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1 Propositional Natural Deduction
The proof systems that we have been studying in class are callednatural deduction. This is because
they permit the same lines of reasoning and the same form of argument that you see in ordinary
mathematics. Students generally find it easier to represent their mathematical ideas in natural
deduction than in other ways of doing proofs.

In these systems the proof is a sequence of lines. Each line has a number, a formula, and a
justification that explains why the formula can be introduced into the proof. The simplest kind of
justification is that the formula is apremise, and the argument depends on it. Another common
justification ismodus ponens, which derives the consequent of a conditional in the proof whose
antecedent is also part of the proof. Here is a simple proof with these two rules used together.

Example 1 1 P→ Q Premise
2 Q→ R Premise
3 P Premise
4 Q Modus ponens 1,3
5 R Modus ponens 2,4

This proof assumes thatP is true, thatP → Q, and thatQ → R. It uses modus ponens to
conclude thatR must then be true.

Some inference rules in natural deduction allow assumptions to be madefor the purposes of
argument. These inference rules create asubproof. A subproof begins with a new assumption. This
assumption can be used just within this subproof. In addition, all the assumption made in outer
proofs can be used in the subproof. The justification for an assumption that begins a subproof is
the kind of argument that the assumption is made for. Formulas in the subproof are indented so
you can see that they go together.

Two rules that create subproofs are used very frequently in propositional logic. These are
conditional proofand indirect proof. In conditional proof, you assume some formulaA for the
purposes of argument. Then you construct a subproof which establishes the conclusionB. This
subproof shows that when you make the assumptionA, thenB follows. From this subproof, you
can inferA→ B in the outer proof.

Here is an example of conditional proof. It also uses modus ponens and theconjunction rule:
if A is part of a proof andB is part of a proof, then you can inferA∧B in the proof, too.

Example 2 1 P∧Q→ R Premise
2 P→ Q Premise
3 P Premise for Conditional Proof
4 Q Modus ponens 2,3
5 P∧Q Conjunction 3,4
6 R Modus ponens 1,5
7 P→ R Conditional Proof, 3–6
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This proof assumes thatP impliesQ and thatP andQ together implyR. It shows under these
assumptions that in factP by itself impliesR. The proof assumes for the purposes of argument
thatP is true, and shows thatR follows. This is the subproof from steps 3–6. Note that the main
assumptions numbered 1 and 2 are used freely within the subproofs, in the modus ponens steps at 4
and 6. Also note that the justification for conditional proof at step 7 appeals to the entire subproof
from 3–6.

The other thing you often do isindirect proof. This captures reasoning by contradiction. In
indirect proof, you begin a subproof by assuming that the conclusion you actually want to prove
is false:¬A. In this subproof, you derive the contradictionFALSE. The subproof shows that the
assumption¬A is impossible, so in the outer proof you know thatA must be true.

Here is a formal example of indirect proof. It needs thecontradiction rule: if A is part of a
proof and¬A is part of a proof, then you can inferFALSE there too. It also needs thedisjunction
rule: if A is part of a proof, then you can inferA∨B there too.

Example 3 1 ¬P∨¬R→ Q Premise
2 ¬Q Premise
3 ¬P Premise for Indirect Proof
4 ¬P∨¬R Disjunction 3
5 Q Modus ponens 1,4
6 FALSE Contradiction 2,5
7 P Indirect Proof, 3–6

The argument assumes thatQ would be true if eitherP or R was false, but thatQ is not true.
It uses indirect proof to conclude from this thatP must be true. Again we see that the premises of
the main proof, numbered 1 and 2, are used freely inside the subproofs, here at steps 5 and 6. And
again we see that the rule that needs a subproof, indirect proof, points to the whole subproof in its
justification.

2 Mechanical Proofs
Each of the connectives of propositional logic comes with rules that say how to infer that kind of
formula and how to use that kind of formula. These simple rules are all you need to build proofs.
For that reason, they are often used in computer systems that work with proofs. There is less to
put into the computer implementation and the implementation can work with more constrained
reasoning problems, which is usually more efficient. Here are all the rules, with explanations.

