
1

THE VILLAGE

Department of Computer Science
Center for Cognitive Science

Rutgers University

CS 533

Natural Language Processing
Lecture 7 – March 24, 2003

Matthew Stone & David DeVault

Parsing

Outline

The periphery – right and left frontier

Stack and search

Charts and efficiency

Feature structures

Semantics and interpretation

Adding statistical information

Parsing problem

Use the grammar to derive an explicit
representation of the constituency of an
input sentence.

Recall: Grammatical derivations
Tree Substitution Grammar

S

VPNP

V

barks

S

VPNP

D N

dog

V

barks

NP

D N

dog

=+

T₁ T₂

Recall: Grammatical derivations
Tree Substitution Grammar

S

VPNP

D N

dog

V

barks

=+

T₃

D

the

S

VPNP

D N

dogthe

V

barks

Dependency

Sentences built from words by operations

S

VPNP

D N

dogthe

V

barks

barks

dog

the

=

2

Dependency formalisms

Tree Substitution Grammar

barks: T₁

dog: T₂

-substitution at D node

-substitution at NP node

the: T₃

Parsing problem

Start from words and possible elementary
trees for the words: S

VPNP

V

barks

NP

D N

dog

D

the

Parsing problem

Determine a derived
tree whose leaves are
the input words in
order and which is
derived from possible
trees for the words

S

VPNP

D N

dogthe

V

barks

Key idea of parsing

Incremental structure building

Adapt steps of grammatical derivation to
keep track of the order of consituents.

Incremental structure building

You have two things next to each other that
you can combine:

and you combine them:

an incomplete constituent
with room for an X next

a complete new X
you can add in

a more complete constituent
that combines the two together

Incremental structure building –
symmetric case

You have two things next to each other that
you can combine:

and you combine them:

an incomplete constituent
with room for an X just before

a complete new X
you can add in

a more complete constituent
that combines the two together

3

Key idea of parsing

Incremental structure building

NP

D N

dog

D

the

an incomplete NP with
room for a D just before

a complete new D
you can add in

Key idea of parsing

Incremental structure building

a new complete NP
that combines the two together

NP

D N

dogthe

Key idea of parsing

Incremental structure building

NP

D N

dog

an incomplete S with
room for an NP just before

a complete new NP
you can add in

the barks

V

VP

S

NP

Key idea of parsing

Incremental structure building

a new complete S
that combines the two together

D N

dogthe barks

V

VP

S

NP

Adding things to trees –
the periphery

Where is the XP in that first tree T?

an incomplete constituent
with room for an XP next

a complete new XP
you can add in

The periphery

Consider this example for T A

XP

XP

YP

ZP

WP XP

W XP

X

XP

4

Suppose C is a complement of
category XP

Consider this sample T

Can new XP go here?

A

XP

XP

YP

ZP

WP XP

W XP

X

XP

Suppose C is a complement of
category XP

Consider this sample T

Can new XP go here?

A

XP

XP

YP

ZP

WP XP

W XP

X

XP

Suppose C is a complement of
category XP

Consider this sample T

Can new XP go here?

A

XP

XP

YP

ZP

WP XP

W XP

X

XP

Suppose C is a complement of
category XP

Consider this sample T

Can new XP go here?

A

XP

XP

YP

ZP

WP XP

W XP

X

XP

Suppose C is a complement of
category XP

Consider this sample T

Can new XP go here?

A

XP

XP

YP

ZP

WP XP

W XP

X

XP

Periphery

A completed constituent on the right can
only be added to an incomplete tree on its
right periphery – after the last word already
accounted for in the incomplete tree and up
to the first gap not yet accounted for.

5

Periphery

A completed constituent on the left can only
be added to an incomplete tree on its left
periphery – before the first word already
accounted for in the incomplete tree and up
to the last gap not yet accounted for.

Coding this up

New structure

node(category,

left,

head,

right)

Assume that lexical material in structure is a
substring including the head.

FTHR – full to head’s right

Mutual recursion again!

Base cases – lexical nodes

fthr(leaf(_)).

% fthr(gap(_)) :- fail.

FTHR ct’d

Recursive case: make sure there are no gaps in the
right list and the head subtree is fthr.

fthr(node(_,_,H,R)) :-

nogaps(R), fthr(H).

nogaps([]).

nogaps([leaf(_)|L]) :- nogaps(L).

nogaps([node(_,_,_,_)|L]) :- nogaps(L).

Suppose C is a complement of
category XP

Consider this sample T A

XP

XP

YP

ZP

WP XP

W XP

X

XP

Substitute at next place

Replace next gap with node

replace_next([gap(C)|Rest],

node(C,L,H,R),

[node(C,L,H,R)|Rest]).

replace_next([node(C,L,H,R)|Rest], N,

[node(C,L,H,R)|Result]) :-

replace_next(Rest, N, Result).

