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Abstract

This paper pursues a formal analogy between natural lan-
guage dialogue and collaborative real-world action in general.
The analogy dependson an analysis of two aspects of collabo-
ration that figure crucially in language use. First, agents must
be able to coordinate abstractly about future decisions which
cannot be made on present information. Second, when agents
finally take such decisions, they must again coordinate in or-
der to interpret one anothers’ actions as collaborative. The
contribution of this paper is a general representation of collab-
orative plans and intentions, inspired by representations of de-
ductions in logics of knowledge, action and time, which sup-
ports these two kinds of coordination. Such representations
can describe natural language dialogue simply by specifying
the potential that utterances have, in virtue of their meanings,
to contribute to an evolving record of the conversation. These
representations are implemented in a simple prototype collab-
orative dialogue agent.

Introduction
When people talk to one another face-to-face to accomplish
real-world tasks, they recruit a range of behaviors and make
extensive use of the real-world environment around them, in
a joint effort to maintain a shared understanding of one an-
others’ contributions to the dialogue and to the ongoing task.
In human-human dialogue, this situated and collaborative ef-
fort is manifest in phenomena such as the following:

• Disambiguation based on plan-recognition. People draw
on knowledge of their partner’s perspective, goals and be-
liefs to constrain interpretationproblems such as reference
resolution on-line (Hanna and Tanenhaus 2001).

• Clarification subdialogues and negotiation of meaning.
People continue communicating until they share an under-
standing of each utterance that is sufficient for the pur-
poses at hand (Clark and Wilkes-Gibbs 1986; Clark and
Schaefer 1989; Brennan 1990).

• Accommodation and cooperative response. When peo-
ple recognize that their partner’s utterance depends on un-
expected assumptions, they can adjust the model of the
conversation implicitly by accommodating, or taking on,
those new assumptions (Lewis 1979; Thomason 1990),
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and they can raise discussion about those assumptions and
offer corrections to them (Cheikes 1991).

• Entrainment. Participants in conversations come to agree
on the vocabulary they use to communicate (Brennan and
Clark 1996; Brennan 1996).

• Multimodality. People’s speech co-occurs with other com-
municative behaviors, such as gesture and facial displays,
which contribute to a single consistent utterance interpre-
tation (Cassell et al. 1999; Cassell 2000).
Such phenomena provide compelling evidence for basing

a cognitive science of language use on a systematic analogy
between dialogue and collaborative agency (Clark 1996).
However, many challenges remain in formalizing language
use and collaborative real-world action in parallel ways, and
in implementing such a formalism for collaborative conver-
sational agents. Take the simple question-and-answer ex-
change in (1), for example.
(1) a X: What size do you want: small or large?

b Y : Large.
(1) exhibits entrainment; in (1b) Y answers the question in
(1a) in the terms in which it is posed. The response shows
the extent of collaboration in dialogue, in that Y acts to meet
not only X’s expectation for the content of the response (that
Y will identify a desired size), but also X’s expectation for
the form of the response (identifying one size as small and
the other as large).

This view of (1) is representative of collaborative accounts
of language use in depending on two abilities that agents
bring to collaboration. First, agents can coordinate ab-
stractly about future decisions which cannot be made solely
on currently shared information. In (1), for example, X and
Y coordinate on the answer Y is to give—something that X
cannot know exactly. Second, agents can coordinate to inter-
pret one anothers’ actions as collaborative. In (1), X and Y
can understand each utterance as evoking specific discourse
referents, or as moving the conversation forward, only by
bringing to bear expectations derived from their shared un-
derstanding of their environment and their ongoing dialogue.

In this paper, I describe a general representation of collab-
orative plans and intentions that supports these two kinds of
coordination. These representations abstract safely over fu-
ture actions by incorporating features of deductions in log-
ics of knowledge, action and time (Moore 1985; Stone 1998)



so as to anticipate and describe the choices agents can make
in carrying out an intention. At the same time, these repre-
sentations can serve as resources for deliberation, coordina-
tion and action, in the spirit of philosophers such as Brat-
man (Bratman 1987) and computer scientists such as Pollack
(Pollack 1992). In particular, it is a straightforward matter
for agents to follow throughon their collaborative intentions,
or to recognize how their teammates are doing so.

