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Abstract

This paper pursues a formal analogy between natural lan-
guagedialogueand collaborative real-world actionin general .
Theanalogy dependson an analysisof two aspectsof collabo-
ration that figure crucially in language use. First, agents must
be able to coordinate abstractly about future decisionswhich
cannot be made on present information. Second, when agents
finally take such decisions, they must again coordinate in or-
der to interpret one anothers’ actions as collaborative. The
contribution of this paper isageneral representation of collab-
orativeplansandintentions, inspired by representationsof de-
ductionsin logics of knowledge, action and time, which sup-
ports these two kinds of coordination. Such representations
can describe natural language dialogue simply by specifying
the potential that utterances have, in virtue of their meanings,
to contributeto an evolving record of the conversation. These
representationsare implemented in asimple prototype collab-
orative dialogue agent.

Introduction

When peopletalk to one another face-to-face to accomplish
real-world tasks, they recruit arange of behaviors and make
extensive use of the real-world environment around them, in
ajoint effort to maintain a shared understanding of one an-
others’ contributionsto the dial ogueand to the ongoing task.
In human-human dialogue, thissituated and collaborative ef -
fort is manifest in phenomena such as the following:

o Disambiguation based on plan-recognition. People draw
on knowledge of their partner’s perspective, goasand be-
liefsto constraininterpretation problems such asreference
resolution on-line (Hanna and Tanenhaus 2001).

o Clarification subdialogues and negotiation of meaning.
Peopl e continue communicating until they share an under-
standing of each utterance that is sufficient for the pur-
poses at hand (Clark and Wilkes-Gibbs 1986; Clark and
Schaefer 1989; Brennan 1990).

e Accommodation and cooperative response. When peo-
plerecognizethat their partner’ sutterance depends on un-
expected assumptions, they can adjust the model of the
conversation implicitly by accommodating, or taking on,
those new assumptions (Lewis 1979; Thomason 1990),
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and they can rai se di scussion about those assumptionsand
offer corrections to them (Cheikes 1991).

e Entrainment. Participantsin conversations cometo agree
on the vocabulary they use to communicate (Brennan and
Clark 1996; Brennan 1996).

e Multimodality. Peopl € s speech co-occurswith other com-
municative behaviors, such as gesture and facid displays,
which contribute to a single consistent utterance interpre-
tation (Cassdll et al. 1999; Cassdll 2000).

Such phenomena provide compelling evidence for basing
a cognitive science of language use on a systematic ana ogy
between dialogue and collaborative agency (Clark 1996).
However, many challenges remain in formaizing language
use and collaborativerea -world actionin parale ways, and
in implementing such aformalism for collaborative conver-
sational agents. Take the simple question-and-answer ex-
changein (1), for example.

(1) a X: What size do you want: small or large?
b Y: Large

(1) exhibits entrainment; in (1b) Y answers the question in
(1a@) in theterms in which it is posed. The response shows
the extent of collaborationin dialogue, inthat Y actsto meet
not only X's expectation for the content of the response (that
Y will identify a desired size), but also X's expectation for
the form of the response (identifying one size as small and
the other aslarge).

Thisview of (1) isrepresentativeof collaborativeaccounts
of language use in depending on two abilities that agents
bring to collaboration. First, agents can coordinate ab-
stractly about future decisions which cannot be made solely
on currently shared information. In (1), for example, X and
Y coordinate on the answer Y isto give—something that X
cannot know exactly. Second, agents can coordinateto inter-
pret one anothers’ actions as collaborative. In (1), X and Y
can understand each utterance as evoking specific discourse
referents, or as moving the conversation forward, only by
bringing to bear expectations derived from their shared un-
derstanding of their environment and their ongoing dial ogue.

Inthis paper, | describe a general representation of collab-
orative plans and intentionsthat supports these two kinds of
coordination. These representations abstract safely over fu-
ture actions by incorporating features of deductionsin log-
ics of knowledge, action and time (M oore 1985; Stone 1998)



S0 as to anticipate and describe the choices agents can make
in carrying out an intention. At the same time, these repre-
sentations can serve as resources for deliberation, coordina
tion and action, in the spirit of philosophers such as Brat-
man (Bratman 1987) and computer scientistssuch as Pollack
(Pollack 1992). In particular, it is a straightforward matter
for agentsto follow throughon their collaborativeintentions,
or to recognize how their teammates are doing so.

