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Abstract
I propose a tree-rewriting grammar formalism, TAGLET, defined by the usual complementation operation and the
simplest imaginable modification operation. TAGLET is context free and permits lexicalization of treebank parses
(though TAGLET is only weakly equivalent in generative power to general CFGs), as well as straightforward
exploration of rich hierarchical syntactic structures and detailed feature structures in the spirit of current linguistic
syntax. It admits a dynamic-programming parser, with theN×N×N chart search characteristic of CFGs and a clean
“strong competence” implementation of combinatory operations. Derivations are lexicalized dependency structures:
this invites the assignment of probabilities to structures based on bigram dependencies, and at the same time
introduces the natural search space for natural language generation. In short, the formalism offers a simple and
effective scaffold to bring the issues of current research into classroom learning.
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Abstract

I propose a tree-rewriting grammar formalism,
TAGLET, defined by the usual complementation
operation and the simplest imaginable modifica-
tion operation. TAGLET is context free and
permits lexicalization of treebank parses (though
TAGLET is only weakly equivalent in generative
power to general CFGs), as well as straightforward
exploration of rich hierarchical syntactic struc-
tures and detailed feature structures in the spirit
of current linguistic syntax. It admits a dynamic-
programming parser, with theN× N× N chart
search characteristic of CFGs and a clean “strong
competence” implementation of combinatory op-
erations. Derivations are lexicalized dependency
structures: this invites the assignment of probabil-
ities to structures based on bigram dependencies,
and at the same time introduces the natural search
space for natural language generation. In short, the
formalism offers a simple and effective scaffold to
bring the issues of current research into classroom
learning.

1 Introduction

For most language researchers, grammar for-
malisms offer a means to some broader objective:
perhaps the explanation of crosslinguistic univer-
sals; perhaps the characterization of human psycho-
logical processes; perhaps the construction of useful
computational systems. Grammar formalisms come
and go, while the objectives endure as a compelling
draw for research in language.

Lexicalization is a philosophy that ties grammar
formalisms particularly closely to these uses. In
lexicalized approaches to grammar, syntactic and
semantic specifications are associated directly with
words, and grammatical operations are tightly inte-
grated with these lexical representations. For lin-
guistics, this philosophy invites a fine-grained de-
scription of sentence syntax, in which researchers
document the diversity of linguistic constructions
within and across languages, and at the same time
uncover important generalizations among them. For
computation, this philosophy suggests a particu-
larly concrete approach to language processing, in
which the information a system maintains and the
decisions it takes ultimately always just concern

words. The fruits of this approach include simple
representations and algorithms, as in (Sleator and
Temperley, 1993); effective models of language, as
in (Collins, 1997; Charniak, 1997); and powerful
leverage on complex linguistic tasks, as in (Stone
et al., 2001). Both linguistic and computational ad-
vantages combine in lexicalized approaches to the
cognitive science of human language use; see, e.g.,
(Tanenhaus and Trueswell, 1995).

Important as they are, lexicalized grammars can
be forbidding. Tree-adjoining grammars (TAG)
(Joshi et al., 1975; Schabes, 1990) and combina-
tory categorial grammars (CCG) (Steedman, 2000)
require complex bookkeeping for effective compu-
tation: when I wrote a CCG parser as an undergrad-
uate, I found it ballooning into a semester course
project; I still have never written a TAG parser or
a CCG generator. Other formalisms come with lin-
guistic assumptions that are hard to manage. Link
grammar (Sleator and Temperley, 1993) and other
pure dependency formalisms eschew traditional hi-
erarchical structure altogether, while HPSG (Pol-
lard and Sag, 1994) comes with a commitment to its
complex, rather bewildering regime for formalizing
linguistic information as feature structures.

