PROGRESS REPORT

BOOK 1

SUMEX-AIM Resource Progress Report

This is an annual report of the work performed under an NIH Biotechnology
Resources Program grant supporting the Stanford University Medical EXperimental
computer (3SUMEX) research resource for applications of Artificial Intelligence in
Medicine (AI#). It spans the year from May 1976 - April 1977. As we have
invested substantial effort in preparing a related document, an application for
renewal dated June 1, 1977, this report has been prepared by revising and
augmenting the other. Some sections may inadvertently reflect that provenience,
e.g., by adopting a longer time perspective, but we believe without distorting or
mi srepresenting our last year’s effort. Book II of this report is the same text
as used for the renewal, and contains detailed progress reports of collaborating
user projects and other pertinent appendices.

1 RESOURCE OBJECTIVES AND PROGRESS

1.1 OVERVIEW OF OBJECTIVES AND RATIONALE

The SUMEX-AIM project is a national computer resource with a dual mission:
1) the promotion of applications of artificial intelligence (AIL) computer science
research to biological and medical problems and 2) the demonstration of computer
resource sharing within a national community of health research projects.

Definitive funding of the SUMEX-AIM resource was initiated in December
1973. The principal hardware was delivered and accepted in April 1974, and the
system became operational for users during the summer of 1974. The present
renewal 1s therefore written from a perspective of just short of three years of
experience in attempting to develop and serve the user community for the
resource.

The original SUMEX proposal was an outgrowth of two lines of endeavor at
Stanford that had been supported by the Biotechnology Resources Program. The
ACME project (Advanced Computer for MEdical Research), 1965-72, had introduced
the innovation of interactive time-shared computing to the medical research
community at the Stanford Medical Center. The second line, the DENDRAL project,
is a resource-related project connected with applications of artificial
intelligence to problems of molecular characterization by analytical instruments
like mass-spectrometry, gas-chromatography, nuclear magnetic resonance, and so
on.

In 1972 we applied to NIH for the establishment at Stanford of a next
generation computer resource to supplant ACME for applications for which the
university-wide facility was inadequate. The DENDRAL project was the central
source of this initiative; several others entailing real-time instrumentation as
much as AI needs were also specified. During the subsequent 18 months, we
entered a phase of protracted review and negotiations with BRP and its advisory
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Section 1.1 QVERVIEW OF CBJECTIVES AND RATIONALE

groups, from which emerged the policy determination that resources of this scope
were best justified if they could be functionally specialized, but geographically
generalized., The emerging technology of computer networking opened an
opportunity to demonstrate this model in a way that could serve both local and
national needs.

Cur technical task has been achieved: to collect and implement an effective
set of hardware and software tools supporting the development of large and
complex AI progzrams and to facilitate communications and interactions between
user groups. In effect, users throughout the country can turn on their own
teletype or CRT-display terminals, dial a local number, and logon to SUMEX-AIM
with the same ease as if it were located on their own campus -- and have access
to a specialized resource unlikely to be matched nearby. From the community
viewpoint, we have substantially increased the roster of user projects (from an
initial 5) to 11 current aajor projects plus a group of pilot efforts. Many of
these projects are built around the communications network facilities we have
assembled; bringing together medical and computer science collaborators from
remote institutions and making their research programs avajlable to still other
remote users. As discussed in the sections describing the individual projects, a
number of the computer programs under development by these groups are maturing
into tools increasingly useful to the respective research communities. The
demand for production-level use of these programs has surpassed the capacity of
the present SUMEX facility and has raised the general issues of how such software
systems can be optimized for production environments, exported, and maintained.
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1.2 BACKGROUND AND PROGRESS

1.2.1 PROGRESS SUMMARY

This progress summary covers the period from December 1973, when the SUMEX-

AIM resource was initially funded, through April 1977. During this period we
have met all of the defined goals of the resource:

i)

ii)

iii)

iv)

v)

vi)

We have established an effective computing facility to support a nation-
wide community of medical AI research projects including connections to
two computer comnunication networks to provide wide geographical access to
the facility and research programs,

We have actively recruited a growing community of user projects and
collaborations. The initial complement of collaborators included five
projects. This roster has grown to eleven fully authorized projects
_currently plus a group of approximately six pilot efforts in various
stages of formulation. Recruiting efforts have included a public
dedication and announcement of the resource, NIH referrals from computer-
based project reviews, direct contacts by resource personnel and on-going
projects as well as contacts through the AIM workshop series coordinated
by the Rutgers Computers in Biomedicine resource under Dr. Saul Amarel.