Such representations can describe natura language dia
loguesimply by specifying the potential that utterances have,
in virtue of their meanings, to contribute to an evolving
record of the conversation. Doing so achieves a broadly
Gricean formdization of language use as intentional ac-
tivity (Grice 1957), yet at the same time it retains impor-
tant insights from forma semantics about the dynamics and
context-dependence of meaning (van der Sandt 1992; Kamp
and Reyle 1993; Muskens 1996).

The mode is redized in a ssimple prototype dialogue
agent, and enables the prototype to exhibit a variety of sit-
uated and collaborative features of conversation, including
plan-recognitionininterpretation, entrainment in generation,
and cooperative response in dial ogue management.

A Framework for Agency and Intention

For the purposes of this paper, | understand an intentionas a
planthat an agent is committedto. Here, aplan representsan
argument that demonstrates that an agent can perform some
series of actions to obtain a good outcome. Committing to
it means undertaking, within certain limits, to perform the
plan’sactions and so realize the plan’soutcome, for the very
reasons the plan spells out.

Thisframework balances the two roles of intentionin col-
[aboration. On the one hand, agents must be able to draw on
their own intentionsto facilitate their deliberation and action
in acomplex, uncertain and changing world (Bratman 1987,
Pollack 1992). On the other hand, one agent’s attribution of
an intention to another agent, like our own folk attributions
of intention(Malleand Knobe 1997), must encapsul ate arich
understanding of that agent’s goal's, beliefs and deliberation
(Pollack 1990).

Consider first deliberation. Let us adopt the standard ide-
alization of an agent’s cognition as aseries of cycles; in each
cycle, theagent first perceivesitsenvironment, then deliber-
ates to update its desires, beliefs and intentions, and finally
carries out an action (Bratman et al. 1988). Within this ar-
chitecture, any intention that an agent carries into a new cy-
cle of perception and action providesthe agent with an argu-
ment about what to do. The argument sets out expectations,
governed by a set of defeasible assumptions, for theway the
agent may perceivetheworldtobe. When these expectations
are met, the argument specifies areason to act, consisting of
an action that the agent can perform now, and perhaps some
further intentionsthat can guide the agent into the future cy-
cles of perception and action. And even when those expec-
tations fail, the intention can serve as a reference point for
repairing the agent’s strategy. Intentionsthus serve asare-
source for deliberation, by focusing the agent’ s reasoning on
aconstellation of beliefs, actionsand desiresthat governsthe
agent’simmediate success in its environment.

Attributions of intention, meanwhile, exploit the same
congtellation of attitudes. Suppose agent X performs an ac-
tion A, and agent Y recognizes the intention behind X's do-
ing A. That means, of course, that Y attributes X’s action to
X's commitment to an argument about the effects of doing
A. The argument involves assumptions about the state of the
world and the causal consequences of A—assumptions that
X must endorse. The argument a so describes an outcome—
onethat X must favor. Without these attitudes, X would not
have made and persisted in a commitment to this intention.
Intention thus brings with it a complex ensemble of beliefs
and desires describing not only a desired action but more
generally that action’s circumstances and effects.

I am inclined to emphasize the paralds between this
framework and other models of agency: the notion of plans
as arguments from (Ferguson and Allen 1994); the notions
of choice and commitment in intention from (Cohen and
Levesgue 1990); Pollack’s understanding of intention as
a complex menta attitude (Pollack 1990); and the belief-
desire-intention architectures for rationality explored gener-
aly in such work as (Bratman et al. 1988; Rap and Georgeff
1992). But only up to a point. For in the present frame-
work, unlikein others, the paramount question iswhat kinds
of formal structures can represent intentions as arguments.
To pursue this question, we must turn to representations of
inference in computational logic.

Representing Intention as I nference

Ordinarily, we think of inference as a process, as an activity
which crestes new true statements by rewriting old ones, per-
haps. However, because the process of inference proceedsin
discrete steps governed by formal rules, we can aso collect
together the statements involved in an inference as a single
structured syntactic object. We might encode such an object
as aproof-termin aformal specification language, or in an-
other such computational datastructure. In so doing, we ob-
tain a representation of the inference as awhole.

