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The practical NLG pipeline

Descriptions in NLG

Generating referring expressions (GRE) 

GRE and the grammar

Broader context of NLG

In practice, NLG systems work 
the way we can build them.

They solve a specific, carefully-delineated 
task.

They can verbalize only specific knowledge.

They can verbalize it only in specific, often quite 
stereotyped ways.

In practice, NLG systems work 
the way we can build them.

That means start with available input and 
the desired output, and putting together 
something that maps from one to the other.

Any linguistics is a bonus.

Any formal analysis of computation is a bonus.

Input can come from …

• Existing database  (e.g., tables)

Format facilitates update, etc.

• An interface that allows a user to specify it

(e.g., by selecting from menus)

• Language interpretation

For Example

Input: Rail schedule database.

Current train status.

User query 

When is the next train to Glasgow?

Output:

There are 20 trains each day from Aberdeen to 
Glasgow.  The next train is the Caledonian 
express; it leaves Aberdeen at 10am.  It is due to 
arrive in Glasgow at 1pm, but arrival may be 
slightly delayed.
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To get from input to output 
means selecting and 
organizing information

The selection and organization typically 
happens in a cascade of processes that use 
special data structures or representations 

Each makes explicit a degree of selection and 
organization that the system is committed to.

Indirectly, each indicates the degree of selection 
and organization the system has still to create.

The NLG Pipeline
Goals

Text Plans

Text Planning

Sentence Plans

Sentence Planning

Linguistic Realization

Surface Text

Overview of Processes and 
Representations, 1

Goals Messages Text Plans

Text Planning

Content
Planning

Discourse
Planning

Message

A message represents a piece of information 
that the text should convey, in domain 
terms.

Example Messages

message-id: msg01

relation: IDENTITY

arguments: arg1: NEXT-TRAIN

arg2: CALEDONIAN-EXPRESS

The next train is the Caledonian Express

Example Messages

message-id: msg02

relation: DEPARTURE

arguments: entity: CALEDONIAN-EXPRESS

location: ABERDEEN

time: 1000

The Caledonian Express leaves Aberdeen at 10am.
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A close variant

•Q: When is the next train to New Brunswick?

• A: It’s the 7:38 Trenton express.

I know something about the domain in this 
case – and can highlight how nonlinguistic 
the domain representation will be.

Variant message

message-id: msg03

relation: NEXT-SERVICE

arguments:
station-stop: STATION-144

train: TRAIN-3821

The next train to New Brunwick
is the Trenton Local.

Closer to home

message-id: msg04

relation: DEPARTURE

arguments: origin: STATION-000

train: TRAIN-3821

time: 0738

It leaves Penn Station at 7:38. 

How I got domain knowledge

NY Penn Station really is NJT Station 000,
New Brunswick really is Station 144

(you have to key this into ticket machines!)
This really is train #3821

(it’s listed with this number on the 
schedule!)

Text Plan

A text plan represents the argument that the 
text should convey; it is a hierarchical 
structure of interrelated messages. 

Example Text Plan

NextTrainInformation

ELABORATION

[DEPARTURE][IDENTITY]
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Overview of Processes and 
Representations, 2

Text
Plans

Sentence
Plans

Sentence Planning

Lexical
Choice

Aggregation

Referring
Expression
Generation

?

Sentence Plans

A sentence planmakes explicit the lexical 
elements and relations that have to be 
realized in a sentence of the output text.

Example Sentence Plan

(S1/be
:subject (NEXT-SERVICE/it)
:object (TRAIN-3821/express

:modifier Trenton
:modifier 7:38
:status definite))

It’s the 7:38 Trenton express.

We know what’s happened

Aggregation: we have constructed a single 
sentence that realizes twomessages.

Once we have the first message:

It’s the Trenton express.

We just add 7:38 to realize the second 
message:

It’s the 7:38 Trenton express.

We know what’s happened

Referring expression generation: we have 
figured out to realize the next-service as it, 
and figured out to identify the train by its 
destination and frequency of stops. 

