
1

Principles of Information and
Database Management

198:336
Week 8 – Mar 28

Matthew Stone

XML – Motivations

Semi-structured data
– Relaxing traditional schema
– Storing more complex objects

Standardized data
– Using reference schemas for interoperability
– “Meta-data” – language for data description

Web data
– Supported in protocols for information

exchange

Outline

XML – overview
XML data representations
XML and standardization

– XML namespaces
– XML resource description framework

XML and the web
– XHTML
– Cascading style sheets and XSLT

XML

eXtensible Markup Language
– “File format” for giving partial structure to text

documents.
– Based on the use of paired tags to give a

tree structure to the document.

Tags in XML

Work like parentheses…

[(5 + 7) * 3]²

But make category of structure explicit

power(product(sum(5,7), 3), 2)

Tree visualization

power

base exponent

product

sum

value value

value

value

5 7

3
2

2

Basic tag syntax

<tag>
– open a tag

</tag>
– close a tag

Example becomes

<power>
<base>

<product>
<sum>

<value>5</value>
<value>7</value>

</sum>
<value>3</value>

</product>
</base>
<exponent><value>2</value></exponent>

</power>

Storing data in XML

Relational data
– Combines schema and tuples together

Example
– Schema

student(id:integer, name:string, email:string)
– Tuple

(65, “Teddy Salad”, tds@mp.com”)

Storing relational data in XML

In XML, encode table
<student>
…
</student>

Storing relational data in XML

Then columns…
<student>
<id> … </id>
<name> … </name>
<email> … </email>
</student>

Storing relational data in XML

Then values…
<student>
<id>65</id>
<name>Teddy Salad</name>
<email>tds@mp.com</email>
</student>

3

Storing relational data in XML

For whole tables, just repeat
<tableOfStudents>

<student>
<id>64</id>
<name>Anne Elk</name>
<email>ae@bronto.mp.com</email>

</student>
<student>

<id>65</id>
<name>Teddy Salad</name>…

Storing data in XML

Text data
– Elements can be freeform text
– Elements can be further “marked up” to

indicate presentation or structure

Storing text data in XML
the basics

<text>
Elk: Yes, well you may well ask me what is my

theory.
Presenter: I am asking.
Elk: Good for you. My word yes. Well Chris, what

is it that it is – this theory of mine. Well, this is
what it is – my theory that I have, that is to say,
which is mine, is mine.

</text>

Storing text data in XML
markup

<drama>
<line><player>Elk</player>
<content>Yes, well you may well ask me what is my

theory.</content></line>
<line><player>Presenter</player>
<content>I <loud>am</loud> asking.</content></line>
<line><player>Elk</player>
<content>Good for you. My word yes. Well Chris, what is

it that it is – this theory of mine. Well, this is what it is –
my theory that I have, that is to say, which is mine, is
mine.</content></line>

</drama>

Storing data in XML

Mix – partly well-defined, partly open-ended
– Example: product descriptions
– Name, description – formatted text
– Nutrition information – content FDA requires

Storing mixed data in XML

<product>
<info><name>California trail mix</name>
<description>We mix sweet <loud>ripe</loud> fruit with

<loud>premium</loud> nuts to bring you the taste of <loud>pure
energy</loud>…</description></info>

<nutrition><servings><size>1/4 cup</size>
<per>about 27</per></servings>

<calories><total>120</total>
<fat>25</fat></calories>

… </nutrition>
</product>

4

Describing data

DTDs – “document type definitions”
– Original proposal for XML
– Describes possible patterns of elements
– Grammar with regular expression syntax

DTD examples

<!ELEMENT loud (#PCDATA) >
<!ELEMENT description (#PCDATA | loud)* >
<!ELEMENT name (#PCDATA) >
<!ELEMENT info (name, description) >

DTDs

Not very specific
– Don’t constrain types of values
– Don’t indicate links to standards
– Can only see one layer of structure at a time

XML Schema

Give a template for a document
– as more XML!
– Complicated syntax, but powerful.

XML Schema examples

Loud
<element name=“loud” type=“string” />

Name
<element name=“name” type=“string” />

Hey, what’s all that junk?

