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1 Motivation and Overview

The mid-twentieth century saw the introduction of a new general model of pro-

cesses, COMPUTATION, with the work of scientists such as Turing, Chomsky,

Newell and Simon.1 This model so revolutionized the intellectual world that the

dominant scientific programs of the day—spearheaded by such eminent scientists

as Hilbert, Bloomfield and Skinner—are today remembered as much for the way

computation exposed their stark limitations as for their positive contributions.2 Ever

since, the field of Artificial Intelligence (AI) has defined itself as the subfield of com-

puter science dedicated to the understanding of intelligent entities as computational

processes.

Now, drawing on fifty years of results of increasing breadth and applicabil-

ity, we can also characterize AI research as a concrete practice: an ENGINEER-

ING APPROACH to constructing COMPUTATIONAL ARTIFACTS that act in the REAL

WORLD. Such artifacts are known as AGENTS, so we can also describe AI as the

practice of agent design.3 Today, it is the strength and usefulness of this practice—in

domains from human-computer interaction to robotics to electronic commerce and

services—that motivates study in AI and informs the design of the AI curriculum.

By contrast, the view of human intelligence as a computational process now guides

empirical and theoretical research throughout academia, in philosophy, linguistics,

psychology, and even neuroscience. As this volume attests, these disparate fields

continue to achieve increasingly full accounts of the stunning complexity of human

biology, of human environments, and of human abilities. Yet AI can still offer unique

insights into the computational mechanisms and the real-world knowledge that must

underlie our own complex, adaptive behavior; and many AI researchers are proud to

offer what contributions they can to this overarching and imposing effort.

In this chapter, I will first set out, in broad strokes, the activities of modeling, im-

plementation and evaluation that distinguish the practice of agent design. I continue

by illustrating these activities in more depth as they play out in the most straight-

forward case of decision analysis for agent design. This decision analysis show-
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cases both the basic concepts of modeling, implementation and evaluation in AI and

the fundamental and inherent tradeoffs that must be reconciled in an effective agent.

The remainder of the chapter explores an array of techniques for agent design that

provide a standard repertoire of alternatives on these tradeoffs. I encourage you to

view these techniques simultaneously as a toolkit for innovative practical system-

building and as a inspiration to new research into the computational problems of

acting in our world.

2 A General Description of Agents

2.1 Agents Take Real-world Actions Based on Real-world Data

In thinking of AI as an engineering approach to building computational artifacts that

act in the real world, it is easy at first to overlook the dramatic constraints that the real

world imposes on agents, and indirectly on engineers who build agents. But consider

how much freedom in design we find in more typical computer programming—in

structuring classes and methods in object-oriented programming, for instance.

On the one hand, we can often expect to stipulate what inputs the program will

accept, in an unambiguous and restrictive specification. Thus, a compiler or inter-

preter works with texts described by a formal grammar; operating-systems mod-

ules work with the data structures of a particular protocol or programming interface;

and even a user interface channels its communication with its human user through a

small and predefined set of conventional widgets. In circumscribing input this way,

we presuppose that other people will respect these artificial limits: that programmers

must take responsibility to write syntactic code, to implement applications that con-

form to a systems protocol, to learn to use a graphical interface.

On the other hand, we can typically expect to frame the output of the program in

terms of extremely flexible suites of low-level actions, carefully designed and ro-

bustly implemented to achieve useful effects reliably and easily. Look at the se-

quences of microprocessor instructions delivered by a compiler, the storage and

communications primitives beneath an operating system, or the graphics commands

of a windowing system for a user interface. Such resources are never perfect, but in

practice, programmers can expect to overcome any unexpected results or missing

functionality with simple workarounds, not global analysis.

These expectations make for an attractive and useful division of labor. The de-

sign of a computer program becomes an exercise in internal organization—a matter

of carving up an overall task into subproblems in an elegant, comprehensible, exten-
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sible way and of realizing lean, encapsulated modules to solve these subproblems.

Such tasks are challenging but sharply delineated.

These idealizations collapse with a commitment to the real world, to an input en-

vironment and output effects that precede our implementation and exhibit no over-

arching design. In an agent, a designer can no longer stipulate any artificial in-

variants that inputs must respect; the inputs must be those that nature provides. In

an agent, a designer can no longer presume a general repertoire of actions with

robustly-designed links to desired effects; the consequences of actions unfold natu-

rally, through the inherent dynamics of a broader world. As if this weren’t enough,

the complexity and unpredictability of the real world seems to complicate the in-

ternal organization of an agent, too. It is fantastically difficult to carve small and

interesting tasks out of the world and solve them in a constrained way, the way you

would carve up the problems induced in typical computer programs and write sepa-

rate modules to handle them. Indeed, some AI researchers have suggested that real-

world problems are so complex and interdependent that any sufficiently interesting

problem will effectively involve a solution to all of them. (This leads to the gag

concept of an AI-complete problem.)

The difficulties of agent design come as no surprise with the picturesque tasks

that sometimes motivate AI research; after all these are tasks that are only now

starting to afford suggestive implementations. One such benchmark is an agent de-

sign to control a physical robot running tours or deliveries in a populated space.4

Here, inputs might include the readings of real sensors from the environment: op-

tical cameras, laser and sonar rangefinders, perhaps a global-positioning receiver.

These readings are always more or less noisy, and sometimes fail altogether. Out-

puts, meanwhile, might take the form of voltages to motors (on wheels, for exam-

ple); the success or failure of such an action will depend on such ephemera as the

location of the robot itself, the location of people and other obstacles in the robot’s

surroundings, and even the condition of the floor. The gap between inputs and out-

puts calls for an implementation whose every action responds to an imposing range

of considerations. The agent must draw on background information, such as maps

of the environment; it must interpret its current sensed data as mirroring or diverg-

ing from the real state of the world; it must predict and weigh the range of effects a

choice might have in its specific situation.

But don’t be misled by ambitious tone of such benchmarks. The use of real-

world actions and real-world data is now an increasingly common requirement of
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cutting-edge computer systems. When internet software assesses the content of web

pages written by people for people, it must deal with the human idiosyncracies of

style, sloppiness and error. When ubiquitous computation is embedded not in a pre-

defined computational infrastructure but an open-ended physical environment, in-

puts and outputs involve inevitable uncertainties and indirections. Any commitment

to the real world, no matter how constrained, brings with it the ensemble of perspec-

tives and challenges to which AI research responds.

Real-world tasks give AI a focus on MODELING, describing the real world by

a mathematical approximation. A model, as an approximation of its object, ac-

knowledges the open-ended texture of reality; there are always finer distinctions

to be drawn, wider-ranging interactions to capture. An effective design allows an

agent to respond robustly across a range of possible environments despite these

approximations—a good model can capture just those features and regularities that

an agent depends on in the environment for its success. But even a good model sug-

gests possible refinments. Pursuing them not only guides the development of more

successful and flexible agents, but also, in the best case, can challenge our under-

standing of the rich world in which we too must act.

Mathematics imbues a model with precision. With the methods of logic, prob-

ability and statistics, we can definitively articulate the information about the world

our model can offer, and the assumptions about the world our model embodies. In

so doing, we lay essential groundwork for the implementation and evaluation of an

agent that exploits just this information, but depends on just these assumptions, to

solve its real-world tasks.

2.2 Agents Are Computational Processes

We live in a world so pervaded by silicon, in all its ramifications, that it is easy

to forget that there are alternatives to computational processes. But of course un-

til recently, these alternatives were the mainstay of invention. At one extreme, we

counted on assemblies of gears and escapements and pendulums to coordinate real-

world data, the passage of time, with a real-world action, the motion of a dial. Now

we are happy to conduct our schedules according to contraptions of piezo-electric

crystal, LCDs, and silicon wafers instead.

Many fields closer to AI than this mechanical engineering example—notably

control theory in electrical engineering—originate in the description of analog and

continuous systems that generate sophisticated real-world behavior in response to
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messy real-world data. These fields have developed fundamental mathematical tools

which Moore’s law increasingly brings within the sphere of a computational ap-

proach: a case in point is the discrete-time Kalman filter, a probabilistic framework

for optimally reconciling a noisy prediction from the past and a noisy datum from

the present.5 Such contrasts impel us to be precise about computation; it is, after

all, perhaps the oldest and strongest constant of AI practice. I follow Allen Newell’s

answer.6

To say that an agent is a computational artifact means that it is a PHYSICAL SYM-

BOL SYSTEM. Most generally, we can count as a symbol any object that has an ar-

bitrary conventional meaning; this concept originates with the nineteenth-century

American philosopher Peirce.7 For AI in particular, then, the symbol consists of a

discrete, atomic element which by stipulation is interpretated as standing for some

generalized constituent of the real world: perhaps an individual object, or a prop-

erty that an object may or may not enjoy, or a state of affairs that may or may not

obtain. In a concrete implementation, symbols are realized as tokens of sequences of

charged and neutral bits in memory cells; their correspondence with reality is medi-

ated by a symbolic programming language and determined by a mathematical model

of reality framed by a human designer.

In a physical symbol system, occurrences of symbols are assembled together into

REPRESENTATIONS: complexes of symbols that correspond to statements about the

real world. The correspondence endows the state of the agent—otherwise just an ar-

ray of ones and zeros—with intelligible meaning. The agent’s representations may

spell out facts that the agent knows, goals that the agent has for its environment,

or intentions to which the agent is committed. These representations give the agent

meaningful reasons to act in its environment in a specified way—reasons to act that

can themselves take the form of representations. Moreover, where this correspon-

dence originates in a model of the world, our understanding of the model informs our

understanding of the agent’s behavior. An agent’s representations, and its behavior,

can fit the world only as much as the model that guides its design.

Here is the paradox and the opportunity of computational processes: though WE

understand representations in terms of their MEANING, the process itself manipu-

lates representations purely on the basis of FORM. An agent undergoes a determin-

istic sequence of discrete states; a finite specification ultimately spells out how each

state is extended, revised, or streamlined in its successor, based just on the read-

ings of the agent’s sensors and the brute identity of the state as a binary array. The
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paradox, that the meaning of representations is simultaneously fundamental and ir-

relevant, is palpable; the opportunity, founded in the basic results of computational

logic and probability, is the fact that we can design computational processes in an

impressively wide range of cases to serve up representations exactly when those rep-

resentations follow from our mathematical models. Such design epitomizes the AI

implementation.