We know what’s happened

Lexical (and grammatical) choice: 

to use the verb be with it as the subject and a 
reference to the train second; 

to say express rather than express train.

to say Trenton rather than Northeast Corridor.
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But there’s no consensus 
method for how to do it.
• Reiter (1994, survey of 5 NLG systems):      
Most practical systems follow a pipeline,        
even though this makes some things 
difficult to do. Example:Avoidance of 
ambiguity

• Cahill et al. (1999, survey of 18 NLG 
systems): Tasks like Aggregation and GRE
can happen almost anywhere in the system, 
e.g.,
- as early as Content Planning
- as late as Sentence Realization

But there’s no consensus 
method for how to do it.

And we’ll see that formal and computational
questions raise important difficulties for

what representations you can have

what processes and algorithms you can use

how you bring knowledge of language into the 
loop

Overview of Processes and 
Representations, 3

Sentence
Plans

Surface
Text

Linguistic Realization

This is easier to think about

We all know what a surface text looks like!

And we all know you have to have a grammar 

(of some kind or other) to get one!

Our Question This Week

What are the possible ways of using 
knowledge (of the world and of language) in 
formulating an utterance?

Knowledge in utterances

Knowledge of the world

Utterance says something useful and reliable.

Knowledge of language

Utterance is natural and concise,

in other words, it fits hearer and context. 
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A Concrete Example

Turn handle to locked position.

OPEN

LOCKED

Our partner is working with equipment that 
looks like:

The instruction that we’d like to give them is:

Knowledge in this utterance

Knowledge of the world
Utterance says something useful and reliable.

OPEN

LOCKED

This is what has 
to happen next.

Knowledge in this utterance

Knowledge of language

Utterance is natural and concise.

Consider the alternatives… 

OPEN

LOCKED

Move the thing around.

Knowledge in this utterance

Knowledge of language

Utterance is natural and concise.

Consider the alternatives… 

OPEN

LOCKED

You ought to readjust the fuel-line access panel handle
by pulling clockwise 48 degrees

until the latch catches.

Our Question This Week

What are the possible ways of using 
knowledge (of the world and of language) in 
formulating an utterance?

This is a formal question; the answers will 
depend on the logics behind grammatical 
information and real-world inference. 

The NLG problem depends on 
the input to the system

OUTPUT: Turn handle to locked position.

INPUT: turn’(handle’, locked’)

If the input looked like this:

Deriving the output would be easy:
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Must support correct, useful domain 
reasoning

e.g., characterizing the evident function of 
equipment

Real conceptual input is richer 
and organized differently

OPEN

LOCKED

e.g., simulating/animating the intended action

Difference in Content

Input: New info complete, separate from old

Output: New info cut down, mixed with old

Turn handle to locked position.

Difference in Organization

Input: deictic representation for objects

through atomic symbols that index a flat database

handle(object388). number(object388, “16A46164-1”).

composedOf(object388,steel). color(object388,black).

goal(object388,activity116). 
partOf(object388,object486).

Output: descriptions for objects

through complex, hierarchical structures

NP – DET – the

- N’ – N – handle

Why we have to invent ways of 
describing things

1. The referent has a familiar name, 
but it’s not unique, e.g., ‘John Smith’

2. The referent has no familiar name:    trains, 
furniture, trees, atomic particles, …

( In such cases, databases use database keys,

e.g., ‘Smith$73527$’,  ‘TRAIN-3821’ )

3.   Similar: sets of objects

Formal problem

NLG means applying input domain 
knowledge that looks quite different from 
output language!

Formal problem

How can we characterize these different 
sources of information

in a common framework

as part of a coherent model of language use

For example: how can we represent 
linguistic distinctions that make choices in 
NLG good or bad?
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Our Question This Week

What are the possible ways of using 
knowledge (of the world and of language) in 
formulating an utterance?

This is not just a mathematical question –

This is a computational question;  possible 
ways of using knowledge will be 
algorithms.

No Simple Strategy to Resolve 
Differences

Lots of variability in natural instructions

Lift assembly at hinge.

Disconnect cable from receptacle.