Such representations can describe natural language dia-
logue simply by specifying the potential that utterances have,
in virtue of their meanings, to contribute to an evolving
record of the conversation. Doing so achieves a broadly
Gricean formalization of language use as intentional ac-
tivity (Grice 1957), yet at the same time it retains impor-
tant insights from formal semantics about the dynamics and
context-dependence of meaning (van der Sandt 1992; Kamp
and Reyle 1993; Muskens 1996).

The model is realized in a simple prototype dialogue
agent, and enables the prototype to exhibit a variety of sit-
uated and collaborative features of conversation, including
plan-recognition in interpretation, entrainment in generation,
and cooperative response in dialogue management.

A Framework for Agency and Intention
For the purposes of this paper, I understand an intention as a
plan that an agent is committed to. Here, a plan represents an
argument that demonstrates that an agent can perform some
series of actions to obtain a good outcome. Committing to
it means undertaking, within certain limits, to perform the
plan’s actions and so realize the plan’s outcome, for the very
reasons the plan spells out.

This framework balances the two roles of intention in col-
laboration. On the one hand, agents must be able to draw on
their own intentions to facilitate their deliberation and action
in a complex, uncertain and changing world (Bratman 1987;
Pollack 1992). On the other hand, one agent’s attribution of
an intention to another agent, like our own folk attributions
of intention (Malle and Knobe 1997), must encapsulate a rich
understanding of that agent’s goals, beliefs and deliberation
(Pollack 1990).

Consider first deliberation. Let us adopt the standard ide-
alization of an agent’s cognition as a series of cycles; in each
cycle, the agent first perceives its environment, then deliber-
ates to update its desires, beliefs and intentions, and finally
carries out an action (Bratman et al. 1988). Within this ar-
chitecture, any intention that an agent carries into a new cy-
cle of perception and action provides the agent with an argu-
ment about what to do. The argument sets out expectations,
governed by a set of defeasible assumptions, for the way the
agent may perceive the world to be. When these expectations
are met, the argument specifies a reason to act, consisting of
an action that the agent can perform now, and perhaps some
further intentions that can guide the agent into the future cy-
cles of perception and action. And even when those expec-
tations fail, the intention can serve as a reference point for
repairing the agent’s strategy. Intentions thus serve as a re-
source for deliberation, by focusing the agent’s reasoning on
a constellation of beliefs, actions and desires that governs the
agent’s immediate success in its environment.

Attributions of intention, meanwhile, exploit the same
constellation of attitudes. Suppose agent X performs an ac-
tion A, and agent Y recognizes the intention behind X’s do-
ing A. That means, of course, that Y attributes X’s action to
X’s commitment to an argument about the effects of doing
A. The argument involves assumptions about the state of the
world and the causal consequences of A—assumptions that
X must endorse. The argument also describes an outcome—
one that X must favor. Without these attitudes, X would not
have made and persisted in a commitment to this intention.
Intention thus brings with it a complex ensemble of beliefs
and desires describing not only a desired action but more
generally that action’s circumstances and effects.

I am inclined to emphasize the parallels between this
framework and other models of agency: the notion of plans
as arguments from (Ferguson and Allen 1994); the notions
of choice and commitment in intention from (Cohen and
Levesque 1990); Pollack’s understanding of intention as
a complex mental attitude (Pollack 1990); and the belief-
desire-intention architectures for rationality explored gener-
ally in such work as (Bratman et al. 1988; Rao and Georgeff
1992). But only up to a point. For in the present frame-
work, unlike in others, the paramount question is what kinds
of formal structures can represent intentions as arguments.
To pursue this question, we must turn to representations of
inference in computational logic.

Representing Intention as Inference
Ordinarily, we think of inference as a process, as an activity
which creates new true statements by rewriting old ones, per-
haps. However, because the process of inference proceeds in
discrete steps governed by formal rules, we can also collect
together the statements involved in an inference as a single
structured syntactic object. We might encode such an object
as a proof-term in a formal specification language, or in an-
other such computational data structure. In so doing, we ob-
tain a representation of the inference as a whole.

