
Abductive Planning with Sensing

Matthew Stone

Department of Computer and Information Science
University of Pennsylvania

200 South 33rd St, Philadelphia PA 19104-6389
matthew@linc.cis.upenn.edu

Abstract

In abductive planning, plans are constructed as reasons for
an agent to act: plans are demonstrations in logical theory
of action that a goal will result assuming that given actions
occur successfully. This paper shows how to construct plans
abductively for an agent that can sense the world to augment
its partial information. We use a formalism that explicitly
refers not only to time but also to the information on which
the agent deliberates. Goals are reformulated to represent
the successive stages of deliberation and action the agent
follows in carrying out a course of action, while constraints
on assumed actions ensure that an agent at each step performs
a specific action selected for its known effects. The result
is a simple formalism that can directly inform extensions to
implemented planners.

Introduction
In this paper, we take a view of planning as ABDUCTION:
A plan is (or at least comes with) a logical demonstration
that a desired goal will be achieved, assuming the agent
follows a specified course of action. To build a plan is
simply to prove the goal, abductively assuming the occur-
rence of appropriate actions as necessary. In this framework,
special-purpose planning algorithms, as in (McAllister and
Rosenblitt, 1991; Penberthy and Weld, 1992), have been
faithfully reconstructed and then extended to richer kinds
of action using frameworks such as the event calculus (see
e.g. (Shanahan, 1997)) and explanation closure (see e.g. (Fer-
guson, 1995)).

In existing abductive planning frameworks, and indeed
most implemented planners, the plan shows that the agent
can now commit to a specified sequence of actions that will
achieve the goal. But a rational agent need not make all
its decisions immediately. It can just as well defer choices
of future actions to later steps of deliberation. Plans can
and should guide these later steps of deliberation, but only if
they anticipate the NEW reasons to act afforded by the agent’s
increased future information.

Traditional theories of action and knowledge (Moore,
1985; Morgenstern, 1987; Davis, 1994) suggest that search-
ing for plans becomes vastly more complicated when this
increasing information is taken into account. The prob-
lem is that these theories are based on NAMING plans, using

Copyright c
1998, American Association for Artificial Intelligence
(www.aaai.org). All rights reserved.

object-level terms that must be specified in advance without
reference to the agent’s knowledge. This introduces two new
and artificial search problems.

The first problem is that actions must be described indi-
rectly in the plan. For example, suppose an agent plans to
look up Bill in the phone book, then call him. From the
agent’s point of view, when it makes the call, it will just
dial some number n. But since the value of n is settled in a
future situation, n cannot be included in a term that specifies
the plan fully in advance. Instead, the plan must include
a characterization that indirectly describes this action, like
dialing Bill’s phone number. This means that even after the
right action is found, a planner still has to search to find
an independent description strong enough to show that the
action achieves its intended effects.

The second problem is that planners must reason about
FOLLOWING THE PLAN, not simply about acting in the world.
Not every description corresponds to an action or plan that
the agent can carry out: the description might appeal to a fact
that the agent will not know. To avoid this, plan reasoning
must map out the control structure of the plan in advance and
compare the knowledge required by that control structure and
the knowledge the agent can expect to have, at each step of
execution.

One approach is to avoid these problems using heavy limi-
tations on the syntax and semantics of parameterized actions
(Levesque, 1996; Goldman and Boddy, 1996; Golden and
Weld, 1996). This paper takes a very different approach.
We simply add the idea of CHOICE directly into the charac-
terization of achieving a goal. Any future situation offers
the agent a number of concrete actions to take. To choose
one of these, an agent simply consults its knowledge of these
actions to find a good one. Thus, in our basic formulation, a
plan is a demonstration that a goal state will follow a series
of such feasible choices.

