actions help to signal understanding or lack of understanding. A collaborative
robot that carries out physical activities jointly with a human partner will need
to model how real-world actions give evidence of interlocutors’ interpretations
of utterances. A virtual human, with naturalistic mechanisms of attention, cog-
nition and emotion, will need to recognize that its internal state, including its
understanding of what is happening in the conversation, is often legible in the
work it is obviously doing to participate in the conversation. In our view, these
emerging applications for dialogue technology give a lasting importance to gen-
eral accounts of grounding as problem solving—and offer an exciting range of
practical test cases for generating new kinds of grounding phenomena.
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1.2 Background

Avoiding misunderstanding in problematic situations is a joint effort. If the
addressee gives no feedback about what he understands, there is no way that
the speaker can confirm the she was understood as she intended. Conversely,
unless the speaker acts on the feedback the addressee provides, the addressee
cannot correct an incomplete or faulty understanding. In human–human conver-
sations, interlocutors do work jointly this way to stay in synch. Understanding of
what people do in the face of difficulties can provide a starting point for achieving
similar grounding in dialogue systems.

1.2.1 Grounding behaviors

As Clark [1996, Ch 5] reminds us, successful understanding, for humans and
machines, involves recognizing what the speaker is doing across a hierarchy of
levels. At the lowest level, recognizing words, people sometimes face substan-
tial difficulty—though perhaps not so severe as systems with automatic speech
recognition. In such situations, hearers often use confirmation strategies to make
sure they get the information right. Example (1.1) illustrates:

(1.1) June: ah, what ((are you)) now, *where*
Darryl: *yes* forty-nine Skipton Place
June: forty-one
Darryl: nine. nine
June: forty-nine, Skipton Place,
Darryl: W one.

London–Lund Corpus (9.2a.979) cited in [Clark, 1996, p. 236]

June repeats what Darryl says. Note how this enables Darryl to catch and cor-
rect June’s mishearing of forty-nine as forty-one. Notice also the coordination
involved. Darryl speaks in installments that can be echoed and corrected eas-
ily; June echoes as expected. The strategy allows specifications, confirmations
and corrections to come fluidly and elliptically. It’s not just June that’s taking
grounding into account in managing the dialogue here; it’s also Darryl.

Understanding at the next-higher level involves the grammatical analysis of the
utterance. A representative task here is the resolution of word-sense ambiguities.
Systems famously face a vocabulary problem because users are so variable in the
meanings they assign to words in unfamiliar situations [Furnas et al., 1987]. So
do people, like interlocutors A and B in (1.2):

(1.2) B: k– who evaluates the property —
A: u:h whoever you asked, . the surveyor for the building society
B: no, I meant who decides what price it’ll go on the market —
A: (– snorts) , whatever people will pay —

London–Lund Corpus (4.2.298) cited in [Clark, 1996, p. 234]
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In the complex process of valuing real estate, property is evaluated in one sense
by the seller and their sales agent to fix an offering price, and evaluated in
another sense by an appraisal or survey carried out before the buyer can get a
mortgage, which in the UK prototypically comes from a building society. Inter-
estingly in (1.2), A simply proceeds to answer B, assuming one construal of B’s
term evaluate. Even though A offers no overt confirmation or acknowledgment
of B’s meaning, the response allows B to recognize A’s different construal and to
reframe the original question more precisely. In this case, grounding is accom-
plished through explicit meta-level language that takes meaning itself as the
topic of conversation in grounding episodes.

The highest level of understanding concerns the relationship of interlocu-
tors’ meanings to the ongoing task and situation. Problematic reference, as in
(1.3), illustrates the difficulties both people and systems face, and the dynamics
through which people achieve grounding.

(1.3) A: Okay, the next one is the rabbit.
B: Uh —
A: That’s asleep, you know, it looks like it’s got ears and a head point-

ing down?
B: Okay

[Clark and Wilkes-Gibbs, 1986] cited in [Clark, 1993, p. 127]

Here B offers a simple signal of non-understanding. At this point it is up to A
to develop the initial description further. Here A produces an an expansion, in
Clark and Wilkes-Gibbs’s [1986] terminology. A ignores B’s possible invitation
to address the explicit topic of what A means, and simply provides a syntactic
and semantic continuation of the initial description.

In our characterization of grounding so far, we’ve seen that an addressee’s con-
tribution to grounding can include confirmation, relevant followup utterances,
and signals of non-understanding. We close with two other examples that under-
score the range of grounding moves in human–human conversation. In example
(1.4), the addressee responds to an unclear description by offering an alternative
description that seems clearer.

(1.4) A: Okay, and the next one is the person that looks like they’re carrying
something and it’s sticking out to the left. It looks like a hat that’s
upside down.

B: The guy that’s pointing to the left again?
A: Yeah, pointing to the left, that’s it! (laughs)
B: Okay

[Clark and Wilkes-Gibbs, 1986] cited in [Clark, 1993, p. 129]

The speaker accepts and adopts the addressee’s reformulation. Such cases show
the benefits of joint effort in grounding.
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Finally, we shouldn’t forget simple cases like (1.5):

(1.5) Burton: how was the wedding —
Anna: oh it was really good, it was uh it was a lovely day
Burton: yes
Anna: and . it was a super place, . to have it . of course
Burton: yes —
Anna: and we went and sat on sat in an orchard, at Grantchester, and

had a huge tea *afterwards (laughs —)*
Burton *(laughs —)*

London–Lund corpus (7.3l.1441) cited in [Clark, 1996, p. 237]

Grounding is necessary even in unproblematic interactions, and it often takes
the form of straightforward acknowledgments, like Burton’s in (1.5), where
addressees simply indicate their judgment that they understand what the speaker
has contributed so far.

1.2.2 Grounding as a collaborative process

Clearly, grounding in human–human conversation is a complex, wide-ranging
skill. Its effects are pervasive, multifaceted and varied. Implementing analogous
skills in dialogue systems requires an overarching framework that reveals the
fundamental commonalities behind people’s grounding strategies and links them
to mechanisms that plausibly underlie them.

Accounts of grounding in cognitive science start from Grice’s influential
account of conversation as rational collaboration [Grice, 1975]. Grice proposes
that conversation is governed by a central Cooperative Principle: all interlocu-
tors are expected do their part in the conversation, by making appropriate con-
tributions. This includes showing how they understand previous utterances in
the conversation and following up utterances to ensure understanding [Clark
and Wilkes-Gibbs, 1986, Clark and Schaefer, 1989, Brennan, 1990]. Clark [1996]
characterizes this in terms of the concept of closure, or having good evidence
that actions have succeeded. The collaborative rationality identified by Grice
requires interlocutors to work for joint closure on any collaborative project, and
particularly in talk exchange. Traum and Allen [1994] describe grounding in even
stronger terms. They argue that speakers have an obligation to provide evidence
of their understanding of other interlocutors and address the issues others raise,
above and beyond the real-world collaborative interests they share.

Both kinds of approaches suggest an architecture for conversation where inter-
locutors regularly assess what they understand and estimate what their inter-
locutors understand. Many conversations are successful only if all understand
one another. Accordingly, interlocutors bring goals, preferences or obligations
for mutual understanding that they track on a par with the outcomes they track
for sharing information and achieving real-world results.
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The diversity of moves that accomplish grounding, as surveyed in Section 1.2.1,
imposes further constraints on a theory of grounding. Grounding must, in Bren-
nan’s phrase [1990], be a matter of seeking and providing evidence for under-
standing. This evidence can take a variety of forms [see Clark, 1996, pp. 223ff].
It’s clear that repetitions, as in (1.1), reformulations, as in (1.4), and asser-
tions of understanding, as in (1.5), provide evidence about the addressee’s level
of understanding. But even followup utterances, as in (1.2), and assertions of
non-understanding, as in (1.3), do the same. In fact, perhaps counterintuitively,
followup utterances can provide quite good evidence about an addressee’s under-
standing (or lack thereof), regardless of whether or not the addressee intends the
utterance to do so. Conversely, frank assertions of understanding that reveal only
the addressee’s own judgment may be quite unreliable.

These cases show that interlocutors face extended periods of transient uncer-
tainty during grounding. During these periods, they must assess the evidence
they have about grounding, and trade off the costs of further clarification against
the risks of persistent misunderstanding as they decide on their next contribu-
tions to the conversation [Horvitz and Paek, 2001]. The resulting dynamics of
interaction can be approximated by models of grounding acts which insist that
contributions must be acknowledged and accepted before they can be admitted
into an incrementally-updated representation of common ground and before the
conversation can move forward [Traum, 1994, Matheson et al., 2000]. But in the
general case, interlocutors’ reasoning must be more nuanced than such models
might suggest.