In this paper, I sketch the mathematical, linguis-
tic and computational aspects of a simple alternative
that seems particularly suited to the classroom. It is
a tree-rewriting grammar formalism like TAG, so I
call it TAGLET.1 TAGLET shares TAG’s substitu-
tion operation for complementation, but in place of
general adjunction for modification uses the sister-
adjunction operation defined in (Rambow et al.,
1995); sister-adjunction just adds the modifier sub-
tree as a child of an existing node in the head tree.
I describe TAGLET formally in Section 2 and by
example in Section 3. (Space precludes more back-
ground, motivation, or contrast with other lexical-
ized formalisms for computational syntax.)

TAGLET’s simplicity pays off in many ways:
1If the acronym must stand for something, “Tree Assembly

Grammar for LExicalized Teaching” will do.
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• TAGLET nodes can be easily decorated with
grammatical feature structures (without the
hassle of TAG top and bottom features or
CCG functor-argument contravariance, yet
with broad enough locality that features need
not snowball as in HPSG); see Section 3.

• TAGLET languages are context free (though
TAGLET is only weakly equivalent in gener-
ative power to general CFGs); see Section 4.

• TAGLET admits a dynamic-programming
parser, with theN×N×N chart search char-
acteristic of CFGs and a clean “strong compe-
tence” implementation of combinatory opera-
tions; see Section 5.

TAGLET still retains the benefits of lexicalization.
TAGLET permits lexicalization of treebank parses,
as well as straightforward exploration of rich hierar-
chical syntactic structures in the spirit of current lin-
guistic syntax; see Section 6. TAGLET derivations
are lexicalized dependency structures: this invites
the assignment of probabilities to structures based
on bigram dependencies, and at the same time intro-
duces the natural search space for natural language
generation; see Section 7.

2 Definitions

I define TAGLET in terms ofprimitive trees. The
definitions require a setVT of terminal categories,
corresponding to our lexical items, and a disjoint set
VN of nonterminal categories, corresponding to con-
stituent categories. TAGLET uses trees labeled by
these categories both as representations of the syn-
tactic structure of sentences and as representations
of the grammatical properties of words:

• A syntactic treeis a tree whose nodes are each
assigned a unique label inVN ∪VT , such that
only leaf nodes are assigned a label inVT .

• A lexical tree is a syntactic tree in which ex-
actly one node, called theanchor, is assigned a
label inVT . The path through such a tree from
the root to the anchor is called thespine.

A primitive treeis lexical tree in which every leaf is
the child of a node on the spine. That is, in a prim-
itive tree, each leaf’s parent dominates the anchor

C

T +
T’

C

⇒

T’

C

T

α/β→/β← α α/β→/β←

Figure 1: General schema of substitution (comple-
mentation).

(and equivalently again, each leaf c-commands the
anchor). The restriction greatly simplifies parsing,
at the cost of flexible treatment of idioms. Figures 3
and 4 illustrate primitive trees for individual lexical
items with compositional semantics.

A TAGLET elementis a pair〈T,O〉 consisting of
primitive tree together with the specification of the
operation for the tree; the allowable operations are
complementation, indicated byα; premodification
at a specified categoryC ∈VN, indicated byβ→(C)
and postmodification at a specified categoryC∈VN,
indicated byβ←(C).

Formally, then, a TAGLETgrammar is a tuple
G = 〈VT ,VN,Γ〉 whereVT gives the set of termi-
nal categories,VN gives the set of nonterminal cat-
egories, andΓ gives a set of TAGLET elements for
VT andVN. Given a TAGLET grammarG, the set
of derived treesfor G is defined as the smallest set
closed under the following operations:

• (Initial) Suppose〈T,O〉 ∈ Γ. Then〈T,O〉 is a
derived tree forG.

• (Substitution) Suppose〈T,O〉 is a derived tree
for G whereT contains leaf noden with label
C ∈ VN; and suppose〈T ′,α〉 is a derived tree
for G where the root ofT ′ also has labelC.
Then〈T ′′,O〉 is a derived tree forG whereT ′′

is obtained fromT by identifying noden with
the root ofT ′. See Figure 1.