Rotate assembly downward.

Slide sleeve onto tube.

Push in on poppet.

Strategy Must Decide
When to Say More

Using utterance interpretation as a whole

Turn handle by hand-grip

from current open position for handle

48 degrees clockwise

to locked position for handle.

OPEN

LOCKED

In particular, hearer matches 
shared initial state

So describe objects and places succinctly

Turn handle by hand-grip

from current open position for handle

48 degrees clockwise

to locked position for handle.

OPEN

LOCKED

In particular, hearer applies 
knowledge of the domain

So omit inevitable features of action

Turn handle by hand-grip

from current open position for handle

48 degrees clockwise

to locked position for handle.

OPEN

LOCKED

Computational problem

Because this process is so complex, it takes 
special effort to specify the process, to make 
it effective, and ensure that it works 
appropriately.

For example: How much search is 
necessary? How can we control search when 
search is required? What will such a system 
be able to say?
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Descriptions in NLG
Overview

An NLG system is given as input some 
domain representations that need to be 
presented to the user.

The system has to formulate an output
utterance that will get this information 
across linguistically.

Descriptions in NLG:
Overview

A description is a linguistic expression 
whose interpretation accesses a domain 
representation drawn from context.

The flexibility of description.
The semantics of a description is a linguistic 
representation.

But its interpretation involves a resolution that 
can link meaning up with domain 
representations arbitrarily.

Example

Description: the mug.

Semantics: mug(x)

Presents an object x = m211 to the user

Interpretation: mug(m211)

Because you use inference and substitution
to compute the value m211 for x, the only 
formal constraint required in the model is 
that the value of x is a term in your domain 
representation language. 

Example

Description: 

slide the sleeve onto the elbow.

Semantics: 

slide(a,s,p) ∧ sleeve(s) ∧ onto(p,e) ∧ elbow(e)

Presents an action a to the user.

This is where flexibility becomes 
important

Description: 

slide the sleeve onto the elbow.

Semantics: 

slide(a,s,p) ∧ sleeve(s) ∧ onto(p,e) ∧ elbow(e)

Interpretation can access whatever independent 
representation of a the system has:

a = step5

a = displace(s13,vector(-1,0,0))

a = slide(s13, path(at(j13),on(e13)))

Description in NLG:

Overview

The key task of the generator is now to 
construct a semantics with the right 
interpretation.
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Example

Input: Present an object x = m211 to the user

Output description: the mug.

Constructed semantics: mug(x)

Derived interpretation: mug(m211)

Declarative programming

Allows us to use a grammar in NLG to 
construct syntax and semantics for an 
output sentence simultaneously.

Good design:

generation happens in one place

easy extension of routines that build semantics

impossible for semantics to crash realization

Example

Syntactic derivation structure for 

slide the sleeve onto the elbow

slide

the sleeve onto

the elbow

Example

Step-by-step guide for building meaning

slide

slide(a,s,p)

Example

Step-by-step guide for building meaning

slide

the sleeve

slide(a,s,p) ∧ sleeve(s)

Example

Step-by-step guide for building meaning

slide

the sleeve onto

slide(a,s,p) ∧ sleeve(s) ∧ onto(p,e)



11

Example

Step-by-step guide for building meaning

slide

the sleeve onto

the elbow

slide(a,s,p) ∧ sleeve(s) ∧ onto(p,e) ∧ elbow(e)

GRE as an NLG task

Find the best NP description to present 
some domain object to the user 

GRE is microcosm of NLG: e.g., determines
– which properties to express 
(Content Determination)

– which syntactic configuration to use
(Syntactic Realization)

– which words to choose 
(Lexical Choice)

What is the best description?

One that fulfills the Gricean maxims. 

(Quality:)  list properties truthfully

(Quantity:)  list sufficient properties to allow 
hearer to identify referent – but not more

(Relevance:)  use properties that are of interest in 
themselves 

(Manner:)  be brief

(Dale & Reiter 1995)

Why obey the maxims?

Violation of a maxim leads to implicatures.