To record many kindsof argumentation, proof-termsmust
be constructed from typed elements using variable-binding
operations. Variables and binding describe inferences which
take ontemporary assumptionsfor the purposesof argument.
Type-disciplinesensurethat such constructionsare permitted
only when licensed by thelogic.

Perhaps the clearest illustration of these ideas comes in
the Curry-Howard isomorphism, which shows that natura
deduction proofs in Intuitionistic logic can be represented
using terms in the simply-typed A-calculus (Gallier 1993).
Intuitionistic logic strengthens implication to give it a con-
structive force with a natural relevance to computation and
decision-making. Inan Intuitionistic proof of P > Q, wecan
use P as an assumption only locally, as part of this proof of
Q. Accordingly, a proof-term for such an inference com-
bines an indication of the rule used (implication introduc-
tion, or ii) and aA-term representing a function mapping any
proof for P into a proof for Q. For example, P O P isproved
by ii(Ap.p). Here Ap.pis theidentity function that simply
delivers the assumed proof of P as the required proof of P.
Types and variable-binding are by no means limited to Intu-
itionistic natural deduction, of course. For example, (Pfen-



ning 2000) relies on them to devel op simple proof-termsfor
sequent cal culus proofs, and for classica logic.

To take advantage of such representations, | will be using
the higher-order logic programming language AProlog (Na
dathur and Miller 1998). AProlog offers functions as data
structures using the simply-typed A-calculus and includes
higher-order unification to reason about these data struc-
turesin a principled way. In the syntax of AProlog, func-
tion expressions Ax.M are encoded as x\ M and these A-
terms see genera use as the arguments of logical operators
that bind variables (such asii above). The use of logic pro-
gramming makes it possibleto specify agents declaratively,
and to reuse these specifications for multiple tasks. For di-
alogue, for example, the same intention representations and
linguistic knowledge can be applied both for understanding
and for generation. (See (Pereiraand Shieber 1987).) Mean-
while, although general higher-order unificationisexplosive,
(Miller 1991) shows that this expressive power need not in-
troduce much complexity over standard Prolog, when func-
tions and bound variables are used in constrained ways.

In the remainder of this section, | first summarize the
account of planning as an inference problem from (Stone
1998). | then introduce concrete syntax to specify such plan
inferences as AProlog terms. Finaly, | show how these data
structures can guide an agent’s deliberation and action.

Formalizing Knowledge, Action and Choice

Temporal and modal logicsprovideanatural setting for spec-
ifyingachanging world and an agent’s changing information
in the world (Halpern and Moses 1985; Fagin et al. 1995;
Fittingand Mendel sohn 1998). Theselanguagesextend clas-
sical logic by adding operatorsthat characterize propositions
that are known to an agent or that are true at some point in
time. Here, | use the two kinds of operatorsin (2):

(@a [X]P
b XxDOEsaTHEN P

[X]P meansthat agent X knowsP. (I’Il also use AProlog syn-
tax k x P.) x DOES a THEN P means that if agent X does
action A now, P will betrueimmediately afterwards.

To characterize an agent’s deliberation across several cy-
cles of perception and action, we must be able to describe
the new information that will become available in future sit-
uations. Such descriptions depend on existentia quantifiers
and digunctions (Hintikka1971). Thus, consider (3).

(3)a [x]Ja.Pa
b Ja.[x]Pa

(3a) gives a specific characterization of agent X's indefinite
knowledge: X knowsthat something has property P, but not
necessarily what. Meanwhile, (3b) gives an indefinite char-
acterization of agent X's specific knowledge; there is some
real-world object A which X knowsto have property P, but
the formula does not say what Ais. The formulas of (3) can
be encoded as in (4) using A-terms to abstract bound vari-
ables, and using smfor the existential quantifier.

dak x (sma\[p a])
b sma\[k x (p a)]

In planning, sensing actions can move an agent from an
epistemic state characterized as in (3d) to a state character-
ized asin (3b). Representing the difference makesit possible
to anticipate an agent’s future choice of an appropriate ac-
tion. For example, consider an intention that an agent X car-
ries from one cycle of deliberation to the next, which maps
out X’'schoice of asinglefutureaction A. Inthenext stage, X
will choose A based on the information that X hasthen. X's
information should indicate that A will clearly bring about a
desired state G. Thisconditionisformalizedin (5).