Coherence theories of the organization of discourse offer complementary
insights into models of grounding. Useful surveys are Hobbs et al. [1993], Kehler
[2001] and Asher and Lascarides [2003]. All the moves we make in conversation
respect the distinctive structure and process of human collaborative activity.
Grounding moves are no exception. Aproaches to grounding can therefore bene-
fit from detailed models of discourse interpretation, including both overarching
general constraints and specific syntatic, semantic and interactive resources that
are available for providing evidence of understanding.

Conversation is structured hierarchically, with short segments that address
focused subtasks nested within longer segments that address larger tasks [Grosz
and Sidner, 1986]. This structure accords with the difficulty we have when we
approach tasks in the wrong order or have to revisit issues we thought were
resolved. This is an important consideration in when and how to ground.

Another such consideration is the context-dependence of utterance interpreta-
tion. Many utterances, including those typically relevant for grounding, express
a specific relationship to the information presented and the open questions raised
in prior discourse. Many also involve implicit references to salient entities from
the discourse context. Both kinds of contextual links must be resolved as part of
recognizing the speaker’s contribution with the utterance. It is largely through
these links that utterances provide evidence about the speaker’s acceptance and
understanding of prior contributions to conversation [Lascarides and Asher, 2009,
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Stone and Lascarides, 2010]. Thus, these links explain efficient utterances that
ground implicitly. These links matter just as much in problematic cases, where
interlocutors (and systems) must avoid utterances with contextual connections
that might appear to ground.

Discourse theory also highlights the specific grammatical and interactive
resources that make it easy for interlocutors to provide evidence of their under-
standing. For example, the rules of grammar sometimes interpret fragmentary
utterances as if they occur directly in syntactic construction with previous utter-
ances, as in the successive expansions of (1.3). See Gregoromichelaki et al. [2011]
for a wide range of further cases. Other types of fragments, such as the reprise
fragments of (1.1), seem to carry semantic constraints that closely tie their inter-
pretation to those of prior utterances [Ginzberg and Cooper, 2004, Purver, 2004].
Both cases create interpretive connections that readily signal grounding.

We also have distinctive knowledge about how to negotiate as part of a collab-
orative activity. Collaborative negotiation typically involves a distinctive inven-
tory of possible contributions to the activity: negotiators can make proposals,
revise them, accept them conditionally or unconditionally, and so forth [Sidner,
1994, Carberry and Lambert, 1999, Eugenio et al., 2000]. Collaborative nego-
tation is frequently modeled through additional layers of discourse structure,
which explicitly represent the ordinary contributions of utterances as the object
of meta-level discussion [Carberry and Lambert, 1999, Allen et al., 2002]. Models
along these lines naturally describe interlocutors’ collaborative efforts to agree
on linguistic utterances and their interpretations [Heeman and Hirst, 1995].

1.2.3 Grounding as problem solving

The examples of Section 1.2.1 and the theoretical accounts of Section 1.2.2 por-
tray grounding strategies as flexible responses to a speaker’s information state
and goals, given the affordances of grammar and collaboration. As a framework
for realizing such responses in dialogue systems, we advocate a characterization
of grounding as problem solving.

Problem solving is a general perspective on flexible intelligent behavior. See
Newell [1982] or Russell and Norvig [1995]. A problem-solving system is endowed
with general knowledge about the actions available to it and their possible effects,
and with goals or preferences that it must strive to make true through the behav-
ior it chooses. The system approaches a new situtaion by distinguishing key fea-
tures of the situation: those that the system needs to change, on the one hand,
and those that define the system’s opportunities to act, on the other. This repre-
sentation constitutes a problem for the system. The system solves such problems
by reasoning creatively. It systematically explores possibilities for action and
predicts their results, until it improvises a program of actioon that it can use to
further its goals to a satisfactory degree in the current situation.

To treat grounding as problem solving is to design a conversational agent
with knowledge about possible utterances that includes the contributions that



10 Chapter 1. Grounding

utterances can make and the evidence that utterances offer about their speaker’s
understanding. In the case of grounding, this knowledge must describe general
models of collaborative discourse, along with particularly relevant grammatical
constructions and negotiation moves. The conversational agent must then track
its own understanding and the understanding of its interlocutors, and aim to
reduce the uncertainty in these understandings to a satisfactory level. In par-
ticular, a specific pattern of ambiguity in a specific conversational situation is
a trigger for synthesizing a new utterance whose interpretation highlights the
potentailly problematic nature of the interaction and initiates a possible strat-
egy to resolve it.

Methodologically, our appeal to problem solving plays two roles. First, it serves
to link system design to empirical and theoretical results about grounding, by
emphasizing the knowledge that is realized in systems rather than the specific
algorithms or processing through which systems deploy that knowledge. Second,
it provides a transparent explanation of the design of certain kinds of grounding
systems: namely, those that navigate through a large and heterogeneous space of
possible utterances to synthesize creative utterances for new situations. This suits
our purpose in documenting and analyzing our COREF system in Section 1.3.

Problem solving is a theoretical perspective rather than a specific technique.
Dialogue strategy is often engineered using specific models, such as Partially-
observable Markov Decision Processes (POMDPs) [Williams and Young, 2007],
which clarify specific aspects of the system’s behavior. Mathematically, a
POMDP starts from a precise probabilistic definition of what any utterance can
contribute and the evidence a system gets about these contributions moment
by moment. It derives an overall strategy that chooses utterances with an eye
to long-term success. This accounts for the system’s reasoning in maintaining
uncertainty about the interaction and in making quantitative tradeoffs between
gathering information and advancing task goals. By contrast, detailed issues of
choice in natural language generation depend on methods that let us compute
what new utterances can do, creatively, across an open-ended generative space.
Where POMDP models simply assume that this computation can be accom-
plished straightforwardly, a problem-solving perspective lets us clarify the con-
tributions of techniques for action representation, discourse modeling, and the
effective management of search. Conversely, of course, the information a POMDP
encodes also needs to be present in a problem-solving model to handle the deci-
sions that are emphasized in POMDP research. This is why the choice of pre-
sentation is in part a matter of theoretical perspective.

Our approach to grounding elaborates the model of NLG as problem solving
from the SPUD generator [Stone et al., 2003]. SPUD solves problems of con-
tributing specific new information to interlocutors against the backdrop of a
determinate common ground. SPUD’s linguistic knowledge takes the form of a
lexicalized grammar with entries characterized in syntactic, semantic and prag-
matic terms. A model of interpretation predicts how an utterance with a given
semantics can link up to the context to convey relevant information. A solution
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to an NLG problem is a syntactically complete derivation tree whose meaning,
as resolved unambiguously in context, contributes all the necessary information
to the conversation, without suggesting anything false.

SPUD’s problem-solving approach offers an integrated account of a range of
generation effects, including the aggregation of related information into complex
sentences, the planning of referring expressions, and the orchestration of lexical
and syntactic choices. Importantly, it tracks the creative, open-ended ways in
which these effects overlap in complex utterances. Moreover, the problem-solving
approach emphasizes the role for declarative techniques in system design. The
knowledge SPUD uses can be derived from diverse data sources, such as gram-
mars designed for language understanding, linguistic analyses of target corpora,
and machine learning over attested or desired uses of utterances in context.

SPUD’s generation model needs to be changed in a number of ways to han-
dle the kinds of grounding phenomena illustrated in Section 1.2.1. We need to
handle the many different kinds of contributions that utterances can make to
conversation, besides just providing new information. We need to predict not
just the contributions that utterances make directly to the conversation, but
also the indirect effects that utterances can have on interlocutors’ information,
especially their assessments of grounding. Finally, we need to take into account
possible uncertainties in the context, as we calculate what interpretations an
utterance could have or whether the addressee will understand it as intended.
In our work with the COREF system, we have developed an initial approach to
these extended models. In Section 1.3, we outline our approach and summarize
its role in enabling our system to exhibit a rich new range of grounding strategies.

1.3 An NLG model for flexible grounding

COREF participates in a two-agent object identification game which we adapted
from the experiments of Clark and Wilkes-Gibbs [1986] and Brennan and Clark
[1996]. Our game plays out in a special-purpose graphical user interface, which
can support either human–human or human–agent interactions. The objective is
for the two agents to work together to create a specific configuration of objects,
or a “scene”, by adding objects into the scene one at a time. The two players
participate from physically-separated locations so that communication can only
occur through the interface. Each has their own version of the interface, which
displays the same set of candidate objects but in differently-shuffled spatial loca-
tions. The shuffling undermines the use of spatial expressions such as “the object
at the top left”.1

1 Note that in a human–human game, there are literally two versions of the graphical interface
on separate computers. In a human-agent interaction, the agent uses a software interface

that provides the same information that the graphical interface would provide to a human
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As in the experiments of Clark and Wilkes-Gibbs [1986] and Brennan and
Clark [1996], one of the players, who plays the role of director, instructs the
other player, who plays the role of matcher, which object goes next. As the
game proceeds, the next object is automatically determined by the interface and
privately indicated to the director using a blue arrow. The director’s job is then
to get the matcher to click on (their version of) this object.