For example,

– [Quantity] ‘the pitbull’ (when there is 
only one dog).

– [Manner] ‘Get the cordless drill that’s 
in the toolbox’  (Appelt).

Example Situation

a, $100 b, $150

c, $100 d, $150 e, $?
Swedish Italian

Formalized in a KB

• Type: furniture (abcde), desk (ab), chair 
(cde)

• Origin: Sweden (ac), Italy (bde)

• colors: dark (ade), light (bc), grey (a)

• Price: 100 (ac), 150 (bd) , 250 ({})

• Contains: wood ({}), metal ({abcde}), 
cotton(d)

Assumption: all this is shared knowledge.
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Violations of …

• Manner:

* ‘The $100 grey Swedish desk which is 
made of metal’  
(Description of a)

• Relevance: 

‘The cotton chair is a fire hazard? 

?Then why not buy the Swedish chair?’

(Descriptions of d and c respectively)

Problem: characterizing the 
maxims correctly

Missing implicatures:

– [Manner] ‘the red chair’ (when there is 
only one red object in the domain).

– [Manner/Quantity] ‘I broke my arm’ 
(when I have two).

(empirical work shows much redundancy)

– [Quality]  ‘the man with the martini’  (Donellan)

etc.

A computational apprach

Make choices heuristically

by a procedure that generally yields 
descriptions that are interpreted as intended

Incremental approach

Properties are considered in a fixed order:

P =  

called preference order.

A property is included if it is ‘useful’:

true of target; false of some distractors

Stop when done;

so preferred properties have a greater chance of 
being included. 

nPPPP ,...,,, 321

Formal setup

r = individual to be described

P = list of properties, in preference order

P is a property

L= properties in generated description

FailureReturn

LReturnthen{r}CIf

]][[C:C

}{L:L

dothen]][[C&]][[rIf

:doPallFor

Domain:C

Φ:L

=
∩=
∪=

⊄∈
∈

=
=

P

P

PP

P
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P = < furniture (abcde), desk (ab), chair (cde),

Swedish (ac), Italian (bde),

dark (ade), light (bc), grey (a),

100$ ({ac}), 150$(bd) , 250$ ({}),

wooden ({}), metal (abcde), cotton ({d}) >

Domain = {a,b,c,d,e} .  Now describe:

a = <...>

d = <...>

e = <...> 

P = < furniture (abcde), desk (ab), chair (cde),

Swedish (ac), Italian (bde),

dark (ade), light (bc), grey (a),

100$ (ac),200$ (bd),250$ ({}),

wooden ({}), metal (abcde), cotton (d) >

Domain = {a,b,c,d,e} .  Now describe:

a = <desk {ab}, Swedish {ac}>

d = <chair,Italian,dark,200>  (Nonminimal)

e = <chair,Italian,dark, ....>   (Impossible)

Incremental Algorithm          

It’s a hillclimbing algorithm: ever better 
approximations of a successful description.

‘Incremental’ means no backtracking.

Not always the minimal number of 
properties. 

Incremental Algorithm

Logical completeness: A unique description 
is found in finite time if there exists one. (Given 

reasonable assumptions, see van Deemter 2002)

Computational complexity: Assume that
testing for usefulness takes constant time.
Then worst-case time complexity is O(n

p
)  

where n
p
is the number of properties in P.

Using more domain knowledge
(D&R 1995)

Attribute + Value model: 

Properties grouped together:

origin: Sweden, Italy, ...

color: dark, grey, ...

Pick attributes in order.

Optimize within properties based on that 
attribute.

