Discrete Features I Exploring Independence and Modeling

Matthew Stone CS 520, Spring 2000 Lecture 7

Bayesian Decision Theory DISCRETE FEATURES

- Finite set of c states of nature
- Measurement is a discrete feature vector
 - $E.g., \mathbf{x} \in \{0,1\}^k$
 - k-dimensional binary feature space
- Provides setting for many key algorithms
 - Markov models, belief nets, etc.

Bayes Decision Rule

- Infer most likely state given measurement
 - Using Bayes formula, here:

$$P(\omega_i \mid \mathbf{x}) = \frac{P(\mathbf{x} \mid \omega_i)P(\omega_i)}{P(\mathbf{x})}$$

Bayes Decision Rule

- Again we have "curse of dimensionality"
 - Need $c2^k$ numbers to specify distribution
- Worse
 - To estimate parameters $P(\mathbf{x} \mid \omega_i)$ with expected accuracy 1/ε
 - Need $c\epsilon^2 2^k$ training samples

Possible Solution: Modeling

• Provide a specification outlining sparse relationships among features and classes

Model Zero Naïve Bayes Classification

- Features are independent given the class
- "Model" requires ck parameters: - Likelihoods $p_{ij} := P(x_j = 1 | \omega_i)$
- We get

$$P(\mathbf{x} \mid \omega_i) = \prod_{j=1}^k \rho_{ij}^{x_j} (1 - \rho_{ij})^{1 - x_j}$$

Naïve Bayes Classification CONTINUED

Use usual discriminant function

$$g_{i}(\mathbf{x}) = \ln P(\omega_{i}) + \ln P(\mathbf{x} \mid \omega_{i})$$

$$- i.e:$$

$$g_{i}(\mathbf{x}) = \ln P(\omega_{i}) + \sum_{j=1}^{k} \left[x_{j} \ln p_{ij} + (1 - x_{j}) \ln(1 - p_{ij}) \right]$$

$$- i.e:$$

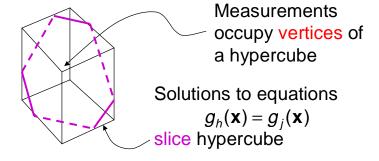
$$g_{i}(\mathbf{x}) = \mathbf{w}_{i}^{\mathsf{T}} \mathbf{x} + \theta$$

$$w_{ij} = \ln p_{ij} - \ln(1 - p_{ij})$$

$$\theta = \ln P(\omega_{i}) + \sum_{i=1}^{k} \ln(1 - p_{ij})$$

Visualization

Decision surfaces are hyperplanes



Case Study

- · Text classification
 - Assign a natural language document to a predefined category based on content

Text Classification Examples

- Index medical journal article
- Catalogue book for library
- Fit web page into Yahoo! Hierarchy
- Filter news feed for personal interest
- · Automatically delete spam email

Formalizing Text Classification

- States of nature
 - c states representing the different possible categories for documents, e.g.
 - Email: ω_1 interesting ω_2 spam

Formalizing Text Classification

- Measurement x for any document
 - k-component binary feature vector
 - Pick k useful English words
 - "useful" means occurs often with good correlation to some class
 - Set $x_i = 1$ if word *i* occurs in document

Sparse Data (Aside)

- · English has tens of thousands of words
 - But narrow to 1K that best discriminate
 - Still 10300 feature vectors
 - much larger than, e.g., go search space
 - no hope of describing P(x|c) without a model

Naïve Bayes Model

- · Assume features are independent
 - Take maximum likelihood estimate for

$$p_{ij} \coloneqq P(x_j = 1 \mid \omega_i)$$

- That's just

of docs in class ω_i containing term j # of docs in class ω_i

Naïve Bayes Model (CONTINUED)

• Given measurement x, Bayes formula has

$$P(\omega_i \mid \mathbf{x}) = \frac{\prod_j P(x_j = 1 \mid \omega_i) | P(\omega_i)}{P(\mathbf{x})}$$

· So compute

$$P(\omega_i \mid \mathbf{x}) \propto \frac{\text{\# in class } \omega_i}{\text{\# of docs}} \prod_j \frac{\text{\# in class } \omega_i \text{ containing term } j}{\text{\# in class } \omega_i}$$

Common Pitfall

- With parameters set by MLE, you could easily end up with all posteriors zero
- To see how, suppose:
 - Each feature occurs with some high probability p in a single class and some very low probability elsewhere: $1/\epsilon$
 - You'd want some 2ε samples per class, but you can't get that many – only n
 - MLE estimate of $P(x_i = 1 | \omega_i)$ is often zero

Common Pitfall

- With parameters set by MLE, you could easily end up with all posteriors zero
- To see how, suppose:
 - The number k of features associated with each measurement is large
 - You expect a rare feature to occur on a test guy with probability roughly k/ϵ
 - Get rare feature not seen on any trainer from this category $-(k\varepsilon n)/\varepsilon^2$ of the time

Sparse Data Requires Smoothing

- Redistribute probability mass
 - from what you saw
 - to what you didn't see
 - since you know other things can happen

Simple Smoothing: Deleted Estimation

- · Key question is often
 - How often do you expect features in test data that never occur in training?
- · Deleted estimation finds this
 - by splitting training data
 - and answering question empirically

Deleted Estimation (CONTINUED)

- Take first half
 - $-N_0^1$ how many features don't occur there
 - $-C_0^{12}$ how many of these occur in half two
- · Take second half
 - $-N_0^2$ how many features don't occur there
 - $-C_0^{21}$ how many of these occur in half two

Deleted Estimation (CONTINUED)

• This gives evidence about how often new things happen

$$r_0 = \frac{C_0^{12} + C_0^{21}}{N_0^1 + N_0^2}$$

- Smoothed value replaces MLE estimate
 - Similar smoothed values required for other counts, to ensure probabilities sum to one