CS 205 Sections 07 and 08 Homework 4 – Accepted for grading 4/12

1. Prove that whenever p_1, \ldots, p_n is a list of two or more propositions,

$$\neg (p_1 \lor p_2 \lor \ldots \lor p_n)$$

is logically equivalent to

$$\neg p_1 \land \neg p_2 \land \ldots \land \neg p_n$$

Use mathematical induction, and the fact that $\neg(p \lor q)$ is equivalent to $\neg p \land \neg q$ (De Morgan's law).

Answer:

Proof. Basis step: n = 2. In this case, $\neg(p_1 \lor p_2)$ is equivalent to $\neg p_1 \land \neg p_2$ by De Morgan.

Inductive step. Suppose $\neg (p_1 \lor p_2 \lor \ldots \lor p_k)$ is equivalent to $\neg p_1 \land \neg p_2 \land \ldots \land \neg p_k$. Consider $\neg (p_1 \lor p_2 \lor \ldots \lor p_k \lor p_{k+1})$. By De Morgan, this is equivalent to $\neg (p_1 \lor p_2 \lor \ldots \lor p_k) \land \neg p_{k+1}$. By the induction hypothesis, this is equivalent to $\neg p_1 \land \neg p_2 \land \ldots \land \neg p_k \land \neg p_{k+1}$. This is what we had to show.

We complete the proof by mathematical induction.

2. Prove by induction that if $a \equiv b \pmod{m}$ then $a^n \equiv b^n \pmod{m}$ for all $n \ge 0$.

Answer:

Proof. The key fact for the proof is that if $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$ then $ac \equiv bd \pmod{m}$. This is Theorem 10 in the text on page 163.

Basis step: n = 0. In this case, $a^0 = 1$ and $b^0 = 1$ and $1 \equiv 1 \pmod{m}$.

Inductive step. Suppose $a^k \equiv b^k \pmod{m}$. Consider $a^{k+1} = a(a^k)$ and $b^{k+1} = b(b^k)$. Since $a \equiv b \pmod{m}$ and by hypothesis $a^k \equiv b^k \pmod{m}$, by Theorem 10, $a^{k+1} \equiv b^{k+1} \pmod{m}$.

We complete the proof by mathematical induction.

3. Verify that the program segment

is correct with respect to the initial assertion **T** and the final assertion

$$(x \le y \land m = x) \lor (x > y \land m = y)$$

Answer:

We use the rule for verifying conditional programs by verifying each branch. We consider the branches in turn.

First, it must be shown that if the initial assertion is true and x < y, then after we execute m := x, it's true that $(x \le y \land m = x) \lor (x > y \land m = y)$. By inertia, x < y is true after we execute m := x. And by implication, $x \le y$ is true. By assignment, m = x is true after we execute m := x. So by logic, $x \le y \land m = x$ is true and thus $(x \le y \land m = x) \lor (x > y \land m = y)$.

Second, it must be shown that if the initial assertion is true and $y \le x$, then after we execute m := y, it's true that $(x \le y \land m = x) \lor (x > y \land m = y)$. By inertia, $y \le x$ is true after we execute m := y. By assignment, m = y is true after we execute m := y. So we have $y \le x \land m = y$. We consider cases for $y \le x$: either x > y or y = x. So either $(x > y \land m = y) \lor (y = x \land m = y)$. Looking at the second disjunct, $y = x \land m = y$ is equivalent to $y = x \land m = x$ and thus entails $x \le y \land m = x$. So we conclude $(x \le y \land m = x) \lor (x > y \land m = y)$.

This completes the proof.

4. This program computes quotients and remainders:

```
r := a

q := 0

while r \ge d

begin

r := r - d

q := q + 1

end
```

The program assumes that d > 0 and a > 0.

Prove that

$$d > 0 \land 0 \le r \le a \land a = dq + r$$

is a *loop invariant* for the while loop. In other words, show that if

$$d > 0 \land 0 \leq r \leq a \land a = dq + r \land r \geq d$$

is true at the beginning of any iteration of the loop, then

$$d > 0 \land 0 \le r \le a \land a = dq + r$$

is true afterwards.

Answer:

Each iteration of the loop carries out the two instructions I_1 of r := r - d and I_2 of q := q + 1. First we show that if $d > 0 \land 0 \le r \le a \land a = dq + r \land r \ge d$ is true before I_1 then $d > 0 \land 0 \le r \le a \land a = dq + r + d$ is true afterwards. Since *d* does not change in I_1 , and we know d > 0 before I_1 , we know d > 0 after I_1 . Initially *r* has some value: call it r_0 . We know initially $a = dq + r_0$. This does not depend on *r*, so it holds after I_1 by inertia. Likewise $0 \le r_0 \le a$ holds after I_1 by inertia. Meanwhile, by assignment, we know that after I_1 , $r = r_0 - d$. Since d > 0 and $d \le r_0 < a$ we know $0 \le r \le a$ after I_1 . Finally, by algebra $r_0 = r + d$ and thus a = dq + r + d. By logic then, after $I_1, d > 0 \land 0 \le r \le a \land a = dq + r + d$.

Next we show that if $d > 0 \land 0 \le r \le a \land a = dq + r + d$ is true before I_2 , then $d > 0 \land 0 \le r \le a \land a = dq + r$ is true afterwards. Neither *d* nor *r* nor *a* is affected by assignment to *q* so that means $d > 0 \land 0 \le r \le a$ is true after I_2 . Before $I_2 q$ has some value: call it q_0 . We know initially $a = dq_0 + r + d$. This does not depend on *q*, so it holds after I_2 by inertia. Meanwhile, by assignment, we know that after I_2 , $q = q_0 + 1$. By algebra $q_0 = q - 1$ so a = d(q-1) + r + d = dq - d + r + d = dq + r. Thus by logic $d > 0 \land 0 \le r \le a \land a = dq + r$ is true after I_2 .

We complete the proof by observing that since the two instructions are run in sequence, these two arguments suffice to show that if $d > 0 \land 0 \le r \le a \land a = dq + r \land r \ge d$ is true before any iteration, then $d > 0 \land 0 \le r \le a \land a = dq + r$ is true afterwards.

5. Briefly, why does this invariant guarantee that the program can only terminate with a correct answer.

Answer:

When the loop completes, we have a = dq + r and $0 \le r$ by the loop invariant and r < d by the termination condition. That makes *r* the remainder and *q* the quotient, by the Division Algorithm.