Incremental Algorithm,                             
using Attributes and Values

• r = individual to be described

•A = list of Attributes, in preference order

•Def:             = Value i of Attribute j

• L= properties in generated description

jiV ,
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FailureReturn

LReturnthen{r}CIf

]][[VC:C

}{VL:L

dothen]]V[[C&]]V[[rIf

)A(r,estValueBFindV

:doAAallFor

Domain:C

Φ:L

ji,

ji,

ji,ji,

iji,

i

=

∩=

∪=

⊄∈

=
∈

=
=

• FindBestValue(r,A):

- Find Values of A that are true of r,

while removing some distractors

(If these don’t exist, go to next Attribute)

- Within this set, select the Value that

removes the largest number of distractors

- If there’s a tie, select the most general one

- If there’s still a tie, select an arbitrary one

Example:  D = {a,b,c,d,f,g}

• Type: furniture (abcd), desk (ab), chair (cd)

• Origin: Europe (bdfg), USA (ac), Italy (bd)

Describe a: {desk, American}

(furniture removes fewer distractors than 
desk)

Describe b: {desk, European}

(European is more general than Italian)

N.B. This disregards relevance, etc.

Complexity of the 
algorithm

n
d
=  nr. of distractors

n
l
=  nr. of properties in the description

n
v
=  nr. of Values (for all Attributes)

Alternative assessment:  O(n
v
)

(Worst-case running time) 

According to D&R:  O(n
d
n
l
)

(Typical running time)

Minor complication: Head nouns

Another way in which human descriptions 
are nonminimal

– A description needs a Noun, but not all 
properties are expressed as Nouns

– Example: Suppose color was the     
most-preferred Attribute, and target = a

• colors: dark (ade), light (bc), grey (a)

• Type: furniture (abcde), desk (ab), chair 
(cde)

• Origin: Sweden (ac), Italy (bde)

• Price: 100 (ac), 150 (bd) , 250 ({})

• Contains: wood ({}), metal ({abcde}), 
cotton(d)

target = a

Describe a: {grey}

‘The grey’ ?   (Not in English)
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D&R’s repair:

• Assume that Values of the Attribute
Type can be expressed in a Noun.

• After the core algorithm: 

- check whether Type is represented.

- if not, then add the best Value of the     
Type Attribute to the description

GRE and surface realization

Arguably, GRE uses a grammar.

– Parameters such as the preference order on 
properties reflect knowledge of how to 
communicate effectively.

– Decisions about usefulness or completeness of a 
referring expression reflect beliefs about 
utterance interpretation.

Maybe this is a good idea for NLG generally.

GRE and surface realization

But we’ve thought GRE outputs semantics:

referent: furniture886

type: desk

status: definite

color: brown

origin: sweden

GRE and surface realization

We also need to link this up with surface form:

the brown Swedish desk

Note: not

?the Swedish brown desk

Observations

It’s hard to do realization on its own

mapping from semantics to surface structure.

It’s easy to combine GRE and realization

because GRE is grammatical reasoning!

if you have a good representation for syntax.

Why it’s hard to do realization

A pathological grammar of adjective order:

NP → the N(w).

N(w) → w N(w′)  if w is an adjective and wRw′.
N(w) → w if w is a noun.
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Syntax with this grammar

Derivation of example:

the brown Swedish desk

NP

N(brown)

N(Swedish)

N(desk)

Requires: brown R Swedish, Swedish R desk

Realization, formally

You start with k properties.

Each property can be realized lexically.

assume: one noun, many adjectives

(not that it’s easy to enforce this)

Realization solution:

NP which realizes each property exactly once.

Quick formal analysis

View problem graph-theoretically:

k words, corresponding to vertices in a graph

R is a graph on the k words

Surface structure is a Hamiltonian path

(which visits each vertex exactly once)

through R.

This is a famous NP complete problem

So surface realization itself is intractable!

Moral of the example

Semantics underdetermines syntactic 
relations.

Here, semantics underdetermines syntactic 
relations of adjectives to one another and to the 
head.

Searching for the correspondence is hard.

See also Brew 92, Koller and Striegnitz 02.

Observations

It’s hard to do realization on its own

mapping from semantics to surface structure.

It’s easy to combine GRE and realization

because GRE is grammatical reasoning!

if you have a good representation for syntax.

Syntactic processing for GRE

Lexicalization

Steps of grammatical derivation correspond to 
meaningful choices in NLG.