We have egstaplished an AIH community management structure based on an
overseeing Executive Committee and an Advisory Group to assist in
recruiting and assessing new project applications and in guiding the
priorities for SUMEX-AIM developments and resource allocations. These
committees also provide a formal mechanism for user projects to request
adjustments in their allocated share of facility resources and to make
known their desires for resource developments and priorities.

SUMEX user projects have made good progress in developing more effective
consultative computer programs for medical research; one of the major
goals toward which our AI applications are aimed. These performance
programs provide expertise in analytical biochemical analyses and
syntheses, medical diagnoses, and various kinds of cognitive and affective
psychological modeling.

We have worked hard to build system facjlities to enable the inter- and
intra- group communications and collaborations upon which SUMEX is based.
We have a number of examples in which user projects combine medical and
computer science expertise from geographically remote institutions and
numerous examples of users from all over the United States and
occasionally from Europe experimenting with the developing AI programs.
The SUMEX staff itself has had good success in establishing such sharing
relationships on a system level with other research groups and has many
examples of complementary development and maintenance agreements for
system programs.

We have made numerous improvements to the computing resource to extend its
capacity, to improve its efficiency, to enhance its human interfaces, to
improve its documentation, and to enhance the range of software facilities
available to user projects.
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vii)

viii)

We have begun a core research effort to investigate alternatives and
programiming tools to facilitate the exportability of user and system
software. This is just now producing a "machine-independent"
implementation of the ALGOL-like SAIL language which will run on a range
of large and small machines and provide a language base for transferring
programs,

We have supported community efforts in the more systematic documentation
of AI concepts and techniques and in building more general software tools
for the design and implementation of AI application programs. These have
included a Stanford AI Handbook project comprising a compendium of short
articles about the projects, ideas, problems, and techniques that make up
the field of AI.
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1.2.2 DETAILED PROGRESS REPORT

The following material covers in greater detail the SUMEX-AIM resource
activities over the past 3.5 years. These sections attempt to define in more
detail the technical objectives of our research community and include progress in
the context of the resource staff and the resource management. Details of the
progress and plans for our external collaborator projects are presented in

~

Section 6 on page 41 (in Book II).

1.2.2.1 DEFINITION OF TERMS AND OBJECTIVES

Artificial Intelligence is a branch of computer science which attempts to
discern the underlying principles involved in the acquisition and utilization of
knowledge in reasoning, deduction, and problem-solving activities (1). Currently
authorized projects in the SUMEX community are concernad in some way with the
application of these principles to biomedical research. The tangible objective
of this approach is the development of computer programs which, using formal and
informal knowledge bases together with mechanized hypothesis formation and
problem solving procedures, will be more general and effective consultative tools
for the clinician and medical scientist. The exhaustive search potential of
computerized hypothesis formation and knowledge base utilization, constrained
where appropriate by heuristic rules or interactions with the user, has already
produced promising results in areas such as chemical structure elucidation and
synthesis, diagnostic consultation, and mental function modeling. Needless to
say, much is yet to be learned in the process of fashioning a coherent scientific
discipline out of the assemblage of personal intuitions, mathematical procedures,
and emerging theoretical structure of the "analysis of analysis" and of problem
solving. State-of-the-art programs are far more narrowly specialized and
inflexible than the corresponding aspects of human intelligence they emulate;
however, in special domains they may be of comparable or greater power, e.g., in
the solution of formal problems in organic chemistry or in the integral calculus.

An equally important function of the SUMEX-AIM resource is an exploration
of the use of computer communications as a means for interactions and sharing
between geographically remote research groups in the context of medical computer
science research. This facet of scientific interaction is becoming increasingly
important with the explosion of complex information sources and the regional
specialization of groups and facilities that might be shared by remote
researchers. Our community building role is based upon the current state of
computer communications technology. While far from perfected, these new
capabilities offer highly desirable latitude for collaborative linkages, both
within a given research project and among them. Several of the active projects
on SUMEX are based upon the collaboration of computer and medical scientists at

(1) For recent reviews to give some perspective on the current state of AI,
see: (i) Winston, P.H., "Artificial Intelligence", Addison-Wesley Publishing Co.,
1977; (ii) Nilsson, N.J., "Artificial Intelligence", Information Processing 74,
North-dolland Pub. Co. (1975); and (iii) a summary by Feigenbaum, E. A., attached
as Appendix I, page 202 (see Book II). An additional overview of research
areas in AI is provided by the outline for an “Artificial Intelligence Handbook"
being prepared under Professor Feigenbaum by computer science students at
Stanford (see Appendix II on page 225 in Book II).
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geographically separate institutions; separate both from each other and from the
computer resource., The network experiment also enables diverse projects to
interact more directly and to facilitate selective demonstrations of available
programs to physiclans and medical students., Even in their current developing
state, we have been able to demonstrate that such communication facilities allow
access to the rather specialized SUMEX computing environment and programs from a
great many areas of the United States (even to a limited extent from Europe) for
potential new research projects and for research product dissemination and
demonstration. In a similar way, the network connections have made possible
close collaborations in the development and maintenance of system software with
other facilities.