2.3 Agents Must Be Engineered

AI is an engineering methodology, dedicated to understanding the empirical perfor-

mance of agents as a guide to agent design. That means that after the modeling and

implementation for an agent comes a thoroughgoing evaluation, spanning the con-

cerns of AI research. For starters, we must determine how useful the agent proves

for the overall task for which it was designed. In this assessment, nothing substitutes

for observed runs of the agent, both in realistic field tests and across specifically con-

trolled protocols of execution.

A successful design is not established merely with a satisfactory product; we

must also evaluate our agent as a computational process. In particular, we can ask

how well our algorithms perform not in idealized or worst-case conditions, but when

running on specific hardware under a specific distribution of problem instances.

Such questions become particularly important when algorithms only approximately

realize the predictions of an underlying model, so that the very behavior of the agent

depends on the empirical properties of its computations.

Most abstractly, but equally importantly, we must undertake an evalution of our

models themselves; the construction of our agent enables new investigation of gen-

uinely scientific questions. How well do the models that we have constructed to de-

scribe the environment of our agent actually fit the situations our agent encounters?

Are the approximations and idealizations about the world that we have adopted in

our model appropriate for practical problem-solving? At long last, is the world as

we thought it was?

Evaluation stands on its own as a feature of AI practice, but it revolves around

modeling every bit as much as does design. Whereas design involves models of

the agent’s environment, in evaluation, we model the ENSEMBLE of the agent act-

ing in its environment. Our evaluation model distinguishes a particular hypothesis

about the running agent from a family of plausible alternative descriptions of it; each

description maps out the distribution of behavior we should expect from a suite of
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events in which our agent runs.

Now, we are rarely fortunate enough in trials of our agent to observe exactly the

behavior that our evaluation hypothesis predicts, and rarely unfortunate enough to

observe results that completely diverge. The difference between what we expect in

trials and what we see is a matter of degree. Modeling in evaluation serves as the

background for the judgments we report in assessing this actual observed behavior.

By modeling the agent in its environment, we normalize the difference between ob-

servation and prediction—we quantify how surprising such a discrepancy would be

in view of our specific hypothesis about the running agent and alternative models

that could better match the experimental observations.

In evaluation, we can easily be proved wrong, but we will never discover that our

agent works, that our computations are accurate, that our model fits. The best we can

hope for is a provisional go-ahead—an invitation to attempt a richer model, a more

complex computation, even just a more strenuous evaluation. No research practice

rewards those who seek definitive answers. The appeal of AI is the ability to ask with

absolute freedom, “what if?”—what does it mean to view the world, and ourselves,

against a specific set of assumptions—and the ability to flesh out the question into

a model, to realize the model in a real artifact, and set that thing loose into a world

where, in the end, we can all judge “what if” for ourselves.

3 Decision Models: A Concrete Illustration of AI Practice

For the rest of this chapter, we will explore this general view of agent design. We

start by considering a simplistic but general way of describing how an agent’s ob-

servations and decisions can lead to successful or unsuccessful real-world outcomes.

These descriptions are known as DECISION MODELS, and the process of construct-

ing such models is known as DECISION ANALYSIS. Decision models do not origi-

nate within AI; decision models offer a perspicuous and principled tool for a wide

range of fields, particularly business management, medical care and public policy,

whose practice involves choice under uncertainty.8 But here we will emphasize how

computer scientists in particular can use decision models, as a mathematical approx-

imation to the DESIGN SPACE for their agent implementations.

3.1 Modeling

To apply decision analysis to agent design, a designer starts by finding a set of situa-

tions that the agent will enter in a distinctive computational state, and that the agent
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could face repeatedly without any repetition substantially affecting another. I will

call this the CONTEXT under investigation in the design. The problem for design is

to determine what the agent will do in this context.

Observe that the context of investigation is characteristic of AI practice in set-

ting up a link to the real world, and an approximation. When we link a distinctive

state of the agent to a specific set of real-world situations, we help ensure that we

have a meaningful subproblem for agent design, because we ensure that the compu-

tations we plan for the agent can and will determine the agent’s responses to a clear

range of circumstances. Indeed, it is common in robotics to call such a collection of

coherent responses a BEHAVIOR, especially among those who emphasize the impor-

tance of equipping a successful agent with an appropriate repertiore of behaviors.9

At the same time, in an open-ended world, we must expect that the agent’s com-

putational states across this set of real-world situations will be only approximately

equivalent; we must expect that such states will arise not under just these situations

exactly, but only approximately so; and we must admit that some of these situations

exert some influence on some others, even if that influence can be ignored for prac-

tical purposes. We must be mindful of these approximations in implementing and

evaluating our design.

Let us consider the implementation of a robot-pet consumer toy an illustration.

Its task, informally, will be to entertain its owners, by performing tricks such as

fetching a ball thrown past it or dodging a ball rolled towards it. Our toy will have

legs for locomotion, and a simple camera and touch receptors to sense its environ-

ment; we would doubtless want it to take the form suggestive of a familiar pet—a

dog say.

A designer might devote special consideration to those situations where one of

these tricks takes the dog from a brighly-illuminated area to a darker one. What if,

for example, a slightly malicious child gets the dog to scoot through a doorway from

a sunny room into a dark closet? The dog faces particular uncertainty and risks in

such situations; the dog will have limited visual information until the aperture of its

camera opens mechanically, and the camera can capture crisp images at the lower

light level. Fortunately, since the dog can be provided with a trigger that identifies

cases of insufficient illumination robustly (if never perfectly), the dog can be de-

signed to handle these situations strategically.

Once we have a context of investigation, we can frame the design problem pre-

cisely. Our final agent will have some algorithm that it follows in this context; this
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Figure 1: The agent’s cycle of perception and action in its environment.

algorithm continues until the agent’s task is complete or until other conditions pre-

vail and other algorithms take over. We suppose that the execution of this algorithm

involves a sequence of possible states or CYCLES; each cycle offers the agent an op-

portunity first to PERCEIVE its environment and then to ACT to change it. Figure 1

offers a mnemonic depiction of the origin of this cycle of execution in the agent’s

interaction with its real-world environment.

In each cycle, the agent begins with expectations about its environment informed

by its history, including the distinctive initial state of the algorithm, any sensor read-

ings it has obtained during prior cycles of execution, and any past actions it has

taken. The agent can then reconcile these expectations with the new readings about

the environment available in this cycle. Finally, the agent selects an appropriate ac-

tion, as dictated by the algorithm of our design.

A decision model offers perhaps the simplest possible description of the space

of such algorithms. A decision model represents the stages of execution of possible

algorithms in terms of a history of observations and choices that the agent has made

from its initial state. It represents the agent’s expectations at each stage of execution

statistically, in terms of the probability of different observations. At any stage where

the agent will act, the decision model lays out each of the possible actions that we

might design the agent to take. Finally, for stages where the algorithm terminates,

the model provides an assessment of the outcome that the agent has achieved with

the complete alternative history.

The formal structure of a decision model is a TREE—that is, a mathematical ob-

ject containing a set of NODES and a set of EDGES that lead from one node to an-

other, where there is exactly one path from any one node to any other node. (A path

follows a succession of distinct edges forwards or backwards.) Each node in a de-

cision model represents a possible stage of computation for our agent, which the

agent would reach in a subset of possible situations in the context of investigation.

Each edge in a decision model represents a possible way that the computation could
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Figure 2: An observation node.

evolve in one step of perception or action.

Internal nodes in a decision model are of two kinds. The first kind, OBSERVA-

TION NODES or CHANCE NODES, represent a stage of execution of the algorithm

which obtains information from sensors. From the agent’s point of view, these ob-

servations are unpredictable; the agent must be prepared for any possible result. At

the same time, the agent may have some evidence about which results are more

likely and which results are less likely.

Mathematically, we describe such an observation using a RANDOM VARIABLE

associated with the observation node. This variable takes on one of a finite set of

different VALUES, corresponding to the different possible results of the observation.

Since the decision model must represent all possible alternative histories of com-

putation, each possible value determines an edge to a new node, called a CHILD of

the observation node; this child represents a further stage of execution in which the

agent has observed this value. In addition, to formalize the evidence available to

the agent about how its history meshes with the real-world situations of the context,

each value gets a PROBABILITY between 0 and 1. Here, this probability is measured

relative to the situations in this context which match the agent’s history; the proba-

bility reports the fraction in which an agent would observe the specified value. Of

course, the sum of the probabilities for alternative values of the variable must sum

to 1.

Figure 2 illustrates the graphical convention that we will use to display obser-

vation nodes in decision models. The node is drawn with a circle with the random

variable within; here it is X. (The use of a circular node will provide our standard

indication for a random variable.) The edges to the children of the node are labeled
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Figure 3: A decision node.

by value and probability; here we see X = y with probability 0.8 and X = n with

probability 0.2. For our robot, we can understand X as a boolean observation, de-

rived from automatic analysis of the latest image, which reports whether the agent’s

field of view contains a certain kind of blob (possibly indicative of a nearby toy ball

and so possibly suitable for guiding a following behavior). Thus, the reading X = y

is evidence there is a ball to follow; the reading X = n is evidence there is not. The

submodels associated with these different outcomes are not explicitly represented;

triangles mark where the subtrees have been suppressed for exposition.

The second kind of internal nodes, DECISION NODES or CHOICE NODES, rep-

resent a stage of execution of the algorithm at which an action can be performed.

Our design space can include a range of different algorithms that involve alternative

actions for each choice point. We assume that our design may freely select any of

these actions at this stage of execution, whichever we think best. Accordingly, each

decision node has a unique child for each alternative action that we are prepared to

consider.

