
Minimizing Conflicts Between Moving Agents over a Set of Non-Homotopic Paths
Through Regret Minimization

Andrew Kimmel and Kostas Bekris
Department of Computer Science, Rutgers University

Piscataway, New Jersey 08854

Abstract

This paper considers a game-theoretic framework for
motion coordination challenges. The focus of this work
is to minimize the number of interactions agents have
when moving through an environment. In particular,
agents employ a replanning framework and regret mini-
mization over a set of actions, which correspond to dif-
ferent homotopic paths. By associating a cost to each
trajectory, a motion coordination game arises. Regret
minimization is argued as an appropriate technique, as
agents do not have any knowledge of other agents’ cost
functions. This work outlines a methodology for min-
imizing the regret of actions in a computationally ef-
ficient way. Initial simulation results involving pairs
of mobile agents show indications that the proposed
framework can improve the choice of non-colliding
paths compared to a greedy choice by the agents, with-
out increasing any information requirements.

Introduction
A solution to a motion coordination problem should provide
collision free paths for each agent and each agent should
move towards its goal in an efficient way. Although central-
ized solutions can provide these properties, they often re-
quire knowing many specific details of every agent, such
as its goal and utilities for different actions. Especially for
the case that a robot interacts with a human, such informa-
tion is difficult to come by since the robot’s motion planner
has little knowledge about the human’s future actions. Thus,
it becomes difficult to guarantee safety while progressing
towards the robot’s goal. To avoid collisions with unex-
pected obstacles or other self-interested agents, the agents
can be augmented with reactive collision avoidance tech-
niques, such as a reactive method like Velocity Obstacles
[Fiorini and Shiller1998]. While these methods generally
provide smooth and natural-looking paths, they are primar-
ily local methods and do not reason at a global level which
path an agent should follow. This paper draws inspiration
from such methods, such as Reciprocal Velocity Obstacles
[van den Berg et al.2011], in that the proposed method aims
towards a similar notion of reciprocity between agents, ex-
cept at a motion planning level.

Copyright c© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

This paper proposes game theory as an appropriate way
to formulate motion coordination challenges. Consider two
people walking down a corridor. It is not appropriate for
these types of problems to consider a common scalar cost
function, as each agent can have individual objectives, which
may not be known globally. Coordination can thus be posed
as a problem of finding a Pareto optimal solution, which
would require a centralized approach. Instead, it is possible
to consider the computation of Nash Equilibria, which can
be achieved in a decentralized fashion. Even this method-
ology, however, would still require knowledge of the game
(i.e., knowing the goals and payoffs of the other agents). In
addition to this, Nash Equilibrium solutions are sometimes
counter intuitive [Halpern and Pass2012], but more impor-
tantly, computing them has a high computational complexity
for a large numbers of agents.

The problem can be posed as follows: a solution is needed
that achieves coordination between agents, with minimal in-
formation and without centralization, and is an intuitive so-
lution for people. Regret minimization has recently garnered
much attention in game theory, as solutions computed using
regret minimization have higher average utilities for certain
types of games. A nice property of regret minimization is
that it does not require knowledge of the other agents’ pay-
offs. The proposed method for motion coordination chal-
lenges takes advantage of this property to select paths for
each agent. Furthermore, regret minimization can be seen as
a learning approach, which accumulates how much regret is
associated with each action during each step of the coordi-
nation game by observing the choices of the other agents
in the same workspace. Overall, the proposed framework
brings together motion planning primitives, game theoretic
notions and learning tools to provide an algorithmic frame-
work capable of computing acceptable solutions to motion
coordination challenges in a decentralized, communication-
less way, which can be easily combined with reactive strate-
gies to achieve efficient, collision-free behavior.

The framework is in its early stages of development
and evaluation. An application to a prototypical, basic mo-
tion coordination challenge is initially presented in this re-
port. Based on this basic challenge, this work provides a
framework for dealing with more general motion coordina-
tion games. Simulations for two agents negotiating different
paths are presented in this report that show some promise.

Background
There is extensive literature on motion coordination and col-
lision avoidance in robotics, as well as on game theory in
A.I. This section focuses on some of the most related works.