To achieve agreement about a target object, the two players can talk back and
forth using written English, in an instant-messaging style modality. Each player’s
interface provides a real-time indication that their partner is “Active” while their
partner is composing an utterance in their text box, but the interface does not
show in real-time what characters are being typed. Thus, it is not possible for a
player to view or interpret an utterance by their partner incrementally (as it is
typed, word by word). Once the Enter key is pressed, the utterance appears on
the screens of both players as part of a scrollable history field in the interface,
which provides full access to all the previous utterances in the dialogue.

When the matcher clicks on an object they believe is the target, their version
of that object is privately moved into their scene. The director has no visible
indication that the matcher has done this. However, the director needs to click
the Continue (next object) button in order to move the current target into
the director’s scene, and move on to the next target object. This means that the
players need to discuss not just what the target object is, but also whether the
matcher has added it into their scene, so that they can coordinate on the right
moment to move on to the next object. If all the coordination succeeds perfectly,
then after the director and matcher have completed a series of objects, they will
have created the exact same scene in their separate interfaces.

We have run a series of evaluation experiments in which COREF interacts
with human subjects [DeVault and Stone, 2007, DeVault, 2008]. In this paper,
we illustrate qualitative aspects of COREF’s grounding behavior by describing
the reasoning that COREF uses to generate questions for the user in three key
interactions from this data set. In (1.6), COREF plays the matcher, but begins
by trying to guess the next object to add. With its question is the target pink?,
COREF attempts to reduce its ignorance about the display.

(1.6) Agent: is the target pink?
a18: no
a18: it is brown
Agent: do you mean dark brown?
a18: yes

The display features light brown and dark brown objects, as well as pink ones.
COREF’s clarification question do you mean dark brown attempts to disam-
biguate which color characterizes the object.

participant. For example, the agent is not aware of the spatial locations of objects on the

screen of its human partner.
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In (1.7), COREF is the director.

(1.7) Agent: the blue circle
s1: ok
Agent: did you add it?
s1: yes

COREF interprets the user’s ok as ambiguous. Maybe the user has added the
blue circle to the display; maybe the user is simply signaling their understand-
ing. COREF’s did you add it? is a reminder designed to move the conversation
forward in either case.

Finally, COREF as matcher in (1.8) finds two objects which might plausibly
be described as beige diamonds.

(1.8) s2: the object is the beige diamond
Agent: do you mean the solid beige diamond?
s2: no
s2 : i mean the empty beige diamond
s2: did you add it?
Agent: done

COREF’s clarification question distinguishes the two objects based on their fill.
A uniform problem-solving model leads to each of these questions in COREF.

The model is distinguished by its flexible mapping from utterances to task actions
(Section 1.3.1), its explicit representation of uncertainty and its effects on inter-
pretation (Section 1.3.2), and its specification of generation problems in terms
of a pattern of acceptable interpretations that move the conversation forward
despite uncertainty (Section 1.3.3).

1.3.1 Utterances and contributions

Our modeling challenge in COREF’s domain is to characterize the different con-
tributions that utterances can make. Our approach is to use an architecture of
dialogue acts. We follow Bunt [1994, 1996, 2000] in understanding a dialogue act
as a “functional unit used by a speaker to change the context”. In particular,
each dialogue act comprises a semantic content and a communicative function.
The semantic content is the information the speaker is introducing into the con-
text; for example, some proposition p. The communicative function is the way
in which that information has been inserted in the context in order to play its
intended role; for example, with a role like inform, yn-question, or correct

[Bunt, 2000]. Together, the communicative function and semantic content deter-
mine an update function that maps the previous context to the new context that
results from the dialogue act [Larsson and Traum, 2000].

Researchers commonly hypothesize dialogue acts that specifically govern
grounding. For example, Bunt [1994] offers a top-level distinction between dia-
logue control acts and task-oriented acts, and then subdivides dialogue control
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acts into feedback acts, discourse structuring acts, and interaction management
acts. Meanwhile, Traum and Hinkelman [1992] distinguish four top-level types of
conversation acts: turn-taking, grounding, core speech acts, and argumentation.
The DAMSL annotation scheme [Core and Allen, 1997] captures grounding by
distinguishing between the backward and forward communicative functions of
communicative acts.

By contrast, we have designed COREF with a special-purpose set of about
twenty action types. Our inventory endows COREF with detailed knowledge
about problematic reference and other structured collaborations. Grounding is
a side effect of interlocutors’ reasoning and strategies in using these actions.

Our action set builds on stack–based models of clarification subdialogues
[Ginzberg and Cooper, 2004, Purver, 2004], collaborative negotiation models
[Sidner, 1994, Carberry and Lambert, 1999, Eugenio et al., 2000], and the use
of collaborative discourse theory to characterize user interface tasks [Rich et al.,
2001]. For example, one action type, pushCollabRef[D,M, T ] lets the director D

initiate collaborative reference with matcher M to a target T . This action type is
tacit: we identify its occurrence with the mental decision by D to collaboratively
identify target T to M . Its update is to push a new task onto a stack of active
tasks in the context and set up an initially empty constraint network recording
the information that the interlocutors have used to describe T . Once this task is
underway, the director can perform a dialogue act, addcr[T, C], whose updates
adds the additional constraint C to the constraint network.

The identification by the matcher that the target T is some entity R is cap-
tured by a tacit mental action setVarValue[T, R]. Its effect is to add the propo-
sition varValue(T ,R) to the context. After identifying R as a target object for
the scene, the matcher can take the tacit action addToScene[R]. Although the
matcher needs to carry out the action ClickToAdd[R] to add the object, this
is invisible to the director. The effect of ClickToAdd[R] is to physically move
the object into the scene part of the matcher’s experiment interface. The update
associated with agent A taking action addToScene[R] is that the proposition
inScene[R,A] is added to the list of propositions in the context.

In addition, COREF’s interpretation process causes certain additional updates
to the dialogue state whenever an observable action occurs. These additional
updates allow COREF to keep track of its uncertainty in interpretation; they
also push a ManageAmbiguity subtask, which makes it coherent for the observer
x of action A to perform follow-up actions to deal with uncertainty.

We associate utterances with these dialogue acts by modeling utterance inter-
pretation as an intention-recognition problem. See Stone [2004] for theoretical
motivation of this framework. We assume that each utterance by a speaker is
intended to generate [Goldman, 1970, Pollack, 1986] one or more dialogue acts. In
addition, we assume that utterances are often intended to reveal the occurrence
of certain tacit dialogue acts indirectly, through a kind of conversational impli-
cature we have called enlightened update [Thomason et al., 2006]. To recognize
the speaker’s intention requires integrating three sources of relevant information:
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the logical structure of the ongoing activity in the conversation, the current state
of the dialogue, and grammatical constraints.

Our model of task structure takes the form of a function N(A, s) that captures
the set of alternative actions that agent A can coherently perform next in dia-
logue state s. This function captures similar regularities as accounts of adjacency
pairs, the use of dialogue grammars to distinguish coherent sequences of dialogue
acts (or speech acts) from incoherent ones, the use of state machines with dia-
logue acts (or speech acts) attached to the state transitions, and with plan-based
models of dialogue coherence; see [Cohen, 1997] for a review of work using these
techniques. This function is populated in two ways in COREF. Some of its results
are determined directly from the topmost task from the stack of active tasks in
the dialogue. Handbuilt graphs outline all possible paths for deploying COREF
actions to pursue any task. Other results list actions can happen coherently at a
wide variety of points in a dialogue. These actions include operations that push
subtasks, including describing the current state of the dialogue and resolving a
yes–no or wh–question, and operations that manage flow through the dialogue,
such as abandoning the topmost dialogue subtask.

COREF uses its model of coherent contributions as constraints on the possi-
ble intentions of interlocutors at any point in the conversation. The actual con-
straints are derived in two stages to account for the possibility of tacit actions
signaled by implicature. Given a representation s that captures a possible state
for the dialogue after the last overt action, COREF builds a representation, which
we call a horizon graph, that captures the coherent ways the speaker might have
tacitly intended to update the dialogue before making an overt contribution. For
efficiency, we use handbuilt heuristics to discard tacit actions that could be per-
formed coherently, according to COREF’s task models, but which an interpreter
would never actually hypothesize in this situation, given what we know about
the overt action that the agent has chosen.

