CS 205 Sections 07 and 08
Homework 5 - Accepted for grading 4/28

1. Create a finite automaton whose inputs are strings containing the letters a, b and c. You automaton should recongize any string that contains at least one a and at least one b but no c 's. Clearly label the states and transitions. Indicate the starting state and any final states.
2. An arcade game consists of three raised cylinders, labeled A, B and C respectively. The object of the game is to push down the cylinders in the proper sequence. A cylinder that is pushed down out of sequence will stay down, but the other two cylinders will pop up. When a cylinder is pushed down in its proper position in the sequence, all previous cylinders in the sequence will also stay down. The proper sequence is $B C A$. Design a finite automaton that models this arcade game.
Hint. Use the states to represent which cylinders are down. There is only one final state.
3. Let A be a nonempty set such that $A^{2}=A$.
(a) Prove that $A^{+}=A$.
(b) Prove that $\lambda \in A$.

Hint. Consider the cases $|A|=1$ and $|A|>1$. For the second case, consider a non-null string in A of minimal length.
(c) Prove that $A^{*}=A$.
4. An infix expression is written in the form exp op exp, where exp is any expression and $o p$ is a binary operator. For this problem, assume that the expressions are either integers or one-letter variables. Also, assume that operators are one of the four standard arithmetic operators: $\{+,-, *, /\}$. Write a regular expression that matches input expressions with these restrictions.
5. Let L be a language over some vocabulary V. The complement of L is denoted by \bar{L} and consists of all the strings in V^{*} that are not in L. Prove that if L is a regular language, then \bar{L} is also a regular language.
Hint. Use the fact that a language is a regular if and only if it is accepted by a finite state machine. Think about what the final and nonfinal states do in a finite state machine that accepts L.

