CS 205 Sections 07 and 08
Homework 3 - Accepted for grading 3/31

1. Each of the following items gives a condition on a function. Construct a function satisfying that condition. The domain and codomain of your function must be chosen from the sets

$$
U=\{a, b, c\}, V=\{x, y, z\}, W=\{1,2\}
$$

(a) One-to-one but not onto.
(b) Onto but not one-to-one.
(c) One-to-one and onto.
(d) Neither one-to-one nor onto.
2. Each of the following items specifies a function $f: \mathbb{N} \rightarrow \mathbb{N}$, and specifies certain of its properties. In each case, give a precise mathematical argument showing that the function satisfies the properties.
(a) $f(x)=2 x$ - one-to-one but not onto.
(b) $f(x)=\lfloor x / 2\rfloor$ - onto but not one-to-one.
(c) $f(x)=\left\{\begin{array}{ll}x-1 & \text { if } x \text { is odd } \\ x+1 & \text { otherwise }\end{array}\right.$ - one-to-one and onto.
3. Let $A, B$ and $C$ be nonempty sets, and let $g: A \rightarrow B$ and $h: A \rightarrow C$ and let $f: A \rightarrow B \times C$ be defined by

$$
f(x)=(g(x), h(x))
$$

Give a precise mathematical argument for each of the following statemetnts.
(a) If $f$ is onto, then $g$ and $h$ are onto.
(b) It is not the case that $f$ must be onto whenever $g$ and $h$ are onto.
(c) If either $g$ is one-to-one or $h$ is one-to-one, then $f$ is one-to-one.
(d) It is possible for $f$ to be one-to-one without either $g$ or $h$ being one-to-one.
4. Prove or disprove each of these statements about the floor and ceiling functions.
(a) For all real numbers $x$,

$$
\lfloor\lceil x\rceil\rfloor=\lfloor x\rfloor
$$

(b) $\lfloor x\rfloor=\lceil x\rceil$ if and only if $x$ is an integer.
(c) For all positive integers $r$,

$$
\left\lfloor\log _{2}\left\lfloor\frac{r+1}{2}\right\rfloor\right\rfloor=\left\lfloor\log _{2}\left(\frac{r+1}{2}\right)\right\rfloor
$$