1.2.2.2 FACILITY HARDWARE

Based on the AI mission of SUMEX-AIM, we selected a Digital Equipment
Corporation (DEC) model KI-10 computer system for our facility. This selection
was based on 1) hardware architectural and performance features, 2) available
software support relevant to AI applications, 3) price versus performance data
for the system, and 4) the scope of the user community from which we might expect
to draw collaborators and share software. This choice has proved highly
effective.

The current system hardware configuration is diagrammed in Figure 1 on
page 10. It is the result of a number of augmentations over the past 3 years to
meet the capacity needs of the growing SUMEX-AIM project community. Our initial
configuration consisted of a KI-10 processor, core memory (192K 36-bit words @ 1
microsecond), swapping storage (1.7M words @ 8 msec average rotational latency
and 2 microsecond/word transfer rate), file storage (40M words), magnetic tapes,
DEC tapes, terminal line scanner, and line printer. Qur network connections are
discussed in Section t1.2.2.4 on page 16,

This system reached prime-time saturation by fall of 1974. Since many of
our medical and other professional collaborators cannot adjust their schedules to
matceh light computer loading during the night-time hours, the prime-time
responsiveness is crucial to being able to support medical experimentation with
developing programs and to allow community growth. We have taken active steps to
transfer as much prime-time loading as feasible to evening and night hours
including shifting personnel schedules (particularly for Stanford-based
projects), controlling the allocations of CPU resources between various user
communities and projects, and encouraging jobs not requiring intimate user
interaction to run during off hours by developing batch job facilities. Despite
these efforts, prime-time loading has remained quite high, particularly with the
growth of the number of user projects.

A similar congestion has persisted in the on-line file space we have been
able to allocate to user projects. Again we have implemented controls to try to
assure effective use of available space and to encourage use of external file
storage facilities such as the ARPANET Data Computer and other computer sites.
Nevertheless, the interactive character of SUMEX use, the large AI program files,
and the extensive use of SUMEX for collaborator communications have continuously
raised file space demands beyond those we could meet.
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We have proposed a number of hardware configuration augmentation steps to
the Executive Committee to cost-effectively provide additional capacity. These
were based on analyses of predominant system bottlenecks and enhancement steps
feasible within available budgets. The enhancements approved by the committee
and implemented include:

1) Add 64K words of core memory and 20M words of file storage (11/74)
2) Add second KI-10 CPU for dual processor operation (5/76)

3) Add 256K words of core memory and upgrade file system to higher volume,
lower cost technology (recently approved by NIH and the AIM Executive
Comnmittee with implementation in progress)

A plot of effective CPU capacity as a function of continuing investment is
shown in Figure 2 on page 11 and displays the cost-effectiveness of our
sequential augmentations. At the present time our hardware configuration has
grown about as muech as is cost-effective. Additional growth would entail
significant redesigns of the system including upgrades of existing hardware.
Contemplating such future expansion also raises the issues of compatibility with
newer hardware technologies being announced. These provide advantages in speed,
cost, size, and maintainability. Such a complete upgrade is not envisioned in
the immediate future as a number of interesting new product announcements are
expected over the next 1 or 2 years that could substantially affect such an
upgrade strategy.

J. Lederberg
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DETAILED PROGRESS REPORT Section 1.2.2.2

Figure 2. Cost-effectiveness of SUMEX Augmentations

Estimated Capacity in
Useful KI-10 Equivalents
(Net of overhead)
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Cumulative System Investment ($M)

This plot illustrates the incremental increases in computing capacity
achieved as a function of cumulative investment in the SUMEX-AIM facility. The
higher slope of the curve after the initial investment illustrates both the
substantial investment in peripheral devices (file system, tapes, communications,
etc.) and the trend toward lower memory prices. The largest impact in terms of
PDP-10 memory price reductions occurred around the time of adding the 64K
increment in November 1974. Since then processor prices have stayed relatively
stable and memory prices have dropped less dramatically. It should be noted that
semi-conductor memories have not yet made a big in-road in the PDP-10 market;
this technology is where the more recent memory price reductions have occurred.