To record many kinds of argumentation, proof-terms must
be constructed from typed elements using variable-binding
operations. Variables and binding describe inferences which
take on temporary assumptions for the purposes of argument.
Type-disciplines ensure that such constructionsare permitted
only when licensed by the logic.

Perhaps the clearest illustration of these ideas comes in
the Curry-Howard isomorphism, which shows that natural
deduction proofs in Intuitionistic logic can be represented
using terms in the simply-typed λ-calculus (Gallier 1993).
Intuitionistic logic strengthens implication to give it a con-
structive force with a natural relevance to computation and
decision-making. In an Intuitionistic proof of P⊃Q, we can
use P as an assumption only locally, as part of this proof of
Q. Accordingly, a proof-term for such an inference com-
bines an indication of the rule used (implication introduc-
tion, or ii) and a λ-term representing a function mapping any
proof for P into a proof for Q. For example, P⊃ P is proved
by ii(λp.p). Here λp.p is the identity function that simply
delivers the assumed proof of P as the required proof of P.
Types and variable-binding are by no means limited to Intu-
itionistic natural deduction, of course. For example, (Pfen-



ning 2000) relies on them to develop simple proof-terms for
sequent calculus proofs, and for classical logic.

To take advantage of such representations, I will be using
the higher-order logic programming language λProlog (Na-
dathur and Miller 1998). λProlog offers functions as data
structures using the simply-typed λ-calculus and includes
higher-order unification to reason about these data struc-
tures in a principled way. In the syntax of λProlog, func-
tion expressions λx.M are encoded as x\ M, and these λ-
terms see general use as the arguments of logical operators
that bind variables (such as ii above). The use of logic pro-
gramming makes it possible to specify agents declaratively,
and to reuse these specifications for multiple tasks. For di-
alogue, for example, the same intention representations and
linguistic knowledge can be applied both for understanding
and for generation. (See (Pereira and Shieber 1987).) Mean-
while, althoughgeneral higher-orderunification is explosive,
(Miller 1991) shows that this expressive power need not in-
troduce much complexity over standard Prolog, when func-
tions and bound variables are used in constrained ways.

In the remainder of this section, I first summarize the
account of planning as an inference problem from (Stone
1998). I then introduce concrete syntax to specify such plan
inferences as λProlog terms. Finally, I show how these data
structures can guide an agent’s deliberation and action.

Formalizing Knowledge, Action and Choice

Temporal and modal logics provide a natural setting for spec-
ifying a changing world and an agent’s changing information
in the world (Halpern and Moses 1985; Fagin et al. 1995;
Fittingand Mendelsohn 1998). These languages extend clas-
sical logic by adding operators that characterize propositions
that are known to an agent or that are true at some point in
time. Here, I use the two kinds of operators in (2):

(2) a [X]P
b x DOES a THEN P

[X]P means that agent X knows P. (I’ll also use λProlog syn-
tax k x P.) x DOES a THEN P means that if agent X does
action A now, P will be true immediately afterwards.

To characterize an agent’s deliberation across several cy-
cles of perception and action, we must be able to describe
the new information that will become available in future sit-
uations. Such descriptions depend on existential quantifiers
and disjunctions (Hintikka 1971). Thus, consider (3).

(3) a [X]∃a.Pa
b ∃a.[X]Pa

(3a) gives a specific characterization of agent X’s indefinite
knowledge: X knows that something has property P, but not
necessarily what. Meanwhile, (3b) gives an indefinite char-
acterization of agent X’s specific knowledge; there is some
real-world object A which X knows to have property P, but
the formula does not say what A is. The formulas of (3) can
be encoded as in (4) using λ-terms to abstract bound vari-
ables, and using sm for the existential quantifier.

(4) a k x (sm a\[p a])
b sm a\[k x (p a)]

In planning, sensing actions can move an agent from an
epistemic state characterized as in (3a) to a state character-
ized as in (3b). Representing the difference makes it possible
to anticipate an agent’s future choice of an appropriate ac-
tion. For example, consider an intention that an agent X car-
ries from one cycle of deliberation to the next, which maps
out X’s choice of a single future action A. In the next stage, X
will choose A based on the information that X has then. X’s
information should indicate that A will clearly bring about a
desired state G. This condition is formalized in (5).

