CSCI 440: Introduction to Artificial Intelligence MDP, RL

Total points: 60.

We only accept electronic submissions. Please try to ask questions on Piazza. If Piazza is not helpful, please contact the TAs.

Problem 1 (30pt). Consider the MDP with the transition model, reward function, and V^1 as given in the Tables 1, 2, and 3. The set of states is $\{A, B\}$, and the set of actions is $\{1, 2, 3\}$. Assume the discount factor $\gamma = 1$, i.e., no discounting. Do two-step value iteration taught in the class by answering the questions below.

Table 1: Starting from A

T(s, a, s')R(s,a,s')Α 1 Α 0 0 1 В 0 Α 2 2 Α 1 2 В 0 Α 0 Α 3 Α 0.5 0 3 В 0.5 0

Table 2: Starting from B

s	a	s'	T(s, a, s')	R(s, a, s')	
В	1	A	0.5	12	
В	1	В	0.5	0	
В	2	A	1	0	
В	2	В	0	0	
В	3	A	0.5	2	
В	3	В	0.5	4	

Table 3: V^1

$V^1(A)$	0
$V^1(B)$	0

1. Fill in the values for Q^1 , Q^2 in the table below.

$Q^1(A,1)$	$Q^{1}(A,2)$	$Q^{1}(A,3)$	$Q^{1}(B,1)$	$Q^1(B,2)$	$Q^1(B,3)$
$Q^2(A,1)$	$Q^{2}(A,2)$	$Q^{2}(A,3)$	$Q^{2}(B,1)$	$Q^2(B,2)$	$Q^2(B,3)$

2. Let $\pi^{i+1}(s)$ be the optimal action in state s after i-th iteration of the algorithm (i.e., after you computed Q^i). What are $\pi^2(A)$, $\pi^2(B)$, $\pi^3(A)$, and $\pi^3(B)$? Show your calculations.

Problem 2 (30pt). Consider the deterministic world in Figure 1 (a). In this world, each action takes Pacman to the intended location with 100% probability. For example, when the state is s_1 and the action is \rightarrow , with 100% probability the next state will be s_2 . Allowable actions (including \uparrow , \rightarrow , \downarrow , **not including** \leftarrow) are shown by arrows, and the numbers on the arrows indicate the reward for performing each action. For example, the agent receives 0 when moving from S_5 to S_6 by taking \rightarrow .

Suppose a Q-learning algorithm has run for a while, and the current Q values are shown in Fig. 1 (b). For example, $Q(S_1, \rightarrow) = 6$, $Q(S_2, \uparrow) = 8$. S_6 is a terminal state with exist reward 0, i.e., $Q(S_6, a) = 0$ for all actions a. Show the updates to the Q values after each step, when the agent takes the path shown by the dotted line $(S_1, S_4, S_5, S_2, S_3, S_6)$ with the discount factor $\gamma = 0.3$ and the learning rate $\alpha = 0.8$. Show all your calculations.

Hint: There are five steps, and after each step only one Q value is updated. The reward should be read from Fig. 1 (a). For example, the first step is (S_1, \uparrow, S_4) with reward 0. No state abstraction is needed in

this problem.

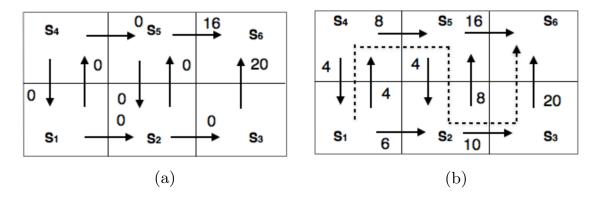


Figure 1: Problem 2