• (Premodification) Suppose〈T,O〉 is a derived
tree forG whereT contains noden with label
C ∈ VN, and suppose〈T ′,β→(C)〉 is a derived
tree forG. Then〈T ′′,O〉 is a derived tree forG
whereT ′′ is obtained fromT by addingT ′ as
the first child of noden. See Figure 2.

• (Postmodification) Suppose〈T,O〉 is a derived
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α/β→/β← β→(C) α/β→/β←

Figure 2: General schema of forward sister-
adjunction (premodification.)

tree forG whereT contains noden with label
C ∈ VN, and suppose〈T ′,β←(C)〉 is a derived
tree forG. Then〈T ′′,O〉 is a derived tree forG
whereT ′′ is obtained fromT by addingT ′ as
the last child of noden. (The picture would be
the mirror-image of Figure 2.)

A derivationfor G is a derived tree〈T,α〉 for G, in
which all the leaves ofT are elements ofVT . The
yield of a derivation〈T,α〉 is the string consisting
of the leaves ofT in order. A stringσ is in thelan-
guagegenerated byG just in caseσ is the yield of
some derivation forG.

3 Examples

With TAGLET, two kinds of examples are instruc-
tive: those where TAGLET can mirror TAG, and
those where it cannot. For the first case, consider
an analysis ofChris loves Sandy madlyby the trees
of Figure 3. The final structure is:

S

����
HHHH

NP

Chris

VP

����

HHHH

V

loves

NP

Sandy

ADJP

madly

For the second case, consider the embedded ques-
tion who Chris thinks Sandy likes. The usual TAG
analysis uses the full power of adjunction. TAGLET
requires the use of one of the familiar context-free
filler-gap analyses, as perhaps that suggested by the
trees in Figure 4, and their composition:

NP

Chris

S

��� HHH

NP VP
�� HH

V

loves

NP

NP

Sandy

ADJP

madly

α1 α2 α β←3 (VP)

Figure 3: Parallel analysis in TAGLET and TAG.

Q
�� HH

NP

who

S/NP
NP

Chris

S/NP

���
HHH

NP VP/NP
�� HH

V

thinks

S/NP

α4 α5 α6

NP

Sandy

S/NP
�� HH

NP VP/NP

V

likes
α7 α8

Figure 4: TAGLET requires a gap-threading analy-
sis of extraction (or another context-free analysis).

Q

����
HHHH

NP

who

S/NP

����
HHHH

NP

Chris

VP/NP

���
HHH

V

thinks

S/NP

��� HHH

NP

Sandy

VP/NP

V

likes

The use of syntactic features amounts to an in-
termediate case. In TAGLET derivations (unlike in
TAG) nodes accrete children during the course of a
derivation but are never rewritten or split. Thus, we
can decorate any TAGLET node with a single set of
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syntactic features that is preserved throughout the
derivation. Consider the trees forhe knowsbelow:

NP

[
NM SG

CS X

]

/he/

S

����
HHHH

NP

[
NM Y

CS N

]
VP

V
[

NM Y
]

/know/
α9 α0

When these trees combine, we can immediately
unify the numberY of the verb with the pronoun’s
singular; we can immediately unify the caseX of the
pronoun with the nominative assigned by the verb:

S

�����

HHHHH

NP

[
NM SG

CS N

]

/he/

VP

V
[

NM SG
]

/know/

The feature values will be preserved by further steps
of derivation.

4 Properties

4.1 Derivation Trees

Each node in a TAGLET derived treeT is first con-
tributed by a specific TAGLET element, and so in-
directly by a particular anchor. Accordingly, we can
construct a lexicalizedderivation treecorrespond-
ing toT. Nodes in the derivation tree are labeled by
the elements used in derivingT. An edge leads from
parentE to child E′ if T includes a step of deriva-
tion in whichE′ is substituted or sister-adjoined at a
node first contributed byE. To make the derivation
unambiguous, we record the address of the node in
E at which the operation applies, and we order the
edges in the derivation tree in the same order that
the corresponding operations are applied inT. For
Figure 3, we have:

α2:loves

��������

HHHHHHHH

α1:Chris (0) α3:Sandy (1.1) β←4 :madly (1.1)

4.2 Any context-free language (CFL) has a
TAGLET grammar.

Let L be a CFL. Then there is a grammarG for
L in Greibach normal form (Hopcroft and Ullman,
1979), where each production has the form

A→ xB1 . . .Bn

where x ∈ VT and Bi ∈ VN. For each such pro-
duction, create the TAGLET element which allows
complementation with a tree as below:

A

��� HHH

x B1 Bn

An easy induction transforms any derivation inG
to a derivation in this TAGLET grammar, and vice
versa. So both generate the same languageL.

4.3 Any TAGLET grammar generates a CFL.

Relabel all the internal nodes (except the root ofα
trees) of each TAGLET tree so that no two share the
same internal nodes.

To handle sister-adjunction, create a new sym-
bol N+ andN− for each internal nodeN in a tree.
Add productionsN+ → ε and N+ → Ri whereRi

is the root node of a premod element that could
have sister-adjoined to the node corresponding toN
in the original grammar. Add productionsN− → ε
andN− → Ri whereRi is the root node of a post-
mod element that could have sister-adjoined to the
node corresponding toN in the original grammar.
Now for each internal nodeN in a TAGLET element
with children N1Nl . . .hNl+1 . . .Nk add the context-
free production

N→ N+N1N+ . . .N+NlN
+hN−Nl1N

− . . .N−NkN
−

Call this grammarG. An easy induction trans-
forms any complete derivation inG to a complete
TAGLET derivation, and vice versa. So both gener-
ate the same language.

4.4 There are CFGs without any strongly
equivalent TAGLET.

In any TAGLET derivation, there is a bound on the
depth of the closest lexical leaf to the root. This is
because the initial anchor of the derivation has the
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same depth as it has in its elementary tree, which is
just some finite depth given by the grammar. In gen-
eral, however, CFGs need not share this property.
Such CFGs have no strongly equivalent TAGLET.

5 Parsing

The close analogy between TAGLET parsing and
CFG parsing can be motivated through considera-
tion of the TAGLET operations involved in assem-
bling a derived tree. Suppose we make a bottom-up
traversal of a TAGLET derivation tree. After we
process any node (and all its children), we obtain a
subtree of the final derived tree. This subtree rep-
resents a complete constituent that must appear in
order in the final yield. Our parsing algorithms re-
produce this hierarchical discovery of constituents;
we run the assembly off a particular string. The only
trick is to manage the insertion of complements and
modifiers into the tree for the head while its tree is
incomplete. To do that, we apply operations along
what is known as thefrontier of the tree. To avoid
spurious ambiguities, we also require that opera-
tions to the left frontier must precede operations to
the right frontier.

A noden in a TAGLET derived tree is on theright
frontier if no node that follows in postorder traversal
dominates a lexical item. It’s on thegrowing right
frontier if it’s on the right frontier, it is a child of the
spine, and no leaf nonterminal precedes it in pos-
torder traversal. Theleft frontier andgrowing left
frontier are definedmutatis mutandis; a noden is
on thefrontier if it is on either.

A TAGLET derived tree is anopen constituent
if every leaf nonterminal is on the frontier. It’s a
completed constituentif it has no leaf nonterminals.

Formally, then, the basic operations of TAGLET
parsing are incorporating a completed constituent
T2 into an open constituentT1 on the right along
its growing right frontier, yieldingT3; and in-
corporating a completed constituentT1 into an
open constituentT2 on the left along its growing
left frontier, yielding T3. This gives a relation
COMBINE(T1,T2,T3). Note that these operations
are defined on ordinary TAGLET structures and
are special cases of general TAGLET operations of
complementation and sister-adjunction. The fron-
tier restrictions just ensure the operations result in

constituents. Thus an implementation of these op-
erations can respect a “strong competence” hypoth-
esis, in which the knowledge and structures of the
grammar are used directly for linguistic processes.