In the second step, COREF uses the horizon graph to solve any constraints
associated with the observed action. This step instantiates any free parameters
associated with the action to contextually relevant values. For utterances, the
relevant constraints are identified using a grammar that determines both pre-
supposed constraints—which must hold in the context—as well as schematic
dialogue acts—which must be coherent in the context. The overall constraints
associated with an utterance are determined by performing a bottom-up chart
parse of the utterance, and joining the presuppositions and dialogue acts associ-
ated with each edge in the chart.

Our architecture of dialogue acts and interpretive inference allows us to reason
about the contributions of question-asking moves in collaborative reference at a
fine granularity. The questions of (1.6–1.8), for example, differ in whether the
question is intended to add a constraint about a target referent—a property or
object referenced in a previous utterance or the next thing to add to the scene—
or whether it is intended to establish the occurrence of a specific event. The
utterances also differ in the tacit moves that relate them to the ongoing discourse:
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they may push a reminder task, begin a clarification subdialogue amplifying
on a previous utterance, or simply introduce a specific issue whose resolution
contributes to the current task. Each of these interpretations is obtained by the
process we have sketched here: constraint-satisfaction inference that matches
the grammatical structure of a candidate utterance against a context-specific
inventory of coherent contributions to the conversation.

1.3.2 Modeling uncertainty in interpretation

The examples of (1.6–1.8) involve user utterances for which the interpretation
models of Section 1.3.1 offer multiple plausible analyses. In (1.6) the presence of
light brown and dark brown objects on the display translates into two possible
ways that COREF could understand the user’s reference to a color brown. In
(1.7), the state of the task offers two different dialogue acts, each of which con-
stitutes a possible resolution for ok. In (1.8), COREF sees two possible referents
for the beige diamond. All the ambiguities are initially represented as multiple
interpretations that assign coherent dialogue acts to the utterance in context.

When an interlocutor uses such ambiguous utterances, COREF models the
evolving state of the conversation as uncertain. In particular, COREF tracks the
dialogue acts possibly generated by the utterance, on each reading, by spawning a
new thread of interpretation where those acts are assumed to occur. By spawning
different threads of interpretation, capturing the user’s alternative contributions,
COREF can continue to assign coherent, principled interpretations to the user’s
ongoing utterances, and continue to participate in the dialogue.

COREF uses probabilistic reasoning to reallocate probability mass among
the different threads of interpretation over time, while retaining a principled
approach to linguistic interpretation in context within each thread. This updat-
ing allows COREF to model the clarification subdialogues in (1.6) and (1.8) as
introducing and then resolving transient uncertainty. Thus in (1.6), the possi-
ble light brown interpretation creates a thread of interpretation in which the
target has been constrained to have a light brown color, because of the user’s
contribution in making the utterance it is brown on its intended interpretation.
When, however, the user answers yes to indicate that the intended color was dark
brown rather than light brown, the answer is incompatible with this thread of
interpretation. Accordingly, COREF assigns high probability to the other thread,
which, COREF now realizes, has always tracked the correct understanding of the
user’s utterance it is brown. COREF’s clarifications can resolve relevant ambigu-
ities without necessarily pinpointing one correct thread of interpretation. In the
reminder of (1.7), COREF ensures that the user clicks to add the next object
to the scene. But because COREF recognizes that an effective reminder could
prompt the user to add the object and then answer yes, COREF never discovers
exactly what function the user originally intended for ok.

Since the present paper is focused on generation, we simply note that COREF’s
context for generation is often a set of alternative threads. We detail COREF’s
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interpretation and dialogue management under uncertainty, in particular our
efforts to learn probability models from interacting with users, more fully in
DeVault and Stone [2007] and DeVault and Stone [2009].

1.3.3 Generating under uncertainty

In COREF, the task of generation is to formulate an utterance that will make a
clear positive contribution to the dialogue no matter what the true context turns
out to be. COREF’s utterances are represented along with specific links to the
context and implicatures that spell out exactly how the utterance contributes
to the ongoing task. COREF’s uncertainty may therefore make it impossible to
formulate an utterance with one definite interpretation.

For example, after ok in (1.7), our models predict that did you add it? will
carry different implicatures depending on what the user intended to acknowledge.
If the user meant only to show that they understood COREF’s utterance, then
did you add it? will implicate that COREF has given enough information so that
the user should have identified the target. This implicature is not present if the
user meant that they added the object to the scene—the user already knows and
has acted on this. Accordingly, in addition to a set of dialogue acts to generate
that serve as explicit communicative goals, COREF’s generation problems are
specified in terms of a set of acceptable contributions that represent reasonable
ways to move the conversation forward. COREF aims for an utterance that is
likely to achieve the specified communicative goals, and will make an acceptable
contribution in any case.

COREF’s model of context also shapes the problem of disambiguating its
utterances. Disambiguation requires COREF to take into account both its own
uncertainty and that of its interlocutor. On COREF’s side, each of the possible
states of the conversation represents a possible source of ambiguity. For example,
if reference resolution predicts that an anaphoric expression would be resolved
one way in one context, but another way in another context, COREF needs to
represent and track the potential ambiguity. In addition, COREF must track the
distinctive ambiguities that its interlocutor faces in identifying the implicatures
that COREF is tacitly making. Recall that these implicatures are determined by
a horizon graph that maps out coherent ways to continue the conversation.

COREF is designed to anticipate these ambiguities in a streamlined way during
generation, without searching over implicatures and corresponding states of the
conversation. COREF constructs a special model of constraint interpretation
for generation, which we call a pseudo-context. A pseudo-context C behaves as
follows. For each state s that represents one possible thread of the conversation,
and each accessible state si that is on the horizon graph from s, any resolution of
the utterance’s presuppositions and dialogue acts in si also counts as resolution
of the utterance’s presuppositions and dialogue acts in C. The effect of this
behavior is to increase the amount of ambiguity that is visible in generation
beyond what would be present in a single context, to reflect ambiguities arising
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throughout the possible horizon. To completely disambiguate its implicatures,
the generator should distinguish an intended horizon state in the possible horizon
graph [Thomason et al., 2006], so it would perhaps be ideal to use this reasoning
explicitly in generation. However, we have not yet assessed how important this
reasoning could be to COREF’s behavior in practice.

In COREF, generation occurs in two steps. The first phase starts from a set
of communicative goals and a set of acceptable contributions, and a pseudo-
context for resolving meaning. The communicative goals are selected by the dia-
logue manager, targeting both the system’s uncertainty and the specific dialogue
state that COREF thinks is most likely. The set of acceptable contributions is
determined by COREF’s handbuilt dialogue policy. The pseudo-context, as just
described, outlines possible ways the presuppositions and schematic dialogue acts
could be resolved given the system’s uncertainty and implicatures about the state
of the conversation. COREF searches through its lexicalized grammar, extend-
ing a provisional utterance, word-by-word, until it finds a complete derivation
that achieves the specified communicative goals unambiguously in the extended
pseudo-context. This is essentially the same search algorithm as SPUD, but using
a richer model of interpretation.

The second phase applies once the generator produces a candidate utterance.
COREF interprets the utterance as though it were actually uttered. (This pro-
cess evaluates the utterance on a context-by-context basis; no pseudo-context
is involved. This step therefore offers an accurate assessment of any remaining
implicatures and ambiguities in the utterance.) If all of the actions that appear
in all the interpretations found are acceptable to COREF, then COREF accepts
the output utterance. In the case that multiple interpretations are supported by
an utterance, if COREF accepts the utterance, we view COREF as willing to be
interpreted as making any of those contributions. This scenario is one in which
COREF makes an underspecified contribution.

If one or more of the interpretations for an output utterance is unacceptable
to COREF, it reconsiders its dialogue policy by formulating a different commu-
nicative goal or different implicatures. This process repeats until an acceptable
utterance is found, or until all communicative options are exhausted.

1.3.4 Examples

Across its conversations with our human subjects, COREF asked users 559 ques-
tions of 90 distinct sentence types. Examples (1.6–1.8) illustrate the different
questioning moves COREF used. The variation in COREF’s utterances come
in how COREF constructs specific questions to achieve specific dialogue moves
in specific contexts. For example, COREF uses different vocabulary to describe
properties in the display depending on the salient contrasts, uses different refer-
ring expressions to describe objects depending on the alternative objects, and
varies in its uses of full referring expressions versus pronouns depending on the
dialogue history. Analyses of the user logs reveals that these questions are usually
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effective in moving the conversation forward, for example by resolving COREF’s
uncertainty in cases of ambiguity. See DeVault [2008] for full details about these
experimental results.

As we have seen, the generation model in COREF differs from its closest
relative, SPUD, in several ways. COREF models a full range of dialogue acts,
communicated both explicitly and by implicature. COREF tracks uncertainty
about the context, and is correspondingly more flexible in how it assesses utter-
ance interpretation and what counts as a successful output for generation. To
show how these innovations are crucial to grounding in COREF, we consider in
detail the reasoning that COREF uses to produce did you add it? in (1.7).