Reactive Obstacle Avoidance: Reactive obstacle avoid-
ance techniques can be used for local motion coordination.
They often require a minimal amount of information and
provide generally intuitive, at least from a human view-
point, solutions. Some of these methods draw inspiration
from human social interaction [Shi et al.2008] [Knepper
and Rus2012]. Others use the notion of reciprocity between
agents [van den Berg, Lin, and Manocha2008]. However, as
these are local methods, they do not reason about which ho-
motopic paths agents should select and in the general case
result in deadlock/livelock situations.

Intersection of Motion Planning and Game The-
ory: Problems such as air combat [Lachner, Breitner,
and Pesch1995], and adversarial path planning [Vanek et
al.2010] lie at the intersection of motion planning and
game theory. Differential game theory studies such chal-
lenges, including pursuit-evasion but analytical techniques
are difficult to apply [Isaacs1965]. There are also numerical
approaches for pursuit-evasion [Ehtamo and Raivio2001]
and graph-based solutions, which typically consider finite
state and action spaces [Isler, Sun, and Sastry2005]. Recent
work has shown it is possible to use asymptotically opti-
mal variants of sampling-based planners to address pursuit-
evasion [Karaman and Frazzoli2010]. There are methods
which compute Pareto optimal strategies for two agents in
roadmaps [Lavalle1995, Ghrist, O’Kane, and LaValle2005].

Applications of Game Theory in Motion Selection:
There has been some work in formulating coordination
problems as game theoretic problems. Coordination can be
posed as an extensive-form game and reinforcement learning
can then be used to create adaptive, albeit loosely coupled,
agents [Kaminka, Erusalimchik, and Kraus2010]. Some ap-
proaches qualitatively measure the effectiveness of coordi-
nation between agents offline in order to provide action se-
lection online [Excelente-Toledo and Jennings2004]. There
has been work in coordinating with agents that are not nec-
essarily rational [Stone, Kaminka, and Rosenschein2010].
However, all of these approaches require knowledge of the
agents’ actions. Although there are models for predicting the
actions of an agent, such as in an adversarial setting [Wunder
et al.2011], by utilizing regret minimization [Filiot, Le Gall,
and Raskin2010], it is possible to solve certain games with-
out knowing the other agent’s actions. Although there are
models for predicting the actions of an agent, such as in
an adversarial setting [Wunder et al.2011], by utilizing re-
gret minimization [Nisan et al.2007, Filiot, Le Gall, and
Raskin2010], it is possible to solve certain games without
knowing the other agent’s actions.

Problem Formulation
While motion coordination challenges arise at a variety of
applications, this report focuses on navigation problems as
they can provide an easy way to describe the different no-
tions of the framework.

Consider a set N of planar, holonomic agents moving with
a bounded velocity {v : vmin ≤ v ≤ vmax}. Agents are
capable of instantaneously moving with a velocity vector va
of magnitudem. The configuration space of an agent isQ =
R2, and is partitioned into two sets, Qfree and Qobst. Qfree
represents the obstacle free part of the space, and Qobst is
the part of the space with obstacles.

Definition 1 (Solution Trajectory): For some agent i ∈ N, a
trajectory τ = {q|q : [0, 1]→ Qfree} is a solution trajectory
if τ(0) = qiniti and τ(1) = qgoali .

In order to define the motion coordination problem, the
notion of homotopic trajectories must be introduced.

Definition 2 (Homotopic Trajectories): The trajectories τ1
and τ2 are homotopic, or share the same homotopy class, if
for some topological space T , there exists a continuous func-
tion f : [0, 1]× [0, 1]→ T , such that ∀x ∈ [0, 1], f(x, 0) =
τ1(x), f(x, 1) = τ2(x), and ∀s ∈ [0, 1], f(0, s) = f(0, 0),
f(1, s) = f(1, 0).

For two dimensional problems, trajectories are in the
same homotopy class if the area between them does not in-
tersect with any obstacles in the environment. A complete
definition for homotopy can be found in [Hatcher2002]. The
homotopy class of a trajectory τ is denoted as H(τ).

An agent’s action set is comprised of a finite set of trajec-
tories from different homotopic classes, and is denoted as A.
By using different homotopic paths, agents thus reason over
their global reachability, as opposed to actions such as move
left or move right, which limits the agent to reason locally.

