Principles of Information and
Database Management
198:336
Week 9 - Apr 4

Matthew Stone

Data over the Web

Three-tier architectures
Ingredients of three-tier architecture
Information retrieval: text as data




Design of Network Apps

Client

!

Application Logic

!

DBMS

Client

Presentation layer
— Allows users to make requests
— Allows users to provide input
— Allows users to see results




Application Logic

Layer for control
— What should happen with user input?
— How does control execute across steps?

— What data should be accessed, recorded, and
presented?

— How should interaction proceed?

DBMS

Database layer
— The stuff we’ve been learning about!




Example of Breakdown

User “authentication”
— User is challenged for login and password
— System checks whether this is OK
— Grants the user access or gives suitable error

Client Layer

Entering information
— Prompts the user for login and password
— Gives the user places to specify them
— Gives the user a place to hit OK




DBMS

Stores login information as a table
— Valid login names
— Encrypted passwords

Application layer

Requires login in client layer
Gets login information from client
— Encrypts password
Checks if login, encryped password in DB
Decides what to do next




Splitting up the Design

Client
— Runs on a web browser
— Generic, lightweight interface mechanism

— Gets (X)HTML description of interaction
» Using HTTP(S) protocol

— Carries out that interaction with user

Splitting up the design

Application layer
— Part of a web server
» Accepts and responds to HTTP(S) requests
— Implemented in generic language
« Java servlets, Javascript, PHP, Perl
— Connects to DBMS however it likes




Splitting up the design

DBMS

— Handles generic information functionality

— Storage, backup, concurrency, scale,
security...

Example, idealized

Step 1:
— User at machine
home.isp.net
asks in web browser for page
http://buy.mystuff.com
— Client sends HTTP request to server




Example, idealized

Step 2:
— Application logic runs as part of web server
running on the machine buy.mystuff.com

This happens by running a file for the root of
this interaction
— Application logic decides user needs to log in

— Application logic sends login page back to
machine at home.isp.net

Example, idealized

Data now comes back to home.isp.net

<html>

<form action="https://buy.mystuff.com/secret” method="post”>
Account:

<input type="“text” name="account” />

Key:

<input type="“password” name="“key” />

<input type="submit” />

</form>

</html>




Example, idealized

Home.isp.net creates the interaction
described by this data in a browser

The user types, edits, clicks, etc.

The result is a new request that goes back
to buy.mystuff.com

Example, idealized

Now the login logic runs at buy.mystuff.com

— We get the values the user typed as
parameters — call them A and K

— We open a connection to the database, which
is a server running at dbms.mystuff.com

— We create a safe SQL query asking whether
an entry of (A, encrypt(K)) exists in table
authorized

— We get an answer, yes or no.




Example, idealized

If authorized, we send back one interaction

— We construct a new SQL query using A to
access secret information

— We format it as HTML
If unauthorized, we send back another
— We construct a new HTML page
— Explaining error
— Offering another chance to log in?

Example, idealized

Finally, the user’s browser at home.isp.net
carries out the last step of the interaction




Design of Network Apps

Client

!

Application Logic

!

DBMS

Design issues

User experience
— Latency
— Richness
— Adaptivity




Design issues

Infrastructure effectiveness
— Trust
— Data Integration
— Scalability
— Modularity

Middle Tier - Servlets

Application Server

_____________________

Pool of servlets




Java Servlets for Tomcat

Overview:

— Define new class with either of two methods:
doGet and doPost

— Get parameters from request

— Check they’re safe

— Prepare an SQL query

— Set the ? elements in the prepared query
— Execute the query

— Write out the results through response

Java Serviets for Tomcat
Implement class HttpServlet

public class ReadUserName extends HttpServiet {

public void doGet(HttpServietRequest rq,
HttpServietResponse rs) throws
ServletException, IOException {

}
public void doPost(...){ ... }

}




Useful methods

Finding stuff out from request rq
String rq.getParameter(String)
Eg.
String account = rq.getParameter(“account”);

JDBC Stuff

String query = “SELECT R.cash “ +
“FROM Relationship R “ +
“WHERE R.account = 77
PreparedStatement ps =
conn.prepareStatement(query);
ps.setString(1, account);
ResultSet r = ps.executeQuery();




Finally

Writing stuff out to a response rs
PrintWriter out = rs.getWriter();
out.printin(String);

Why not this?

String query = “SELECT R.cash” +
“FROM Relationship R” +
“ WHERE R.account = * +
account;

Statement s = conn.createStatement();
ResultSet r = s.executeQuery(query);




Get and URL Encoding

When you type v1 as the value of n1
and v2 as the value of n2

the browser makes a load request for:
http://request.com?n1=v1&n2=v2

this is a URL, and it requires us to
“‘encode” n1,v1,n2 and v2

Encoding

import java.net.URLEncoder;
import java.net.URLDecoder;

String s’ = URLDecoder.decode(s, “UTF-8"),
String s = URLEncoder.encode(s’, “UTF-8");




Same encoding happens with post

But you don’t construct a URL

You pass data “silently” as part of the http
header.