E.g., steps of grammar are synched with steps of 
adding a property to a description.
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Syntactic processing for GRE

Key ideas: lexicalization, plus

Flat dependency structure (adjs modify noun)

Hierarchical representation of word-order

NP

N(color)

N(origin)

N(size)

N(material)

the desk

Syntactic processing for GRE

Other syntactic lexical entries

Adj

N(origin)

Swedish

N(color)

Adj

brown

Describing syntactic combination

Operation of combination 1: Substitution

NP + =NP

N(color)

N(origin)

N(size)

N(material)

the desk

NP

N(color)

N(origin)

N(size)

N(material)

the desk

Describing syntactic combination

Operation of combination 2: Sister adjunction

+  =NP

N(color)

N(origin)

N(size)

N(material)

the desk

NP

N(color)

N(origin)

N(size)

N(material)

the desk

N(color)

Adj

brown
Adj

brown

Abstracting syntax

Tree rewriting:

Each lexical item is associated with a 
structure.

You have a starting structure.

You have ways of combining two structures 
together.

Abstracting syntax

Derivation tree

records elements and how they are combined

the desk

brown
(s.a. @ color)

Swedish
(s.a. @ origin)
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An extended incremental 
algorithm

• r  = individual to be described

• P = lexicon of entries, in preference order

P is an individual entry

sem(P) is a property or set of entries from the 
context

syn(P) is a syntactic element

• L = surface syntax of description

Extended incremental algorithm

L := NP↓
C := Domain

For each P ∈P do:
If r ∈ sem(P) & C ⊄ sem(P)

Then do

L := add(syn(P), L)

C := C ∩ sem(P)

If C = {r} then return L

Return failure

Observations

Why use tree-rewriting - not,e.g. CFG 
derivation?

NP → the N(w).

N(w) → wN(w′)  if w is an adjective and wRw′.
N(w) → w if w is a noun.

CFG derivation forces you to select properties 
in the surface word-order.

Observations

Tree-rewriting frees word-order from choice-
order.
NP

N(color)

N(origin)

N(size)

N(material)

the

desk

NP

N(color)

N(origin)

N(size)

N(material)

the

desk

Adj

brown

→ →

NP

N(color)

N(origin)

N(size)

N(material)

the

desk

Adj

brown

Adj

Swedish

Observations

Tree-rewriting frees word-order from choice-
order.
NP

N(color)

N(origin)

N(size)

N(material)

the

desk

NP

N(color)

N(size)
the

→ →

NP

N(color)

N(origin)

N(size)

N(material)

the

desk

Adj

brown

Adj

Swedish

N(origin)

N(material)

desk

Adj

Swedish

This is reflected in derivation tree

Derivation tree

records elements and how they are combined

the desk

brown
(s.a. @ color)

Swedish
(s.a. @ origin)
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Formal results

Logical completeness.
If there’s a flat derivation tree for an NP that 
identifies referent r, 

Then the incremental algorithm finds it.

But
Sensible combinations of properties may not
yield surface NPs.

Hierarchical derivation trees may require
lookahead in usefulness check.

Now, though, we’re choosing 
specific lexical entries

NP

N(departure)

N(destination)

N(stops)

the

express

Adj

3:35

N

Trenton

vs

NP

N(departure)

N(destination)

N(stops)

the

express

Adj

15:35

N

Trenton

maybe these lexical items express the same property…

• Use

in 12-hour time context

• Use

in 24-hour time context

What motivates these choices?

N(departure)

Adj

3:35

N(departure)

Adj

15:35

• P = lexicon of entries, in preference order

P is an individual entry

sem(P) is a property or set of entries from the 
context

syn(P) is a syntactic element

prags(P) is a test which the context must satisfy for 
the entry to be appropriate

Need to extend grammar again

For example:

syn: 

sem: departure(x, 1535)

prags: twentyfourhourtime

Need to extend grammar again

N(departure)

Adj

15:35

Extended incremental algorithm

L := NP↓
C := Domain

For each P ∈P do:

If r ∈ sem(P) & C ⊄ sem(P) & prags(P) is true

Then do

L := add(syn(P), L)

C := C ∩ sem(P)

If C = {r} then return L

Return failure
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Discussion:
What does this entry do?

syn: 

sem: thing(x)

prags: in-focus(x)

NP

it

Suggestion: find best value

Given: 

– A set of entries that combine syntactically with L 
in the same way

– Related by semantic generality and pragmatic 
specificity.