This definition allows plans to be constructed in which
each choice is represented as it will be made. This is even true
for the new, parametric actions that become available with
more information. This account thus dispenses with object-
level descriptions of actions and reasoning about following
plans; instead, the account parameterizes actions using local
Skolem constants, corresponding to the run-time variables
of implemented planners. At the same time, the proof itself
specifies how choices depend on one another. For example,
conditional plans are realized as proofs that use case analysis
to reason separately about alternative states of knowledge for

the agent. Thus, proof search allows the control structure of
the plan to be derived incrementally—in a way that mirrors
the introduction and exploration of branches of alternative
executions in implemented planners.

Choice and Future Reasons to Act
In this section, we introduce a characterization of reasons
to act that explicitly refers to the successive stages of infor-
mation in which an agent deliberates and chooses its future
actions. This characterization can be formulated in intuitive
language, as follows. A reason to choose a particular next
action consists of a demonstration that this choice is the first
step in a sequence of steps of deliberation and action—where
the agent knows at each state what action to do next, and does
it—which allows the agent to achieve its goals, thanks to a
specified set of causal connections.

Choice

We derive and formalize our characterization by a running
example, the bomb-in-the-toilet problem, which goes as fol-
lows: Given that one of two packages is a bomb, and that R
can defuse a bomb-package by dunking it, how can R defuse
the bomb? The solution is for R to successively dunk both
packages (two actions); the one-action plan in which R dunks
whatever package is the bomb is not a solution, because R
cannot choose to carry it out.

We start with a purely temporal theory, in which a plan is a
formal demonstration, constructed according to some theory
of events and their consequences, that a sequence of actions
will achieve some goal. We assume this demonstration takes
the form of a deduction D with conclusion:

T; I;P - G (1)

This notation indicates that in the deduction D, the formu-
las in T, I and P are used to derive the formula G. The
deductive approach matches previous work on knowledge
and action, and suggests an explanation-closure approach
to reasoning about inertia, as in (Reiter, 1991; Scherl and
Levesque, 1993) for example. G is a logical statement that
some goal or goals hold at various points in the future. T is a
theory describing the causal effects of actions in the domain.
I describes the initial conditions for the planning problem
(and perhaps further available information about future con-
ditions and events). P records assumptions describing the
occurrence and interactions of actions in the plan. In this
framework, the basic problem of building a plan is to find
an appropriate set of actions in P by abductively assuming
premises, given the specification of T, I and G.

(1) provides a model in which the agent makes a SINGLE
CHOICE OF ACTION, and evaluates the consequences of that
choice of action in the different possibilities compatible with
what it knows. Given a choice of P, we can make assump-
tions for the sake of argument; for example we can consider
the different cases for which package is the bomb. However,
assumptions in P are made once-and-for-all and cannot de-
pend on what is assumed for the sake of argument; thus, P
cannot name whatever package is the bomb.

A logic of knowledge can make the idea of choice explicit.
We treat a single-choice, single-step plan as a proof of

[K]T; [K]I - 9a[K]([K]ha � [N][K]G) (2)

([K]p represents that the agent knows p; [N]p, that p is true
after one step of time; ha means that a is the next event to
happen.) The goal formula says that the agent knows, of
some concrete action a, that if a patently occurs, then as a
result G will patently hold—in philosophical shorthand: the
agent KNOWS WHAT WILL ACHIEVE G (Hintikka, 1971). The
assumed theory T and facts I are now explicitly represented
as part of the agent’s knowledge. (2) matches (1) because
of the wide scope of 9a. Like P in (1), a here must specify
a concrete action that cannot depend on assumptions in the
argument assessing a’s known result.

Moore’s definition of ability to act (Moore, 1985) also
works by giving a quantifier wide scope over a modal oper-
ator. However, Moore’s definition also includes a require-
ment that an agent knowingly select its concrete action under
a given abstract description, d. Moore’s condition can be re-
formulated in our notation for comparison:

[K]T; [K]I - 9a[K](a = d ^ ([K]ha � [N][K]G)) (3)

The equation a = d greatly increases the complexity of build-
ing a proof, by introducing cumbersome reasoning about
known equalities between terms. Since we have grounded
(2) in (1), we discover that it is not essential to derive an
abstract description d, and then perform the equational rea-
soning to show a = d; naming the action abstractly does
not help analyze an agent’s ability to choose an appropriate
action from among its concrete options.