(5) Ja[x](xDOESaTHEN [X]G)

If X knowsnow that (5) will hold, X knowsthat the next step
of deliberationwill be successful. However, with only anin-
definite characterization of X'sfuture knowledge, asin (3b),
X may have only an indefinite characterization of the choice
specified by (5). In other words, X will know abstractly, but
not specifically, what to do next. Only when the next stage
of deliberationarrives, and X perceiveskey new information,
will X be ableto select a specific action.

These considerations generalize naturaly to multiple
steps of deliberation. At each stage, the agent must be able
to choose a suitable next action based on the information
then available (Moore 1985; Morgenstern 1987; Davis 1994;
Stone 1998). For thispaper, wewill need two cycles at most.
So, wewill treat a one-step intention as a proof of (5), and a
two-step intention as a proof of (6).

(6) 3Ja[x](xDoEsaTHEN Ja&[x](xDOES & THEN [X]G))

Proof-terms for | ntentions

By thisanalysis, proof-termsthat describe deliberation must
track reasoning about time, reasoning about knowledge, and
reasoning about i ndefiniteinformation. Temporal inferences
provideabasic constituent of intention representation. | for-
malize these inferences with recursive terms composed from
symbolsfor agents, actions and propositionsusing the sym-
bolsf i ni sh and st ep defined in (7).

(M a (finish X G) ademonstration that
hypothesizes that agent X knowsthat goal G now
holds, and thereby establishes that the intention has
been carried through successfully.

b (step X A C 1) ademonstrationthat
hypothesizes that conditionsC hold at the present
moment, and thereby showsthat if agent X does
action A now, the right conditionswill obtain
afterwards to support intention 1. Thus, if | isa proof
of P, thisisaproof of x DOESa THEN P.

The st ep structures defined in (7b) simply summarize in-
ferences about the effects of action, so that a detailed charac-
terization of these inferences may be carried out in any con-
venient formalism. A purely logica approach could check
these inferences by modus ponens from axioms describing
change and persistence, perhaps in the style of (Schubert
1990). | have chosen to check them by simulation, using op-
erational specificationsof actionsandtheir effectsinthestyle
of STRIPS (Fikesand Nilsson 1971).
Modal inferences, meanwhile, arerepresented asin (8).



(80 (know X C 1) ademonstration that
hypothesizes that conditionsC hold at present, where
each condition of C must take the form [X]Q, and
thereby shows that the right conditionsobtain to
support intention I If | isaproof of P then, thisisa
proof of [X]P.

This correspondsto astructural approach to sequent calculus
for modal logic, inwhich each sequent describes a particular
modal context (Fitting 1983). Inferences such as (8) mark
a transition from one moda context to another by allow-
ing only formulas of a restricted syntactic form to be taken
into account. By requiring here simply that the right con-
ditions must obtain to support I, this construction aso im-
plements any additional axiom schemes (such as veridical-
ity and positiveintrospection) needed to characterize knowl-
edge for planning (Moore 1985).

Since (5) and (6) cdl for the proof of existentia state-
ments, | add the constructor in (9).

(99 (find A l) ademonstrationof Ja.Pa, using
action A as awitness, and constructed from an
intention | establishing P(A).

Thestructureof formulas (5) and (6) now determinestheway
operators from (7), (8) and (9) can fit together in an inten-
tion representation. These operatorsmust be nested: for each
cyclewefind first f i nd A corresponding to the quantifier
Ja, then know X corresponding to the operator [x], then
step X A corresponding to X DOES a THEN; at the inner-
most level, wehavef i ni sh.

Finally, other reasoning operations make it possible to
construct intentionsthat use indefinite information:

(10)a (what ever Df 1f) ademonstrationthat
appeals to the fact that some object o satisfies the
predicate Df , and then supplies a specific
demonstration (I f o) by applyingthe function| f to
0, whatever o may be. If | f oisaproof of P, thisis
again a proof of P.

b (oneof Ds Is) ademonstrationthat appeds
to the fact that one of the conditions spelled out in
thelist Ds must betrue, and then supplies a specific
demonstration, the nth element of | s, to suit that
case where the nth element of Ds istrue. Again, if
each element of | s isaproof of P, thisisalso a
proof of P.

These operations do not change the content of an intention—
complex intentions correspond to proofs of the same
formulas—but rather introduce ambiguities into the inten-
tion. The content of intentions, as spelled out in (5), and the
corresponding reasoning about knowledge, as formalized
by (8), ensures that those ambiguities are resolved by the
time an agent needs to make a decision.