XML also has empty tags

<foo></foo>
is the same as
<foo />

5

Hey, what’s all that junk?

XML also has attributes on opening tags

<tag attribute=“value” >

Hey, what’s all that junk?

So
<element name=“loud” type=“string” />
Defines an empty element
<element name=“loud”

type=“string”></element>
– Whose name attribute has value “loud”
– Whose type attribute has value “string”

XML Schema Examples

Description
<element name=“description”>
<complexType mixed=“true”>

<choice minOccurs=“0”
maxOccurs=“unbounded”>

<element name=“loud” type=“string” />
</choice>

</complexType>
</element>

XML Schema Examples

Easier to define your own types
<complexType name=“descriptionType” mixed=“true”>

<choice minOccurs=“0”
maxOccurs=“unbounded”>

<element name=“loud” type=“string” />
</choice>

</complexType>

XML Schema Examples

Info
<complexType name=“infoType”>

<sequence>
<element name=“name” type=“string” />
<element name=“description”

type=“descriptionType” />
</sequence>

</complexType>
<element name=“info” type=“infoType” />

What’s the point?

Even with semi-structured data
– You can check that your data falls in a specific

range of possibilities
– Validation

Problems:
What about files created by scripts?

6

Standardization

What schema are you using?
– Does your element <name> mean the same

thing as my element <name>?
– If your license gives me

<permission action=“copy” />
do I really know what I can do with your data?

Key principle

Need a way to uniquely identify tokens as
instances of known concepts.

Compare: UPC codes, ISBN numbers

Solution

Use URLs/URIs
– Uniform resource locators
– Uniform resource identifiers

Build on the existing infrastructure to avoid
clashing names on the web.

Example

The official DTD for XHTML 1.0 strict
– A standard for describing hypertext web

documents as XML
lives here
http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd
(a URL)

Example

A standard reference for the concepts
associated with XHTML is this URI
http://www.w3.org/1999/xhtml

Using this “namespace” means your
intended meaning for your document is
what is spelled out there.

Using namespaces

<tag1 xmlns:ns=“URI”>
…. <ns:tag2 … />

</tag1>

Declared using xmlns attribute
Used using “:” syntax

7

Metadata

Data about data
– We’ve seen one example: schemas
– If you are building a document that respects a

particular XML Schema, you can say so

<product xmlns=“URL”
xmlns:xsi=http://www.w3c.org/2001/XMLSchema-instance
xsi:schemaLocation=“URL2”>

…
</product>

Metadata

In general, XML metadata is
– An XML description in a specified language
– That you link to as a specified attribute of

designated elements

Resource Description Framework

RDF is a particular set of concepts for
describing metadata
– Also known as “the semantic web”

Includes
– “Dublin core” concepts for computer science

and representation
– OWL and DAML concepts for services
– eXtensibly linked to other concept sets

Example: Creative Commons

http://www.creativecommons.org
– Develops culture-friendly licenses for

distributing web content
– Motto: “some rights reserved”

– Licenses are distributed as RDF files granting
specific permissions and reserving rights

– Creative commons maintains an XML
namespace and URIs for licences and
concepts used in them.

Querying XML

How do you find places in a tree?
By nodes

– Category
– Attributes

By paths
– Location
– Ancestor
– Child
– Sequence

Example: XML stylesheets

Controls the layout of XML data when
presented in a web browser.
Rules of the form

Pattern { Actions }
Patterns can be seen as queries over data
trees.

8

Stylesheet patterns

Category
– Matches any node of type Category

Category.sub
– Matches any node of type Category

whose class attribute has the value “sub”

Stylesheet patterns

ParentType > ChildType
– Matches any node of ChildType whose parent

is a node of type ParentType

ParentType ChildType
– Maches any node of ChildType that has an

ancestor of type ParentType

Stylesheet patterns

Attribute selectors (new)
myElement[myAttribute]
myElement[myAttribute=“myValue”]
myElement[myAttribute~=“myValue”]
myElement[myAttribute|=“myValue”]

Key points

Classic issues in data
– Design
– Representation
– Query
– Declare
– Tell
– Validate

