

Matthew Stone

Today

Logic and Representation Entities in IMDB Relationships in IMDB Overview of Design Methodology

Step 1: $IM = \emptyset$

Abstract example Step 1: IM = Ø Step 2: TELL(IM, f(a,c)) - Give IM the information that the individual represented by a stands in the relation represented by f to the individual represented by c.

Step 1: $IM = \emptyset$

- Step 2: TELL(IM, f(a,c))
- Step 3: ASK(IM, f(X,c))
 - Ask IM to report proofs that show that some individual X stands in the relation represented by f to the individual represented by c.
 - IM answers with a single proof of the form

 $f(a,c) \rightarrow f(X,c) [X=a]$

- Step 2: TELL(IM, f(a,c))
- Step 3: ASK(IM, f(X,c))
- Step 4: **TELL(IM, f(b,c))**
 - Give IM the information that the individual represented by b stands in the relation represented by f to the individual represented by c.
 - Result: IM = { f(a,c), f(b,c) }

Step 1:IM = \emptyset Step 2:TELL(IM, f(a))Step 3:ASK(IM, f(X))Step 4:TELL(IM, f(b))Step 5:ASK(IM, f(X))- IM answers with two proofsf(a,c) \rightarrow f(X,c) [X=a]f(b,c) \rightarrow f(X,c) [X=b]

Here's an actual picture of St Peter's Basilica in Vatican City

Googled from Steve Natran

Same goes for mental representations

Thought experiment: "Twin Earth" – Due to philosopher Hilary Putnam

Note

We say

 System's code 0-71641-81803-3 represents Sanford "Expo" white board cleaner.

Symbol: 0-71641-81803-3

corresponds to

Real-world stuff: Sanford "Expo" cleaner

Consequences for IMDB design

Representing entities means:

- Organizing things in the world
- Creating symbols to represent things in DB
- Setting up causal connections so that symbols are used in DB when things are there in the world

Organizing things

Labeling kinds of things

– UPC

Labeling individual objects

- Library books
- EZPass tags
- RFID tags in supply chains (WalMart)

Coding individuals

- Social security numbers

Creating symbols

Store arbitrary numbers!

Creating causal connections

Bar-code scanners

RFID readers

- Get the codes implanted into objects

Security-through-obscurity

- Have people tell you their own numbers

- Passwords, PINs

Biometrics, causality & representation

System has internal ID for you: 0-71641-81803-3

Machine knows your physical signature: • When user maches: •,

system thinks: 0-71641-81803-3

System's representation 0-71641-81803-3 is really about you.

DB converges with AI?

Robin has internal ID for you: neuron #0-71641-81803-3 Robin knows your physical signature: When Robin sees someone matching: Robin's neuron #0-71641-81803-3 fires Robin's neuron #0-71641-81803-3 is a representation that's really about you.

Topic so far: entities

In DB design:

 each entity you consider has to be distinguishable from the other entities.

Why?

- Causality and representation.
- If you can't tell X and Y apart, you never know when you represent X and when you represent Y.
- Better work with X and Y's kind of thing

We can also represent properties and relations

Property (def)

– An attribute, quality or characteristic.

Relation (def)

What one person or thing has to do with another.

Consequences for IMDB design

Representing properties means:

- Organizing conditions/situations in the world
- Creating symbols for properties in DB
- Setting up causal connections so that the symbol is used in DB in those situations where the property is realized

What Property is Represented here?

What Property is Represented here?

Directly:

 Property of being in visible range of this scanner

Indirectly:

- Property of occurring at a specified position in a physical array of items
 - (as orchestrated by a human operator)

What Property is Represented here?

Directly:

- Property of being within range of the reader.

Implicitly:

 Property of driving through a specified toll plaza.

Step 1: $IM = \emptyset$

Step 2: TELL(IM, f(a,c))

- Give IM the information that the individual represented by **a** stands in the relation represented by **f** to the individual represented by **c**.
- Hey, Toyota Prius #NJ YY-901 just went through the exit 9 toll plaza!
- NB: Meanings ain't in the head.

- Step 2: TELL(IM, f(a,c))
- Step 3: ASK(IM, f(X,c))
 - Ask IM to report proofs that show that some individual X stands in the relation represented by f to the individual represented by c.
 - Hey, what cars went through the exit 9 toll plaza just now?

- Step 2: TELL(IM, f(a,c))
- Step 3: ASK(IM, f(X,c))
- Step 4: **TELL(IM, f(b,c))**
 - Give IM the information that the individual represented by b stands in the relation represented by f to the individual represented by c.
 - Hey, Honda Insight NJ ZZ-882 just went through the exit 9 toll plaza!

- Step 2: TELL(IM, f(a,c))
- Step 3: ASK(IM, f(X,c))
- Step 4: **TELL(IM, f(b,c))**
- Step 5: ASK(IM, f(X,c))
 - Ask IM to report proofs that show that some individual X stands in the relation represented by f to the individual represented by c.
 - Hey, what cars went through the exit 9 toll plaza just now?

Step 1: IM = Ø
Step 2: TELL(IM, f(a))
Step 3: ASK(IM, f(X))
Step 4: TELL(IM, f(b))
Step 5: ASK(IM, f(X))
 - It was Toyota Prius #NJ YY-901 and Honda
 Insight NJ ZZ-882!

Truth in model M

 $-\phi$ is true in M if and only if

 ϕ is true in M on any assignment g.

Validity

 $-\phi$ is valid if and only if it's true in all models

Entailment

- A set of formulas Σ entails φ if and only if φ is true in every model where Σ is true.

Logic and consequence

Soundness:

If you have a proof $\Sigma \rightarrow \phi$ then Σ entails ϕ .

Why this matters...

But, meanings ain't in the head!

From the inside, the system doesn't see this model.

It only sees the formulas that describe it.

Why this matters...

So, soundness and completeness say what's needed for the system to act as though it had the information we've given.

Entities in the ER model

Described using a set of attributes

Key

 minimal set of attributes whose values uniquely identify an entity.

Characterizing relationship sets

Key constraints and one-to-one relations Key constraint means that each entity can participate in at most one relationship.

Visualized by an arrow.

Typical design methodology

Requirements analysis

- What must system do?

Conceptual design

- What information is needed?
- Logical database design
 - What kinds of representations must be involved?

Typical design methodology

Schema refinement

- Normalizing relations and other streamlining operations
- Physical DB design
 - Make sure DB meets performance criteria, perhaps retuning schemas

Application and security design

– Human factors and system integration issues