COREF starts from an uncertain context. There are two possible threads
of interpretation in the dialogue: one where the user has just acknowledged
COREF’s description (this is the most probable in COREF’s model of inter-
pretation), and another where the user has just asserted that they have put the
next target in place. COREF sets its communicative goal based on the coher-
ent options in the most probable context. We briefly survey these options, as
determined by COREF’s horizon graph. Even though COREF is uncertain what
the user’s utterance of ok meant, COREF is willing to tacitly decline the oppor-
tunity to clarify — perhaps it could do so by uttering something like what do
you mean ok? — by performing a tacipNop action. Moving forward, COREF’s
rules for action acceptability allow it to implicate, on the grounds that COREF’s
utterance the blue circle added a constraint that uniquely identified the target
object, that the user must have identified the target object. COREF’s domain
model captures the user’s mental identification of the target object as action
s1 : setVarValue[t3, e2 2]. Here s1 is COREF’s symbol for the user, t3 is
COREF’s symbol for the target of the current collaborative reference episode,
and e2 2 is COREF’s symbol for the next object to add to the scene. The
effect of this tacit mental action is to make it part of the context that target
t3 refers to object e2 2. COREF’s acceptability rules further allow the agent
to push a Remind task, which allows COREF to coherently ask whether s1 has
added the object to their scene. COREF’s policy is to try to ask for clarifica-
tion whenever the state is ambiguous, so COREF’s dialogue manager focuses
on this state in the horizon graph and proposes to generate the dialogue act
COREF : askYNQ[past[s1, addToScene[e2 2]]]. The dialogue move offers a yes-no
question to establish whether the user has added this object to the scene.

In this situation, in order to proceed with generation, COREF anticipates
interpretations in both states by constructing an expanded pseudo-state that
maps out a range of possibilities. These include the dialogue states just surveyed,
as well as corresponding dialogue states on the horizon graph for the other thread
of interpretation. Search through the grammar identifies did you add it? as an
unambiguous utterance expressing the needed dialogue act in this pseudo-state.

COREF then explicitly assesses how the user will interpret an utterance of
did you add it? This involves recognizing the specific implicatures the utterance
will generate in context, using the the horizon graph. COREF predicts that did
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you add it? supports two interpretations, one from each of the current possible
dialogue states. If the user’s previous ok simply contributed a nop, the utterance
supports the interpretation in (1.9):

(1.9) 〈COREF : tacitNop[[s1 does say[ok]]],
s1 : setVarValue[t3, e2 2],
COREF : pushRemind[COREF, s1, past,

refuseTaskAction, addToScene[e2 2]],
COREF : askYNQ[past[s1, addToScene[e2 2]]],
COREF : setPrag[inFocus(Y), inFocus(e2 2)]〉

This is the specific set of contributions that COREF makes with this utterance in
this specific context: COREF is declining to manage any perceived uncertainty
regarding s1’s utterance of ok, implicating that s1 has identified the target object,
implicating the start of a reminder subtask task, overtly asking a yes–no question
as part of that reminder task, and putting object e2 2 into focus.

If the user’s previous ok contributed more, COREF associates did you add it?
with the interpretation in (1.10):

(1.10) 〈COREF : tacitNop[[s1 does say[ok]]],
COREF : pushRemind[COREF, s1, past,

refuseTaskAction, addToScene[e2 2]],
COREF : askYNQ[past[s1, addToScene[e2 2]]],
COREF : setPrag[inFocus(Y), inFocus(e2 2)]〉

This interpretation is similar, except now COREF would not be implicating that
the user has identified the target object.

Because COREF finds both of these contributions acceptable, in the
corresponding dialogue states, COREF’s generator returns action sequence
〈say[did you add it?]〉, along with the anticipated user interpretations. We view
COREF as working collaboratively to move the conversation forward, but mak-
ing an underspecified contribution. If the user intended to acknowledge COREF’s
description, then COREF’s contribution is (1.9). If the user intended to assert
that the target was in place, then COREF’s contribution is (1.10). COREF
accepts the utterance because it is willing to be recognized as making either
contribution. In this way, COREF models itself as having extended two threads
of coherent interpretation which it spawned upon perceiving the ambiguity in
the user’s utterance of ok.

1.4 Alternative approaches

Our work showcases the possibility of achieving grounding in conversational
systems through general problem solving. In Section 1.5, we argue that such
approaches will be particularly important for embodied conversational agents, in
emerging applications such as human–robot interaction. In these domains, many
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different kinds of actions can give evidence about interlocutors’ understanding
of one another, and a problem-solving model may be necessary to capture the
complexity and diversity of the reasoning involved.

Do not underestimate the difficulty of realizing general problem solving in a
working system, however. A problem-solving system needs to reason from general
and accurate knowledge, which can be extremely challenging to specify by hand
or learn from data. A problem-solving system also needs powerful search mech-
anisms to explore the consequences of its knowledge and synthesize solutions;
these mechanisms usually require a combination of careful engineering and sub-
stantial computational resources. Moreover, the inference that problem-solving
systems do makes their results unpredictable, exacerbates the errors associated
with incorrect knowledge, and makes it difficult to offer guarantees about system
behavior and performance. COREF has a number of limitations of this sort. One
unfortunate interaction between COREF’s construction of pseudo-contexts and
its characterization of acceptable interpretations led to its occasional use of do
you mean it? as a clarification question.

For all these reasons, applied spoken dialogue systems typically do not plan
grounding utterances with general problem-solving models. Alternative imple-
mentation frameworks can lead to insights on important aspects in dialogue
strategy where COREF is weak, such as empirical models of understanding,
robust handling of uncertainty, and the ability to make quantitative tradeoffs in
generation. We review some of this research in this section. Of particular note are
abstract models of dialogue in terms of qualitative grounding moves, which min-
imize the need for reasoning about uncertainty in conversation (Section 1.4.1);
models of user state that focus probabilistic inference to restrict the need for
open-ended problem solving for generation under uncertainty (Section 1.4.2);
and feature engineering to avoid the need for deep generalizations about how
systems should address their own or their users’ uncertainty (Section 1.4.3).

1.4.1 Idealizing Incremental Common Ground

Historically, linguists and philosophers have characterized state in conversation
qualitatively in terms of a notion of mutual knowledge or common ground [Stal-
naker, 1974, 1978, Clark and Marshall, 1981]. This is a body of information that
interlocutors know they can rely on in formulating utterances. A simple way to
adapt natural language generation techniques to dialogue, and handle ground-
ing, is through rules that approximate the incremental evolution of the common
ground in conversation.

Purver [2004] offers a particularly influential model of common ground in prob-
lematic dialogue. He proposes that utterances, by default, update the common
ground to reflect their contributions. However, utterances like clarification ques-
tions, which show that previous discourse may not have been understood well
enough for the purposes of the conversation, trigger “downdates” that erase pre-
vious contributions from the common ground. (Earlier models by Traum [1994]
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and Matheson et al. [2000] assign contributions a “pending” status until they
are acknowledged and accepted by all interlocutors.)

Incremental common ground models are limited in their abilities to assimilate
information that accrues across multiple utterances, particularly when misunder-
standings are discovered late, as in (1.2). Such cases call for probabilistic models
and Bayesian reasoning [DeVault and Stone, 2006, Stone and Lascarides, 2010].
However, incremental common ground models enable elegant natural language
generation implementations, because they can describe communicative context
and communicative goals in familiar qualitative terms. Stent [2002] describes
in detail how grounding acts can be realized as fluid utterances in incremental
common ground models.

1.4.2 Focusing Probabilistic Inference

A different direction in grounding research focuses on the accurate representa-
tion of the system’s uncertain state. In noisy settings, including most speech
applications, effective dialogue management depends on using all the available
evidence about the state of the conversation. Researchers in spoken dialogue sys-
tems have gone a long way towards capturing the evidence about user utterances
that’s actually provided by speech recognition systems, and understanding the
strategies that let systems exploit this evidence to maximize their understanding
[Roy et al., 2000, Horvitz and Paek, 2001, Williams and Young, 2006, 2007].

This research adopts decision-theoretic frameworks for optimizing choice in
the face of uncertainty, such as the POMDPs briefly reviewed in Section 1.2.3.
Making these frameworks practical requires streamlining models of the conversa-
tion, so researchers typically focus on accurately modeling user’s private state or
goal. For example, in the human–robot dialogue application of Roy et al. [2000],
the POMDP model captures uncertainty about the command the user is try-
ing to give the robot. In the POMDP-based call center application of Williams
[2008], the state is the directory listing (name and listing type) that the caller
wishes to be connected to. Richer models of conversational state can be accom-
modated only with shortcuts in solution strategies. In particular, as we will see in
Section 1.4.3, most work on decision-theoretic optimization of dialogue manage-
ment does not actually represent the system’s moment-to-moment uncertainty
about the state of the conversation, and so learns to ask clarification questions
indirectly.

