CS 205 Sections 07 and 08
Homework 4 - Accepted for grading 4/12

1. Prove that whenever $p_{1}, \ldots p_{n}$ is a list of two or more propositions,

$$
\neg\left(p_{1} \vee p_{2} \vee \ldots \vee p_{n}\right)
$$

is logically equivalent to

$$
\neg p_{1} \wedge \neg p_{2} \wedge \ldots \wedge \neg p_{n}
$$

Use mathematical induction, and the fact that $\neg(p \vee q)$ is equivalent to $\neg p \wedge \neg q$ (De Morgan's law).
2. Prove by induction that if $a \equiv b(\bmod m)$ then $a^{n} \equiv b^{n}(\bmod m)$ for all $n \geq 0$.
3. Verify that the program segment

$$
\begin{aligned}
& \text { if } x<y \text { then } \\
& \quad m:=x \\
& \text { else } \quad m:=y
\end{aligned}
$$

is correct with respect to the initial asssertion \mathbf{T} and the final assertion

$$
(x \leq y \wedge m=x) \vee(x>y \wedge m=y)
$$

4. This program computes quotients and remainders:
```
r:=a
q:= 0
while}r\geq
begin
    r:=r-d
    q:=q+1
end
```

The program assumes that $d>0$ and $a>0$.
Prove that

$$
d>0 \wedge 0 \leq r \leq a \wedge a=d q+r
$$

is a loop invariant for the while loop. In other words, show that if

$$
d>0 \wedge 0 \leq r \leq a \wedge a=d q+r \wedge r \geq d
$$

is true at the beginning of any iteration of the loop, then

$$
d>0 \wedge 0 \leq r \leq a \wedge a=d q+r
$$

is true afterwards.
5. Briefly, why does this invariant guarantee that the program can only terminate with a correct answer.