Dependent Choice
The definition in (2) allows us to specify not only ambi-
guities in the state of the world but also ambiguities in the
information that the agent might have. If what the agent
knows is specified partially, proofs will permit an agent’s
chosen action to depend on its knowledge. By supporting
correct reasoning about these dependent choices, proofs al-
ready allow us to describe conditional plans and plans with
parameterized actions. There is thus no need for explicit,
object-level constructs describing the structure of complex
plans. Moreover, we continue to avoid the explicit abstract
description of actions and plans using terms in the language.
This allows us to maintain a very simple definition of achiev-
ing a goal by a sequence of choices.

To describe our representation of dependent choices, we
return to the bomb-in-the-toilet scenario. If we suppose that
the agent knows which package is the bomb,we can conclude
that the agent knows enough to defuse the bomb. The agent
can dunk the package it knows is the bomb.

Formally, this inference might play out in one of two ways.
We can add the condition [K]b1_ [K]b2 to say that the agent
knows whether package one is the bomb or whether package
two is. Using case analysis, we can prove

[K]T; [K]I; [K]b1 _ [K]b2 - 9a[K]([K]ha � [N][K]G)

If the agent knows package one is the bomb, it can conclude
that dunking package one will defuse the bomb; otherwise,

it must know that package two is the bomb and be able to
conclude that dunking it will defuse the bomb.

This proof instructs the agent to make a CONDITIONAL
choice of action, depending on what it knows. To see that
this proof implicitly represents a conditional choice, imagine
how the agent might use the proof directly to select an ac-
tion while executing a plan. According to our specification,
the agent will have one of two facts as part of its concrete
knowledge: either [K]b1 or [K]b2. The proof maps out the
reasoning that shows what to do in either case. Thus, the
agent need only match its concrete knowledge against the
cases in the proof to find which applies, then extract the
appropriate component. For practical execution, we might
want to use such analysis in advance, to recover an explicit
conditional from a proof. Nevertheless, for efficient search,
we must represent dependent choices implicitly rather than
explicitly. Case analysis can be performed incrementally
in proof search, so it is straightforward to derive the con-
ditions for performing different actions piece-by-piece, as
needed. Moreover, logical case analysis always interacts
correctly with scope of quantifiers, so there is no possibility
of proposinga conditional expression that could not form the
basis of the agent’s choice.

The other alternative is to add the condition 9x[K]bomb(x),
to say that the agent knows what the bomb is. Then we prove
that the agent has a plan by picking a witness c that the agent
knows is a bomb and showing that the agent knows dunking c
defuses the bomb. We can regard this proof as instructing the
agent to make a PARAMETERIZED choice of action, depending
on what it knows.

Again, as with an abstract, symbolic description of a pa-
rameterized action, this proof has enough information for
the agent to choose a successful action. If the partial speci-
fication of its knowledge is correct, its concrete knowledge
includes a fact [K]bomb(x) for some object x. The proof
spells out what to do with that value x: use it in place of the
arbitrary witness c that the proof assumed. Doing so allows
the agent to derive from the proof a concrete reason for a
specific action. Again, by comparison with an explicit de-
scription, we see that the logical treatment, in terms of scope,
naturally guarantees that only information the agent has can
affect its choices. There could be no possibility of proposing
a described action whose referent the agent did not know.

Sequenced Choice
We can call these arguments indirect assessments of an
agent’s plan. Indirect assessments allow an agent to de-
termine the options available to itself in the future. Here is
an example. Suppose we equip an agent R with a bomb-
detector in the initial bomb-in-the-toilet scenario. R can
describe what would hold after it used the bomb detector in
the indefinite way just outlined: R would know which pack-
age is the bomb. Therefore, in the next step, R could choose
to defuse the bomb. Thus, R already knows that in two steps
of deliberation and action (choosing first to detect and then
to dunk) the bomb will be defused.