– Current distractors

Take entries that remove the most distractors

Of those, take the most semantically general

Of those, take the most pragmatically specific

Extended incremental algorithm

L := NP↓ C := Domain

Repeat

Choices := { P : add(syn(P), L) at next node 
& r ∈ sem(P) & prags(P) is true }

P := find best value(Choices)

L := add(syn(P), L)

C := C ∩ sem(P)

If C = {r} then return L

Return failure

What is generation anyway?

Generation is intentional (or rational) action

that’s why Grice’s maxims apply, for example.

You have a goal

You build a plan to achieve it

(& achieve it economically in a recognizable way)

You carry out the plan

In GRE…

The goal is for hearer to know the identity of r

(in general g)

The planwill be to utter some NP U

such that the interpretation of U identifies { r }

(in general c ∩∩∩∩u ⊆ c∩∩∩∩g)

Carrying out the plan means realizing this 
utterance.

In other words

GRE amounts to a process of deliberation.

Adding a property to L incrementally is like 
committing to an action.
These commitments are called intentions.

Incrementality is characteristic of intentions –
though in general intentions are open to 
revision.

Note: this connects with belief-desire-
intention models of bounded rationality.
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GRE as (BDI) rational agency

L := NP ↓ // Initial plan 

C := Domain // Interpretation

while (P := FindBest(P, C, L)) {   // Deliberation

L := add(syn(P), L) // Adopt new intention

C := C ∩ sem(P) // Update interpretation

if C = { r } return L // Goal satisfied

}

fail

NLG as (BDI) rational agency

L := X ↓
C := Initial Interpretation

while (P := FindBest(P, C, L)) {

L := AddSyntax(syn(P), L)

C := AddInterpretation(sem(P), C)

if GoalSatisfied(C) return L

}

fail

Example

Description: 

slide the sleeve onto the elbow.

Semantics: 

slide(a,s,p) ∧ sleeve(s) ∧ onto(p,e) ∧ elbow(e)

Contribution:

do(a)

Pragmatics:

imp(a) ∧ the(s) ∧ the(e)

Example

Interpret

slide(a,s,p) ∧ sleeve(s) ∧ onto(p,e) ∧ elbow(e)

by proving it in the context

finding possible values for a, s, p, and e

Interpretation is successful if there’s only 
one value each for a, s, p, and e

Overview of Processes and 
Representations, 2

Text
Plans

Sentence
Plans

Sentence Planning

Lexical
Choice

Aggregation

Referring
Expression
Generation

?

Solving generation tasks with 
declarative descriptive NLG

Lexical choice:

Key challenge: good lexical choice achieves 
multiple goals (Elhadad et al 1997)
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Example
(Elhadad et al 1997)

Desired output:

AI requires six assignments

Multiple goals:

Class c (AI) involves stuff a (assignments)

The stuff a represents a significant demand

Match contributions of require

Lexical choice

Accurate lexical choice depends on 

declarative conceptual and linguistic 
specifications for lexical items

assessment of contribution of items to 
interpretation

=> declarative descriptive NLG.

Solving generation tasks with 
declarative descriptive NLG

“Aggregation”

Organize complex sentences that present 
multiple domain representations to user.

E.g., Dalianis 1996

Example

Two things to present:

do(step5), purpose(step5, goal6)

Extend

slide the sleeve onto the elbow

To

slide the sleeve onto the elbow 

to uncover the fuel-line sealing-ring.

Corresponds to use of 
lexicogrammatical resource

Syntax:

Contribution:

purpose(a,b) 

VP: a

Sinf:b

Aggregation

Aggregation naturally builds from 

declarative conceptual and linguistic 
specifications for lexical items

assessment of contribution of items to 
interpretation

=> declarative descriptive NLG.