Conversely, in selecting a system utterance, optimized dialogue systems gen-
erally draw from a small fixed inventory of utterances that have been hand-
authored by a system designer to effectively convey specific messages. For ground-
ing, for example, the system might select from general prompts, acknowledg-
ments, explicit confirmation questions, and implicit confirmations that verbalize
the system’s understanding of a prior utterance (word-for-word) while moving
forward in the dialogue. Optimization allows the system to tune its strategy and
complete tasks for users even in the face of frequent errors in speech recognition.
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Similar optimization techniques can orchestrate the choice of high-level gener-
ation strategies in dialogue [Lemon, 2011]. However, with only coarse tools for
describing utterance structure and dynamics means, these frameworks offer lim-
ited insight into the the various kinds of coordinated, context-sensitive linguistic
expressions that can potentially realize grounding actions.

1.4.3 Correlating Conversational Success with Grounding-Related Features

A different approach to dialogue management focuses on optimizing tradeoffs
about how to ground directly based on dialogue outcome. This approach simpli-
fies the dialogue model to include only directly observable features in the rep-
resented dialogue state, using Markov Decision Processes [Levin and Pieraccini,
1997, Levin et al., 1998]. Rather than represent the user’s utterance as a hidden
variable, the model simply represents the recognition result as actually delivered
by the speech recognizer. The model captures the possibility that this result is
incorrect probabilistically: the system sometimes gets a bad outcome in dialogue
when it acts on what it has heard. Rather than reason explicitly about the effects
of clarification on the system’s information, the model is instead designed to dis-
tinguish those dialogue states in which the system has obtained confirmation of a
recognized parameter and those in which it has not. The usefulness of grounding
actions is revealed by differences in rates of dialogue failure across these different
kinds of states.

These approaches are very appealing because they support powerful empiri-
cal methods for estimating model parameters and powerful computational tech-
niques for optimizing dialogue strategies. The optimization metric can be tuned
to the factors that actually govern dialogue success in specific applications
[Walker, 2000]. Models of dialogue can be learned accurately from small amounts
of dialogue data using bootstrapping and simulation [Rieser and Lemon, 2011].
And function-approximation and state-abstraction techniques make it possible
to compute good strategies for complex dialogue models [Henderson et al., 2008].
However, because the models ultimately describe the effects of system decisions
directly through observable features of the dialogue, all grounding depends on
the insights of the system-builders in describing the dialogue state through the
right features. For example, Tetreault and Litman [2006] explicitly study which
features to include in a state representation based on the impact those features
have on learned dialogue policies.

1.5 Future Challenges

One way to think of the streamlined grounding models that characterize many
current systems is that they provide empirically-based protocols that succeed in
practice in overcoming specific kinds of communication problems. These proto-
cols work because they help to align a system’s behavior with the true state of
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the user. Problem-solving models, by contrast, aim to endow the system more
open-ended abilities to explicitly reason about understanding. We believe that
such abilities will become increasingly important as dialogue systems begin to
handle richer interactions.

1.5.1 Grounding with Multimodal Communicative Action

One important direction for richer dialogue is the design of embodied conver-
sational agents [Cassell, 2000] which contribute to conversation using the affor-
dances of a physical robot or graphical character, including gestures, gaze, facial
expressions, and modulations of position and posture of the body as a whole. By
using complex communicative actions that pair spoken utterances with actions in
other modalities, embodied conversational agents can communicate their under-
standing in flexible and natural new ways.

For example, Nakano et al. [2003] describe an embodied conversational agent
that gives directions with reference to a tabletop map. The system detects and
adapts to the nonverbal grounding cues that followers spontaneously provide in
human–human conversations. For example, Nakano et al. [2003] found that when
listeners could follow instructions, they would nod and continue to direct their
attention to the map, but when something was unclear, listeners would gaze
up toward the direction-giver and wait attentively for clarification. The system
interpreted these cues as grounding actions using an incremental common ground
model, and varied its generation strategies accordingly. Nakano et al. [2003] found
that their system elicited from its interlocutors many of the same qualitative
dynamics they found in human–human conversations.

Multimodal grounding requires a framework for generating and interpreting
multimodal communicative acts. A common strategy is “fission”, or distribut-
ing a planned set of dialogue acts across different modalities to match patterns
that are derived from analyses of effective interactions in a specific domain.
SmartKom [Wahlster et al., 2001] is an influential early example of multimodal
fission for dialogue generation. By contrast, problem-solving models of multi-
modal generation, such as Cassell et al. [2000], Kopp et al. [2004], reason about
the affordances and interdependencies of body and speech to creatively explore
the space of possible multimodal utterances and synthesize utterances that link
specific behaviors to specific functions opportunistically and flexibly.

The potential advantage of a problem-solving model is the ability to reason
indirectly about grounding. This is important if, as theoretical analyses suggest
[Lascarides and Stone, 2009], gesture parallels language in its context-sensitivity
and discourse coherence, and so affords similar indirect evidence about ground-
ing. Lascarides and Stone [2009] analyze a fragment of conversation in which
one speaker explains Newton’s Law of Gravity to his interlocutor. The speaker
explains the logic of the equation in part through a series of gestures that depict
the Galilean experiment of dropping a series of weights in tandem. His addressee
demonstrates that she understands his explanation by gesturing her own Galilean
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experiment, which tracks and eventually anticipates the speaker’s own. The evi-
dence the gesture gives of understanding, just like the evidence spoken words
give in cases like (1.4), is inseparable from the interpretation the gesture gets by
linking up with the context and contributing content to it.

Researchers have not yet attempted to link problem-solving models of ground-
ing, such as those explored in Section 1.3, with sophisticated descriptions of the
interpretation of the form and meaning of multimodal utterances. We believe
that doing so will lead to a much broader and more natural range of grounding
functions for nonverbal behaviors in embodied conversational agents.

1.5.2 Cognitive Constraints

Explicit communicative contributions aren’t the only evidence embodied agents
give of their understanding. When virtual humans [Swartout et al., 2006] realize
their embodied behaviors through computational architectures that limit atten-
tion, focus information processing and trigger emotional responses in human-like
ways, one side-effect of these cognitive mechanisms can be to make aspects of
the agent’s conversational strategies and judgments more legible to human inter-
locutors. This is another indirect kind of grounding.

When people speak in problematic situations, their utterances reveal their
uncertainty in recognizable ways [Brennan and Willams, 1995, Swerts and Krah-
mer, 2005, Stone and Oh, 2008]. People are simply slower to respond in cases
of uncertainty. They also make different appraisals of the process of the conver-
sation and their contributions to it when they are uncertain. Uncertainty may
feel difficult, for example, or may lead to a contribution that feels unsatisfactory.
These appraisals shape interlocutors’ affect and so influence their facial expres-
sions. To the extent that virtual humans exhibit the same cognitive and affective
dynamics, their uncertainty will also be recognizable. See Stone and Oh [2008]
for a case study.

In fact, Sengers [1999] has argued that agents that aim to be understood
must not only exhibit the right cognitive and affective dynamics—they must
work actively to reveal these dynamics to their audience. Sengers focused on
clarifying the goals and decisions of animated characters, by dramatizing how
they see, react to and engage with events in their virtual environments. It is
an open problem to integrate these techniques with approaches to grounding
based on the analysis of communicative action. A problem-solving approach offers
a natural and attractive strategy to do this, since it promises to describe the
evidence that agents provide about understanding through their communication
in probabilistic terms that are compatible with other evidence that might come
from agents’ attention, processing or emotion.
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1.5.3 Task Action

A final source of evidence about grounding comes from the real-world activ-
ity that accompanies dialogue in task-oriented interactions. Understanding what
teammates have done is continuous with reasoning about what they have said
and what they have understood. For example, suppose a speaker has given an
instruction to an addressee. The action the addressee performs to carry out the
instruction gives very good evidence about how the addressee understood the
speaker and what the addressee thought was expected. Thus, it’s natural to asso-
ciate instrumental actions with grounding functions, especially in settings such
as human–robot interaction where conversation is used to coordinate embodied
activities among physically copresent interlocutors.

A starting point for modeling such functions might be to model task actions as
generating grounding acts in certain cases. For example, carrying out an expected
action might constitute a specific form of acknowledgement. Such models could
encode useful strategies for carrying out efficient dialogues that avoid misunder-
standings. However, the study of human–human dialogue again suggests that
more general problem-solving models will be necessary to reproduce people’s
collaborative use of physical action in grounding.