This argument gives R an indirect reason to use the bomb
detector now. The proofs we accept as plans must have a
staged structure to reflect this staged introduction of future

reasons to act. We should represent R’s goal thus:

9a[K]([K]ha � [N]9a0[K]([K]ha0 � [N][K]G))

This fits R’s argument. R first chooses a based on what
R knows now. R’s choice of a must enable R to choose a
good action a0 in the next step, based on what R knows then.
There, R will choose a0 by reasoning that a0 brings about G.
In all, G is nested under three [K] operators. Each inserts a
boundary corresponding to a new stage of deliberation as R
assesses its progress toward the goal. Each may be preceded
by an existential quantifier for any action selected at that
stage.

We can generalize this to longer plans using a recursive
definition. At each step, we identify an action to do next
based on information then available, and assume this action
occurs; we then make sure that any remaining actions will be
identified when needed, until the goal is finally achieved. We
use can(G; n) to denote the condition whose proof constitutes
a plan to achieve the goal G in n further steps of action;
can(G; n) is defined inductively:

can(G; 0) � [K]G
can(G; n + 1) � 9an[K]([K]han � [N]can(G; n))

This recursive definition directly reflects the staged process
by which successive actions are selected and taken.

In describing the knowledge an agent needs to follow a
plan p, (Davis, 1994) uses a similar staged definition. Simpli-
fying somewhat, and adapting the notation of (3), the agent
satisfies can(G,p) to follow p and achieve G:

9an[K](an = next(p) ^ ([K]han � [N]can(G; rest(p))))

As with Moore, this presupposes an overall abstract descrip-
tion of the course of action being carried out and appeals to
complicated reasoning to determine the next action to match
that course of action. We have seen that we can give a logical
analysis of what an agent can choose to do without separately
constructing or reasoning about such a description of a plan.

Formalizing Knowledge and Time
This section and the next section consider the construction
of plan-proofs. For a (k-step) plan we need proofs of

[K]T; [K]I - can(G; k)

Such proofs can in fact be constructed in a very similar way
to plan-proofs in a purely temporal theory.

This section describes the underlying logic. We adapt
the model of (Moore, 1985) to introduce a type distinction
between possible worlds and states in time. We capture the
same inference schemes as Moore, but can apply recently-
developed equational translation methods for efficient modal
reasoning, e.g. (Ohlbach, 1991).

Each world in our models is populated by three sorts of
entities. There are the ordinary INDIVIDUALS that are named
by first-order terms in the language (like actions and objects).
Then there are STATES, naming particular possible times in
the history of the world. Finally there are UPDATES that
describe possible ways a state could evolve in one moment
of time. If s is a state and � is an update, then s; � names

the state denoting the result of performing update � in state
s. Temporal operators are interpreted as quantifiers over
updates; thus [N]p is true at state s in world w if for any
update � in w, p is true at (s; �) in w. Each world resolves all
ambiguities about a particular state. But what could happen
later is still up in the air. You can think of the states of
the world as recording the REAL POSSIBILITIES of how things
could turn out in that world: so each world is like a situation
calculus model.

The worlds themselves are related by EPISTEMIC TRANSI-
TIONS. If w is a world and � is an epistemic transition, then
in w, for all the agent knows, it could be in w;�. Thus, [K]p
is true at state s in world w if for any transition �, p is true
in state s at world w;�. By including an identity transition 1
with w; 1 = w, we ensure that no fact can be known unless it
is true. We ensure that an agent is aware of the facts it knows
by closing transitions under an operator of composition, ?:
w; (� ? �) = w;�; �.