(11) shows an intention representation that combines all
of these operators. We can read it informally as a descrip-
tion of a course of action appropriate when agent X knows
that thereissomefoodintherefrigerator (f ood), and desires
to berelieved of hunger (f ul | ). X looksin the refrigerator
(I ook), thereby discovering a particular item of food there
(f ). Thereafter, X eatsthat item (eat f).

(11) (find 1 ook
(know x [k x(smf\[food f])]
(whatever (f\[food f])
(f\(step x look [food f]
(find (eat f)
(know x [k x (food f)]
(step x (eat f) [food f]
(finish x [full])))))))))
More precisely, we can regard (11) as formalizing an infer-
ence that establishes the instance of (6) in (12).

(12) Ja[x](xDOEsaTHEN J&[X](Xx DOES & THEN
[X]full))

Wewant to show that X can befull after twofeasible choices.
Thefirst choiceistolook; we consider X’'sknowledge at this
stage, namely that there is some food. For the purposes of
argument, call thefood f, and consider what happens when
X looks: X will know that f isfood. X's second choice is
now toeat f. Again, weconsider X’sknowledgeat thisstage,
namely that f isfood, and consider what happens when X
eats f: X will fedl full, and know it. This proves (12).

Using I ntention Representations

Earlier, | claimed that by representing intentions as infer-
ences about deliberation that an agent is committed to, we
can reconcile the use of intentionsin deliberation with the
force of attributions of intention. | can now support this
claim with reference to the rules of (7)—(10) and specific in-
stances such as (11).

We saw earlier that the intentionsthat we ascribe to other
agents must encapsul ate acomplex web of goalsand beliefs.
At the highest level, we can use therelations on intentions of
(13) to describe this complex structure.

(13)a (expectation | E) Egivesoneway I's
expectations could be true.
b (nextAct | E A) when expectationsE hold, |
givesareason to do A now.
c (nextlntention | E N)
E hold, | suggeststrying N next.
d (goals | G) | envisagesoutcomeG.

Our proof-theoretic representation naturally supportstheim-
plementation of these relations. In particular, the expecta
tions are the hypotheses that the proof appedls to; the next
action isthe first act hypothesized in the proof, represented
intheoutermost f i nd term; the next intentionis asubproof
that considersthe agent’s next stage of execution and action,
represented by f i nd terms at one level of embedding; the
goa is the condition that the proof ultimately establishes,
represented ininnermost f i ni sh terms.

These relationsthen provide a natural vocabulary of con-
straints on intentionswith which to specify deliberation with
intentionsand attributionof i ntentions. With theseresources,
for example, we can specify the reasoning of an agent that
sticksto itsintention as the clause in (14).

(14) deliberate B1 A I’

expectation | E,

net E B,

next Act | E A,
nextlntention | E |'.

when expectations



The agent considersits current beliefs B and present inten-
tion | . The agent first ensures that some expect ati on E
of | ismet according to B; in this case, the intention spells
out action Ato do now and intention| * to follow next. The
agent simply selects action A and commitsto intention| ’ .

Let's step through an example: agent X acting on the in-
tention of (11). Initially, thisintention depends on the expec-
tationthat X knowsthereissome food; let usassumethat this
expectation is met, so that X’s deliberation in this cycle can
proceed normally as specified in (14). Then X will decideto
look now. For the next cycle, X will commit to an abstract
intention derived from (11), asin (15).
(A5) (find (eat F)

(know x [k x (food F)]
(step x (eat F) [food F]
(finish x [full])))))))))

In thistransition we have used the bound-variablerepresen-
tation of individuals assumed for the sake of argument, and
introduced a new logic variable F to leave open the object
that X will eat at the next stage.

We now move to the second stage of deliberation. Sup-
pose that in fact, as part of X's perceptions in the second
cycle, X identifies a particular piece of cheesecake c in the
refrigerator. Meanwhile, the intention of (15) involves a
general expectation of theformk x (food F).Inshow-
ing that X’'s information meets the expectations of (15), we
can use the fact that X knows that c is food by instantiat-
ing F toc. Thisisjust the usua process of unification in
logic-programming proof search. Given this instantiation,
the intention of (15) specifieseat c¢ asthe next action,and
finish x [full] asthenextintention.