The original purchase of 1 KI-10 with 192K of memory for about $800K
performed with about 60% efficiency under peak load. Adding the 64K of memory
for $75K brought the efficiency up to about 85%. Then adding the second
processor for $200K increased throughput to about 1.3-1.4 KI-10 equivalents,

This step represents about a 59% increase in throughput for a 20% increased
investment. A proposal has been approved recently by the AIM Executive Committee
and NIH to augment core memory by 256K words. This augmentation would increase
throughput to about 1.7 KI-10 equivalents for another $100K; this would be a 26%
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Section 1.2.2.2 DETAILED PROGRESS REPORT

throughput increase for 8% additional investment. As part of the proposed memory
augmentation we plan to upgrade the file and tape systems as well to relieve file
space congestion and increase system operations efficiency. Including the net
cost of the file/tape upgrade in these figures (purchase price less resale of
existing equipment) raises the proposed additional investment to $160K and the
fractional increase from 8% to 13%. Of course, the disk upgrade affects CPU
throughput only indirectly in that the increased speed reduces contention,
particularly when moving head swapping is necessary. It contributes primarily to
supporting the growing on-line file needs of the projects.
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Figure 3. Capacity and Loading Increase with Dual Processor Augmentation

1-PROC OP’N 2-PROC TRNS'N  2-PROC OP’N 2-PROC OP'N
1/76 - 4/76 5/76 - 8/76 9/76 - 12/76 /77 = 3/77
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Peak Ld Ave 4.8 5.6 6.0 6.6

Peak Jobs 30.2 33.3 34.7 38.1

% Overhead/ 18.1 31.1 33.2 31.9
Processor

Total CPU 304.4 384.9 534.0 520.1
tdrs/Mo

This table presents system usage data averaged over several months
preceding, during, and after installation of the SUMEX-AIM dual processor system
in order to show real changes in peak lcading capacity and computing resources
delivered. The first three rows of data are derived from monthly diurnal loading
data and reflect average prime-time peak loading conditions (daily peak usage
figures are often considerably higher, but those shown better represent gross
trends). The last row gives average total monthly CPU hours delivered during the
various periods.

with the common criterion that users have pushed both the single and dual
processor systems to the limits of useful work in terms of prime time
responsiveness, it is clear that the second processor has substantially increased
throughput ("tolerable" peak load average up 38%, number of jobs up 26%, and
delivered CPU hours up T71%). At the same time the overhead burden per machine
has risen from 18 to 32%, principally in the category of I/0 wait (total
scheduler time and time waiting for a runnable job to be loaded in core). An
additional factor, not explicitly shown in these data (because we only have a 1
msec clock), is the added time spent at interrupt level servicing drum swapping.
This adds another 10-15% estimated overhead.

We feel these increased overhead figures can be reduced roughly to the
single processor levels by adding more memory, thereby effectively recovering
about U40-50% of the capacity of a KI~10 processor. A proposal is now pending
with the AIM Executive Committee for this augmentation and we expect it to be
implemented within the funding ceiling of the current grant.
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t.2.2.3 SYSTEM SOFTWARE

In parallel with the choice of DEC PDP-10 hardware for the SUMEX-AIM
facility, we selected the TENEX operating system developed by Bolt, Baranek, and
Newman (BBN) as the most effective for our medical AI applications work. TENEX
was the only available demand-paged system to support simultaneous large address
space users, offered the INTERLISP language for LISP-oriented program
development, and was well integrated with the ARPANET facilities which provide an
excellent base for our community sharing efforts. This choice has proven a very
effective one in that the productivity of the TENEX community in AI research has
been highly advantageous to us (2).

The original BBWN TENEX was written for a hardware-modified KA-10 system.
This version of the system required a substantial amount of work to accommodate
the relatively limited paging facilities of the KI-10 to run effectively. These
early phases also included substantial monitor work to incorporate the TYMNET
memory-sharing interface which connects us to the TYMNET and to integrate the
high speed swapping storage. We have made numerous enhancements to the monitor
calls and corrections of bugs to develop a highly reliable and effective
operating system for our community work.

We continue to work to improve the efficiency of the system and its
effectiveness in allocating valuable resources. For example we have modified the
handling of user page tables so that the expensive procedure of clearing page
tables and setting them up to run time-shared users could be minimized. This
involved creating a pool of page tables which could be allocated to currently
running users and could be kept available without setup overhead. We also
implemented a system for migrating dormant pages from our fast swapping storage
to moving head disk. This preserves the use of this limited resource for the
currently active jobs.