Figure 3 illustrates the graphical convention we will use for decision nodes. The

node is drawn with a square; an index within the square, here 1, labels the choice for

further discussion. (Again, a square will provide our standard notation for a choice.)

The label of an outgoing edges indicates the action taken at the decision node for that

child’s history. Here we consider three possible actions that might be available for
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our robotic dog: running a primitive following behavior, represented by f , to track

a visual object; waiting for its cameras to accommodate to the ambient illumination,

represented by w; and returning to home base by some robust behavior, represented

by h (we might assume this behavior uses a different sensory modality from vision,

such as a wireless beacon).

Finally, a leaf node in a decision model represents a state in which our algorithm

has terminated and the agent has realized some distribution of possible outcomes.

We will represent the degree of success that an agent achieves with a course of action

in terms of a real number between 0 and 1, called a UTILITY VALUE. A utility value

of 0 represents total failure; a value of 1 represents complete success. Intermediate

utitility values indicate partial success, the higher the better.

Utility is a human abstraction; it records both the preferences by which we as

designers rank alternative real-world results, and our willingness to let our agent take

risks whose results are only possibly favorable. As such, utility is not an arbitrary

score but rather a precise tool, whose use requires methodological and technical care.

Methodologically, the appeal to utility presumes that we are explicitly commit-

ted in design to specific objectives for our agent. Many objectives are reasonable:

to minimize the cost in dollars of the resources consumed by the agent; to maximize

work achieved by the agent, as measured in the natural units of that work whether

they be bytes transmitted in an embedded network or packages delivered in an aug-

mented office; to maximize the satisfaction of the users or owners of the agents, as

indicated by reported scores on a subjective rating scale; or several such objectives,

in any weighted combination. Typically, our inspiration (or employment) in build-

ing an agent impels the choice. For our robotic dog, for example, we can expect

performance to be measured by the reports that members of its target market give

about how much they enjoy observing and interacting with the toy.

Technically, the appeal to utility demands that such fundamental measures be

used indirectly, in order to account for our attitude towards risk. We stipulate that

the utility of a risky situation is determined by a summation that counts the utilities of

the different possible outcomes in proportion to their probabilities. For example, if

we measure utility as dollar cost savings, we assess a risk that sometimes saves $.75

but is equally likely to save $.25 as worth $.50; that is an improvement on a definite

outcome that saves $.49. If we measure utility directly on a subjective scale of user

satisfaction, we assess a risk that sometimes pleases the user to degree 0.75 but is

equally likely to please the user to degree 0.25 as worth 0.50; that is an improvement
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Figure 4: Performance, utility and risk.

on a definite outcome that pleases all users to degree 0.49. Equating measure and

utility makes sense in some design problems, such as those where many agent runs

contribute independently to the overall benefit of deploying the agent or agents.

However, some problems call for more conservative strategies, called RISK-

AVERSE, which instead prioritize surer outcomes. Our robotic dog example could

easily prove to be such a problem. For instance, we might want our robotic dog

to develop a long, engaging, and consistently satisfying relationship with its prin-

cipal user, and we might find that an episode in which the dog upsets this person

jeopardizes this objective in a way that one equally happy outcome cannot offset.

Accordingly, we would want the dog to prefer a strategy that leads to sure but mild

satisfaction over one that shoots for thrills but risks disaster.

Utility can accommodate risk-averse strategies through transformations of per-

formance measures that discount higher values relative to lower ones. Figure 4

contrasts the relationship between performance and utility for risk-neutral and risk-

averse agents. Thus, to get our dog to prefer to satisfy users less thoroughly but more

of the time, we might transform a user rating of 0.25 to a utility of 0.50; a rating of

0.49, to a utility of 0.70; and a rating of 0.75, to a utility of 0.87. (If p is the per-

formance measure and u is the utility, our transformation is u =
√

p.) That original

risk now stands at 0.68 and fails to surpass the definite outcome in utility.

Figure 5 illustrates the graphical convention we will use for leaf or REWARD

nodes. The diamond is the standard notation for an assessment of outcome; the num-

ber within reports the utility achieved.

In our discussion thus far, we have already presented the key ingredients of a

decision model for our robotic dog. In summary, we have identified a context for
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agent design in which the robotic dog chases a ball into a darkly-lit region; the low

illumination of the agent’s cameras in these situations sets up a computational con-

text for specialized decision-making. In this context, the agent has three actions at

its disposal: to continue the chase however it can ( f ), to wait for its cameras to ac-

commodate (w), and to return home (h). It can schedule any of these actions at any

stage of execution. However, we rule out two consecutive steps of waiting, because

once the agent has waited for its cameras to accommodate, further waiting will not

improve the images it obtains but will make the agent less likely to catch the ball or

otherwise entertain its owner. Meanwhile, as events develop, the agent has access

to a binary observation X. The reading X = y provides excellent evidence that the

agent sees the ball it was chasing; the reading X = n provides excellent evidence that

it does not.

These considerations determine a design space for the agent as illustrated in Fig-

ure 6. The agent begins at node 1 with an initial choice of action. If we design the

agent to follow the ball or to return home, we immediately determine the agent’s

performance in this situation. If, however, we design the agent to wait, we offer the

agent a second perception-action cycle; the agent’s next action is conditional on its

reading for X. At this stage, at decision points 2 and 3, we call for the agent to com-

mit to follow or to return home. Consequently an outcome is assured.

Figure 6 describes our alternative designs, but does not describe the success that

those designs will achieve in the actual circumstances in which the robot will act.

For that, we must provide the probabilities and utilities that Figure 6 as yet omits.

In special cases, we will be able to supply these parameters as part of our spec-

ification of the agent. Typically these are cases where the design team can base any

values they provide on substantial experience with the task context. Even with such

expertise, specification is contraindicated when the exact parameter values greatly

affect the design, either because small changes in those values can affect which ac-

tions the agent should take or because they can induce substantial differences in the

utility the model predicts for those actions.
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Figure 6: Design space for the robotic dog context.

The alternative is to determine parameter values by empirical investigation. For

our robotic dog, that would mean building a prototype that could exhibit the full

gamut of possible behavior for the context under investigation. We then estimate

parameter values by collecting a range of possible histories with this prototype and

assessing the outcome the prototype obtains in each. In other words, this is a prob-

lem of MACHINE LEARNING, a topic we return to in Section 4.1.

For the moment, though, we proceed by speculation. As Figure 7 shows, we

speculate that users find a successful chase quite entertaining (0.7). On the other

hand, for the robot to chase after a ball it can’t see is hardly any fun (0.2), and it

is all the more boring when the robot waits before doing so (0.1). In between are

cases where the robot just returns home, either immediately (0.3) or after some de-

lay (0.25); while these outcomes are not themselves fun, they at least afford another

game. Finally, as Figure 7 again shows, we speculate that our robot is able to reac-

quire the ball with probability 0.8 after waiting to get a better image.

By this point, you may be quite keen to know what it is that our robot should

actually do. The answer is the algorithm—or as we shall soon say, the POLICY—

presented informally in (1).

(1) Wait. Then, if X = y, follow; if X = n, return home.
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Figure 7: Full decision model for the robotic dog context.

You should be able to convince yourself that by implementing this policy, the robot

can achieve a utility of 0.61.10 You can also check that no alternative choice for our

agent at any stage of execution will yield higher utility than what (1) provides at that

stage.11 In fact, then, our design space does not offer any policies that improve on

(1).

3.2 Implementation

In building our robotic dog, or any other AI agent, we have the opportunity not only

to implement specific policies such as (1) but also to work with classes of models and

classes of policies in a general way. It is these general computations that offer the

most compelling demonstration of the flexibility and elegance of physical symbol

systems. This section offers an illustration: here we consider a general implemen-

tation of representation and reasoning with decision models.

In presenting this implementation, I will adopt the practice, common in com-

puter science, of abstracting from the details of any particular programming lan-

guage. All programming languages provide the resources to describe a useful and

general inventory of basic types of representation; all programming languages al-

low collections of these representations to be assembled and organized into regular

DATA STRUCTURES. Similarly, all programming languages provide useful and gen-
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eral ways to perform basic calculations and to sequence complex computations by

examining assemblies of structured representations. In view of these commonali-

ties of implementations across programming languages, presentations of represen-

tation and reasoning can proceed in an abstract PSEUDO-CODE that focuses on the

essentials, and allows the reader to adapt the discussion easily to the programming

language of their choice.12

3.2.1 Representation

We begin by describing data structures for decision models and for policies. Our

pseudo-code assumes basic types for INTEGERS, as typically realized as binary nu-

merals of fixed length; REAL NUMBERS, as typically realized in accord with stan-

dards for floating-point arithmetic operations; and a further basic type, for SYM-

BOLS, which is rather distinctive to AI. The symbol type provides a set of arbitrary

elements for which a programmer maintains an arbitrary and open-ended correspon-

dence with constituents of a real-world environment; programmers specify symbols

as character strings and the computational realization of symbols is typically closely

related to these strings, but may streamline the implementation to speed up compu-

tations.

Our pseudo-code also assumes three ways of packaging data elements together

into larger structures. A LIST groups together any number of data elements of the

same kind into a sequence whose elements can be accessed only by stepping for-

ward one element at a time. To specify a list, I will give the elements in brackets, as

[1,2,3]; when describing computations that apply uniformly across a list, I will also

use ellipses, as [a1 . . .an], and indices, as ai. A TUPLE groups together a specified

number of data elements of specified kinds into a structure each of whose elements

can be accessed directly. To specify a tuple, I will give the elements in parenthe-

ses, as (1,2,3). Finally, a NAMED STRUCTURE provides a way of grouping together

heterogeneous collections of data when a representation takes qualitatively different

forms in different cases. Each instance of a named structure is written f T where f

is a symbol that identifies which form the data takes and T is a tuple that specifies

the specific data elements for this instance; the definition of the named structure de-

scribes which such cases are possible.

Thanks to these assumptions, we can specify decision models using named struc-

tures as in (2).