In effect, then, in thisexample, the intention has not only
focused X's attention and deliberation on the circumstances
requires for the plan of action to succeed, but simultane-
ously determined a specific choice for X to carry the inten-
tion through based on new information.

Collaborative Agency

Theintention representations defined in (7), (8) and (10) and
illustrated in (11) and (15) account for the action of asingle
agent acting in isolation. In fact, however, | will adopt the
same representations for collaborative intentionsas well.

| assume that afixed group of agents are committed to the
ongoing collaboration; | will refer to these agentsastheteam
T and, by extension, | will use [T] to describe the knowl-
edge that all members of theteam share. (Actudly, | will be
most interested in dial ogues between two agents.) To rep-
resent collaborative intentionsfor T, | ssimply alow any of
the agentsin T to perform any step of action in the inten-
tion. However, in each cycle of execution, theintentionmust
restrict attention to the knowledge of the acting agent; thus
demonstration achieved in each step of the plan continues
to exhibit the find-know-step structure seen for example in
(11). Each agent has theinformation required to act, when it
istheir turn to do so.

In reusing the architecture of (7)—(10), | adopt a view of
collaboration as many agents acting as one. The metaphor
is appealing, but as researchers such as (Tambe et al. 1999;

Sengers 1999) have observed, pursuing it requires retooling
general models of agency to make explicit thetrust that each
agent places in the team, and the responsibilities that each
agent owes it. In particular, each agent must reason by in-
tention recognitiontointerpret itsteammates’ actions, andto
allow its teammates to interpret its own actions, in the con-
text of the evolving collaboration.

To interpret an agent’s action, another agent must recon-
struct the mental representations and steps of deliberation
in which the action originates. This inferred intention must
provide a consistent representation of choice, action and ef-
fect, as mapped out in (7)—(10). The inferred intention must
involve actions consistent with what the recognizer has ob-
served, and must set out the expectations that are consistent
with therecognizer’smodel of theactor’sbeliefs. Moregen-
eraly, the goals of the inferred intention must be consistent
with the recognizer’smodel of the actor’sdesires. When the
recognizer has only partia information about the actor, in-
tention recognition becomes explosive, because the recog-
nizer may adopt new assumptions about the actor as a pos-
sible explanation for the actor’s actions.

Collaboration, by contrast, alows for intended recogni-
tion, a potentially much simpler reasoning task. Agent and
observer are on the same team, and so coordinate not only
so that each action achieves the effects in the real world to
which the team is committed, but also so that the team as
a whole understands the status of each action (Cohen and
Levesque 1991). By appealing to common ground (Clark
and Marshall 1981) as a public record of the state of the
team’s collaboration, we can understand collaborative in-
tention recognition as a constraint-satisfaction problem in
which agents match as much information as possible against
this shared record.

To illustrate how intention representations can support
collaboration, | return to the culinary conceit introduced in
(11). Let us now imagine that two agents X and Y are col-
[aborating to prepare mashed potatoes. |n the collaboration,
agent X peels each potato and passes it to agent Y. | repre-
sent thisaction aspeel P, depending on the potato P, and
assume that the successful compl etion of thisaction makesit
clear to both agentsthat the potatoiscl ean. Then, agent Y
cutsthepotatointo chunksof aconsistent size, so asto ensure
that al the potatoes cook evenly. In other words, although
cleaning the potato may substantially change the size of the
potato, agent Y will know from perceiving the potato what
pattern of cuts z fits the potato; | represent this knowledge
asafactk y (cutp P z). Thus,Y knowsthat perform-
ingtheactioncut P z of cutting the potato as specified by
z istheright step to make the potato r eady for boiling.

The representation in (16) formalizesthisplan of joint ac-
tion as an inference.

(16) (find (peel P)
(know x [k t (potato P)]
(step x (peel P) [potato P]
(whatever (z\[k y (cutp P 2)])
(z\(find (cut P z)
(knowy [k y (cutp P z),
k t (clean P)]
(step y (cut P 2)



[cutp P z, clean P
(finish t [ready P]))))
)))))

First X pedls, then'Y cuts (as decided after the peeling), and
finally the potato is made ready. The potato is schematized
throughout by a logic variable P so that this representation
can serve as aresource for the two agents' collaboration.