We have implemented a form of "soft" CPU allocation control in the monitor,
assisted by a program which adjusts user percentages for the scheduler based on
the dynamic loading of the system. The allocation control structure works based
on the scheduler queue system and takes account of the a priori allocation of CPU
time and that actually consumed. OQur TENEX uses a hierarchy of five queues for
jobs ranging from highly interactive jobs requiring only small amounts of CPU
time between waits to more CPU intensive jobs which can run for long periods
without user interaction. These interactive queues (text editting, etc.) are
scheduled at highest priority without consideration of allocation percentages.

If nothing is runnable from the high priority queues, the CPU-bound queues are
scanned and jobs are selected for running based on how much of their allocated
time has been received during a given allocation cycle time (currently 100
seconds). If no such jobs are runnable, then those that have received their
allocation of CPU time already are scheduled based on how much they are over
allocation and how long they have waited to be run again. This system is not a
reservation system in that it does not guarantee a given user some percentage of

(2) It should be noted that DEC has recently adopted a form of TENEX (TOPS-
20) as their choice for future system marketing. They have made improvements in
a number of areas of the monitor and subsystem software but have also shown an
increasing tendency to make changes to the TOPS-20 system that impair
compatibility with older TENEX systems.
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the system. It allocates cycles preferentially, trading off a priori allocations
with actual demand but does not waste cycles. This allocation control system is
still in an experimental state and we are attempting to evolve the "best"
policies with the AIM Executive Committee for dividing the system fairly and
effectively among the various communities of users.

During the spring of 1976 we implemented a dual processor version of TENEX
as the most cost-effective way to increase our processing capacity. In order to
upgrade to the new KL-"n" technology, we would have had to replace most of the
equipment that had been purchased initially. For the cost of an additional
processor and 8 man-months of intensive software development we were able to
increase our CPU capacity by 75%. We have an additional 40% equivalent of a KI=-
10 processor which can be made available by increasing memory to reduce our
swapping contention. The dual processor system that has evolved is running quite
reliably. It treats the two machines in an almost symmetric manner. The only
di fference is that one of the machines has all of the I/0 equipment attached to
it. They both schedule jobs independently and share the rest of the non-I/0-
device monitor code. The areas of the nonitor involving the management of
resources and jobs which cannot be manipulated by both machines simultaneously
are protected by a system of locks. We have made some measurements indicating
that overhead for lock waits is less than 10%4. The overall increase in capacity
provided by the processor upgrade is illustrated in Figure 3 on page 13 which
measures key loading parameters iIn the periods before and after the dual
processor installation. Observing the delivery of DEC’s high-performance KL-
TENEX systems over the past 6 months, it seems clear that for the investment, we
made the best choice for the community by implementing the dual processor
upgrade. We hope to augment the memory soon to finish exploiting the capacity
this extra machine provides and to remove some non-linearities remaining in
system swapping performance.

Now that the dual processor system has stabilized, we are undertaking
another assessment of system performance to be sure we have removed residual and
correctable inefficiencies. This study is on-going now.

Finally, over the past year we made several substantial improvements in the
"GTJFN" monitor call which interactively acquires handles on file names specified
by the user. These extensions allow for more general "wild card" specifications
and interactive help in deciding between and searching for existing file name
alternatives. They also give the user much more flexibility in designating
groups of files and therefore in structuring his data.

With a working dual processor system, the current implementation of
allocation controls in our system, the diverging path of the DEC TOPS-20 system,
the termination of active BBN TENEX development, and the unique complications of
the KI-10 paging system, we have not made any concerted effort to upgrade our
TENEX system to the latest BBN release (1.34). The advantages of such an upgrade
are not overwhelming in face of the complicated conversion (KI paging, dual
processor, special swapping device handler, TYMNET service routines, local
JSYS s, ete.) and resulting system unreliability for some period.
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Another area of software development is in the EXECutive program which is
the basic user interface to manipulate files, directories, and devices; control
job and terminal parameter settings; observe job and system status; and execute
public and private programs. This work improves system accommodation to users
and provides more convenient and useful information about system and job status.
Through such features as login default files, directed file search path commands,
mail notification, help facilities, better file archival and retrieval commands,
and flexible status information, we have tried to make it easier for users to
work on the SUMEX-AI machine.