(2) A MODEL is a named structure consisting of one of the following:
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dcsn(1, [( f , rwd(0.2)),
(w, obsv(X,[(y,0.8,dcsn(2,[( f ,rwd(0.7)), (h,rwd(0.25))])),

(n,0.2,dcsn(3,[( f ,rwd(0.1)), (h,rwd(0.25))]))])),
(h, rwd(0.3))])

Figure 8: Data structure for the model of Figure 7.

• obsv(X,os) where X is a symbol and os is a nonempty list of tuples

(vi, pi,mi) with vi a symbol, pi a real, and mi a model data structure;

• dcsn(n,as) where n is an integer and as is a nonempty list of tuples

(ai,mi) with ai a symbol and mi a model data structure;

• rwd(u) where u is a real.

The three cases correspond to the three kinds of nodes introduced earlier. The sym-

bol obsv keys an observation node; the parameter X represents a variable that the

agent can observe, and the list os represents both the observations that the agent

might make, and the consequences of those observations. The symbol dcsn keys

a decision node; n indexes a specific possible choice for the agent, and the list as

determines both what the actions the agent can take and what consequences those

actions have. The symbol rwd keys a reward node; the parameter u represents the

utility of outcomes that the agent has achieved.

Figure 8 shows how we write the model of Figure 7 as a data structure according

to the conventions culminating in (2). Figure 8 doubtless helps motivate the graph-

ical format of Figure 7 as a means for people to communicate decision models! At

the same time, however, it underscores that any depicted model also corresponds to

a concrete data structure that can be recreated on a machine.

By the same token, the interpretation we sketched for graphical decision models

in Section 3.1 now allows us to interpret any model data structure as embodying a

precise claim about the world. We start from our design context. This context gives

us a correspondence between the action symbols in a data structure and the real ac-

tions our agent can take; it gives us a correspondence between observation symbols

and the real computations our agent could do to obtain a reading from a specific sen-

sor; and it gives us a correspondence between value symbols and the real readings

that our agent could derive from its sensors. Moreover, the context determines the

distribution of real-world situations which a model structure as a whole must de-
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scribe, for the model proceeds from a computational state triggered in just these sit-

uations and spells out the possible consequences of the agent’s subsequent actions.

In general, then, each substructure of the whole model describes the result of

particular observations and actions in the context and so will make a CLAIM about

a corresponding subset of these situations.

Drawing on this background, we can formalize such claims recursively.

(3) a A structure rwd(u) claims about situations S that these situations give

the agent an expected utility u, and no opportunity for further action.

b A structure obsv(X, [(v1, p1, t1) . . .(vn, pn, tn)]) claims about situations S

that these situations all provide the agent a reading corresponding to

observation symbol X; that each result vi occurs with probability pi

throughout S, determining corresponding situations Si; and that the

claims of each substructure ti hold about situations Si.

c A structure dcsn(n, [(a1, t1) . . .(an, tn)]) claims about situations S that

these situations all provide the agent an opportunity to act in which the

agent can be designed to do any of the actions corresponding to a1 . . .an,

determining corresponding situations S1 . . .Sn; and that the claims of

each structure ti hold about situations Si.

A body of definitions such as (3) that relates an agent’s data structures recur-

sively to conditions on its environment is called a COMPOSITIONAL SEMANTICS.

A semantics allows us to interpret an agent’s data structures as representations of

its environment. The payoff for this interpretation comes in the operations that we

define on the agent’s representations. We will be able to show that these operations

allow the agent to act as it should if its environment matches what it represents.

To proceed with this development, we also need a data structure that can repre-

sent an algorithm by which the agent acts in its environment. As a computer scien-

tist, one learns to take this very deep step quite casually—we can design data struc-

tures that represent anything we want, so we can even design data structures that

represent rules for carrying out computations! (4) defines a named structure for such

an algorithm.

(4) A POLICY is a named structure consisting of one of the following:

• switch(X, ps) where X is a symbol and ps is a nonempty list of

tuples (vi,πi) where vi is a symbol and πi is a policy data structure;
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• do(a,π) where a is a symbol and π is a policy data structure;

• a case end for which no further data is required.

Informally, switch(X, [(v1,π1) . . .(vn,πn)]) represents a conditional algorithm in

which the agent first carries out the observation corresponding to X and then con-

tinues with the policy πi for whichever reading vi is obtained; do(a,π) represents

a sequential algorithm where the agent first performs the action corresponding to a

and then continues with the policy π; end represents the final stage of execution at

which the policy ends. Thus the policy described in (1) can be implemented in the

policy structure of (5).

(5) do(w, switch(X, [(y,do( f ,end)), (n,do(h,end))]))

As with Figure 8, this example serves as a reminder that we could at any point recast

our human descriptions in an explicitly computational formalism (and as an illustra-

tion of why we may prefer not to).

A given model represents an environment in which only select policies are guar-

anteed to be executable; we will call such policies FEASIBLE in the model.

(6) a In a model rwd(u), end is the one and only policy that is feasible.

b In a model obsv(X, [(v1, p1, t1) . . .(vn, p1, tn)]), a policy is feasible if and

only if it takes the form switch(X, [(v1,π1) . . .(vn,πn)]), where each πi is

feasible in ti.

c In a model dcsn(n, [(a1, t1) . . .(an, tn)]), a policy is feasible if and only if

it takes the form do(ai,π), where π is feasible in ti.

A model determines the expected utility of any policy that is feasible in it, by

describing the probability of alternative outcomes under the policy and the utility

associated with each outcome. The overall utility (as always) sums the utility of each

outcome weighted by its probability. You should be able to construct a recursive

definition by cases, analogous to that in (6), which calculates this utility.13

3.2.2 Reasoning

Now we turn to the main problem: given a decision model t, compute a feasible

policy that has the highest expected utility in t. Such a policy is called an OPTIMAL

policy for t. The significance of this problem derives from the compositional se-

mantics we have provided for decision models. Suppose that t is an accurate model,

so that the claim associated with t truly describes our agent’s environment. Then
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when the agent acts in this environment, it must carry out a policy that is feasible in

t. Moreover, each feasible policy actually has the utility predicted for it by t. Thus,

when t is an accurate model, an optimal policy obtains results for our agent that can-

not be improved. This section describes a procedure OPTIMUM that solves this key

problem, and justifies the details of this procedure in a mathematical way.

In order to streamline the mathematical development, we will avail ourselves of

the certain constructs in our pseudo-code for procedures. First, we specify proce-

dures by cases, depending on the form of representation of the available data. For

example, for OPTIMUM, the data is the model structure t; t may take the form of an

observation, a decision, or a reward, and in each of these cases a different course

of action is indicated. Be aware that we are abstracting away from the alternative

mechanisms programming languages have to achieve such definitions: some do it

directly, in procedure definitions; some do it indirectly, by packaging data together

with special-case METHODS of operation into OBJECTS; others can only do it ex-

plicitly, with conditional statements.

Second, we assume that procedures can construct an arbitrary structure of data,

and RETURN it as a result. For OPTIMUM, the result will be a tuple (π,u) reporting

both the optimal policy π for t and the maximum utility u that the agent can achieve

in t. (Evidently, u must be the utility of π in t.) Again, you would do well to remem-

ber that programming languages do not all make it equally convenient to deliver such

complex results.

Third, we will use general assignment statements of the form in (7) to indicate

that the values in the specified structure are determined through carrying out the

specified computation.

(7) structure← computation

Our definitions will assign a value to any variable at most once. The convention of

assignment may therefore be regarded as an instruction to reuse a computed value

(like a kind of abbreviation); it does not require the use of program variables with

mutable values, which can be changed repeatedly over the course of a computation.

Finally, we will use mathematical notation to specify such routine calculations

as summation, finding the largest element in a list, applying a common operation to

all the elements of a list, or constructing a new list in a uniform way.

Pause, then, to consider the procedure OPTIMUM as defined in the three cases of

(8).
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(8) a OPTIMUM rwd(u)

RETURN (end,u)

b OPTIMUM obsv(X, [(v1, p1, t1) . . .(vn, pn, tn)])

for each i: (πi,ui)← OPTIMUM(ti)
RETURN (switch(X, [(v1,π1) . . .(vn,πn)]),∑i pi ∗ui)

c OPTIMUM dcsn(n, [(a1, t1) . . .(an, tn)])

for each i: (πi,ui)← OPTIMUM(ti)
d← any i that maximizes ui

RETURN (do(ad ,πd),ud)

We wish to show the CORRECTNESS of this definition; that is, we wish to show,

for any tree t, that OPTIMUM t returns a pair with the optimal policy for t and the

maximum utility possible in t. In keeping with the form of Definition (8), which

sets out the result of OPTIMUM on a larger model in terms the result of OPTIMUM

on smaller model, we will argue for correctness by STRUCTURAL INDUCTION.

Each model structure has a maximum length in the number of steps of percep-

tion and action that it offers the agent; call this the HEIGHT of the model. We group

together models by height, and consider what happens as height gradually increases.

The simplest models, with height 0, take the form rwd(u). By (8a), here

OPTIMUM returns (end,u). This is the only feasible policy, so it must be optimal,

and of course u is its utility.

We now hypothesize for the purposes of argument that OPTIMUM is correct

for models of height h or less, and consider a model t of height h + 1, for

which OPTIMUM returns (π,u). Now u will be the utility of π, as you can eas-

ily verify,14 so it suffices to show that no feasible policy π′ has higher utility than

u in t. We prove this by contradiction, considering separately the two possible

forms that t could take: obsv(X, [(v1, p1, t1) . . .(vn, pn, tn)]), where (8b) applies; and

dcsn(n, [(a1, t1) . . .(an, tn)]), where (8c) applies.

In the first case, π and π′ are conditional policies; they spell out out a course

of action to take for each alternative reading for the observation. According to the

clause (8b) which computes π, the overall model t includes a submodel ti of how

the world evolves with any particular reading vi, and in each case π directs the agent

to follow a policy πi that is optimal for this submodel. Now if π′ has higher utility

than π, it must have higher utility than π for some possible reading vi and submodel
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ti, where π says to take πi for ui but π′ says to take π′i for u′i. But by hypothesis,

because of the first step of (8b) where we compute OPTIMUM for a model of height

h or less, πi is optimal and such a π′i is impossible.