(5) ∃a[X](x DOES a THEN [X]G)

If X knows now that (5) will hold, X knows that the next step
of deliberation will be successful. However, with only an in-
definite characterization of X’s future knowledge, as in (3b),
X may have only an indefinite characterization of the choice
specified by (5). In other words, X will know abstractly, but
not specifically, what to do next. Only when the next stage
of deliberationarrives, and X perceives key new information,
will X be able to select a specific action.

These considerations generalize naturally to multiple
steps of deliberation. At each stage, the agent must be able
to choose a suitable next action based on the information
then available (Moore 1985; Morgenstern 1987; Davis 1994;
Stone 1998). For this paper, we will need two cycles at most.
So, we will treat a one-step intention as a proof of (5), and a
two-step intention as a proof of (6).

(6) ∃a[X](x DOES a THEN ∃a′[X](x DOES a′ THEN [X]G))

Proof-terms for Intentions

By this analysis, proof-terms that describe deliberation must
track reasoning about time, reasoning about knowledge, and
reasoning about indefinite information. Temporal inferences
provide a basic constituent of intention representation. I for-
malize these inferences with recursive terms composed from
symbols for agents, actions and propositions using the sym-
bols finish and step defined in (7).

(7) a (finish X G) a demonstration that
hypothesizes that agent X knows that goal G now
holds, and thereby establishes that the intention has
been carried through successfully.

b (step X A C I) a demonstration that
hypothesizes that conditions C hold at the present
moment, and thereby shows that if agent X does
action A now, the right conditions will obtain
afterwards to support intention I. Thus, if I is a proof
of P, this is a proof of x DOES a THEN P.

The step structures defined in (7b) simply summarize in-
ferences about the effects of action, so that a detailed charac-
terization of these inferences may be carried out in any con-
venient formalism. A purely logical approach could check
these inferences by modus ponens from axioms describing
change and persistence, perhaps in the style of (Schubert
1990). I have chosen to check them by simulation, using op-
erational specifications of actions and their effects in the style
of STRIPS (Fikes and Nilsson 1971).

Modal inferences, meanwhile, are represented as in (8).



(8) (know X C I) a demonstration that
hypothesizes that conditions C hold at present, where
each condition of C must take the form [X]Q, and
thereby shows that the right conditions obtain to
support intention I. If I is a proof of P then, this is a
proof of [X]P.

This corresponds to a structural approach to sequent calculus
for modal logic, in which each sequent describes a particular
modal context (Fitting 1983). Inferences such as (8) mark
a transition from one modal context to another by allow-
ing only formulas of a restricted syntactic form to be taken
into account. By requiring here simply that the right con-
ditions must obtain to support I, this construction also im-
plements any additional axiom schemes (such as veridical-
ity and positive introspection) needed to characterize knowl-
edge for planning (Moore 1985).

Since (5) and (6) call for the proof of existential state-
ments, I add the constructor in (9).

(9) (find A I) a demonstration of ∃a.Pa, using
action A as a witness, and constructed from an
intention I establishing P(A).

The structure of formulas (5) and (6) now determines the way
operators from (7), (8) and (9) can fit together in an inten-
tion representation. These operators must be nested: for each
cycle we find first find A corresponding to the quantifier
∃a, then know X corresponding to the operator [X], then
step X A corresponding to x DOES a THEN; at the inner-
most level, we have finish.

Finally, other reasoning operations make it possible to
construct intentions that use indefinite information:

(10)a (whatever Df If) a demonstration that
appeals to the fact that some object o satisfies the
predicate Df, and then supplies a specific
demonstration (If o) by applying the function If to
o, whatever o may be. If If o is a proof of P, this is
again a proof of P.

b (oneof Ds Is) a demonstration that appeals
to the fact that one of the conditions spelled out in
the list Ds must be true, and then supplies a specific
demonstration, the nth element of Is, to suit that
case where the nth element of Ds is true. Again, if
each element of Is is a proof of P, this is also a
proof of P.