The entities in w;� include all the entities—individuals,
states, and updates—in w, but may include others. A con-
sequence of these increasing domains is the constraint of
memory that [K][N]p � [N][K]p but not vice versa. Here is
why. The new entities indicate the agent’s potentially lim-
ited knowledge about what exists—and what can happen.
For all the agent knows now, the future might include any
CONCEIVABLE POSSIBILITY—found by looking in each world
w;� at states of the form s; � 0 with � 0 an update in w;�.
This corresponds to the semantics of [K][N]p. But as time
passes, only the REAL POSSIBILITIES can actually be reached;
the agent’s knowledge in real possibilities is found by look-
ing in each world w;� at states of the form s; � with � an
update in w. This corresponds to the semantics of [N][K]p.
Since there can only be more values for � 0 than for � , what
an agent knows now about future alternatives is always less
than what it will know about them.

The model is set up for PREFIX theorem-proving tech-
niques for modal logic (Wallen, 1990; Ohlbach, 1991). In-
stead of proving that worlds and states are related by acces-
sibility, prefix techniques use terms for worlds and states that
directly encode accessibility. We follow (Ohlbach, 1991) in
presenting prefix techniques by means of a semantics-based
translation to classical logic (with sorts and equality), where
modal operators are replaced by explicit quantifiers over
transitions and updates. After translation, modal reasoning
follows directly from the classical case.

The only trick in the translation is the handling of the
increasing domains of individuals across possible worlds.
We use compound terms t@w where w names the world at
which the referent for t is first defined—the DOMAIN of t. As
arguments of relations involving individuals and states, any
constant symbol or free variable t is immediately translated
as t@w0, where w0 represents the real world. Bound vari-
ables are assigned an appropriate domain as quantifiers are
translated. This translation depends on whether the quanti-
fier is instantiated or Skolemized. At a world w, Skolemized
quantifiers introduce a term t@w that cannot be assumed to
exist before w. So at Skolemized quantifiers we replace (ar-
gument occurrences of) the old bound variable x by a new
term x@w. Other quantifiers are instantiated; at a world w

[R(t1; : : : ; tk)]d;w;� � R(t1; : : : ; tk; d;w)
[A ^ B]d;w;� � [A]d;w;� ^ [B]d;w;�

[:A]d;w;� � :[A]d;w;�

[[K]A]d;w;� � 8�[A]d;w;�;�

[[N]A]s@v;w;+ � 8�8u(u � w � [A]s;�@u;w;+)
[[N]A]s@v;w;� � 8� [A]s;�@w;w;�

[8xA]d;w;+ � 8e8u(u � w � [A[e@u=x]]d;w;+)
[8xA]d;w;� � 8e[A[e@w=x]]d;w;�

Figure 1: Translation [�]�;�;� to classical logic

they may take on any value t@u, provided that this t exists
at w (given it first exists at u). To meet the proviso, we
must find a path u; v = w, showing that u is a prefix of w,
written u � w. So at instantiated quantifiers we replace the
old bound variable x by a new term x@u where u is a new
restricted variable over worlds.

For completeness, the translation that we have just out-
lined informally is given precisely in Figure 1. The trans-
lation turns a modal formula A into a classical formula
[A]s0@w0;w0;� depending on the initial state s0, the real world
w0 and whether A is assumed (+) or to be proved (-). It looks
more complicated than it is: the translation just annotates
terms and quantifiers with explicit domains and annotates
atomic relations with an explict world and state of evalua-
tion. The translation requires us to reason with the equations

E � w; (� ? �) = w;�; �; w; 1 = w

Using this translation, a plan is just a classical deduction with
the following conclusion:

E; [[K]T; [K]I]s0@w0;w0;+ - [can(G; k)]s0@w0;w0;�

Abduction
In this section, we recast this DEDUCTIVE approach to plan-
ning as an ABDUCTIVE problem, in which action occurrences
are assumed as needed. The recursive definition of can al-
ready outlines a sequence of assumptions with a common
content: at a particular stage of action and deliberation, the
agent selects and performs an appropriate action. More pre-
cisely, proving can(G; k) introduces, in lock-step with the
introduction of temporal transitions, action assumptions that
all take the form