Example 4 L A∧B
N A Simplification L

Example 5 L A∧B
N B Simplification L

Example 6 L A
M B
N A∧B Conjunction L,M
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If a conjunction is true, each of the conjuncts is true. If each of the conjucts is true, the
conjunction is true.

Example 7 L A Premise for Conditional Proof
...

M B
N A→ B Conditional Proof L–M

Example 8 L A→ B
M A
N B Modus Ponens L,M

If the consequent of a conditional would follow from the assumption of the antecedent, then
the conditional must be true. If the antecedent of a true conditional is true, the consequent must be
true.

Example 9 L A Premise for Indirect Proof
...

M FALSE

N ¬A Indirect Proof L–M

Example 10 L ¬A Premise for Indirect Proof
...

M FALSE

N A Indirect Proof L–M

Example 11 L A
M ¬A
N FALSE Contradiction L,M

Example 12 M FALSE

N A False L

If the assumption ofA would lead to a contradiction,¬A must be true. If the assumption of¬A
would lead to a contradiction,A must be true. A contradiction isA and¬A. From a contradictory
proof, anything follows.

Example 13 L A
N A∨B Disjunction L

Example 14 L B
N A∨B Disjunction L
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Example 15 D A∨B
L1 A Premise for Case Analysis D

...
M1 C
L2 B Premise for Case Analysis D

...
M2 C

N C Case Analysis D,L1–M1,L2–M2.

If A is true,A∨B must be true, and ifB is true,A∨B must be true. IfA∨B is true, and some
conclusionC must be true ifA is true, and must be true ifB is true, thenC must be true no matter
what.

3 More relaxed proofs
What’s important when people write down proofs formally is not to use a specific proof system.
What’s important is to be able to demonstrate correct conclusions. You can use any correct rule
that is intuitively obvious—that nobody would doubt. For example, there are some derived rules
involving negation that come in very handy for indirect proofs.

Example 16 L A→ B
M ¬B
N ¬A Modus tollens L,M

If A is true only whenB is true, andB is false, thenA must also be false.

Example 17 L A∨B
M ¬B
N A Disjunctive syllogism L,M

If eitherA or B is true, butB is not true, thenA must be true.
More generally, you can use results that you have derived earlier, or even results that you have

derived by other methods. For example, since De Morgan’s law gives you the logical equivalence
between¬(A∨B) and¬A∧¬B, you can reason this way in a proof:

Example 18 L ¬(A∨B)
N ¬A∧¬B De Morgan’s Law L

We’ve seen examples where you use results from algebra and definitions of concepts, as well
as logical equivalences in derivations.

4 Quantifiers
There are four quantifier rules.

Example 19 L P(a)
N ∀xP(x) Universal generalization L
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You can only use universal generalization when nopremisesin the proof mentiona. That
means thata is arbitrary, and the same reasoning would go through for any object. So the universal
statement must be true.

Example 20 L ∀xP(x)
N P(t) Universal instantiation L

There are no restrictions ont here. BecauseP(x) holds for all objectst can be anything.

Example 21 L P(t)
N ∃xP(x) Existential generalization L

Again there is no restriction ont here. Once you know thatP(t) holds you know thatP(x)
holds for somex, and that is enough to infer the existential statement.

Example 22 D ∃xP(x)
L P(a) Premise for Existential Instantiation

...
M C
N C Existential instantiation D,L–M.

This has two restrictions. You can’t make any assumptions abouta other thanP(a) in the
proof. That makesa an arbitrary individual. So whatever the thing is that turns out to haveP(x),
the argument will work for it. Anda can’t occur inC either. That means that the conclusion doesn’t
depend ona, so it holds whatever it is that turns out to haveP(x). Since somex hasP(x), C must
be true.

Here is a typical example of how the quantifier rules are used in combination.