Thus, suppose X peels potato p8 in a first stage of col-
laborative decision-making and action. Relying on (16) asa
potentia expectation about the interaction, any agent on the
team, relying only on information in the common ground,
can recognize X's intention in peeling p8 as an instance of
(16) with P=p8. In particular, by such inference X can antic-
ipatethat peeling p8 will make an unambiguouscontribution
tothecollaboration. Meanwhile, asY interpretsX’saction, Y
can commit to the same intention and proceed with the next
stage of decision-making and action for the ongoing task.

In this next stage, each agent on the team starts with the
intentionin (17).
(A7) (find (cut p8 2)

(know y [k y (cutp p8 2),
k t (clean p8)]
(step y (cut p8 2)
[cutp p8 Z, clean p8]
(finish t [ready p8]))))

This structure reflects the instantiation of P to p8 from (16)
but now includesalogicvariable Z to schematize the pattern
of cutsthat isyet to be decided.

ItfalstoY toact onthisintention. Aswith (15) thismeans
checking that the expectations laid out in the intention are
met; indeed, as with (15), a side-effect of this check in a
logi c-programming setting is the instantiation of Z to a spe-
cific value, t hi rds let ussay. So agent Y will select the
specific action cut p8 thirds, governed by a specific
intentionasin (18).

(18) (find (cut p8 thirds)
(know y [k y (cutp p8 thirds),
k t (clean p8)]
(step y (cut p8 thirds)
[cutp p8 thirds, clean p8]
(finish t [ready p8]))))

Now Y’s action must be interpreted. Drawing on the com-
mon ground, theteam combinestheexpectation (17) withthe
observed action cut p8 thirds. Taking a constraint-
satisfaction perspective on intention recognition in collabo-
rative process, the team can assume that Y’s action does in-
deed fit the expectation of (17) under Z=t hi r ds and so re-
congtruct (18) using shared information. Thus, after the sec-
ond cycle, al agentsrecognizeY’sjudgment thatt hi r ds is
theright pattern of cutsfor p8, and al are prepared tojointly
assess theresults of the collaboration—that p8 isin fact now
r eady to cook.

Language Use as Collabor ative Agency

Our representation of collaborative intention and agency
now enables us to pursue a forma parald between partic-
ipation in dialogue and the kind of real-world collaboration
illustratedin (16)—(18).

Consider (1) again, for example. In (1a), we recognize a
specific intention, in which the initiating speaker X asks the
guestion—what sizedo youwant: small or large?—and then
therespondent Y drawson the established wordsto formul ate
an utterancethat providestheanswer (inthiscaselarge). For
now, let's cal thisintentioni;. In understanding the ques-
tion, therespondent Y recognizesii: Y knowsthat X intends
aresponse. Inchoosingtooffer ananswerinreply asin(1),Y
simply cooperatively adoptsthisplanand followsit through.
Thisreasoning parallelsthat for (16)—(18).

To pursue the parale further, | now develop a suitable
model of grammatical structure and linguistic knowledge,
with which we can represent intentionssuch asi; withinthe
schemas provided by (7)—(10). | assume dependency rep-
resentations of syntactic structure which analyze each utter-
ance asaspecified combination of meaningful e ements. The
derivation trees of tree-adjoining grammar provide such a
representation (Joshi et al. 1975; Vijay-Shanker 1987; Sch-
abes 1990). For (1a) the treein (19) is suggestive of such
dependency representations.

Olwh
(19)
wanty small large
/\
you  Sizewn

To specify linguistic actions, | represent such trees as logic
programming terms, asin (20).

(20) or_wh (want_wh you sizewh) small |arge

Meanwhile, | assume that linguistic knowledge includes a
compositional semanticsthat definesardlationcont ent U
Mtrue when Mrepresents the linguistic meaning of syntactic
object U. For X's utterance (1a), for example, we requirethe
instances of thisrelation given in (21).

(21l)a content (want _wh you si ze_wh)
k\(and (want y k) (is.size k))
b content snall is_snall
c content large is.large

(Strictly, for AProlog, the type of Malso matters, but in this
example Mis aways a property.)

This content determines the effects that we understand ac-
tions such as (20) to have. We associate (20) with the pre-
suppositionin (22a) and the contributionin (22b).

(22a [k t (issmall K1), k t (is.large K2)]
bkt (og k\(and (want y k) (is_size k)))

When its presupposition is true, (20) adds the contribution
to the common ground. That is, when there are two kindsin
thecontext, onesmall and onelarge, (20) introducestheopen
question (0q) of which sizeY wants.