6

Suppose C is a complement of
category XP

Consider this sample T A

XP

XP

YP

ZP

WP XP

W XP

X

XP

Substitute at next place

subst_next(node(C,L,H,R), N,

node(C,L,H,X)) :-

fthr(H),

replace_next(R, N, X).

subst_next(node(C,L,H,R), N,

node(C,L,X,R)) :-

subst_next(H, N, X).

Suppose C is a complement of
category XP

Consider this sample T A

XP

XP

YP

ZP

WP XP

W XP

X

XP

Summary

combine(T1, T2, T3) :-

fthr(T2),

fthl(T2),

subst_next(T1, T2, T3).

Parsing

Our basic strategy will be to use this parsing
combination operation to add complete
constituents that we find into incomplete
constituents that we are still building.

What kind of data structures do we need to
keep track of all these constituents?

Parsing – stack and search

Consider this example

D N

dogthewalk

V

VP

S

NP

7

Parsing – stack and search

Consider this example during parsing

D N

dogthewalk

V

VP

S

NP NP

D

Stack

Walk does not combine directly with the

We have to push walk and see what we can
do with the.

D

thewalk

V

VP

S

NP

Stack

We now consider the and dog

(Walk is still on the stack.) We simplify.

D N

dogthewalk

V

VP

S

NP NP

D

Stack

We now consider the and dog

(Walk is still on the stack.) We simplify.

N

dogthewalk

V

VP

S

NP NP

D

Stack

Now look at combinations using the stack:

We can simplify again.

N

dogthewalk

V

VP

S

NP NP

D

Stack

Now look at combinations using the stack:

We can simplify again.

N

dogthewalk

V

VP

S

NP

D

8

Stack

In general, we have to postpone
consideration of larger, earlier incomplete
constituents while we assemble smaller,
later constituents

Parsing – stack and search

Consider this example

D N

questionheranswer

V

VP

S

NP

Parsing – stack and search

Consider this example during parsing

D N

questionheranswer

V

VP

S

NP NP

D

NP

her

Language is ambiguous

There’s no way to just keep track of the right
tree incrementally, as we parse through the
string.

We somehow need to try all the alternatives.

Parsing - search

Try this combination first, perhaps:

answer

V

VP

S

NP NP

her

Parsing - search

Try this combination first, perhaps:

answer

V

VP

S

NP

her

9

Parsing – search

Now need this combination, somehow:

Crash!

answer

V

VP

S

NP

her
N

question

NP

D

Parsing – search

Backtrack to the last choice, and consider
another possibility:

Delay answer – no combo possible here.

D

her
answer

V

VP

S

NP

Parsing – search

Consider the next word:

Make the combination.

D

her
answer

V

VP

S

NP
N

question

NP

Parsing – search

Consider the next word:

Reconsider elements from the stack.

D

her
answer

V

VP

S

NP
N

question

NP

Parsing – search

Consider the next word:

Reconsider pending open constituents.

D

heranswer

V

VP

S

NP

N

question

Parsing – chart and efficiency

Backtracking search is expensive, but in fact
it makes the parser do the same work over
and over.

In backtracking, if you change your mind
about word N, you have to reanalyze
everything after N.

But in this reanalysis, you’ll just find the
same complete constituents starting after N.

10

Parsing – chart and efficiency

What you can do instead is store all the
smaller constituents you find, in a structure
called the chart.

Then when you go to build larger
constituents, you look in the chart for
smaller constituents, rather than searching
to derive them.

Exploring possible paths

Imagine guessing the structure of a
derivation, top-down.

the whole string

the right subpartthe left subpart

midpoint

Exploring possible paths

You can put the midpoint after any word.

the whole string

midpoint

Exploring possible paths

After you guess, you break the smaller
segments up, recursively.

the right subpartthe left subpart

midpoint midpoint

Now imagine putting those pieces
together, bottom up

You have all the smaller pieces already.

By running through the possible midpoints,
you can find all the ways of putting those
pieces together.

Visualization

11

Parsing algorithm CKY

Work your way forward through the string

Parsing algorithm CKY

At each stage, work backwards to build larger
substrings

Parsing algorithm CKY

By exploring alternative midpoints

This builds a complete table

At this stage, we have all the elements we
need from earlier rounds

we got this when we
considered shorter prefixes

we got this earlier
in considering this prefix

Summary

For end = 2 up to n

For start = end-2 down to 0

For mid = start+1 up to end-1

Combine (start-mid) (mid-end)

Prolog implementation

Store facts in the knowledge base for
constituents, using assert

Use predicate chart(St,End,Tree) for
results

12

Prolog implementation

Setting up for chart parsing:

setup_words(Words) – true if

for each word W at position P in Words,

all trees T lexicalized to W have been
asserted as:

chart(P,P+1,T).

Prolog implementation

Innermost loop

loop(Start,End) :-
chart(Start, Mid, T1),

chart(Mid, End, T2),

combine(T1, T2, T3),
assert(chart(Start,End,T3)),

fail.
loop(Start, End).