8�:h(ei@ui
| {z }

real action

; ti@mi
| {z }

real state

; mi; ai; �
| {z }

known world

) (4)

Here ui � mi. mi represents the agent’s view of what is REAL
when the action is chosen; ti@mi is a real state introduced
at mi by a goal quantifier; and ei is some real action. Mean-
while, because the assumption is applicable at any world
mi; ai; �, it can contribute only to what is KNOWN at mi. By
encoding the evaluation of a CONCRETE action for KNOWN
effects, this form concisely distills the notion of choice.

Because the assumptions are indistinguishable, we can
make them as needed. Thus, we can offer a purely abductive
presentation of the proof search problem for building a plan

to achieve G after k steps of deliberation and action. We
simply prove ([K][N])k[K]G, making action assumptions of
the form in (4) where necessary. This abductive approach
eliminates ambiguities in proof search: there is only one way
to assume a new action but there are many ways to match a
sequence of uninstantiated actions (assumed independently).
It also helps strengthen the connection between this theory
and implemented planners: implemented planners also add
actions one by one, as necessary.

The derivation of this abductive characterization in part
depends on how formulas are represented using Skolem
terms, logic variables and unification, according to a particu-
lar theorem-proving technique. We prefer to follow a LOGIC
PROGRAMMING proof search strategy, as characterized in e.g.
(Miller et al., 1991; Baldoni et al., 1993). In logic program-
ming proofs, the first actions taken are always to decompose
goals; this matches the strategies of special-purpose planning
algorithms, and moreover allows modal operators in plan-
ning goals to be processed by introducing fresh constants
independent of actions. (On the use of constrained constants
for Skolem terms more generally, see (Bibel, 1982).) As
we prove can(G; k) by this strategy, the formula is decom-
posed level-by-level. Level n requires us to decompose a
goal translated from 9a[K]([K]ha � [N] : : :); the implication
introduces a new assumption of the form in (4).

This explains the source of the assumptions in (4). But
is abduction sufficiently restricted? Suppose an assumption
instantiates the sequence ti to a particular time sj@wj. Then
ei first exists at some world ui � wj. If the assumption
contributes to the ultimate proof of G, moreover, ai can only
equal �j. Thus the instantiated assumption could just as
well have been explicitly made in decomposing the formula
can(G; k).

Key Examples

The last three sections have outlined a logical approach to
planning based on an analysis of an agent’s ability to choose.
To plan, an agent describes its goal in a form that indicates
that the goal can be reached after a sequence of steps not
only of action (corresponding to temporal updates) butalso of
deliberationand choice (corresponding to modal transitions).
At each step, an agent must choose a concrete next action
based on its known properties; this restriction corresponds
directly to constraints which distinguish the possible worlds
where actions and times are defined from the worlds where
action assumptions can be used.

Run-time variables and knowledge preconditions

In this section, we first show how our framework allows the
results of one action to provide parameters for later actions—
unlike (Levesque, 1996; Goldman and Boddy, 1996). We
return to the example of the bomb-in-the-toilet, formalized
as in figure 2. The agent knows there is a bomb, knows it
has a detector and knows it can dunk. The agent must defuse
something in two steps. (In figure 2, [H]p abbreviates that p
is true indefinitely; explanation closure axioms are omitted
as this proof goes through without them.) This translates

1 [K]9b:bomb(b)
2 9a[K][H]8x(bomb(x) ^ ha � [N][K]bomb(x))
3 [K]8x9d[K][H](bomb(x) ^ hd � [N]defused(x))

Figure 2: Bomb-in-the-toilet with detector.

into the goal:

defused(b(�)@w0;�; s0; � ; � 0@w0;�;�0; w0;�;�0; �)

b(�) Skolemizes b; other first-order terms will be Skolem-
ized similarly; here, b(�) could also be found by unification
during proof search. The proof requires two actions:

