
1

Learning words from sights and 
sounds: a computational model 

Deb K. Roy ,  and Alex P. Pentland
Presented by Xiaoxu Wang

Introduction

• Infants understand their surroundings by 
using a combination of evolved innate 
structures and powerful learning abilities.

• They developed a computational model 
called Cross-channel Early Lexical 
Learning (CELL).  

• It acquires words from multimodal sensory 
input and learns by statistically modeling 
the structure.  
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Infant-directed speech Experiments
• Participants were asked 

to engage in play 
centered around toy 
objects

• The infants could not 
produce single words. 

• The caregivers reported 
varying levels of limited 
comprehension of words.
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Problems of early lexical acquisition

• Three questions of early lexical acquisition
– Discover speech segments which correspond 

to the words of their language.
– How to learn perceptually grounded semantic 

categories?
– How to learn to associate linguistic units with 

appropriate semantic categories? 

Speech Segmentation

• Let us do an experiment
I am going to say three sentences in 

Chinese. Could you tell me how many 
words in the first sentence? What is the 
word corresponding to this object?
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Speech Segmentation

• Let us do an experiment
I am going to say three sentences in 

Chinese. Could you tell me how many 
words in the first sentence? What is the 
word corresponding to this object?
– I am holding a pencil.
– This is my pencil.
– Pencils are useful.

Background

• Existing speech segmentation models may 
be divided into two classes
– Based on local sound sequence patterns or 

statistics. The model was trained by giving it a 
lexicon of valid words of the language. To 
segment utterances, the model detect all 
trigrams which did not occur word internally 
during training. 37% word boundry detection

– Minimum description length (MDL)
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Spoken utterance

• Spoken utterance are represented as array 
of phoneme probabilities. 
– The acoustic input is put though a filter called 

Relative Spectral-Perceptual Linear Prediction 
(RASTA-PLP) . The filter is designed to 
attenuate nonspeech components of an 
acoustic signal. It does so by suppressing 
spectral components that change either faster 
or slower than the speech.

Spoken utterance
– Filtered signal is expanded using an 

exponential transformation and each power 
band is scaled to simulate laws of loudness 
perception in humans. 

– A 12-parameter representation of the 
smoothed spectrum is estimated from a 20 
ms window of input. 

– The window is moved in time by 10 ms 
increments resulting in a set of 12 RASTA-
PLP coefficients estimated at a rate of 100 Hz. 
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Recurrent Neural Network

• A recurrent neural network analyses RASTA-
PLP coefficients to estimate phoneme and 
speech/silence probabilities.
– The RNN has 12 input units, 176 hidden units, and 40 

output units. 
– The 176 hidden units are connected through a time 

delay and concatenated with the RASTA-PLP input 
coefficients. 

– The time delay units give the network the capacity to 
remember aspects of old input and combine those 
representations with fresh data. 

Recurrent Neural Network
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Sample output from the recurrent neural network for the 

utterance "Oh, you can make it bounce too!"

The performance of the RNN 
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Speech Segmentation

• The RNN outputs are treated as state emission 
probabilities in a Hidden Markov Model (HMM) 
framework. The Viterbi dynamic programming 
search, is used to obtain the most likely 
phoneme sequence for a given phoneme 
probability array. The system obtains 
– The most likely sequence of phonemes which were 

concatenated to form the utterance 
– The location of each phoneme boundary for the 

sequence. 

Speech Segmentation

• Any subsequence within an utterance 
terminated at phoneme boundaries is used to 
form word hypotheses. 

• Additionally, any word candidate is required to 
contain at least one vowel. This constraint 
prevents the model from hypothesizing 
consonant clusters as word candidates. We 
refer to a segment containing at least one vowel 
as a legal segment. 
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Comparing words
• It is possible to treat the phoneme sequence of 

each speech segment as a string and use string 
comparison techniques. 

• A limitation of this method is that it relies on only 
the single most likely phoneme sequence. 

• A sequence of RNN output contains additional 
information which specifies the probability of all 
phonemes at each time instance. To make use 
of this additional information, they developed the 
following distance metric. 

Comparing words

Two segments     and     can be decoded as 
phoneme sequences     and     .     and      can 
generate HMMs and     . We wish to test if the 
hypothesis can generated      . 

Empirically, the result metric was found to return 
small values for words which humans would 
judge as phonetically similar.

iλ
iλ jλ

jα

iα jα
iQ iQ jQjQ
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Visual Input 

• Similar to speech input, the ability to 
represent and compare shapes is also built 
into CELL. 

• Three-dimensional objects are represented 
using a view-based approach in which two-
dimensional images of an object captured 
from multiple viewpoints collectively form a 
visual model of the object. 

Visual Input
Object shapes 
are represented 
in terms of 
histograms of 
features derived 
from the 
location of 
object edges. 
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Comparing Visual Input

Using multidimensional histograms to represent 
object shapes allows for direct comparison of 
object models using information theoretic or 
statistical divergence functions. In practice, an 
effective metric for shape classification is the 

.        -divergence: 
2χ

The Structure of CELL 
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Word Learning
• Objctive: Each utterance may consist of one or more 

words. Similarly, each context may be an instance of 
many possible shape categories. Given a pool of 
utterance-context pairs, the learner must infer speech-
to-shape mappings (lexical items) which best fit the 
data.

• Short term memory (STM), pass the pairs (prototypes) 
with high local recurrency to  long term memory (LTM).  
For example,

dog----- the----- ball-----

Word Learning
LTM create lexical items by consolidating AV-prototypes 
based on a mutual information criterion. This consolidation 
process identifies clusters of AV-prototypes which may be 
merged together to model consistent intermodal patterns 
across multiple observations.  
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Mutual Information
• A=1 iff distance_A(x, y) <=r_A, V is similar.   
• The probabilities are estimated using relative 

frequencies of all n prototypes in LTM.

Mapping

The prototype “yeah”-”dog” found little support from other AV-
prototypes in LTM which is indicated by the low flat mutual 
information surface. In contrast, in the example on the right, the 
word "dog" was correctly paired with a dog shape.



14

Evaluation measures

• Lexical items obtained from speaker data 
sets are evaluated by 
– Segmentation accuracy
– Word discovery

dog Accepted /dg/, /g/ and /ðdg/ (the dog)
Rejected /dgIz/ (dog is) . 

– Semantic accuracy
The best choice of the meaning of a prototype 
is whatever context co-occurred with it.

Result