For example, consider the results of Clark and Krych [2004]. They analyzed
dyadic conversations in which a director leads a matcher through the assembly
of a Lego structure. As you might expect, directors’ instructions often include
installments, as in (1.1) and expansions, as in (1.3), formulated in real-time in
response to feedback from the matcher. This feedback, however, is often action:
Matchers pose blocks tentatively and use other strategies, including accompany-
ing verbal and non-verbal communicative action, to mark their actions as pro-
visional. Some of the most effective teamwork features tight coordination where
directors offer short fragments to repeatedly correct proposed matcher actions.
Clark and Krych [2004] cite one example where the director’s iterative critique of
four successive poses—over just four seconds—frees the interlocutors from hav-
ing to agree on an precise description of the complex spatial configuration of a
difficult-to-describe piece.

COREF’s problem-solving model already interprets observed task actions
using the same intention-recognition framework as it uses to interpret utter-
ances. That means that COREF expects these actions to meet the constraints
established by the interlocutors in prior conversation as well as the natural orga-
nization of the ongoing activity. Thus, as with an utterance, COREF can simul-
taneously enrich its understanding of the action and resolve uncertainty in the
context by reconciling its observations and its interpretive constraints.

COREF, however, is a long way from the fluidity found in human–human
dialogues like Clark and Krych’s [2004]. We suspect that modeling the grounding
function of provisional or even incorrect actions requires extending the kinds
of models in COREF with a generative account of the relationship between
actions and instructions that factors in the underspecification, ambiguities and
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errors common with natural language descriptions. See Stone and Lascarides
[2010]. The negotiation involved, meanwhile, requires richer accounts of the use
of fragmentary utterances to link up with and coordinate ongoing real-world
action. These phenomena again highlight the long-term research opportunities
and challenges of problem-solving models of grounding.

1.6 Conclusion

A fundamental problem in deploying natural language generation in dialogue
systems involves enriching models of language use. Dialogue systems need to be
able handle problematic interactions, and that means that they cannot simply
exploit static models of form and meaning. They need to be able to negotiate
their contributions to conversation, flexibly and creatively, despite missteps and
uncertainties, across extended interactions. Natural language generation, as a
field, is just beginning to engage meaningfully with these requirements and the
challenges they bring. The most important problems are open, and this chapter
has given a corresponding emphasis to exploratory and open-ended research.

In particular, our focus has been on problem-solving models—general accounts
that help us operationalize the reasoning for synthesizing productive contribu-
tions in problematic situations. Problem solving provides a methodological tool
for systematizing the grounding behaviors that people use in human–human
conversation, for understanding the knowledge of activity, context and language
that underpins grounding behaviors, and for mapping the possible interactions
between language, embodied communication and cognition, and task action in
keeping conversation on track. Of course, we can build on systematic thinking
about grounding in dialogue in a wide range of implementations. Simpler and
more constrained frameworks often provide the most efficient and robust real-
ization of the insights of more general models.

Indeed, for the moment, problem-solving models may be most important as
a bridge between descriptive accounts of human–human conversation and the
strategies we choose to realize in practical dialogue systems. Descriptive analy-
ses do surprisingly well by characterizing grounding in common-sense terms: peo-
ple in problematic dialogues offer evidence of understanding, act collaboratively,
negotiate, reach agreement. Computational models—and their limits—remind
us how subtle and sophisticated this common-sense talk really is. The concepts
involved tap directly into our most powerful principles of social cognition, prin-
ciples for which science offers only the barest sketch. Linguistic meaning ranks
among the triumphs of our abilities to relate to one another. In understanding,
systematizing and implementing grounding in conversational agents, we deepen
and transform our understanding of those abilities, and the abilities themselves.



References

Allen, J. F., Blaylock, N., and Ferguson, G. (2002). A problem solving model
for collaborative agents. In The First International Joint Conference on
Autonomous Agents & Multiagent Systems, AAMAS 2002, July 15-19, 2002,
Bologna, Italy, Proceedings, pages 774–781.

Asher, N. and Lascarides, A. (2003). Logics of Conversation. Cambridge.
Brennan, S. E. (1990). Seeking and Providing Evidence for Mutual Understand-

ing. PhD thesis, Stanford University.
Brennan, S. E. and Clark, H. H. (1996). Conceptual pacts and lexical choice in

conversation. Journal of Experimental Psychology, 22(6):1482–1493.
Brennan, S. E. and Willams, M. (1995). The feeling of another’s knowing:

prosody and filled pauses as cues to listeners about the metacognitive states
of speakers. Journal of Memory and Language, 34:383–398.

Bunt, H. (1996). Interaction management functions and context representation
requirements. In LuperFoy, S., Nijholt, A., and van Zanten, G. V., editors,
Dialogue Management in Natural Language Systems. Proc. of 11th Twente
Workshop on Language Technology, University of Twente, Enschede, pages
187–198.

Bunt, H. (2000). Dialogue pragmatics and context specification. In Bunt, H.
and Black, W., editors, Abduction, Belief and Context in Dialogue. Studies in
Computational Pragmatics, pages 81–150. Amsterdam: Benjamins.

Bunt, H. C. (1994). Context and dialogue control. THINK Quarterly, 3:19–31.
Carberry, S. and Lambert, L. (1999). A process model for recognizing commu-

nicative acts and modeling negotiation subdialogues. Computational Linguis-
tics, 25:1–53.

Cassell, J. (2000). Embodied conversational interface agents. Communications
of the ACM, 43(4):70–78.

Cassell, J., Stone, M., and Yan, H. (2000). Coordination and context-dependence
in the generation of embodied conversation. In Proceedings of INLG.

Clark, H. (1996). Using Language. Cambridge University Press, Cambridge, UK.
Clark, H. H. (1993). Arenas of Language Use. University of Chicago.
Clark, H. H. and Krych, M. (2004). Speaking while monitoring addressees for

understanding. Journal of Memory and Language, 50:6281.
Clark, H. H. and Marshall, C. R. (1981). Definite reference and mutual knowl-

edge. In Joshi, A., Webber, B., and Sag, I., editors, Elements of Discourse

28



Grounding 29

Understanding, pages 10–63. Cambridge University Press, Cambridge, Eng-
land.

Clark, H. H. and Schaefer, E. F. (1989). Contributing to discourse. Cognitive
Science, 13:259–294.

Clark, H. H. and Wilkes-Gibbs, D. (1986). Referring as a collaborative pro-
cess. In Cohen, P. R., Morgan, J., and Pollack, M. E., editors, Intentions in
Communication, pages 463–493. MIT Press, Cambridge, Massachusetts, 1990.

Cohen, P. (1997). Dialogue modeling. In Cole, R., Mariani, J., Uszkoreit, H.,
Varile, G. B., Zaenen, A., and Zampolli, A., editors, Survey of the State of the
Art in Human Language Technology (Studies in Natural Language Processing),
pages 204–210. Cambridge University Press.

Core, M. G. and Allen, J. F. (1997). Coding dialogues with the DAMSL annota-
tion scheme. In Traum, D., editor, Working Notes: AAAI Fall Symposium on
Communicative Action in Humans and Machines, pages 28–35, Menlo Park,
California. American Association for Artificial Intelligence.

DeVault, D. (2008). Contribution Tracking: Participating in Task-Oriented Dia-
logue under Uncertainty. PhD thesis, Department of Computer Science, Rut-
gers, The State University of New Jersey, New Brunswick, NJ.

DeVault, D., Kariaeva, N., Kothari, A., Oved, I., and Stone, M. (2005). An
information-state approach to collaborative reference. In ACL 2005 Pro-
ceedings Companion Volume. Interactive Poster and Demonstration Sessions,
pages 1–4, University of Michigan.

DeVault, D. and Stone, M. (2006). Scorekeeping in an uncertain language game.
In Proceedings of the 10th Workshop on the Semantics and Pragmatics of
Dialogue (SemDial-10), pages 139–146.

DeVault, D. and Stone, M. (2007). Managing ambiguities across utterances in
dialogue. In Proceedings of the 11th Workshop on the Semantics and Prag-
matics of Dialogue (Decalog 2007), pages 49–56.

DeVault, D. and Stone, M. (2009). Learning to interpret utterances using dia-
logue history. In Proceedings of the 12th Conference of the European Chapter
of the ACL (EACL), pages 184–192.

Eugenio, B. D., Jordan, P. W., Thomason, R. H., and Moore, J. D. (2000).
The agreement process: An empirical investigation of human-human computer-
mediated collaborative dialogue. International Journal of Human-Computer
Studies, 53:1017–1076.