Prolog implementation

Outer loop – edges beginning at Start or
earlier and ending at End.

backward(Start, End) :-

Start < 0, !.
backward(Start, End) :-

loop(Start, End),

Next is Start – 1,
backward(Next, End).

Prolog implementation

Outer loop – edges ending somewhere between

End and Max.

forward(End, Max) :-
End > Max, !.

forward(End, Max) :-
I is End – 2,

backward(I, End),
Next is End+1,

forward(Next, Max).

Prolog implementation

Main parse rule:

parse(Words,T) :-
retractall(chart(_,_,_)),

length(Words,N),

setup_words(Words),
forward(2,N),

chart(0,N,T).

Feature structures

How does parsing interact with linguistic
representations? How can you improve
linguistic representations for parsing?

Feature structures provide a way of stating
linguistic constraints concisely and allowing
the parser to collapse together ambiguities.

13

Feature structures

Motivation

D N

fishthe swims

V

VP

S

NP

Feature structures

Motivation

D N

fishthe swim

V

VP

S

NP

Feature structures

Motivation

D N

dogthe swims

V

VP

S

NP

Feature structures

But not

D N

dogthe swim

V

VP

S

NP

Feature structures

English has subject-verb agreement.

number is either singular or plural

person is either first, second or third

nouns are always third person and may be
singular or plural

(first person is I/we, second person is you)

verbs in third person present agree with number
of the subject

Feature structures

Really English needs different categories of
noun phrase for each of these cases.

That means different trees, different parses
when different categories are used.

14

Feature structures

For example

D N

dogthe swims

V

VP

S

NP3s

D N

dogthe

NP3s

swims

V

VP

S

NP3s

Feature structures

For example

D N

dogsthe swim

V

VP

S

NP3p

D N

dogsthe

NP3p

swim

V

VP

S

NP3p

Feature structures – notation

number sing dog

person third

number plural dogs

person third

Feature structures - notation

number sing swims

person third

number plural swim

person third

Feature structures – data
structures

Use prolog terms to represent feature
structures:

f(Number,Person)

Use unification to enforce feature constraints.

Examples:

f(sing,third) dog

f(plural,third) dogs

f(sing,third) swims

Another idea – categories as
complex data structures

use terms for categories, and allow variables
and unification.

d n

fishthe swim

v

vp

s

np(3,p)

d n

fishthe

np(3,N)

swim

v

vp

s

np(3,p)

15

Semantics and interpretation

How does parsing interact with linguistic
representations? How can you improve
linguistic representations for parsing?

Adding semantic variables to
our syntactic representations

D N

dogthe

S
np(3,s)

D

Examples:

swims

V

VPnp(3,s)

D N

dogthe

S
np(3,s,X)

D

Examples:

dog(X) swims(Y)

swims

V

VPnp(3,s,Y)

Adding semantic variables to
our syntactic representations

Semantic compositionality

Conjoining formulas and unifying variables:

dog(X) & swims(X)

D N

dogthe

S

np(3,s,X)

swims

V

VP

Incremental interpretation

D N

dogthe

S
np(3,s,X)

D

swims

V

VPnp(3,s,Y)

As we parse, we can keep track of which assignments
to semantic variables are compatible with a
knowledge base:

dog(X) swims(Y)

dog(spot) swims(spot)
dog(rover) swims(lassie)

Incremental interpretation

dog(X) & swims(X)

dog(spot) & swims(spot)

D N

dogthe

S

np(3,s,X)

swims

V

VP

16

Incremental interpretation –
data structures
We can insert semantic constraints and their
interpretations into our chart entries:

chart(St,End,Tree,Constr,Interp)

Example:

Constr= [dog(X),swims(X)]
Interp= [[dog(spot),swims(spot)]]

Prolog implementation

Updated innermost loop:

loop(Start,End) :-

chart(Start, Mid, T1, C1, I1),

chart(Mid, End, T2, C2, I2),
combine(T1, T2, T3),

append(C1,C2,C3),

findall(C3,(member(C1,I1),

member(C2,I2)),
I3),

assert(chart(Start,End,T3,C3,I3)),

fail.
loop(Start, End).

Adding statistical information
Consider the sentence:

“Fruit flies like a banana.”

Adj N

fliesfruit

S

NP

a banana

V

VP

NP

NP

fruit

S

flies

V

VP

N PP

Prep

like

NP

like

a banana

Adding statistical information
We can associate probabilities with each step in a
derivation:

Adj N

fliesfruit

S

NP

Adj

like

V

VPNP
p=0.2

p=0.5

NP

Adding statistical information
We can associate probabilities with each step in a
derivation:

NP

fruit

S

flies

V

VPNP
p=0.5

p=0.01

PPN
PP

Prep

like

NP

Adding statistical information

The probability of each step in a derivation can
be estimated from a corpus of correct
derivations.

A probability score is associated with each
chart entry according to the probabilities of the
steps needed to derive it.

These probabilities may be used to guide the
search for a complete parse.