These operations do not change the content of an intention—
complex intentions correspond to proofs of the same
formulas—but rather introduce ambiguities into the inten-
tion. The content of intentions, as spelled out in (5), and the
corresponding reasoning about knowledge, as formalized
by (8), ensures that those ambiguities are resolved by the
time an agent needs to make a decision.

(11) shows an intention representation that combines all
of these operators. We can read it informally as a descrip-
tion of a course of action appropriate when agent X knows
that there is some food in the refrigerator (food), and desires
to be relieved of hunger (full). X looks in the refrigerator
(look), thereby discovering a particular item of food there
(f). Thereafter, X eats that item (eat f).

(11) (find look
(know x [k x(sm f\[food f])]
(whatever (f\[food f])
(f\(step x look [food f]

(find (eat f)
(know x [k x (food f)]
(step x (eat f) [food f]
(finish x [full])))))))))

More precisely, we can regard (11) as formalizing an infer-
ence that establishes the instance of (6) in (12).

(12) ∃a[X](x DOES a THEN ∃a′[X](x DOES a′ THEN
[X]full))

We want to show that X can be full after two feasible choices.
The first choice is to look; we consider X’s knowledge at this
stage, namely that there is some food. For the purposes of
argument, call the food f , and consider what happens when
X looks: X will know that f is food. X’s second choice is
now to eat f . Again, we consider X’s knowledge at this stage,
namely that f is food, and consider what happens when X
eats f : X will feel full, and know it. This proves (12).

Using Intention Representations
Earlier, I claimed that by representing intentions as infer-
ences about deliberation that an agent is committed to, we
can reconcile the use of intentions in deliberation with the
force of attributions of intention. I can now support this
claim with reference to the rules of (7)–(10) and specific in-
stances such as (11).

We saw earlier that the intentions that we ascribe to other
agents must encapsulate a complex web of goals and beliefs.
At the highest level, we can use the relations on intentions of
(13) to describe this complex structure.

(13)a (expectation I E) E gives one way I’s
expectations could be true.

b (nextAct I E A) when expectations E hold, I
gives a reason to do A now.

c (nextIntention I E N) when expectations
E hold, I suggests trying N next.

d (goals I G) I envisages outcome G.

Our proof-theoretic representation naturally supports the im-
plementation of these relations. In particular, the expecta-
tions are the hypotheses that the proof appeals to; the next
action is the first act hypothesized in the proof, represented
in the outermost find term; the next intention is a subproof
that considers the agent’s next stage of execution and action,
represented by find terms at one level of embedding; the
goal is the condition that the proof ultimately establishes,
represented in innermost finish terms.

These relations then provide a natural vocabulary of con-
straints on intentions with which to specify deliberation with
intentionsand attributionof intentions. With these resources,
for example, we can specify the reasoning of an agent that
sticks to its intention as the clause in (14).
(14) deliberate B I A I’ :-

expectation I E,
met E B,
nextAct I E A,
nextIntention I E I’.



The agent considers its current beliefs B and present inten-
tion I. The agent first ensures that some expectation E
of I is met according to B; in this case, the intention spells
out action A to do now and intention I’ to follow next. The
agent simply selects action A and commits to intention I’.

Let’s step through an example: agent X acting on the in-
tention of (11). Initially, this intention depends on the expec-
tation that X knows there is some food; let us assume that this
expectation is met, so that X’s deliberation in this cycle can
proceed normally as specified in (14). Then X will decide to
look now. For the next cycle, X will commit to an abstract
intention derived from (11), as in (15).

(15) (find (eat F)
(know x [k x (food F)]
(step x (eat F) [food F]
(finish x [full])))))))))

In this transition we have used the bound-variable represen-
tation of individuals assumed for the sake of argument, and
introduced a new logic variable F to leave open the object
that X will eat at the next stage.

We now move to the second stage of deliberation. Sup-
pose that in fact, as part of X’s perceptions in the second
cycle, X identifies a particular piece of cheesecake c in the
refrigerator. Meanwhile, the intention of (15) involves a
general expectation of the form k x (food F). In show-
ing that X’s information meets the expectations of (15), we
can use the fact that X knows that c is food by instantiat-
ing F to c. This is just the usual process of unification in
logic-programming proof search. Given this instantiation,
the intention of (15) specifies eat c as the next action,and
finish x [full] as the next intention.