Example 23 1 ∀x(P(x) → Q(x)) Premise
2 ∃x(P(x)) Premise
3 P(a) Premise for Existential Instantiation 2
4 P(a) → Q(a) Universal Instantiation 1
5 Q(a) Modus ponens 4,3
6 ∃x(Q(x)) Existential generalization 5
7 ∃x(Q(x)) Existential instantiation 2,3–6.

If every P is aQ, and there is aP, then there is aQ. The inference says: leta be aP. It must
also be aQ, so there is aQ.
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5 Proof Terms (Optional)
Let’s generalize the idea of a proof. Let’s think instead about pieces of information about the
world. Then the rules of proof give you ways of putting information together to draw conclusions.
For example, ifx is some information that guarantees thatA is true, andy is some information that
guarantees thatB is true, thenx andy together make up a piece of information that guarantees that
A∧B is true.

More interestingly, what kind of information do you need forA → B? You can think of it as
a function. If you give the function a piece of information that says thatA is true, your proof of
A→ B will give you back a piece of information that says thatB is true.

You can use this idea to givetermsthat spell out the content of the proof. Assumptions corre-
spond to variables.

Example 24 1 P→ Q Premise f
2 Q→ R Premise g
3 P Premise x
4 Q mp(1,3) mp( f ,x)
5 R mp(2,4) mp(g,mp( f ,x))

Conditional proof corresponds to specifying an algorithm. The hypothesis is a variable for a
new fact that could be supplied. The subproof constructs a new piece of information as a function
of this variable. When you reason from the subproof to extend the main proof, you use this function
as part of the inference.

Example 25 1 P∧Q→ R Premise f
2 P→ Q Premise g
3 P Premise z
4 Q mp(2,3) mp(g,z)
5 P∧Q cj(3,4) cj(z,mp(g,z))
6 R mp(1,5) mp( f ,cj(z,mp(g,z)))
7 P→ R cp(3⇒ 6) cp(z⇒ mp( f ,cj(z,mp(g,z))))

When you build large proofs, you can sometimes build intermediate results that you don’t really
need. You can simplify these proofs to get rid of the extra steps. For example look at this proof.

Example 26 1 P∧Q→ R Premise f
2 P→ Q Premise g
3 P Premise z
4 Q mp(2,3) mp(g,z)
5 P∧Q cj(3,4) cj(z,mp(g,z))
6 R mp(1,5) mp( f ,cj(z,mp(g,z)))
7 P→ R cp(3⇒ 6) cp(z⇒ mp( f ,cj(z,mp(g,z))))
8 P Premise w
9 R mp(7,8) mp(cp(z⇒ mp( f ,cj(z,mp(g,z)))),w)
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This proof hasP as an assumption. But it uses this assumption to proveR indirectly. First we
proveP→ R using conditional proof. And then we use modus ponens to deriveR from this using
the assumption ofP.

We didn’t really need to do conditional proof in this case. We could have just started from our
main assumption ofP, and derivedRdirectly. The proof-term tells us how to get this simple proof.
We have a term of the form:

mp(cp(F),a)

We’ve used a conditional proof made up of some functionF, and then reasoned from this and
another proofa using modus ponens. The proof we need should just be

F(a)

In other words, we should take the functionF that we built and apply it to the argumenta. In this
case our overall proof term is:

mp(cp(z⇒ mp( f ,cj(z,mp(g,z)))),w)

So the simple proof should be

[z⇒ mp( f ,cj(z,mp(g,z)))](w)

or
mp( f ,cj(w,mp(g,w)))

We can take this proof term and use it to reconstruct the whole proof that goes with it. Here it is:

Example 27 1 P∧Q→ R Premise f
2 P→ Q Premise g
3 P Premise w
4 Q mp(2,3) mp(g,w)
5 P∧Q cj(3,4) cj(w,mp(g,w))
6 R mp(1,5) mp( f ,cj(w,mp(g,w)))
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