1.2.2.4 NETWORK COMMUNICATION FACILITIES

A highly important aspect of the SUMEX system is effective communication
with remote users. In addition to the economic arguments for terminal access,
networking offers other advantages for shared computing such as uniform user
access to multiple machines and special purpose resources, convenient file
transfers for software sharing and multiple machine use, more effective backup,
co-processing between remote machines, and improved inter-user communications.
Over the past year we have been substantially aided in exporting the MAINSAIL
system through our network connections. Because of the developmental nature of
the language at present, it is important that we have close interactions with the
user community and that we be able to effectively perform bug fixes and upgrades.
Since MAINSAIL by its nature involves operations on a variety of machines and
since our access to example systems cannot be entirely local, the network
connections to Rutgers, the Stanford AI Lab, and Stanford Research Institute have
been invaluable. It would be considerably more difficult to export MAINSAIL and
communicate with users via tapes and mail.

We have based our remote communication services on two networks - TYMNET
and ARPANET. These were the only networks existing at the start of the project
which allowed foreign host access. Since then, other commercial network systems
(notably TELENET) have come into existence and are growing in coverage and
services., The two networks to which we are currently connected complement each
other; the TYMNET providing primarily terminal service with very broad
geographical coverage and unrestricted user access, and the ARPANET having more
limited access but providing a broader range of communication services.

Together, these networks give a good view of the current strengths and weaknesses
of this approach.

Users asked to accept a remote computer as if it were next door will use a
local telephone call to the computer as a standard of comparison. Current
network terminal facilities do not quite accomplish the illusion of a local call.
Data loss is not a problem in network communications - in fact with the more
extensive error checking schemes, data integrity is much higher than for a long
di stance phone link. On the other hand, networking relies upon shared community
use of telephone lines to procure widespread geographical coverage at
substantially reduced cost. However, unless enough total line capacity is
provided to meet peak loads, substantial queueing and traffic jams result in the
loss of terminal responsiveness.
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TYMNET:

Networks such as TYMNET are a complex interconnection of nodes and lines
spanning the country (see Figure U4 on page 20). The primary cause of delay in
passing a message through the network is the time to transfer a message from node
to node and the scheduling of this traffic over multiplexed lines. This latter
effect only becomes important in heavily loaded situations; the former is always
present, Clearly from the user viewpoint, the best situation is to have as few
nodes as possible between him and the host - this means many Interconnecting
lines through the network and correspondingly higher costs for the network
manager. TENEX in some ways emphasizes this conflict more than other time-
sharing systems because of the hignly interactive nature of terminal handling
(e.g., command and file name recognition and non-printing program comzands as in
text editors or INTERLISP). In such instances, individual characters must be
seen by the host machine to determine the proper echo response in contrast to
other systems where only "line at a time" commands are allowed. We have
connected SUMEX to the TYMNET in two places as shown in Figure 4§ so as to allow
more direct access from different parts of the country. Based on delay time
statistics collected during the previous year from our TYMSTAT program, the
response times are scarcely acceptable. When delay times exceed 200-300
milliseconds, the character printing lag problems become noticable with a full
duplex, 30 char/sec terminal. In the past these times have been particularly bad
in New York with peak delays approaching 3 seconds one way! Other nodes have
shown uniformly high readings as well. These data were reflected in the
subjective, but strongly articulated, comments of many of our user groups.

We have had numerous meetings with TYMNET personnel to try to ease these
problems and have instituted reroutings of the lines connecting SUMEX-AIM to the
network. Also local lines to more strategic terminal nodes have been considered
for users in areas poorly served by the existing line layout. TYMNET has also
made some upgrades in the internal connectivity and speeds with which data is
switched within their node clusters. These changes seem to have had some
beneficial effects in that delay times have improved and user complaints have
subsided.

We will continue to pursue improvements in TYMNET response but user
terminal interactions such as used in TENEX programs are not realized in the
time-sharing systems offered by most other TYMNET users and hence are not
supported well by TYMNET. TYMNET has implemented 1200 baud service in 7 major
cities over the past year. Unfortunately many of our users are not in these
cities so we have only limited experience with the 1200 baud support.

