CS 205 Sections 07 and 08
Homework 1 - Accepted for grading 2/18
Answer Key

1. Formalize the following English sentences in propositional logic. Use the key provided.
(a) No shirt - no shoes - no service.
I : you wear a shirt
O : you wear shoes
E : you are served.
Answer:
$\neg I \vee \neg O \rightarrow \neg E$
(b) The deluxe burger comes with fries and a coke.
B : you get a deluxe burger.
F : you get fries.
C : you get a coke.
Answer:
$B \rightarrow F \wedge C$
(c) Delivery is available in New Brunswick for orders of $\$ 10$ or more.
N : you order from within New Brunswick.
T : your order costs at least $\$ 10$.
D : we will deliver your order.
Answer:
$N \wedge T \rightarrow D$
Also OK:
$D \rightarrow N \wedge T$
(d) If you are not satisfied, you get your money back.
S : you are satisfied.
M : you get your money back.
Answer:
$\neg S \rightarrow M$
(e) No refund without a receipt.
M : you get your money back.
C : you have a receipt.
Answer:
$\neg C \rightarrow \neg M$
2. Each item below offers a pair of compound propositions. In each case, say whether the two are logically equivalent. If they are not, give truth values for p, q, and r where the two compound propositions have different truth values.
(a) $r \rightarrow(\neg p \vee \neg q)$
$\neg(p \wedge q \wedge \neg r)$
Answer: Not equivalent.
Truth table:

p	q	r	$r \rightarrow(\neg p \vee \neg q)$	$\neg(p \wedge q \wedge \neg r)$	
t	t	t	f	t	$*$
t	t	f	t	f	$*$
t	f	t	t	t	
t	f	f	t	t	
f	t	t	t	t	
f	t	f	t	t	
f	f	t	t	t	
f	f	f	t	t	

(b) $(p \vee q) \rightarrow(\neg p \vee \neg q)$
$p \rightarrow \neg q$
Answer: Equivalent.
Truth table:

p	q	$(p \vee q) \rightarrow(\neg p \vee \neg q)$	$p \rightarrow \neg q$
t	t	f	f
t	f	t	t
f	t	t	t
f	f	t	t

(c) $p \rightarrow(q \rightarrow r)$
$\neg r \rightarrow \neg p$
Answer: Not equivalent.
Truth table:

p	q	r	$p \rightarrow(q \rightarrow r)$	$\neg r \rightarrow \neg p$
t	t	t	t	t
t	t	f	f	f
t	f	t	t	t
t	f	f	t	f
f	t	t	t	t
f	t	f	t	t
f	f	t	t	t
f	f	f	t	t

(d) $(p \rightarrow q) \rightarrow(p \rightarrow r)$
$p \rightarrow(q \rightarrow r)$
Answer: Equivalent.
Truth table:

p	q	r	$p \rightarrow(q \rightarrow r)$	$\neg r \rightarrow \neg p$
t	t	t	t	t
t	t	f	f	f
t	f	t	t	t
t	f	f	t	t
f	t	t	t	t
f	t	f	t	t
f	f	t	t	t
f	f	f	t	t

(e) $\neg(p \rightarrow q) \rightarrow r$
$(r \rightarrow p) \rightarrow q$
Answer: Not equivalent.
Truth table:

p	q	r	$\neg(p \rightarrow q) \rightarrow r$	$(r \rightarrow p) \rightarrow q$	
t	t	t	t	t	
t	t	f	t	f	
t	f	t	t	f	$*$
t	f	f	f	f	
f	t	t	t	t	
f	t	f	t	t	
f	f	t	t	t	
f	f	f	t	f	$*$

3. Let the domain of discourse consist of all real numbers. Let $P(x, y)$ mean $y x^{2}=y^{3}$. Which of the following propositions are true, and which are false?
(a) $P(0,0)$

Answer: true.
(b) $P(-1,-1) \rightarrow P(0,1)$

Answer: false.
(c) $P(1,2) \rightarrow P(1,-1)$

Answer: true.
(d) $\forall x P(x, x)$

Answer: true.
(e) $\forall x P(x,-x)$

Answer: true.
(f) $\exists x P(x, 2 x)$

Answer: true.
(g) $\exists x \neg P(x, 2 x)$

Answer: true.
(h) $\exists x \forall y P(x, y)$

Answer: false.
(i) $\exists y \forall x P(x, y)$

Answer: true.
(j) $\forall x \forall y \forall z(P(x, y) \rightarrow P(x z, y z))$

Answer: true.
4. Formalize the following English sentences in predicate logic. Use the key provided. Use the constant a to represent the store about which these rules are true.
(a) We honor competitors' coupons.
$M(x, y): x$ competes with y.
$C(x, y): x$ is a coupon for store y.
$H(x, y): x$ honors y.
Answer:
$\forall s \forall c(M(s, a) \wedge C(c, s) \rightarrow H(a, c))$
(b) None of our pizzas contain any artificial ingredients.
$Z(x): x$ is a pizza.
$S(x, y): x$ sells y.
$A(x): x$ is artificial.
$C(x, y): x$ contains y.
Answer:
$\neg \exists p \exists i(Z(p) \wedge S(a, p) \wedge C(p, i) \wedge A(i))$
(c) Buy one pizza get one free.
$P(x, y, z): x$ pays $y z$ dollars.
$G(x, y, o): x$ gives y object o.
$Z(x): x$ is a pizza.
$F(z): z$ is the full price for a pizza.
Answer:
$\forall x \forall z(P(x, a, z) \wedge F(z) \rightarrow \exists p \exists q(Z(p) \wedge Z(q) \wedge p \neq q \wedge G(a, x, p) \wedge G(a, x, q)))$
(d) Opened CDs can only be exchanged for another copy of the same title.
$C(x): x$ is a CD.
$O(x): x$ has been opened.
$T(x, t)$: the title of x is t (the type of recording).
$E(x, y, o, p): x$ gives y object o and y gives x object p in exchange.
Answer:
$\forall x \forall o \forall p \forall t(E(x, a, o, p) \wedge C(o) \wedge O(o) \wedge T(o, t) \rightarrow C(p) \wedge T(p, t))$
(e) Our prices are the lowest.
$P(o, x, z)$: the price of product o in store x is z dollars.
Answer:
$\forall o \forall x \forall y \forall z(P(o, x, z) \wedge P(o, a, y) \rightarrow y \leq z)$