In the second case, π and π′ are sequential policies that spell out initial actions

ai and ai′ and policies πi and π′i′ to follow afterwards. According to the clause (8c)

which computes π, the overall model t includes a submodel ti of how the world

evolves with any particular action ai, and π is constructed first to perform that ac-

tion ad for which the optimal policy πd for submodel td leads to the best results. (Of

course, π continues with πd .) Now if π′ has higher utility than π, then π′i′ has higher

utility than πd . In (8c), we chose πd over a policy πi′ we calculated for i′, based on

its utility; that means that π′i′ must have higher utility than πi′ . But, again, by hy-

pothesis, πi′ is in fact optimal, so such a π′i′ is impossible.

We have thus established that OPTIMUM starts out treating models correctly, and

that as models increase in height arbitrarily, OPTIMUM continues to treat them cor-

rectly. Thus, we have established that OPTIMUM is correct for all models.

I hope that the rigor of this discussion, which epitomizes the precision possible in

studying computational operations on representations, has not obscured the central

insight which lies behind the procedure of (8) (and its correctness proof, too). To

decide how to act, an agent looks forward into the future as far as it can. In the case

of decision models, that limit is set by reward nodes, which offer the agent no further

actions. From there, the agent works backwards towards the present; at each step it

gradually works out the best policy to guide its action in whatever decisions await,

but at the same time eliminates from consideration a vast array of policies that will

not fare as well. In this way, as the agent goes from step to step, it can focus its

deliberation on just its good, live options.

The OPTIMUM procedure is just one of many useful algorithms for working

with decision models and policies. An obvious further example is the procedure to

EXECUTE a specified policy. Such a procedure must presume a primitive GET that

obtains the reading of a specified variable, and a primitive RUN that carries out a

specified action. With these resources, the procedure can be specified recursively

by case analysis on the structure of policies, along similar lines to OPTIMUM—as

you are invited to verify yourself.15
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3.3 Evaluation

Let’s survey the steps outlined thus far. We have framed our problem, by looking

to the world for a coherent task and considering diverse approaches to solve it. We

have refined this design space into a model of the agent’s environment and task, by

assessing the performance of an initial prototype. And we have drawn on general

procedures to create a decision-making strategy for our agent that best fits this model

of the world. We have, in short, done our very best to make sure that our agent is

going to work. And why should we not have? Careful development may be painful,

but real-world failure is worse.

Despite these efforts, however, success is never assured. Each step has its dan-

gers. Fundamental approximations and basic design assumptions may not suit the

open-ended environment in which the agent must finally act. Training data, too,

may misrepresent that final environment, whether through changing circumstances

or just bad luck. And a real implementation is not an idealized mathematical con-

struction but a human and imperfect creation, in which frank errors cannot be ruled

out.

It is fair to ask, then, does the system work? Does it in fact work for reasons

we understand? How might such agents be improved in the future? The premise of

evaluation is that any answers to such questions are ultimately subjective judgments,

but that they are judgments for which general guidelines are nevertheless available.

The judgment of whether we understand the actual performance of a final agent

(the second of our three questions) is often the clearest. We can base this judgment

directly on a model of our agent’s PERFORMANCE in its environment. A perfor-

mance model describes the full distribution of outcomes that the agent will achieve

by following its policy. As such, it may naturally extend the basic model of the en-

vironment that we use to construct the agent.

Take decision models. A decision model is an incomplete description of the dis-

tribution of an agent’s outcomes in its environment, because each leaf in the model

summarizes a whole distribution of outcomes by a single utility value. The model

of Figure 7, for example, just says that on any trial our agent has a 0.8 probability

of achieving outcomes that have utility 0.7 ON AVERAGE and a 0.2 probability of

achieving outcomes that have utility 0.25 ON AVERAGE. This is useful for the agent:

the agent really is indifferent between a certain outcome with utility 0.7 (say), and

two equally likely outcomes, one with utility 1.0 and one with utility 0.4. But the

difference matters for us for evaluation: in the first case, a trial where the agent sees
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Figure 9: Idealized histogram showing relative probability of different experimental
results ue for average utility across n trials.

an outcome of 0.4 may be quite unexpected; in the second case, it is routine.

In the case of decision models, then, the performance model augments the world

model by information about the distribution of possible utilities at each leaf. Natu-

rally, this distribution can be estimated from the outcomes in training, much as the

expected utility itself can be. (But you must plan for the evaluation!) In turn, the

separate distributions determine the overall distribution of outcomes for a particular

policy.

In practice, we just need to know how much variability the outcomes under a

policy show for the observed utility u. We can measure this by a statistic called the

VARIANCE of the distribution of u. If the mean value for u is µu (here the expected

utility), the variance σ2
u is the value we expect for (u−µu)2. For the model of Fig-

ure 7, we will speculate that observed utilities for different outcomes cluster closely

around their average values; this hypothesis would determine a value of σ2
u in this

case of perhaps 0.036.

In order to use this model to assess the performance of the agent, we perform a

substantial number n of representative runs with our agent and tabulate the results.

Now, individual trials may have unpredictable results, but, if our model is good, our

agent’s average performance ue across all n trials of an experiment is very likely to

come close to the model average µu.

Figure 9 depicts the situation mathematically. It envisages an idealized his-

togram of the results that our model predicts we would obtain, across many exper-

iments with n trials. The peak in the histogram occurs when the experiment sees

outcomes whose average utility exactly matches the model mean µu. As the aver-

age observed utility diverges from the model mean µu, results become increasingly
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rare, although any result remains possible in principle. The narrowness of the peak

reflects the variance σ2
e of results across multiple potential experiments. It can be

shown that σ2
e is approximately equal to σ2

u/n, and that with probability approxi-

mately 0.95 the result of an experiment ue will lie no further than twice σe from µu.

We can now regard our experimental trials as a test of the HYPOTHESIS that the

performance of our agent in the real world matches our model of its performance.

Our experimental trials have an average utility which diverges by some amount d

from µu. A divergence as large as d or larger could always be due to chance. Figure 9

illustrates how our performance model quantifies the probability of such chance di-

vergences. In particular, if d> 2σe, the odds of seeing such a divergence by accident

are worse than one in twenty. Such unlikely results should raise our suspicions about

the model.

In forming a judgment about our hypothesis, we must consider not only the fit

between the hypothesis and the data but also the alternative hypotheses are avail-

able. Suppose that our results are suspicious. If no available hypothesis explains

our results better, our results do not speak against our hypothesis; we simply know

that our results truly are unlucky. On the other hand, when competing hypotheses

about our agent’s performance would fit our observed results better, the poor fit of

our hypothesis to the data does provide evidence against our hypothesis.

A standard measure that reconciles these two considerations is the risk of being

wrong if our performance model is correct, but we judge our experimental results to

be in conflict with it. We calculate this by considering the probability of obtaining

results that diverge from our prediction as much as those we have obtained and that

some alternative model explains better. For most scientific purposes, we are willing

to accept a risk of error of one in twenty. In most agent performance evaluation, we

anticipate that our agent could achieve any utility as an alternative; the interactions

we do not model could help or hurt the agent. Accordingly, we count an experi-

ment as calling a performance model into question when the observed divergence d

is greater than roughly twice the divergence σe expected in the experiment.

As a concrete illustration, suppose we run an experiment in which our robotic

dog performs the accommodation-and-chasing procedure developed in Sections 3.1

and 3.2 40 times. In these trials, it achieves an average utility of 0.65. By eye it looks

as though our agent is doing very well—almost too well. Is it? With this experiment,

σ2
e = σ2

u/n = 0.036/40 = 0.0009; so σe = 0.03. Thus, we reject the model only if

the observed divergence exceeds 0.06. Here the divergence is 0.04. It appears that
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our experimental result of 0.65 is not so unexpected.

We can evaluate other claims about our agent’s performance along similar lines.

For example, we often want to report that our agent is a success. Typically, we mean

by this that our agent yields an improvement over what was previously possible, and

we have to test the alternative that our agent performs the same as others, or worse.

Suppose that, in addition to experimental results from our own agent, we have

experimental results from a benchmark agent, solving real-world tasks under identi-

cal conditions. For new problems, the comparison should be with a simple but rea-

sonable agent; thus our robot dog suggests a benchmark design which always just

returns home in cases of difficulty. For well-studied problems, of course, other re-

searchers’ work supplies the benchmark agents, and it may not even be necessary

to obtain one’s own experimental results for them. Agents’ performance is often

published for standard sets of training and test data made available by the research

community.

We will have observed some improvement over the benchmark in our experi-

ments with our agent; otherwise the experiments certainly provide no evidence that

our agent is an improvement! As part of our judgment of evaluation, we have to

pronounce our opinion as to whether the observed difference reflects a genuine fact

about the agents’ real-world performance, or whether the difference might have

originated by chance. Here the key step is to devise a mathematical argument about

the probability of obtaining an IMPROVEMENT as large as we did by chance, if our

agent and the benchmark agent really have the same performance. It obviously bol-

sters our case if this probability is very small.

Where evaluation against a basic benchmark provides a check for the progress

we have made with an agent, evaluation against a suitable upper bound gives in-

sight into how much room our design leaves for improvement. Such bounds may be

obtained experimentally by investigating how well expert humans are able to per-

form in the agent’s task, or by investigating alternative agent designs whose train-

ing and test data sets include important task information that would not normally

be available to an agent in practice. More generally, with suitable experimentation

and comparison (always backed up by statistical argument), it becomes possible to

defend precise claims about the situations, the representations, or the decisions that

underlie an agent’s strengths or contribute to its weaknesses. Such judgments can

be an invaluable guide to further research.
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4 Decision Models and Paradigmatic AI Problems

Decision analysis not only epitomizes the practice of agent design, but also mani-

fests the enduring challenges of AI research. In this section, I use decision models

as a starting point to delineate these directions for investigation. On the one hand,

decision models illustrate all the general difficulties inherent in connecting repre-

sentations with a complex and uncertain world. Chief among these is the problem of

MACHINE LEARNING, exploiting an agent’s experience in its environment to ground

its models and improve its performance.