8�:h(a@w0; s0@w0; w0;�; �)
8�:h(d(�; b(�))@w0;�; s0; �@w0;�; w0;�;�0; �)

The first assumption considers the result of the immediate
real action a of using the detector, assessed in worlds w0;�
compatible with what we know initially. The second assump-
tion considers the result of dunking the hypothetical object
b(�)—a real action in world w0;�—in worlds w0;�;�0 com-
patible with what we know after one step. The reader can
readily flesh out this proof along the outlines suggested ear-
lier, after first computing the translation and Skolemization
of the clauses of figure 2.

Note how we represent the choice of dunking b(�) di-
rectly. The agent will learn from using the detector that b(�)
is a bomb; the proof relies on the fact that the agent has this
knowledge. Encoding this into the proof is enough—for,
as we saw earlier, this is enough information to allow the
agent later to extract what to do, by matching its concrete
knowledge against the abstract knowledge the proof sup-
poses. So we need not describe the dunking, as do (Moore,
1985; Morgenstern, 1987; Davis, 1994).

A comparison is instructive with a representative imple-
mented planning language with similar plans,SADL (Golden
and Weld, 1996). In their plans for such examples, sensing
introduces a RUN-TIME VARIABLE storing the observed value;
these run-time variables can be then appear as arguments to
later actions. The terminology suggests some inherent depar-
ture from logic. On the contrary, such variables correspond
exactly to Skolem terms like b(�), naming new abstract enti-
ties that exist only at remote worlds. Recognizing this logical
status for run-time variables explains why such variables are
treated existentially and why—in view of the “knowledge
precondition” that only concrete actions can be chosen—
they can serve as parameters only to actions chosen in future
deliberation. At the same time, it confirms our contention
that an agent’s internal representation of its future actions
need not be a timeless, abstract description of that action.

Knowledge preconditions for actions and plans
The next example shows, as (Golden and Weld, 1996) argue,
that actions may have to be performed with different knowl-
edge in different circumstances. However, it also shows that
this variation is a natural component of a logical approach to
planning—not an argument against it.

Consider a domain with a safe. If the agent dials the
combination to the safe, the safe patently opens; if the agent

4 [K]8sv9o[K][H](closed(s) ^ combo(s; v) ^ ho �
[N][K]open(s))^

[K][H](closed(s) ^ :combo(s; v) ^ ho �
[N][K]closed(s))

5 [K](closed(d0))
6 [K]([H]combo(d0; n0) _ [H]:combo(d0; n0))
7 [K]8s[H]:(open(s) ^ closed(s))

Figure 3: Safe problem

dials something else, the safe patently remains closed. The
safe starts out closed, has a constant combination, and can’t
be open and closed at once. We formalize the situation in
figure 3. Suppose the agent wants to open the safe d0 in one
step—in our theory, to build this plan requires proving:

open(d0@w0; s0; �@w0;�; w0;�;�0)

This cannot be proved abductively unless the agent knows
the combination to the safe. Let’s add that assumption:

9v[K]combo(d0; v)

Then we can assume the real action of dialing this combina-
tion for assessment according to what the agent knows:

8�:h(o(1; d0; v)@w0; s0@w0; w0;�; �)

This allows us to complete the plan straightforwardly, by
applying the first rule of clause 4.

By comparison, suppose the agent merely wants to de-
termine in one step whether the combination to the safe
is n0 or not. This goal is represented in modal logic as
[K]combo(d0; n0) _ [K]:combo(d0; n0). It translates into a
planning problem to prove

combo(d0@w0; n0@w0; s0; �@w0;�; w0;�;�0; �)_
:combo(d0@w0; n0@w0; s0; �@w0;�; w0;�;�0;
)

This is a weaker statement than the goal for the previous
problem—for starters, it contains disjunction. We can prove
this abductively—without assuming knowledge of what the
combination of the safe is—by considering the known con-
sequences of attempting to dial n0:

8�:h(o(1; d0; n0)@w0; s0@w0; w0;�; �)

(The proof is interesting. As the reader can work out, it
uses nested case analysis to ANTICIPATE the agent’s ability to
correctly EXPLAIN the observed results of dialing.)