Furnas, G. W., Landauer, T. K., Gomez, L. M., and Dumais, S. T. (1987). The
vocabulary problem in human-system communications. Communications of
the ACM, 30:964–971.

Ginzberg, J. and Cooper, R. (2004). Clarification, ellipsis and the nature of
contextual updates in dialogue. Linguistics and Philosophy, 27(3):297–365.

Goldman, A. (1970). A Theory of Human Action. Prentice-Hall.
Gregoromichelaki, E., Kempson, R., Purver, M., Mills, G. J., Cann, R., Meyer-

Viol, W., and Healey, P. G. T. (2011). Incrementality and intention-recognition
in utterance processing. Dialogue and Discourse, 2(1):199–233.



30 Chapter 1. Grounding

Grice, H. P. (1975). Logic and conversation. In Cole, P. and Morgan, J., editors,
Syntax and Semantics III: Speech Acts, pages 41–58. Academic Press, New
York.

Grosz, B. J. and Sidner, C. L. (1986). Attention, intentions, and the structure
of discourse. Computational Linguistics, 12(3):175–204.

Heeman, P. A. and Hirst, G. (1995). Collaborating on referring expressions.
Computational Linguistics, 21(3):351–383.

Henderson, J., Lemon, O., and Georgila, K. (2008). Hybrid reinforce-
ment/supervised learning of dialogue policies from fixed data sets. Computa-
tional Linguistics, 34(4):487–511.

Hobbs, J. R., Stickel, M., Appelt, D., and Martin, P. (1993). Interpretation as
abduction. Artificial Intelligence, 63:69–142.

Horvitz, E. and Paek, T. (2001). Harnessing models of users’ goals to mediate
clarification dialog in spoken language systems. In Proceedings of the Eighth
International Conference on User Modeling, pages 3–13.

Kehler, A. (2001). Coherence, Reference and the Theory of Grammar. CSLI.
Kopp, S., Tepper, P., and Cassell, J. (2004). Towards integrated microplanning

of language and iconic gesture for multimodal output. In Proceedings of the
International Conference on Multimodal Interfaces (ICMI 2004), pages 97–
104.

Larsson, S. and Traum, D. (2000). Information state and dialogue management
in the TRINDI dialogue move engine toolkit. Natural Language Engineering,
6:323–340.

Lascarides, A. and Asher, N. (2009). Agreement, disputes and commitments in
dialogue. Journal of Semantics, 26(2):109–158.

Lascarides, A. and Stone, M. (2009). Discourse coherence and gesture interpre-
tation. Gesture, 9(2):147–180.

Lemon, O. (2011). Learning what to say and how to say it: Joint optimisation
of spoken dialogue management and natural language generation. Computer
Speech & Language, 25(2):210–221.

Levin, E. and Pieraccini, R. (1997). A stochastic model of computer-human
interaction for learning dialogue strategies. In Proceedings of Eurospeech, pages
1883–1886, Rhodes, Greece.

Levin, E., Pieraccini, R., and Eckert, W. (1998). Using markov decision process
for learning dialogue strategies. In Proceedings International Conference on
Acoustics, Speech and Signal Processing (ICASSP).

Matheson, C., Poesio, M., and Traum, D. (2000). Modelling grounding and
discourse obligations using update rules. In Proceedings of NAACL.

Nakano, Y. I., Reinstein, G., Stocky, T., and Cassell, J. (2003). Towards a
model of face-to-face grounding. In Proceedings of the Annual Meeting of the
Association for Computational Linguistics (ACL 2003), pages 553–561.

Newell, A. (1982). The knowledge level. Artificial Intelligence, 18:87–127.



Grounding 31

Pollack, M. (1986). A model of plan inference that distinguishes between the
beliefs of actors and observers. In Biermann, A. W., editor, Proceedings of the
24th Meeting of the Association for Computational Linguistics (ACL), pages
207–215, Morristown, New Jersey. Association for Computational Linguistics.

Purver, M. (2004). The Theory and Use of Clarification Requests in Dialogue.
Ph.D. dissertation, Department of Computer Science, King’s College, Univer-
sity of London, London.

Rich, C., Sidner, C. L., and Lesh, N. (2001). Collagen: Applying collaborative
discourse theory to human-computer interaction. Artificial Intelligence Mag-
azine, 22(4):15–25.

Rieser, V. and Lemon, O. (2011). Learning and evaluation of dialogue strategies
for new applications: Empirical methods for optimization from small data sets.
Computational Linguistics, 37(1):153–196.

Roy, N., Pineau, J., and Thrun, S. (2000). Spoken dialog management for robots.
In The Proceedings of the Association for Computational Linguistics.

Russell, S. and Norvig, P. (1995). Artificial Intelligence: A Modern Approach.
Prentice Hall.

Sengers, P. (1999). Designing comprehensible agents. In Proceedings of the
International Joint Conference on Artificial Intelligence (IJCAI 1999), pages
1227–1232.

Sidner, C. L. (1994). Negotiation in collaborative activity: a discourse analysis.
Knowledge Based Systems, 7(4):265–267.

Stalnaker, R. (1974). Pragmatic presuppositions. In Stalnaker, R., editor, Con-
text and Content, pages 47–62. Oxford, New York, New York.

Stalnaker, R. (1978). Assertion. In Cole, P., editor, Syntax and Semantics 9.
Academic Press, New York, New York.

Stent, A. J. (2002). A conversation acts model for generating spoken dialogue
contributions. Computer Speech and Language, 16:313–352.

Stone, M. (2004). Communicative intentions and conversational processes in
human-human and human-computer dialogue. In Trueswell and Tanenhaus,
editors, World-Situated Language Use. MIT.

Stone, M., Doran, C., Webber, B., Bleam, T., and Palmer, M. (2003). Microplan-
ning with communicative intentions: the spud system. Computational Intelli-
gence, 19(4):314–381.

Stone, M. and Lascarides, A. (2010). Coherence and rationality in dialogue. In
Proceedings of the 14th SEMDIAL Workshop on the Semantics and Pragmatics
of Dialogue, pages 51–58, Poznan.

Stone, M. and Oh, I. (2008). Modeling facial expression of uncertainty in con-
versational animation. In Wachsmuth, I. and Knoblich, G., editors, Modeling
Communication with Robots and Virtual Humans, pages 57–76. Springer.

Swartout, W., Gratch, J., Hill, R. W., Hovy, E., Marsella, S., Rickel, J., and
Traum, D. (2006). Toward virtual humans. AI Mag., 27(2):96–108.



32 Chapter 1. Grounding

Swerts, M. and Krahmer, E. (2005). Audiovisual prosody and feeling of knowing.
Journal of Memory and Language, 53(1):81–94.

Tetreault, J. and Litman, D. (2006). Using reinforcement learning to build a
better model of dialogue state. In Proceedings of the 11th Conference of the
European Association for Computational Linguistics (EACL).

Thomason, R. H., Stone, M., and DeVault, D. (2006). Enlightened update:
A computational architecture for presupposition and other pragmatic phe-
nomena. For the Ohio State Pragmatics Initiative, 2006, available at
http://www.research.rutgers.edu/˜ddevault/.

Traum, D. R. (1994). A Computational Theory of Grounding in Natural Lan-
guage Conversation. Ph.D. dissertation, Department of Computer Science,
University of Rochester, Rochester, New York.

Traum, D. R. and Allen, J. F. (1994). Discourse obligations in dialogue pro-
cessing. In Pustejovsky, J., editor, Proceedings of the Thirty-Second Meeting
of the Association for Computational Linguistics, pages 1–8, San Francisco.
Association for Computational Linguistics, Morgan Kaufmann.

Traum, D. R. and Hinkelman, E. A. (1992). Conversation acts in task-oriented
spoken dialogue. Computational Intelligence, 8(3):575–599.

Wahlster, W., Reithinger, N., and Blocher, A. (2001). SmartKom: multimodal
communication with a life-like character. In Proceedings of the European Con-
ference on Speech Communication and Technology (EUROSPEECH 2001),
volume 3, pages 1547–1550.

Walker, M. A. (2000). An application of reinforcement learning to dialogue
strategy selection in a spoken dialogue system for email. Journal of Artificial
Intelligence Research, 12:387–416.

Williams, J. and Young, S. (2006). Scaling pomdps for dialog management
with composite summary point-based value iteration (cspbvi). In Proceedings
AAAI Workshop on Statistical and Empirical Approaches for Spoken Dialogue
Systems.

Williams, J. and Young, S. (2007). Partially observable markov decision processes
for spoken dialog systems. Computer Speech and Language, 21(2):393–422.

Williams, J. D. (2008). Demonstration of a pomdp voice dialer. In Proc Demon-
stration Session, Annual Meeting of the Association for Computational Lin-
guistics (ACL) with Human Language Technology Conference (HLT).