On the other hand, decision models turn out to be badly unsuited for most real-

world tasks. This leads to a search for new models. The search responds not only to

the diverse applications of AI—areas such as ROBOTICS and COMPUTER VISION;

HUMAN-COMPUTER INTERACTION and NATURAL LANGUAGE DIALOGUE; MED-

ICAL and SCIENTIFIC INFORMATICS—but more generally to the diverse cognitive

abilities which people manifest across different domains. Better models capture in-

sights that we discover about the real world, in representations that are more general,

more robust, or more concise than decision models. But new models also bring new

kinds of problems; a case in point is PATTERN RECOGNITION, the computational

investigation of discrete responses to a continuous environment.

4.1 Problems of Learning and the Complexity of Models

In accounting for the limits of decision analysis—or any very flexible class of real-

world models—the central concept is the COMPLEXITY of the model as a description

of an agent’s environment. A model is complex to the extent that it is free to repre-

sent arbitrary relationships that might hold in the environment. By this definition,

we may argue that decision models are in fact as complex any model could be.

To see why, suppose we have a decision model t and a policy π that is feasible in

t. For expository purposes, we will assume that all executions of policy π terminate

after exactly n+1 steps of action, and we will assume that each cycle of perception

feeds the agent the value of a binary observation variable. We label these variables

Xi with i ranging from 1 through n.

Familiar arguments show that the model t assigns 2n possible outcomes to pol-

icy π.16 This structure is EXPLOSIVE in size, in the sense that small increases in the

number of steps required to complete the agent’s task will lead to enormous increases

in the computational resources required to represent and reason about the agent’s

progress. For real-world action, however, it is important to emphasize another side
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to this explosion. Small increases in the number of steps required to complete the

agent’s task will lead to enormous increases in the amount of REAL-WORLD EXPE-

RIENCE required to construct a full and meaningful model.

The explosion originates in the fact that the model t and policy π are capable of

determining an ARBITRARY joint distribution on the values of variables X1 through

Xn. To make this precise, let P(X1 = x1 . . .Xn = xn) denote the probability that the

observations X1 through Xn take on a specified combination of readings x1 through xn

during a history with the agent. Then a joint distribution is any assignment of prob-

ability values for P(X1 = x1 . . .Xn = xn) across possible observations, and whatever

this assignment may be, we can construct a model to realize it.17

Now, in Section 3.1, we saw that, except in those few cases where design-

ers bring very precise and accurate background knowledge to the construction of

a model, the free parameters of a model must be estimated from a set of training

data. The field of MACHINE LEARNING18 offers diverse frameworks for this esti-

mation problem. A simple statistical approach is to look for a model that maximizes

the overall likelihood of the observed data; a more sophisticated one is to interpret

the data as giving indirect evidence about a restricted set of likely parameter val-

ues that we supply in advance. Still other approaches recover parameters from data

by more general optimization techniques that have proven effective throughout a

range of practical distributions of problem instances; popular instances of this kind

of strategy include SUPPORT VECTOR MACHINES19 and (despite their name) NEU-

RAL NETWORKS.20

Machine learning also affords numerous perspectives on how to process the evi-

dence derived from data. The data may come in a single batch; in this case, learning

algorithms can use any data at any stage of computation and can report just the fi-

nal set of parameter values. By contrast, in INCREMENTAL LEARNING, the learning

algorithm iteratively reconciles a provisional model with a new observation to de-

rive a better model. Moreover, when action is involved, we may emphasize how the

agent’s policy changes with new observations (and refinements to parameter values);

this is the perspective of REINFORCEMENT LEARNING.21

For all this diversity, no machine learning method can overcome the fact that

training data is noisy. In general, empirical observations of the real world reflect

underlying regularities of the world only partially. Our introduction to evaluation

illustrated this point already in detail. We saw that repeated observations are neces-

sary in order to derive an estimate for a parameter value that will be close to the true
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value with high probability.

Thus, to build a decision model from data requires repeated observations of each

of the 2n possible outcomes. With a training set of practical size (and don’t forget

that the limit is often the real-world effort—even the real-world cash—required to

obtain the training data) and with a decision model of substantial complexity, it is

inevitable that many of these outcomes will not occur, or will occur so infrequently

that any derived parameter estimates are quite likely to be inaccurate. Under such

circumstances, decision models are unlikely to be useful. Readers familiar with lin-

guistics or psychology will recognize this as a version of the Chomsky’s POVERTY-

OF-THE-STIMULUS ARGUMENT: an intelligent agent’s open-ended behaviors must

be informed not only by limited experience in the world but also by innately con-

strained models of the world.22 In this connection, it is worth reinforcing that the

inference to restricted models of the world applies regardless of how learning is un-

derstood or how learning proceeds.

Sensor readings with a large space of possible values provide a complementary

illustration of the complexity of decision analysis. Consider an observation D that

approximates the distance to some obstacle. In a digital computer, the values for D

will be discrete; the number of different possible values will be finite. In principle,

a decision model can describe this, by inducing a distinct submodel for each alter-

native reading. When the number of alternative values for D reaches 256, 65536,

or more, the amount of training data required also skyrockets; the model again be-

comes hopeless.

4.2 Problems of Modeling and the Complexity of Environments

We see how severe a drawback this complexity of decision models can be, once we

distinguish between the complexity of an agent’s models and the complexity inher-

ent in the agent’s environment. An ENVIRONMENT is COMPLEX to the extent that

its outcomes inherently reflect intricate interrelationships among many causal pro-

cesses. A complex environment offers little basis to generalize from one circum-

stance to another; in a complex environment, designers may have no alternative but

to equip their agents with a model that is accurate and that therefore is complex, too.

In a complex environment, designers must come to terms with the concomitant dif-

ficulites in computation and training.

However, a wide range of important environments are not complex in this sense.

Indeed, a computational perspective on human intelligence suggests that none of
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the behaviors that people naturally develop appeal to descriptively complex mod-

els of a causally complex environment. Instead, what frequently creates difficulties

for agents is that the causal processes at play in these environments, though simple,

cannot be observed directly. We often find, for example, that the state of the environ-

ment determines a straightforward distribution on the outcomes of actions, but that

the observations of the agent can provide only fragmentary evidence about what this

true state of the environment actually is.

For example, consider designing a behavior where our agent classifies and re-

sponds to a new object in its environment. Think of our robot pet reacting to an

approaching object that is brought to its attention by the looming in its visual field:

Is this a toy, which the agent might pick up or fetch? Is this (part of) a person, who

the agent might attempt to interact with? Or is this something dangerous, which the

agent must avoid? In choosing its response to the object, the agent’s performance

depends on whether it deals with the object as befits its category.

Unfortunately, the agent cannot directly observe this. The agent has only its

observations—some perceptual features of the new object. Our robot pet, for exam-

ple, might be able to estimate an approaching object’s speed, size, or shape. A deci-

sion model could only attempt to connect these observations directly to the choice

of action the agent must make.

However, a model that incorporates an explicit representation of the true but hid-

den state of the world may be simpler, if it concisely describes the underlying gener-

alizations in the environment. In our example, such a model could spell out how the

agent’s observations of an object correlate with the object’s category. Toys might

tend to be small, and move at a medium speed; people might prove slower, larger

and characteristically blobby; dangerous objects might appear fast, or large, or even

just pointy. By describing the baseline frequency of these different cases—say toys

and people are relatively common while danger is thankfully rare—the model al-

lows the agent to interpret its observations as giving evidence about what category

that the object belongs to, and to react appropriately. In effect, then, this model links

an agent’s behavior to its CATEGORIZATION of its environment. Of course, in de-

signing agents, we need not always think of objects or categorization as concretely

as this; we can apply these models, and our intuitions about categorization, in open-

ended ways.

To bring home the generality of this idea, let us consider a class of models that

represents the hidden state that the agent must infer and respond to as a random vari-
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Figure 10: Naive Bayes Model

able S. The model specifies a constrained range of possible values for S, each of

which corresponds to a distinct set of real-worldcircumstances that arise with a spec-

ified frequency in the agent’s experience. Mathematically, the model represents this

by a PRIOR distribution Pm(S = s) on the alternative values for S.

The model also describes these circumstances (approximately), by associating

each value of S with a characteristic distribution of observations and outcomes for

the agent. The model represents the agent’s observations as noisy, incomplete but

independent clues to this state. Mathematically, for each observation variable Oi,

the model specifies the LIKELIHOOD of seeing a particular reading o assuming the

state has value s, or Pm(Oi = o|S = s). Meanwhile, the model links the utility of

each action just to the underlying state of the world. Mathematically, the model de-

scribes these outcomes with a table U(s,a) of the utility expected when the state of

the environment is s and the agent’s choice of action is a.

Diagrams such as that in Figure 10 use the standard convention of a directed ar-

row between nodes to depict these probabilistic dependencies. In Figure 10, the state

is represented by the random variable S. The agent’s observations, represented by

random variables O1 through On, appear as nodes linked only from S. The agent’s

utility, represented by the reward node U , is linked both from S and from the choice

A that the agent makes. These representations amount to assumptions about the en-

vironment that we make in using such models to design an agent. When these as-

sumptions fit, they allow an agent to reason successfully, to learn efficiently from

limited training data, and to generalize reliably from it.

The agent’s behavior involves making a series of observations and then respond-

ing with an appropriate action; the model provides the agent with grounds for this

choice as follows. The agent first estimates the probabilities of alternative states of

the environment, by matching its observations against the model. The agent then
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determines the most promising action, by calculating utilities in the model based on

this inferred distribution. If the model describes the environment accurately, this

policy allows the agent to act as successfully as possible.