In effect, then, in this example, the intention has not only
focused X’s attention and deliberation on the circumstances
requires for the plan of action to succeed, but simultane-
ously determined a specific choice for X to carry the inten-
tion through based on new information.

Collaborative Agency
The intention representations defined in (7), (8) and (10) and
illustrated in (11) and (15) account for the action of a single
agent acting in isolation. In fact, however, I will adopt the
same representations for collaborative intentions as well.

I assume that a fixed group of agents are committed to the
ongoing collaboration; I will refer to these agents as the team
T and, by extension, I will use [T] to describe the knowl-
edge that all members of the team share. (Actually, I will be
most interested in dialogues between two agents.) To rep-
resent collaborative intentions for T , I simply allow any of
the agents in T to perform any step of action in the inten-
tion. However, in each cycle of execution, the intentionmust
restrict attention to the knowledge of the acting agent; thus
demonstration achieved in each step of the plan continues
to exhibit the find-know-step structure seen for example in
(11). Each agent has the information required to act, when it
is their turn to do so.

In reusing the architecture of (7)–(10), I adopt a view of
collaboration as many agents acting as one. The metaphor
is appealing, but as researchers such as (Tambe et al. 1999;

Sengers 1999) have observed, pursuing it requires retooling
general models of agency to make explicit the trust that each
agent places in the team, and the responsibilities that each
agent owes it. In particular, each agent must reason by in-
tention recognition to interpret its teammates’ actions, and to
allow its teammates to interpret its own actions, in the con-
text of the evolving collaboration.

To interpret an agent’s action, another agent must recon-
struct the mental representations and steps of deliberation
in which the action originates. This inferred intention must
provide a consistent representation of choice, action and ef-
fect, as mapped out in (7)–(10). The inferred intention must
involve actions consistent with what the recognizer has ob-
served, and must set out the expectations that are consistent
with the recognizer’s model of the actor’s beliefs. More gen-
erally, the goals of the inferred intention must be consistent
with the recognizer’s model of the actor’s desires. When the
recognizer has only partial information about the actor, in-
tention recognition becomes explosive, because the recog-
nizer may adopt new assumptions about the actor as a pos-
sible explanation for the actor’s actions.

Collaboration, by contrast, allows for intended recogni-
tion, a potentially much simpler reasoning task. Agent and
observer are on the same team, and so coordinate not only
so that each action achieves the effects in the real world to
which the team is committed, but also so that the team as
a whole understands the status of each action (Cohen and
Levesque 1991). By appealing to common ground (Clark
and Marshall 1981) as a public record of the state of the
team’s collaboration, we can understand collaborative in-
tention recognition as a constraint-satisfaction problem in
which agents match as much information as possible against
this shared record.

To illustrate how intention representations can support
collaboration, I return to the culinary conceit introduced in
(11). Let us now imagine that two agents X and Y are col-
laborating to prepare mashed potatoes. In the collaboration,
agent X peels each potato and passes it to agent Y . I repre-
sent this action as peel P, depending on the potato P, and
assume that the successful completion of this action makes it
clear to both agents that the potato is clean. Then, agent Y
cuts the potato into chunks of a consistent size, so as to ensure
that all the potatoes cook evenly. In other words, although
cleaning the potato may substantially change the size of the
potato, agent Y will know from perceiving the potato what
pattern of cuts z fits the potato; I represent this knowledge
as a fact k y (cutp P z). Thus, Y knows that perform-
ing the action cut P z of cutting the potato as specified by
z is the right step to make the potato ready for boiling.

The representation in (16) formalizes this plan of joint ac-
tion as an inference.

(16) (find (peel P)
(know x [k t (potato P)]
(step x (peel P) [potato P]
(whatever (z\[k y (cutp P z)])
(z\(find (cut P z)

(know y [k y (cutp P z),
k t (clean P)]

(step y (cut P z)



[cutp P z, clean P]
(finish t [ready P]))))

)))))

First X peels, then Y cuts (as decided after the peeling), and
finally the potato is made ready. The potato is schematized
throughout by a logic variable P so that this representation
can serve as a resource for the two agents’ collaboration.