Figure 1 maps out the intention i1 in the representation
of (7)—(10) using these assumptions about linguistic actions
and their effects. The schema of Figure 1 maps out the in-
ferences involved in coordinating to add information to the
discourse using awh-question-answer pair with two aterna-
tivesexplicitly provided; variablesin the schema are subject
to the specified constraints. For iy, X uses the schema under
the specified instances.



schema: (find (or_wh SWH XP1 XP2)

(know x [k t (P1 K1), kt (P2 K2), k x (or [k y (Ans K1), ky (Ans K2)])]
(step x (orwh SWH XP1 XP2)
[kt (P1 K1), kt (P2 K2), kt (or [ky (Ans K1), ky (Ans K2)])]
(oneof [k y (Ans K1), k y (Ans K2)]
[(find XP1
(knowy [k t (oq Ans), kt (P1 K1), k y (Ans Ki1)]
(step y XP1 [k t (og Ans), k t (P1L K1), k y (Ans Kl1)]
(finish t [kt (Ans K1)])))),
(find XP2
(knowy [k t (oq Ans), kt (P2 K2), k y (Ans K2)]
(step y XP2 [k t (og Ans), k t (P2 K2), k y (Ans K2)]

(finish t [k t (Ans K2)]1))))1))))

constraints; cont ent SWH Ans
content XP1 P1
content XP2 P2

XPl=snal |

instances. SWH=(want -wh you si ze_wh) Ans=k\(and (want y k) (is_size k))
Pl=i s_smal |
XP2=Il arge P2=is_l arge K2=k2

Kl=k1

Figure 1: Communicativeintention schema and instance for (1a).

The reasoning in Figure 1 paralels (16). X chooses the
guestion, knowing that the presupposition is met and that Y
knows the answer. So the question makes its contribution,
and we consider separately thedifferent alternativesfor what
Y knowsof theanswer. In each case, Y draws on X' s descrip-
tion and exploitsthe effects of X’'s question to contributethe
answer to the context.

Theformal representationsof Figure 1 contributeto an ac-
count of the dynamics of (1) that proceeds along the follow-
ing lines. To recognize i1 on shared information, conversa:
tionalistsmust recognize that the schema applies, instantiate
the schema for the observed action, and instantiate any re-
mai ning variabl es by matching the expectations and goal s of
the plan against the common ground. We may assume this
offersY no difficulty, and that Y then commitstoi;.

At the next stage of deliberation, Y’'sturn, Y iscommitted
to a digunctive intention whose expectations can be met in
oneof twoways: Y wantsthesmall size or Y wantsthelarge
size. Inthiscase, by matching theexpectations, Y selectsthe
latter, deriving a specific intention for an utterance of large
that can, of course, be recognized as intended. Afterwards,
then, both X and Y are prepared to jointly assess the results
of the collaboration: it's settled that Y wants the large size.

Assessment and Prospects

In modeling intentionsas a resource for collaborative delib-
eration this way, the framework redlized here distinguishes
two kinds of reasoning about action in collaboration. Anun-
derlying collaborative process manages steps of coordina
tion, plan recognitionand (inlanguage use) such functionsas
turn-taking, acknowledgment and grounding. Specific rep-
resentationsof collaborativeintention presuppose and factor
out this underlying process in characterizing agents' choice
and action towards team goals. Because of this, inferences
such as iy can exhibit full linguistic and logical detail while
remaining substantially simpler than other pragmatic formal -
izations, such as those based on speech-act theory (Searle
1969; Cohen and Perrault 1979; Allen and Perrault 1980).
The simplicity is essential for modeling phenomena—for
starters, entrainment—uwhich depend on the pragmatic con-

sequences of syntactic and semantic choices.

As formdized in Figure 1, intentions like i; constitute
comprehensive pragmatic representations of utterance inter-
pretation. They specify the syntax and semantics of the ut-
terance and link thisspecification by inferenceinto adescrip-
tion of what a speaker might do with the utterancein context.
In my prototype implementation, these detailed represen-
tations of communicative intentions serves as the common
object of diverse processes in conversationa reasoning—
from interpretation through dia ogue management to utter-
ance generation. | hope that the analysis of (1) suggests the
elegance that this design affords.
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