More precisely, suppose that the agent has observed values o1 through on for the

variables O1 through On. The model determines a probability distribution Pm(S =
s|O1 = o1 . . .On = on) describing how probable any state of the world is given the

observations the agent has made. The probability Pm(S = s|O1 = o1 . . .On = on),
called the POSTERIOR, represents the agent’s BELIEF that the environment is in state

s; thus the posterior distribution summarizes the information that the agent has about

its environment. Using the posterior, the agent can determine the expected utility of

any action a given its observations, which we write Um(a|O1 = o1 . . .On = on), by

weighting the outcome for a in alternative possible states s by the agent’s current

belief in s. (9) formalizes the relationship.

(9) Um(a|O1 = o1 . . .On = on) = ∑
j

Um(s j,a)Pm(S = s j|O1 = o1 . . .On = on)

Of course, the agent’s best strategy is to take the action with the highest expected

utility.

The models depicted in Figure 10 are known as naive Bayes models. The Bayes

part is because we use Bayes’s Theorem23 to calculate (9) from the parameters of

the model. (10) shows the instance of Bayes’s Theorem we need.

(10) Pm(S = s|O1 = o1 . . .On = on) =
Pm(O1 = o1 . . .On = on|S = s)Pm(S = s)

Pm(O1 = o1 . . .On = on)

In words, Bayes’s Theorem states that our BELIEF, that the environment is in state

s given our observations, trades off the LIKELIHOOD of obtaining our observations

if the environment was in state s against the PRIOR probability that the environment

is in state s. We obtain a probability by normalizing for the overall probability of

making our observations—the normalization factor can be calculated by summing

the probability of being in a specified state and making our observations, over all

possible states.

The model’s “naive” independence assumptions entail (11).

(11) Pm(O1 = o1 . . .On = on|S = s) =
n

∏
i=1

Pm(Oi = oi|S = s)

We can draw on the results so far to justify an algorithm for computing the

OPTIMUM action after observations o1 through on according to a naive Bayes model

m.
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(12) a OPTIMUM m,o1 . . .on

for each j: p′j← Pm(S = s j)∗∏i Pm(Oi = oi|S = s j)
po← ∑ j p′j
for each k: uk← ∑ j(Um(ak, s j)∗ p′j/po)
d← any k that maximizes uk

RETURN (ad ,ud)

By (10) and (11), the algorithm ensures that the value of p′j/po is Pm(S = s j|O1 =
o1 . . .On = on). Thus by (9), the algorithm stores in uk the expected utility in m of

action ak.

We can also show how we can eliminate much of the complexity of a decision

model in a naive Bayes model. To illustrate, we will use |S| to represent the number

of states in the model and |A| to represent the number of actions available to the

agent; we will again assume that the observations are binary.

The naive Bayes model determines a utility for each combination of observations

and actions. This is |A|2n values in this case. In a decision model, this would be

prohibitive; each value would have to be represented, and learned, separately. But

in the naive Bayes model, these |A|2n values are derived indirectly, using a number

of parameters that is potentially much smaller. The naive Bayes model has a table

of utilities with |A||S| entries; it has a table of priors with |S|−1 entries; and it has n

tabled likelihood functions, each with |S| entries. That is a total of (|A|+n+1)|S|−1

parameters.

We may be able to identify a reasonable number of meaningful states in the world

as part of designing our agent, so that |S| is very small by comparison to 2n. Then the

naive Bayes model offers a vast improvement in size; there is a corresponding im-

provement in the amount of memory required to represent the model and the amount

of training data required to build it.

Of course, not all environments can be described in terms of a single variable

that takes on a small number of values. Richer environments demand richer models

which offer an agent ways to reason about the state of the world more systematically.

Indeed, effective modeling may mean understanding at a high level how and why an

environment works, and realizing that explanation in computational terms; an agent

may need this high-level explanation to select the actions that it should take based

on the observations, and more generally on the experience, available to it.

Fortunately, this modeling need not start from scratch. Designers have ready

sources of causal hypotheses, from their scientific understanding of the real world,
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from evaluations of prior agents, and even from intuitions about our own action in

the world. At the same time, AI research offers an inventory of broadly useful mod-

els that implement common forms of explanation. I close with a brief description of

two further classes of models, to suggest how current AI practice makes the design

of computational artifacts that act in the world increasingly routine.

In many domains, an agent needs to recognize a pattern of change over time from

a sequence of observations. The agent may be tracking a moving object through its

visual field; at each step, the agent’s current image of the object offers a noisy and

incomplete evidence about the object’s current location. The agent may be listening

to a speech signal; at each step, the agent’s acoustic observations gives evidence

about the phones that the speaker is currently articulating. More generally, the agent

may need to act to influence a dynamic environment; its observations give it noisy

feedback not just about the current state of the environment but more generally about

the actions that the agent should take in the future.

The naive Bayes model requires us to model the likelihood of any observation

Pm(Oi = o|S = s) directly in terms of the overall state S = s. In this case, since the

environment is dynamic, the value s must determine the specific conditions in the

environment at the step i when the observation is taken. Thus, to model all observa-

tions in combination, S must describe complete histories in the environment. Histo-

ries proliferate too explosively for this to be practical.

Models for dynamic domains must therefore describe the succession of states

that the environment evolves through over time. The state in step i is modeled as a

random variable Si. The observation Oi at that step depends only on the current state,

so the state is hidden. The state Si+1 in step i+1 depends only on the previous state

Si and the previous action taken Ai; the relationship does not depend on the value of

i. This MARKOV ASSUMPTION ensures that the model need not grow in complexity

in order to describe longer and longer runs of observation and action.

Figure 11 depicts one possible realization of this pattern of probabilistic depen-

dencies. In the behavior modeled in Figure 11, the agent carries out three cycles of

observation and action before obtaining a reward that depends just on the final action

and the final state.

The Markov assumption allows us to collapse together complete alternative his-

tories for the purposes of training; if we LABEL the states in the training data, we can

fit a model simply based on the observations and transitions that we observe in each

state. The Markov assumption also makes it efficient for an agent to calculate its
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Figure 11: A model for three execution cycles, with a Markov assumption.

belief about the current state of the environment given the observations and actions

that it has seen so far; this algorithm helps explain the ubiquity of Markov models

in AI applications such as speech recognition, language processing and visual track-

ing. Unfortunately, the Markov assumption does not allow an agent to determine an

optimal policy exactly without reasoning about complete alternative histories. Cur-

rent research focuses instead on developing useful approximations that find good

policies in practice.

More complex environments may require an agent to infer hierarchical relation-

ships in the world to explain a collection of observations. Language use is one

case—the meaning of a sequence of words depends on the syntactic relationships

that group words hierarchically into constituents—but not the only one. In visual

perception, for instance, inferring the real-world objects and relationships behind an

image involves grouping image features together hierarchically into units that cor-

respond to parts of objects, wholes of objects, and complexes of objects.

As you might expect, it can prove explosive to recognize hierarchical relation-

ships without hierarchicical models. We can account for the structure of a sen-

tence by specifying the hierarchy of constituents to which each word contributes;

we thereby associate the sequence of words we observe with a sequence of hidden

states. Why not model this sequence of states atomically, using just a Markov as-

sumption? In general, the number of possible states will increase as we consider pro-

gressively longer sentences; the more complex structure of longer sentences makes

for states with a greater number of open constituents. The effect is familiar: training
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Figure 12: A PCFG model for four observations.

on shorter sentences may not generalize to longer ones.

The probabilistic context-free grammar (PCFG) is one class of model that does

describe hierarchically-related processes that account for sequences of observations

from the environment. Let us assume that the PCFG is BINARY BRANCHING, in

that the lifetime of any extended process is split between a first child process active

intially and a second child process active finally. This PCFG model sets up variables

Ei j indicating what kind of process, if any, begins with observation i and ends with

observation j. The variable Ei j may depend probabilistically on any variable Eik

with k > j, because a process active from i to k may have a process from i to j as

its first child; Ei j may also depend on any variable Ek j with k< i, because a process

active from k to j may have a process from i to j as its second child.

Figure 12 illustrates the situation. The four observations induce the six variables

E12, E13, E14, E23, E24 and E34 for possible processes spanning multiple observa-

tions. The figure depicts a possible analysis of the observations, in which processes

in E14, E23 and E24 contribute to the derivation but no processes are active for E12,

E13 and E34. The analysis corresponds to the tree in (13).
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Perhaps surprisingly, even with such sophisticated analysis and such intricate depen-

dencies, it is still efficient for an agent to compute its belief about the current state

of the environment given its observations.

5 Directions, Connections, Distinctions

Better than any reasoned argument, these diverse examples attest to the open-ended

enterprise of modeling the world, and the open-ended enterprise of AI itself. In a

chapter such as this, I cannot hope to catalogue all possible problems, all possible

models, even all possible approaches. Rather my aims have been to introduce the

goals and perspectives of AI practice, in Section 2; to acquaint you in detail with a

concrete case of AI practice, through Section 3; to hint at the problems and possi-

bilities to which past AI research has led, in Section 4; and, perhaps with all this, to

whet your curiosity for the additional results—indeed the future results—which AI

research still offers.

These additional results include the numerous approaches to intelligent behavior

based purely on optimization to which I have given short shrift. These engineering

approaches are effective and useful, and historically have been just as inspired by

biological computation—and just as inspiring in the effort to understand boilogical

computation—as the more severe model-based techniques I have emphasized.

I have also passed over a rich tradition of purely logical models of the world. The

motivations for such models have always been diverse (and contentious); for me,

such models contribute a worst-case analysis of intelligent behavior. Logic demands

that we avoid risk altogether by formulating models and policies that must succeed,

within limits, no matter how the world might turn out to be. This worst-case design

provides the only principled way to back off from dependence on distributions de-

rived from empirical data to strategies that apply in genuinely novel situations—that

is, even in the most remote possibility.

Even within the probabilistic models that this chapter has surveyed—beginning

with decision models, and continuing with naive Bayes models, Markov models
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and PCFGs—I have had to omit a flourishing range of models for perception and

action. Graphical representations of probabilistic dependencies, as illustrated in

Figure 10, Figure 11 or Figure 12, can describe arbitrary causal interactions in an

environment.24 However, as models become more sophisticated, it becomes in-

creasingly difficult to tie them to the training available in concrete domains or to

algorithms that enable tractable decision-making. Research proceeds.