Thus, suppose X peels potato p8 in a first stage of col-
laborative decision-making and action. Relying on (16) as a
potential expectation about the interaction, any agent on the
team, relying only on information in the common ground,
can recognize X’s intention in peeling p8 as an instance of
(16) withP=p8. In particular, by such inference X can antic-
ipate that peelingp8will make an unambiguous contribution
to the collaboration. Meanwhile, as Y interprets X’s action, Y
can commit to the same intention and proceed with the next
stage of decision-making and action for the ongoing task.

In this next stage, each agent on the team starts with the
intention in (17).

(17) (find (cut p8 Z)
(know y [k y (cutp p8 Z),

k t (clean p8)]
(step y (cut p8 Z)

[cutp p8 Z, clean p8]
(finish t [ready p8]))))

This structure reflects the instantiation of P to p8 from (16)
but now includes a logic variable Z to schematize the pattern
of cuts that is yet to be decided.

It falls toY to act on this intention. As with (15) this means
checking that the expectations laid out in the intention are
met; indeed, as with (15), a side-effect of this check in a
logic-programming setting is the instantiation of Z to a spe-
cific value, thirds let us say. So agent Y will select the
specific action cut p8 thirds, governed by a specific
intention as in (18).

(18) (find (cut p8 thirds)
(know y [k y (cutp p8 thirds),

k t (clean p8)]
(step y (cut p8 thirds)

[cutp p8 thirds, clean p8]
(finish t [ready p8]))))

Now Y’s action must be interpreted. Drawing on the com-
mon ground, the team combines the expectation (17) with the
observed action cut p8 thirds. Taking a constraint-
satisfaction perspective on intention recognition in collabo-
rative process, the team can assume that Y’s action does in-
deed fit the expectation of (17) under Z=thirds and so re-
construct (18) using shared information. Thus, after the sec-
ond cycle, all agents recognize Y’s judgment thatthirds is
the right pattern of cuts for p8, and all are prepared to jointly
assess the results of the collaboration—thatp8 is in fact now
ready to cook.

Language Use as Collaborative Agency
Our representation of collaborative intention and agency
now enables us to pursue a formal parallel between partic-
ipation in dialogue and the kind of real-world collaboration
illustrated in (16)–(18).

Consider (1) again, for example. In (1a), we recognize a
specific intention, in which the initiating speaker X asks the
question—what size do you want: small or large?—and then
the respondent Y draws on the established words to formulate
an utterance that provides the answer (in this case large). For
now, let’s call this intention i1. In understanding the ques-
tion, the respondent Y recognizes i1: Y knows that X intends
a response. In choosing to offer an answer in reply as in (1),Y
simply cooperatively adopts this plan and follows it through.
This reasoning parallels that for (16)–(18).

To pursue the parallel further, I now develop a suitable
model of grammatical structure and linguistic knowledge,
with which we can represent intentions such as i1 within the
schemas provided by (7)–(10). I assume dependency rep-
resentations of syntactic structure which analyze each utter-
ance as a specified combination of meaningful elements. The
derivation trees of tree-adjoining grammar provide such a
representation (Joshi et al. 1975; Vijay-Shanker 1987; Sch-
abes 1990). For (1a) the tree in (19) is suggestive of such
dependency representations.

(19)

orwh

�
�
�
�
�

H
H
H
H
H

wantwh
�� HH

you sizewh

small large

To specify linguistic actions, I represent such trees as logic
programming terms, as in (20).

(20) or wh (want wh you size wh) small large

Meanwhile, I assume that linguistic knowledge includes a
compositional semantics that defines a relationcontent U
M true when M represents the linguistic meaning of syntactic
object U. For X’s utterance (1a), for example, we require the
instances of this relation given in (21).

(21)a content (want wh you size wh)
k\(and (want y k) (is size k))

b content small is small
c content large is large

(Strictly, for λProlog, the type of M also matters, but in this
example M is always a property.)

This content determines the effects that we understand ac-
tions such as (20) to have. We associate (20) with the pre-
supposition in (22a) and the contribution in (22b).