ARPANET :

The ARPANET, while designed for more general information transfer than
purely terminal handling, has similar bottleneck problems in its topology (see
the current geographical and logical maps of the ARPANET in Figure 5 and Figure
6 on page 21). These are reduced by the use of relatively higher speed
interconnection lines (50 K baud instead of 2400 - 9600 baud lines as in TYMNET)
but response delays through many nodes become objectionable eventually as well.
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Consistent with the agreements with ARPA when we were granted network
access initially, we are enforcing a policy to restrict the use of the ARPANET to
users who have affiliations with ARPA-supported contractors and system/software
interchange with cooperating TENEX sites. The administration of the network
passed from the ARPA Information Processing Techniques Office to the Defense
Communications Agency as of July 1975. At that time policies were announced
restricting access to DoD-affiliated users. We have restricted the facilities
for calling from SUMEX out to other sites on the ARPANET to authorized users.
This also protects the SUMEX-AIM machine from acting as an expensive terminal
nandler for other machines - this function is better fulfilled by dedicated
terminal handling machines (TIPS). In general, we have developed excellent
working relationships with other sites on the ARPANET for system backup and
software interchange - such day-to-day working interactions with remote
facilities would not be possible without the integrated file transfer,
communication, and terminal handling capabilities unique to the ARPANET.

We take very seriously the responsibility to provide effective
communication capabilities to SUMEX-AIM users and are continuously looking for
ways to improve our existing facilities as well as investigate alternatives
becoming available. We have done preliminary investigations of the TELENET
facilities that have been rapidly expanding this past year. BB&N has hooked one
of their TENEX systems up to TELENET and whereas we did not have the same
quantitative tools we have for measuring response on the TYMNET, we observed
TELENET delays at least as long as those encountered on TYMNET. We did the
reverse experiment by using long distance telephone to connect from the TELENET
node in Washington, D.C. to the SUMEX machine in California and observed the
same sort of delays reaching several seconds per character. The TELENET has many
attractive feature in terms of a symmetry analogous to that of the ARPANET for
terminal traffic and file transfers and being commercial would not have the
access restrictions of the ARPANET. However, until the network throughput
improves we would not get substantial benefits from connecting to it.

J. Lederberg 18
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DETAILED PROGRESS REPORT Section 1.2.2.5

1.2.2.5 SYSTEM RELIABILITY AND BACKUP

System reliability has remained high over the past years; excellent under
stable hardware and software conditions and degrading temporarily during
debugging and development periods and during periods of difficult hardware
problems. In general we take the system down for approximately 50 hours per
month for scheduled hardware maintenance, file backup, and other maintenance. 1In
addition we average from 10 to 15 hours per month in unscheduled downtime.

During particularly difficult hardware or software difficulties we must absorb
substantially more downtime.

1.2.2.6 PROGRAMMING LANGUAGES

Over the past years we or members of the SUMEX-AIM community have continued
to maintain the major languages on the system at current release levels, have
TENEXized several languages to improve efficiency, and have investigated a number
of issues related to the efficiency of programs written in various LISP
implementations and the exportability of programs. These issues are becoming
increasingly critical in dealing with AI performance programs which have reached
a level of maturity so that substantial, non-developmental user communities are
growing. The following summarizes general accomplishments and the following
section discusses in detail the work this past year in designing a machine-
independent ALGOL-like system (MAINSAIL).

LISP Efficiency:

There has been an on-going debate among a number of projects over the best
language to choose for developmental implementation of the various AI programs.
The key issues include ease and flexibility of conceptual representation of
program functions and objects, interactive debugging support, efficiency, and
exportability. To date the predominant language choice for AIM research has been
LISP and more particularly INTERLISP. These issues are important because they
influence the time required to develop new AI programs and subsequently the
incremental load placed on the SUMEX machine when in use. We recently attempted
an evaluation of INTERLISP and ILISP including the relative efficiencies of the
two languages and the level of assistance the language systems provide the user
in developing programs. The tests were based on an implementation of a subset of
REDUCE (a symbolic algebra manipulator). The results of several iterations in
program refinement by experts in the respective languages were that the runtimes
for the two versions were quite comparable (far less than the factor of 5-10
disparity predicted by ILISP enthusiasts). A more disquieting result was the
substantial difference in runtimes depending on how particular functions were
coded IN THE SAME LANGUAGE. It is apparent from the results that factors of 10
differences in time can result from a superficial implementation - expert
programming insight is essential to efficient program performance. This 13 not a
real surprise in that it is true of programming in any language - the problems
may be increased by such a rich language as INTERLISP with such a wide array of

23 J. Lederberg



Section 1.2.2.6 DETAILED PROGRESS REPORT

ways to do the same thing but with little guidance as to the relative costs. It
has proven very difficult to quantify the "rules" for good programming. Mr.
Masinter and Mr. Phil Jackson attempted to document good INTERLISP programming
habits and issued a bulletin for SUMEX users.