The diverse investigations of AI aim for agents that are sensitive to empirical reg-

ularities in their surroundings and that exploit these regularities efficiently to thrive

in their environment. These are strengths that biological intelligence also exhibits.

But AI research can base its strategies and computations on designs that depart rad-

ically from biology; as it does so, it increasingly delivers intelligent real-world be-

havior in ways that diverge from biological intelligence. For example, in its chess

matchup with Kasparov,25 IBM’s Deep Blue relied on hardware and software that

was capable of performing billions of operations per second and that in fact pur-

sued extravagant search forward move-by-move through possible developments of

the game; such a strategy seems impossible for a brain that makes up in parallelism

what it lacks in speed. Mismatches proliferate among the many important problems

which people master only with difficulty: medical diagnosis, investment, scientific

data analysis, engineering design.

Such examples underscore the uniqueness of AI as an engineering approach to

building computational artifacts that act in the real world. Practitioners of AI must

take this engineering perspective to heart to have an impact on the way people design

and build useful agents. Cognitive scientists must also come to grips with it if they

are to exploit new ideas from AI research which promise to inform our scientific

study of ourselves.

But all should welcome the rigor that the view inspires. In engineering, an ad

hoc design—however ingenious—is easily discarded as problems and technology

change; a principled design—a model of the world and the computational results

to put the model to use—remains a lasting contribution. In cognitive science, the-

ories of the functional value of human cognitive abilities will remain speculation

until connected with an engineering model of the problems people face and the per-

formance that people achieve in everyday circumstances. Inspired by such inherent

connections, I for one expect the long and fruitful interchange between AI and cog-

nitive science to continue.
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Notes

1 With his paper On computable numbers, with an application to the Entschei-
dungsproblem (Proceedings of the London Mathematical Society, 1937), Alan Tur-
ing offered his celebrated characterization of all mechanical procedures which can
be executed according to a finite set of precise instructions.

Noam Chomsky’s Syntactic Structures (published 1957) and the more incendi-
ary A review of B. F. Skinner’s Verbal Behavior (Language, 1959) decisively intro-
duced linguistics, philosophy and psychology to a computational interpretation of
the rules of linguistic structure.

Alan Newell and Herbert Simon’s general problem solver (implemented 1957
with programmer J. C. Shaw, and described in a contribution to Feigenbaum and
Feldbaum’s Computers and Thought, 1963) invoked an explicitly symbolic concep-
tion of computation as a general way to derive goal-directed real-world behavior by
algorithmic processes.

2 David Hilbert stormed through mathematics at the end of the nineteenth century
and beginning of the twentieth; he published groundbreaking work in algebra, num-
ber theory, geometry, and the foundations of physics and mathematics. But he con-
cluded his career with investigations into proof theory whose goal was the demon-
stration of the consistency and completeness of mathematical method; the theory of
computation, as developed by Kurt Gödel, Alan Turing and others, dissolved this
goal into impossibility.

Leonard Bloomfield’s text Language from 1933 set the agenda for American
linguistics for the next twenty-five years. The book is remarkable both for its metic-
ulous methodological advice, which helped a generation of fieldworkers document
the words and sounds of the indigenous languages of North America, and for its
frank admission that, to study such matters as linguistic meaning, linguistics awaited
some new scientific tools (in retrospect, that tool was computation).

B. F. Skinner’s The Behavior of Organisms (published 1938) advanced a partic-
ular kind of associative learning, the pairing of stimulus and response through rein-
forcement, as a uniform explanation for the results of experiments documenting the
ability of animals to act successfully in problematic environments. Skinner’s behav-
iorist approach left no place for psychological representation, or for computation, in
the explanation—an omission that ultimately proved the theory’s undoing.

3 One sometimes feels that the term AGENT has a more insidious working defi-
nition: any computer program that happens to be implemented by a researcher with
AI training. I abhor this usage—and its implication that AI is nothing more than a
community of seat-of-the-pants hackers with sloppy heuristics and cliquish attitude.
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4 The landmark implementation is described in W. Burgard, A.B. Cremers, D.
Fox, D. Hähnel, G. Lakemeyer, D. Schulz, W. Steiner, and S. Thrun, “The Interac-
tive Museum Tour-Guide Robot,” Proceedings of the Fifteenth National Conference
on Artificial Intelligence (AAAI-98), 1998.

5 Rudolf Kalman introduced this discrete-time filter in his paper “A new
approach to linear filtering and prediction problems”, in Journal of Basic
Engineering—Transactions of the ASME, Series D, 83(1), pages 35–45, 1960.
It was used right away in aerospace, for example for navigation in the Apollo
space program. But its heavy burden of computational operations and numerical
precision meant that the filtering process typically had to be approximated and
simplified to run on available hardware; see for example Peter Maybeck’s text
Stochastic Models, Estimation, and Control, Academic Press, 1978.

6 Newell’s perspective, articulated for example in Unified Theories of Cognition
(Harvard University Press, 1980), suggests an intimate relationship between AI and
computational perspectives on human cognition.

7 With his theory of signs, Charles Sanders Peirce (1839–1914) offered an ac-
count of the parallels and diverges between linguistic meaning and natural meaning.
Linguistic meaning is symbolic; the word fire for example is connected with fires in
an arbitrary way. Smoke also means fire, but smoke is what Peirce called an INDEX:
such signs are linked to what they mean by correlations in the natural world. See The
Essential Peirce, Volumes 1 and 2, Indiana University Press, 1992 and 1998.

8 Making Hard Decisions (Robert Clemen, Duxbury Press, 1995) is a represen-
tative text on decision analysis—for the MBA curriculum.

9 See for example Ronald Arkin’s Behavior-Based Robotics, MIT Press, 1998.

10 A fraction of 0.8 of histories with this policy lead to an observation of X = y,
to following, and then to a utility of 0.7; a fraction of 0.2 lead to an observation of
X = n, to returning home, and then to a utility of 0.25. Weighting these outcomes
by their probability gives 0.8×0.7 + 0.2×0.25 = 0.61.

11 At choice 1, the other options’ utilities of 0.2 and 0.3 are less than the 0.61 we
get by waiting and continuing with (1). At choice 2, our policy of following for 0.7
beats the alternative of returning for 0.25. At choice 3, our policy of returning for
0.25 beats the alternative of following for 0.1.

12 Indeed, after studying this section, you might profit from constructing your
own definition of its two key data structures, the MODEL and the POLICY, and from
accomplishing your own implementation of its two key algorithms, OPTIMUM and
EXECUTE—either in a familiar language or even in one of the specialized languages
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of AI, such as Prolog, Scheme or SML.

13 Here is one such definition:

(14) a In a model rwd(u), policy end has utility u.
b In a model obsv(X, [(v1, p1, t1) . . .(vn, p1, tn)]), policy

switch(X, [(v1,π1) . . .(vn,πn)]) has utility

∑
i

pi ∗ui

where ui is the utility in model ti of policy πi.
c In a model dcsn(n, [(a1, t1) . . .(an, tn)]), policy do(ai,π) has uility ui

where ui is the utility in model ti of policy π.

14 Just refer to (14).

15 Here’s one specification of EXECUTE.

(15) a To EXECUTE end, nothing is required.
b To EXECUTE switch(X, [(v1,π1) . . .(vn,πn)])

o← GET X
j← the i for which o = vi
EXECUTEπ j

c To EXECUTE do(a,π)

RUN a
EXECUTE π

16 At the first step of action, there is one outcome; after each step of observation,
the number of outcomes doubles; by the time the policy terminates, the leaves num-
ber 2∗ . . .∗2 (n 2s); thus, 2n.

17 This fact admits two kinds of explanations. Conceptually, we can see each layer
i of observation in the model as specifying a distribution of variable Xi that is con-
ditional on specific values of any earlier observations X1 through Xi−1; this distribu-
tion is written P(Xi = xi|X1 = x1 . . .Xi−1 = xi−1). In general, any joint distribution
on multiple variables (perhaps conditioned on some information C) can be factored
as the distribution of the first (given C) times the distribution of the others given the
first (and C), as in (16):

(16) P(X1 = x1 . . .Xi = xi|C) = P(X1 = x1|C)P(X2 = x2 . . .Xi = xi|X1 = x1,C)
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Unfolding (16) n−1 times, then, we see that the distribution provided at each layer
is exactly what is needed. More algebraically, and more significantly for present
purposes, the joint distribution is specified by 2n− 1 parameters and the model t
also has exactly 2n− 1 free parameters for probabilities (the counts reflect the fact
that probabilities always sum to 1). Matching these parameters is thus a matter of
solving appropriate equations.

18 The standard introduction to machine learning is Tom Mitchell’s Machine
Learning, McGraw-Hill, 1997.

19 See Nello Cristianini and John Shawe-Taylor, An Introduction to Support Vec-
tor Machines, Cambridge University Press, 2000.

20 See Christopher Bishop, Neural Networks for Pattern Recognition, Oxford
University Press, 1995.

21 See Richard Sutton and Andrew Barto, Reinforcement Learning: An Introduc-
tion, MIT Press, 1998.

22 The famous formulation—in which Chomsky argues that people’s productive
use of language must be informed not only by experience with language but also
by models of language embodying substantive universals—is in the collection Lan-
guage and Learning: The Debate Between Piaget and Chomsky edited by Massimo
Piatelli-Palmerini and published by Harvard University Press, 1980.

23 The result, first explored by minister and sometime mathematician Thomas
Bayes (1702–1761), is easy to rederive. Just start from the two ways to express the
joint probability of two events, a possible cause c and its possible effect e:

(17) P(c,e) = P(c|e)P(e) = P(e|c)P(c)

Divide by P(e), to see how to infer the cause c given a model of its effects:

(18) P(c|e) = P(e|c)P(c)
P(e)

24 The seminal monograph is Judea Pearl’s Probabilistic Reasoning in Intelligent
Systems, Morgan Kaufmann, 1988.

25 Documented on the internet at http://www.research.ibm.com/deepblue/home/html/b.html.
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