Principles of Information and Database Management 198:336 Week 8 – Mar 28

Matthew Stone

XML – Motivations

Semi-structured data

- Relaxing traditional schema
- Storing more complex objects

Standardized data

- Using reference schemas for interoperability
- "Meta-data" language for data description

Web data

Supported in protocols for information exchange

Outline

XML – overview

XML data representations

XML and standardization

- XML namespaces
- XML resource description framework

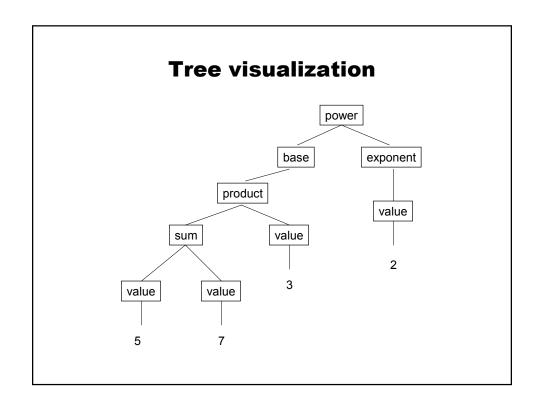
XML and the web

- XHTML
- Cascading style sheets and XSLT

XML

eXtensible Markup Language

- "File format" for giving partial structure to text documents.
- Based on the use of paired tags to give a tree structure to the document.


Tags in XML

Work like parentheses...

$$[(5 + 7) * 3]^2$$

But make category of structure explicit

power(product(sum(5,7), 3), 2)

Basic tag syntax

Example becomes

Storing data in XML

Relational data

Combines schema and tuples together

Example

- Schema student(id:integer, name:string, email:string)
- Tuple(65, "Teddy Salad", tds@mp.com")

Storing relational data in XML

In XML, encode table <student>

</student>

Storing relational data in XML

Then columns...

<student>

<id> ... </id>

<name> ... </name>

<email> ... </email>

</student>

Storing relational data in XML

Then values...

<student>

<id>65</id>

<name>Teddy Salad</name>

<email>tds@mp.com</email>

</student>

Storing relational data in XML

For whole tables, just repeat

```
<tableOfStudents>
    <student>
        <id>64</id>
        <name>Anne Elk</name>
        <email>ae@bronto.mp.com</email>
        </student>
        <student>
        <id>65</id>
        <name>Teddy Salad</name>...
```

Storing data in XML

Text data

- Elements can be freeform text
- Elements can be further "marked up" to indicate presentation or structure

Storing text data in XML the basics

<text>

Elk: Yes, well you may well ask me what is my theory.

Presenter: I am asking.

Elk: Good for you. My word yes. Well Chris, what is it that it is – this theory of mine. Well, this is what it is – my theory that I have, that is to say, which is mine, is mine.

</text>

Storing text data in XML markup

- <drama>
- <line><player>Elk</player>
- <content>Yes, well you may well ask me what is my
 theory.</content></line>
- line><player>Presenter</player>
- <content>l <loud>am</loud> asking.</content></line>
- <line><player>Elk</player>
- <content>Good for you. My word yes. Well Chris, what is
 it that it is this theory of mine. Well, this is what it is –
 my theory that I have, that is to say, which is mine, is
 mine./content>

</drama>

Storing data in XML

Mix – partly well-defined, partly open-ended

- Example: product descriptions
- Name, description formatted text
- Nutrition information content FDA requires

Storing mixed data in XML

Describing data

DTDs – "document type definitions"

- Original proposal for XML
- Describes possible patterns of elements
- Grammar with regular expression syntax

DTD examples

- <!ELEMENT loud (#PCDATA) >
- <!ELEMENT description (#PCDATA | loud)* >
- <!ELEMENT name (#PCDATA) >
- <!ELEMENT info (name, description) >

DTDs

Not very specific

- Don't constrain types of values
- Don't indicate links to standards
- Can only see one layer of structure at a time

XML Schema

Give a template for a document

- as more XML!
- Complicated syntax, but powerful.

XML Schema examples

Loud

<element name="loud" type="string" />

Name

<element name="name" type="string" />

Hey, what's all that junk?

XML also has empty tags

<foo></foo>

is the same as

<foo />

Hey, what's all that junk?

XML also has attributes on opening tags

<tag attribute="value" >

Hey, what's all that junk?

So

<element name="loud" type="string" />

Defines an empty element

<element name="loud"

type="string"></element>

- Whose name attribute has value "loud"
- Whose type attribute has value "string"

XML Schema Examples

Description

```
<element name="description">
    <complexType mixed="true">
        <choice minOccurs="0"
            maxOccurs="unbounded">
            <element name="loud" type="string" />
        </choice>
    </complexType>
</element>
```

XML Schema Examples

Easier to define your own types

XML Schema Examples

Info

What's the point?

Even with semi-structured data

- You can check that your data falls in a specific range of possibilities
- Validation

Problems:

What about files created by scripts?

Standardization

What schema are you using?

- Does your element <name> mean the same thing as my element <name>?
- If your license gives me <permission action="copy" /> do I really know what I can do with your data?

Key principle

Need a way to uniquely identify tokens as instances of known concepts.

Compare: UPC codes, ISBN numbers

Solution

Use URLs/URIs

- Uniform resource locators
- Uniform resource identifiers

Build on the existing infrastructure to avoid clashing names on the web.

Example

The official DTD for XHTML 1.0 strict

A standard for describing hypertext web documents as XML

lives here

http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd (a URL)

Example

A standard reference for the concepts associated with XHTML is this URI http://www.w3.org/1999/xhtml

Using this "namespace" means your intended meaning for your document is what is spelled out there.

Using namespaces

```
<tag1 xmlns:ns="URI">
.... <ns:tag2 ... />
</tag1>
```

Declared using xmlns attribute Used using ":" syntax

Metadata

Data about data

- We've seen one example: schemas
- If you are building a document that respects a particular XML Schema, you can say so

Metadata

In general, XML metadata is

- An XML description in a specified language
- That you link to as a specified attribute of designated elements

Resource Description Framework

RDF is a particular set of concepts for describing metadata

- Also known as "the semantic web"

Includes

- "Dublin core" concepts for computer science and representation
- OWL and DAML concepts for services
- eXtensibly linked to other concept sets

Example: Creative Commons

http://www.creativecommons.org

- Develops culture-friendly licenses for distributing web content
- Motto: "some rights reserved"
- Licenses are distributed as RDF files granting specific permissions and reserving rights
- Creative commons maintains an XML namespace and URIs for licences and concepts used in them.

Querying XML

How do you find places in a tree?

By nodes

- Category
- Attributes

By paths

- Location
- Ancestor
- Child
- Sequence

Example: XML stylesheets

Controls the layout of XML data when presented in a web browser.

Rules of the form

Pattern { Actions }

Patterns can be seen as queries over data trees.

Stylesheet patterns

Category

Matches any node of type Category

Category.sub

 Matches any node of type Category whose class attribute has the value "sub"

Stylesheet patterns

ParentType > ChildType

 Matches any node of ChildType whose parent is a node of type ParentType

ParentType ChildType

 Maches any node of ChildType that has an ancestor of type ParentType

Stylesheet patterns

Attribute selectors (new)

myElement[myAttribute]

myElement[myAttribute="myValue"]

myElement[myAttribute~="myValue"]

myElement[myAttribute|="myValue"]

Key points

Classic issues in data

- Design
- Representation
- Query
- Declare
- Tell
- Validate