Principles of Information and
Database Management
198:336
Week 8 - Mar 28

Matthew Stone

XML - Motivations

Semi-structured data

— Relaxing traditional schema

— Storing more complex objects
Standardized data

— Using reference schemas for interoperability

— “Meta-data” — language for data description
Web data

— Supported in protocols for information
exchange

Outline

XML - overview
XML data representations
XML and standardization
— XML namespaces
— XML resource description framework
XML and the web
— XHTML
— Cascading style sheets and XSLT

XML

eXtensible Markup Language

— “File format” for giving partial structure to text
documents.

— Based on the use of paired tags to give a
tree structure to the document.

Tags in XML

Work like parentheses...

(G+7)" 3P

But make category of structure explicit

power(product(sum(5,7), 3), 2)

Tree visualization

exponent

/

value

Basic tag syntax

<tag>

—open a tag
</tag>

—close a tag

Example becomes

<power>
<base>
<product>
<sum>
<value>5</value>
<value>7</value>
</sum>
<value>3</value>
</product>
</base>

<exponent><value>2</value></exponent>
</power>

Storing data in XML

Relational data
— Combines schema and tuples together
Example
—Schema
student(id:integer, name:string, email:string)
—Tuple
(65, “Teddy Salad”, tds@mp.com”)

Storing relational data in XML

In XML, encode table
<student>

</student>

Storing relational data in XML

Then columns...
<student>

<id> ... </id>
<name> ... </name>
<email> ... </email>
</student>

Storing relational data in XML

Then values...

<student>

<id>65</id>

<name>Teddy Salad</name>
<email>tds@mp.com</email>
</student>

Storing relational data in XML

For whole tables, just repeat
<tableOfStudents>
<student>
<id>64</id>
<name>Anne Elk</name>
<email>ae@bronto.mp.com</email>
</student>
<student>
<id>65</id>
<name>Teddy Salad</name>...

Storing data in XML

Text data
— Elements can be freeform text

— Elements can be further “marked up” to
indicate presentation or structure

Storing text data in XML
the basics

<text>

Elk: Yes, well you may well ask me what is my
theory.

Presenter: | am asking.

Elk: Good for you. My word yes. Well Chris, what
is it that it is — this theory of mine. Well, this is
what it is — my theory that | have, that is to say,
which is mine, is mine.

</text>

Storing text data in XML
markup

<drama>

<line><player>Elk</player>

<content>Yes, well you may well ask me what is my
theory.</content></line>

<line><player>Presenter</player>

<content>| <loud>am</loud> asking.</content></line>

<line><player>Elk</player>

<content>Good for you. My word yes. Well Chris, what is
it that it is — this theory of mine. Well, this is what it is —
my theory that | have, that is to say, which is mine, is
mine.</content></line>

</drama>

Storing data in XML

Mix — partly well-defined, partly open-ended
— Example: product descriptions
— Name, description — formatted text
— Nutrition information — content FDA requires

Storing mixed data in XML

<product>
<info><name>California trail mix</name>

<description>We mix sweet <loud>ripe</loud> fruit with
<loud>premium</loud> nuts to bring you the taste of <loud>pure
energy</loud>...</description></info>

<nutrition><servings><size>1/4 cup</size>
<per>about 27</per></servings>
<calories><total>120</total>
<fat>25</fat></calories>
... </nutrition>
</product>

Describing data

DTDs — “document type definitions”
— Original proposal for XML
— Describes possible patterns of elements
— Grammar with regular expression syntax

DTD examples

<IELEMENT loud (#PCDATA) >

<IELEMENT description (#PCDATA | loud)* >
<IELEMENT name (#PCDATA) >
<IELEMENT info (name, description) >

DTDs

Not very specific
— Don’t constrain types of values
— Don't indicate links to standards
— Can only see one layer of structure at a time

XML Schema

Give a template for a document
—as more XML!
— Complicated syntax, but powerful.

XML Schema examples

Loud
<element name="loud” type="string” />

Name
<element name="name” type="“string” />

Hey, what’s all that junk?