Conclusion
This paper has laid a new, clean groundwork for bridging
formal and implemented accounts of sensing and planning.
Further ties can be expected. Our account is compatible
with partial-order representations of time (and modality)
as in planners—provided path equations are represented
and solved by corresponding constraints (Stone, 1997).
Prospects are also good for reasoning about inertia efficiently
by adapting the threat-resolution techniques used in imple-
mented planners. The obvious starting point would be to use
argumentation or negation-as-failure as in (Ferguson, 1995;
Shanahan, 1997) on a world-by-world basis.

Acknowledgments
Thanks to Doug DeCarlo, Chris Geib, Leora Morgenstern,
David Parkes, Mark Steedman and Rich Thomason for com-
ments and discussion. Supported by an IRCS graduate fel-
lowship and NSF grant IRI95-04372, ARPA grant N66001-
94-C6043, and ARO grant DAAH04-94-G0426.

References
M. Baldoni, L. Giordano, and A. Martelli. A multimodal
logic to define modules in logic programming. In ILPS, pp
473–487, 1993.
W. Bibel. Automated Theorem Proving. Vieweg, 1982.
E. Davis. Knowledge preconditions for plans. J. of Logic
and Comp., 4(5):721–766, 1994.
G. M. Ferguson. Knowledge Representation and Reasoning
for Mixed-Initiative Planning . PhD thesis, University of
Rochester, 1995.
K. Golden and D. Weld. Representing sensing actions: the
middle ground revisited. In Proc. of KR, 1996.
R. P. Goldman and M. S. Boddy. Expressive planning and
explicit knowledge. In Proc. of AIPS, pp 110–117, 1996.
J. Hintikka. Semantics for propositional attitudes. In Lin-
sky, Reference and Modality, pp 145–167. Oxford, 1971.
H. J. Levesque. What is planning in the presence of sensing?
In Proc. of AAAI, pp 1139–1146, 1996.
D. McAllister and D. Rosenblitt. Systematic nonlinear plan-
ning. In Proc. of AAAI, pp 634–639, 1991.
D. Miller, G. Nadathur, F. Pfenning, and A. Scedrov. Uni-
form proofs as a foundation for logic programming. Annals
of Pure and Applied Logic, 51:125–157, 1991.
R. C. Moore. A formal theory of knowledge and action. In
Hobbs and Moore, Formal Theories of the Commonsense
World, pp 319–358. Ablex, 1985.
L. Morgenstern. Knowledge preconditions for actions and
plans. In Proc. of IJCAI, pp 867–874, 1987.
H. J. Ohlbach. Semantics-based translation methods for
modal logics. J. of Logic and Comp., 1(5):691–746, 1991.
J. S. Penberthy and D. S. Weld. UCPOP: a sound, complete
partial order planner for ADL. In Proc. of KR, pp 103–114,
1992.
R. Reiter. The frame problem in the situation calculus: a
simple solution (sometimes) and a completeness result for
goal regression. In Lifschitz, AI and Mathematical Theory
of Computation, pp 359–380. Academic Press, 1991.
R. B. Scherl and H. J. Levesque. The frame problem and
knowledge-producing actions. In Proc. of AAAI, pp 689–
695, 1993.
M. Shanahan. Event calculus planning revisited. In Proc.
of ECP 97, LNAI 1348, pp 390–402. Springer, 1997.
M. Stone Efficient constraints on possible worlds for rea-
soning about necessity. Report IRCS 97-7, University of
Pennsylvania.
L. A. Wallen. Automated Proof Search in Non-Classical
Logics. MIT Press, 1990.