A further impact of these data is that it is very difficult to
simultaneously develop a new AI program and make the implementation highly
efficient. With the iterations required to develop the conceptual design of the
program, it is difficult to ensure its efficiency. This may lead to the need to
reimplement the program after the basic development stabilizes to increase
efficiency while still accommodating convenient and orderly further development.
Such reimplementation may or may not be best done in LISP - this will depend on
many factors including the nature of the program data structure requirements and
anticipated further development efforts.

MAINSAIL Progress

SUMEX, in its role as a nationally shared computer resource, is an
appropriate vehicle for the development of software unbound by the underlying
machine environment. We have a built-in community of program developers acutely
aware of the significance of providing their work to a broader base of users,
This intersection of hardware capability, software expertise, and dedication to
resource sharing presents a unique opportunity to promote a system designed for
program sharing.

The MAINSAIL (3) project has three closely related goals:

1) Provide an integrated set of tools for the creation of efficient portable
software on a variety of computer systems, and provide support and
continued development of these tools in a form compatible across all
implementations.

2) Study innovative approaches to portability, both hardware and software,
and develop such approaches into effective tools.

3) Promote the development and distribution of portable software, advise and
assist in its design, and evaluate its applicability.

By portable software we mean computer programs which may be executed on a
variety of machines with few, if any, alterations. MAINSAIL itself will provide
the initial example of portable software, since all of the system is written in
the MAINSAIL language except for those parts which are determined by the host
environment (hardware, instruction set, operating system, etc.). Even these
parts are embedded within MAINSAIL.

(3) The MAINSAIL (MAchine-INdependent SAIL) language is derived from SAIL, a
programming language developed at Stanford University’s Artificial Intelligence
Laboratory. It is not compatible with SAIL, since SAIL was designed for a PDP=10
with TOPS-10, and hence contains machine-dependencies. However it has retained
the basic attributes of SAIL as an extended ALGOL-like language. A summary of
some of the features of the MAINSAIL language and their relationship to other
languages is given in Appendix III on page 231 (see Book II).
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There is a key distinction between MAINSAIL’s approach to portability and
the "classical" approach characterized by languages such as FORTRAN, ALGOL, LISP,
COBOL and BASIC. These languages attempt to adhere to a single syntax standard
which is separately implemented for each different computer system. Invariably
these implementations have differences which preclude the creation of a program
which is accepted by all. It is difficult, if not impossible, to define a
language standard which is unambiguous and at the same time sufficiently
comprehensible to provide the basis for compatible implementations. Furthermore,
many implementors yield to the temptation to provide "enhancements" to the
standard which immediately introduces machine and system dependencies.

MAINSAIL, on the other hand, provides a single system (written primarily in
itself) which is employed at every site., This is made possible by its ability to
compile itself into code for a variety of machines. Only the compiler’s code
generators and the runtime operating-system interfaces need be rewritten for each
implementation. These parts of MAINSAIL are at a level which has already been
defined by the machine-independent parts, and do not affect the language from the
user’s viewpoint. Thus the "language standard" has been reduced to a "semantic
standard" which is surrounded by machine-independent software.

It remains to be seen whether the temptation to augment the language with
machine-dependencies (for purposes of ultimate efficiency or to take advantage of
particular local system features) can be overcome. Herein also lies the biggest
"price" to be paid for exportability. The code emitted from the MAINSAIL
compiler can be (and is, based on tests to date) at least as efficient as that
from many machine-dependent compilers. On the other hand, special machine or
operating system features that cannot be uniformly implemented may provide local
optimizations at the cost of exportability or vice versa. We cannot effectively
measure the extent of this cost at this stage.

DEVELOPMENT APPROACH

We do not underestimate the difficulty in obtaining the cooperation of a
community which will span a wide variety of applications and hardware/software
systems. If MAINSAIL is to obtain widespread use, it is crucial that it have an
effective and credible base of support. The initial parts of MAINSAIL are just
about ready for limited distribution. We want to maintain close supervision of
this distribution, and insure that systems labelled as MAINSAIL are not altered
without our approval. In this regard we are pursuing legal channels to safeguard
the integrity of MAINSAIL software. We plan to take MAINSAIL through an orderly
progression of development, and to avoid casual distribution with no provision
for a solid base of maintenance and future growth.

REVIEW OF PROGRESS TO DATE

MAINSAIL has been under development for almost three years now. Beginning
with an initial goal of converting the PDP-10 SAIL compiler to generate code for
a PDP-11, several versions had been implemented on a PDP-10 and a PDP-11, and the
groundwork had been laid for extending the system to a wider variety of machines.
The current version was begun in August of 1976.
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