(22)a [k t (is small K1), k t (is large K2)]
b k t (oq k\(and (want y k) (is size k)))

When its presupposition is true, (20) adds the contribution
to the common ground. That is, when there are two kinds in
the context, one small and one large, (20) introduces the open
question (oq) of which size Y wants.

Figure 1 maps out the intention i1 in the representation
of (7)–(10) using these assumptions about linguistic actions
and their effects. The schema of Figure 1 maps out the in-
ferences involved in coordinating to add information to the
discourse using a wh-question-answer pair with two alterna-
tives explicitly provided; variables in the schema are subject
to the specified constraints. For i1, X uses the schema under
the specified instances.



schema: (find (or wh SWH XP1 XP2)
(know x [k t (P1 K1), k t (P2 K2), k x (or [k y (Ans K1), k y (Ans K2)])]
(step x (or wh SWH XP1 XP2)

[k t (P1 K1), k t (P2 K2), k t (or [k y (Ans K1), k y (Ans K2)])]
(oneof [k y (Ans K1), k y (Ans K2)]
[(find XP1
(know y [k t (oq Ans), k t (P1 K1), k y (Ans K1)]
(step y XP1 [k t (oq Ans), k t (P1 K1), k y (Ans K1)]
(finish t [k t (Ans K1)])))),

(find XP2
(know y [k t (oq Ans), k t (P2 K2), k y (Ans K2)]
(step y XP2 [k t (oq Ans), k t (P2 K2), k y (Ans K2)]
(finish t [k t (Ans K2)]))))]))))

constraints: content SWH Ans
content XP1 P1
content XP2 P2

instances: SWH=(want wh you size wh) Ans=k\(and (want y k) (is size k))
XP1=small P1=is small K1=k1
XP2=large P2=is large K2=k2

Figure 1: Communicative intention schema and instance for (1a).

The reasoning in Figure 1 parallels (16). X chooses the
question, knowing that the presupposition is met and that Y
knows the answer. So the question makes its contribution,
and we consider separately the different alternatives for what
Y knows of the answer. In each case, Y draws on X’s descrip-
tion and exploits the effects of X’s question to contribute the
answer to the context.

The formal representations of Figure 1 contribute to an ac-
count of the dynamics of (1) that proceeds along the follow-
ing lines. To recognize i1 on shared information, conversa-
tionalists must recognize that the schema applies, instantiate
the schema for the observed action, and instantiate any re-
maining variables by matching the expectations and goals of
the plan against the common ground. We may assume this
offers Y no difficulty, and that Y then commits to i1.

At the next stage of deliberation, Y’s turn, Y is committed
to a disjunctive intention whose expectations can be met in
one of two ways: Y wants the small size or Y wants the large
size. In this case, by matching the expectations, Y selects the
latter, deriving a specific intention for an utterance of large
that can, of course, be recognized as intended. Afterwards,
then, both X and Y are prepared to jointly assess the results
of the collaboration: it’s settled that Y wants the large size.

Assessment and Prospects
In modeling intentions as a resource for collaborative delib-
eration this way, the framework realized here distinguishes
two kinds of reasoning about action in collaboration. An un-
derlying collaborative process manages steps of coordina-
tion, plan recognition and (in language use) such functions as
turn-taking, acknowledgment and grounding. Specific rep-
resentations of collaborative intention presuppose and factor
out this underlying process in characterizing agents’ choice
and action towards team goals. Because of this, inferences
such as i1 can exhibit full linguistic and logical detail while
remaining substantially simpler than other pragmatic formal-
izations, such as those based on speech-act theory (Searle
1969; Cohen and Perrault 1979; Allen and Perrault 1980).
The simplicity is essential for modeling phenomena—for
starters, entrainment—which depend on the pragmatic con-

sequences of syntactic and semantic choices.
As formalized in Figure 1, intentions like i1 constitute

comprehensive pragmatic representations of utterance inter-
pretation. They specify the syntax and semantics of the ut-
terance and link this specification by inference into a descrip-
tion of what a speaker might do with the utterance in context.
In my prototype implementation, these detailed represen-
tations of communicative intentions serves as the common
object of diverse processes in conversational reasoning—
from interpretation through dialogue management to utter-
ance generation. I hope that the analysis of (1) suggests the
elegance that this design affords.
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