
CS 530 — Principles of AI
Written Exercises

Out: October 2, 2001
Due: October 18, 2001

Problem 1. The following figure represents a decision rule for classifying an observation of two
binary features X and Y into two classes, c1 and c2.

Each vertex represents a possible observation: the horizontal axis indicates the value of feature X;
the vertical axis indicates the value of feature Y . A black circle at that vertex represents a decision
to classify the observation as class c1 and a white one represents a decision to classify it as class c2.
Problem 1a. State the four constraints on the statistical distributions of features and classes which
are required for this decision rule to yield the lowest possible error.
Problem 1b. Is this decision rule compatible with a representation as a linear classifier? In other
words, are the region where the classifier reports class c1 and the region where the classifer reports
class c2 separable by a hyperplane?
Problem 1c. Construct a specific joint probability distribution on variables X, Y and C that leads to
this decision rule and which satisfies the Naive Bayes assumption: that X and Y are conditionally
independent given C. Hint: You can simply “estimate” parameters for your Naive Bayes model
assuming the four training “samples” illustrated by the decision rule itself.
Problem 1d. Now consider the following joint probability distribution on X, Y and C:

P(X = 1,Y = 1,C = c1) = 3/20 P(X = 1,Y = 1,C = c2) = 2/20
P(X = 1,Y = 0,C = c1) = 0/20 P(X = 1,Y = 0,C = c2) = 5/20
P(X = 0,Y = 1,C = c1) = 3/20 P(X = 0,Y = 1,C = c2) = 2/20
P(X = 0,Y = 0,C = c1) = 3/20 P(X = 0,Y = 0,C = c2) = 2/20

In this case the features are not conditionally independent given the class. Nevertheless, the joint
probability distribution still leads to the decision rule illustrated above. (Check this for yourself.)

Suppose you have a large amount of training data from this distribution. You can therefore as-
sume that the eight events above occur in the training data with exactly the specified probabilities.
You can use this data to estimate parameters for a Naive Bayes model by a statistical method. Of
course, the Naive Bayes model will not describe the distribution exactly, since its assumptions are
not met—but all assumptions are only approximate anyway.

What parameter values do you estimate in this case? What decision rule does the Naive Bayes
model of the distribution give? (In calculating the decision rule, you will have the opportunity to
explore the relationships between P(X,Y,C) and P(C|X,Y) = P(X,Y,C)/P(X,Y) in a classification
setting—which may be helpful for you if you’re still rusty with these issues.)
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Problem 1e. In general, it is possible to distinguish between two kinds of learning procedures. One
kind of learning assumes that the world meets certain assumptions, and uses statistical methods to
estimate parameters correctly when those assumptions hold. Another kind of learning assumes that
the rule for optimal performance instantiates a certain format, and searches for the best rule in this
class by optimization.

In a couple of brief sentences, discuss the what examples like that of Problem 1c and 1d have
to say about these two kinds of learners, for the case of Naive Bayes modeling versus optimizing
a linear decision boundary. (Actually, a number of important pattern-recognition algorithms are
based on optimizing a linear decision boundary, including the Perceptron and the Support-Vector
Machine; see Chapter 1.5 and Chapters 3.4–3.5 in Bishop’s text.)
Problem 1f. It turns out that—ignoring the labels and axes for the features and the labels of the
classes—there are only six qualitatively different rules possible for splitting the eight possible ob-
servations of three binary features into two categories each covering four members. The possibili-
ties are shown below.

I II III IV V VI

In which cases can the decision boundary be understood as a hyperplane? In which cases can the
decision boundary not be represented as a hyperplane? Accordingly, in which cases is it possible
to find a distribution underlying the classification rule in which the feature values are conditionally
independent given the class?
Problem 1g. Again, ignoring the labels and axes for the features and the labels for the classes,
there are two qualitatively different rules for splitting the four possible observations of two binary
features into two categories each covering two members. Draw the possibilities.

What evidence does the pattern suggested by Problems 1g and 1f give about the following ques-
tion: if you know that features are not conditionally independent given the class, how reasonable
is it to expect that the best decision boundary will take a linear form?
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Problem 2a. We’ve seen that a Naive Bayes model assigns log probability of class membership
proportional to the distance above a plane corresponding to the class; the normal to the plane is a
weight vector, as in the diagram below (where the box represents a feature space, weight vector w1
corresponds to class c1 and weight vector w2 corresponds to class c2).

w2w1

Use a diagram (and an explanatory sentence) to indicate geometrically how these planes determine
a plane decision boundary for a Naive Bayes classifier (with decision regions on either side).
Problem 2b. Now do the same for this case.

w1 w2

That is, use a diagram to indicate geometrically how these planes determine a plane decision bound-
ary for a Naive Bayes classifier (with decision regions on either side). What is different?
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