XML also has empty tags

<foo></foo>
is the same as
<foo />

Hey, what’s all that junk?

XML also has attributes on opening tags

<tag attribute="value” >

Hey, what’s all that junk?

So
<element name="loud” type="string” />
Defines an empty element
<element name="loud”
type="“string”></element>
— Whose name attribute has value “loud”
— Whose type attribute has value “string”

XML Schema Examples

Description
<element name="description”>
<complexType mixed="true”>

<choice minOccurs="0"
maxOccurs="unbounded”>

<element name="loud” type="string” />
</choice>
</complexType>
</element>

XML Schema Examples

Easier to define your own types
<complexType name=“descriptionType” mixed="true”>

<choice minOccurs="0"
maxOccurs="unbounded”>

<element name="loud” type="string” />
</choice>
</complexType>

XML Schema Examples

Info
<complexType name="infoType”">
<sequence>
<element name="name” type="string” />
<element name="description”
type="descriptionType” />
</sequence>
</complexType>
<element name="info” type="infoType” />

What’s the point?

Even with semi-structured data

—You can check that your data falls in a specific
range of possibilities
— Validation

Problems:
What about files created by scripts?

Standardization Key principle

What schema are you using? Need a way to uniquely identify tokens as
— Does your element <name> mean the same instances of known concepts.
thing as my element <name>?
— If your license gives me Compare: UPC codes, ISBN numbers

<permission action=“copy” />
do | really know what | can do with your data?

Solution Example
Use URLs/URIs The official DTD for XHTML 1.0 strict
— Uniform resource locators — A standard for describing hypertext web
— Uniform resource identifiers documents as XML
lives here
Build on the existing infrastructure to avoid http://www.w3.0rg/TR/xhtmI1/DTD/xhtml1-strict.dtd
clashing names on the web. (@URL)
Example Using namespaces
A standard reference for the concepts <tag1 xmins:ns=“URI">
associated with XHTML is this URI<ns:tag2 ... />
http://www.w3.0rg/1999/xhtml </tag1>

Using this “namespace” means your
intended meaning for your document is
what is spelled out there.

Declared using xmins attribute

Used using “” syntax

Metadata

Data about data
—We've seen one example: schemas

— If you are building a document that respects a
particular XML Schema, you can say so

<product xmlns="URL”

xmins:xsi=http://www.w3c.org/2001/XML Schema-instance
xsi:schemalocation="URL2">

</product>

Metadata

In general, XML metadata is
— An XML description in a specified language

—That you link to as a specified attribute of
designated elements

Resource Description Framework

RDF is a particular set of concepts for
describing metadata

— Also known as “the semantic web”

Includes

—“Dublin core” concepts for computer science
and representation

— OWL and DAML concepts for services
—eXtensibly linked to other concept sets

Example: Creative Commons

http://www.creativecommons.org

— Develops culture-friendly licenses for
distributing web content

— Motto: “some rights reserved”

— Licenses are distributed as RDF files granting
specific permissions and reserving rights

— Creative commons maintains an XML
namespace and URIs for licences and
concepts used in them.

Querying XML

How do you find places in a tree?
By nodes

— Category

— Attributes

By paths

— Location

— Ancestor

— Child

— Sequence

Example: XML stylesheets

Controls the layout of XML data when
presented in a web browser.

Rules of the form
Pattern { Actions }

Patterns can be seen as queries over data
trees.

Stylesheet patterns

Category
— Matches any node of type Category

Category.sub
— Matches any node of type Category

whose class attribute has the value “sub”

Stylesheet patterns

ParentType > ChildType

— Matches any node of ChildType whose parent
is a node of type ParentType

ParentType ChildType

— Maches any node of ChildType that has an
ancestor of type ParentType

Stylesheet patterns

Attribute selectors (new)
myElement[myAttribute]
myElement[myAttribute="myValue”]
myElement[myAttribute~="myValue”]
myElement[myAttribute|=“myValue”]

Key points

Classic issues in data
— Design
— Representation
— Query
— Declare
—Tell
— Validate