This leads to a CKY-style tabled parsing algo-
rithm for TAGLETS. The parser analyses a string
of length N using a dynamic-programming proce-
dure to enumerate all the analyses that span contigu-
ous substrings, shortest substrings first. We write
T ∈ (i, j) to indicate that objectT spans positioni
to j. So we have:

for wordw∈ (i, i +1), T with anchorw
addT ∈ (i, i +1)

for k← 3..N
for i← k−2..1
for j← i +1..k−1
for T1 ∈ (i, j) andT2 ∈ ( j,k)
for T3 with COMBINE(T1,T2,T3)
addT3 ∈ (i,k)

The point of this algorithm is simplicity and famil-
iarity; it offers the sameN×N×N chart search that
any CKY CFG parser has. Of course, any parser
that delivers possible analyses exhaustively will be
prohibitively expensive in the worst-case; analy-
ses of ambiguities multiply exponentially. At the
cost of a strong-competence implementation, one
can imagine avoiding the complexity by maintain-
ing TAGLET derivation forests. At that point, to
establishO(N3) parsing, we would also need to
show that the number of alternatives combinations
of T1 and T2 does not depend onN. The reason
for this is that TAGLET parsing operations apply
within spans of the spine of single elementary trees.
These spans just depend on how many arguments
have been saturated, and in constituents, arguments
are of course saturated in order, one after the other.
Accordingly, a finite inventory of spans that define
possible TAGLET operations for both simple and
derived structures, can be identified ahead of time
from the elementary trees of the TAGLET, indepen-
dent of the string being parsed.

6 Modeling

As with a CFG, you can read a TAGLET straightfor-
wardly off of an annotated parse tree. For TAGLET,

5



each internal node in the parse tree has to have ex-
actly one child annotated as a head, and the rest an-
notated as complements or modifiers.

The following algorithm reconstructs the set of
TAGLET elements required for a parse recursively.
It starts at the root of a subtree of the parse and is
given the operation with which this subtree is com-
bined. It reconstructs the TAGLET element that
contributes the root of this subtree, as follows. The
head-path from the root to a lexical item determines
the spine of the element. The complement children
of this spine determine the other nodes in the el-
ement. Other children of the spine are modifiers
which sister-adjoin to the main tree.

Now comes the recursive part of the algorithm.
Within the element we have found, all children of
the spine other than the head node have a full parse
tree associated with them. We just treat each of
these subtrees in turn.

We can apply this algorithm to asetof parse trees
too. This gives a procedure to derive a TAGLET
grammar from a treebank of parsed sentences. We
can also tabulate the TAGLET operations that are
used in the treebank, for example in terms of the
bigram dependencies encoded in derivation trees.
Such a table provides the basis for scoring TAGLET
parses by probabilities of their lexicalized depen-
dencies, as estimated from a treebank.

7 Generation

TAGLET retains from TAG the two most impor-
tant features of grammar from the point of view
of generation. First, because the grammar con-
tains lexicalized elementary structures, derivations
in TAGLET outline a space of consistent, meaning-
ful choices. Searching through grammatical deriva-
tions does not require the system to manage interre-
lated decisions, or to make syntactic or lexical com-
mitments without specific motivation from semantic
and pragmatic considerations. Thus, there is no rea-
son for the generator to work with abstract levels
of syntactic structure—it can again adopt a “strong
competence” implementation in which grammatical
knowledge is used directly.

Second, because complementation and modifica-
tion are independent, there is no tension between
providing required material in a derivation, and

elaborating a derivation with supplementary infor-
mation: a generator can provide required material
first, then elaborate it. This is essential for using the
grammar in high-level tasks such as the planning of
referring expressions or the “aggregation” of related
semantic material into a single complex sentence.

The semantic interpretation and search strat-
egy of SPUD can be naturally implemented us-
ing TAGLET syntax rather than full TAG. Doing
so makes it simpler to build reversible resources
and architectures for dialogue applications (since
TAGLET has such simple parsing) and to acquire
resources for generation (since TAGLET has such a
direct relationship to treebank parses).
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