Each agent i ∈ N has a geometry that can be approxi-
mated by a bounding sphere with radius ri. Agents are able
to sense the position and velocity of other agents in the envi-
ronment as long as the other agents are within some sensing
radius dsensei . Consider the distance d(i, j, t) between agents
i and j at time t. If d(i, j, t) < ri + rj , then the agents are
said to be in collision at time t. Collisions with static obsta-
cles occur when qi(t) ∈ Qobst.
Definition 3 (Conflict Minimization): Given agents i, j, se-
lect actions ai ∈ Ai and aj ∈ Aj so that H(ai) 6= H(aj) or
∀k ∈ [0, 1], ai(k) and aj(k) does not result in a collision.

The objective of the motion coordination problem is for
each agent to select an action from their individual action
set that minimizes the number of obstructive interactions.
Agent interaction is defined as two or more agents traversing
the same homotopy class and coming within some threshold
distance of one another. An interaction becomes obstructive
when it prevents one or more agents from completing their
action, such as through a collision. The paper now examines
an example of a motion coordination game.

A Prototypical Motion Coordination Game
Consider two agents A and B in the situation illustrated in
Figure 1. Aside from sensing the position of each other, nei-
ther agent has any additional knowledge of the other agent.
Each agent has two possible ways of reaching its goal, either
through the top corridor (a1, b1) or the bottom one (a2, b2).
The action sets for agents A and B are therefore {a1, a2}

and {b1, b2} respectively. A greedy choice that requires no
communication is for each agent to select the action which
will move it along the shortest path to its goal.

Depending on the width of the corridors, it may be impos-
sible for two agents to pass each other. Thus, if both agents
continue to approach each other in the corridor, then at some
point at least one agent will have to backtrack out of the cor-
ridor, resulting in a much longer solution length for the back-
tracking agent. The desirable outcome is for agents A and B
to move into separate corridors, without having to use com-
munication. This would correspond to a Nash equilibrium
of the corresponding game. Since agent B is already an ε-
distance committed down one of the corridors, the problem
is formulated so that the pareto-dominating choice among
the two possible Nash equilibria is for agent A to move to its
goal using the top, unoccupied corridor.

Figure 1: An example motion coordination challenge.

For each agent, define the cost of each action as the
length of the corresponding path to the goal denoted as
{C(a) : a ∈ A}. Then if a∗i = argmin∀ak C(ak), b

∗
j =

argmin∀bl C(bl) and if i 6= j, then the greedy choice will
lead the agents along different paths. However, if i = j, then
the greedy choice will force the agents to meet in a corridor.
Alternatively, this challenge can be viewed as a game where
each combination of actions results in payoffs or costs for
both agents. Let Iij represent the interaction cost for action
ai, bj , where interaction could represent how much closer
the two agents will get by executing their actions. Consider
the following game formulated in Table 1.

b1 b2
a1 C(a1) + I11,C(b1) + I11 C(a1) + I11,C(b2) + I12
a2 C(a2) + I21,C(b1) + I21 C(a2) + I22,C(b2) + I22

Table 1: An example motion coordination game, where each
agent has two possible actions leading into two separate cor-
ridors.

The cost of the strategy profile {ai, bj} is defined as:
{C(ai) + Iij} for the first agent. For the setup in the ex-
ample, I12 = I21 = 0 as there will not be an interaction
in this case (i.e., the agents chose separate corridors), while
I11 = I22 = C > 0 since the agents will end up in the
same corridor. Assume C >> C(ai) and C >> C(bj). The
game can now be rewritten as shown in Table 2, resulting
in Nash equilibria for the strategies {a2, b1} and {a1, b2}.
Whether a Pareto dominant strategy profile among the two
exists depends on the exact C(ai) and C(bj) values.

A problem with the game theoretic reasoning above is that
each agent needs to know the actions, goal, and correspond-
ing cost functions of the other agent in order to formulate

b1 b2
a1 C(a1) + C,C(b1) + C C(a1),C(b2)
a2 C(a2),C(b1) C(a2) + C,C(b2) + C

Table 2: An altered version of the game, where interaction
costs have been substituted in.

and solve the game. This is typically not available without
communication. This is why regret minimization is appeal-
ing - it does not require information about the other agent.
By applying a learning based methodology for each agent,
where by playing repeated games and observing the actions
of the opponent along with the corresponding incurred costs
of the agent’s own actions, it is possible to converge to any
of the Nash equilibria present in the example game.

Given that the paths (actions) a1 and a2 form a cycle, it is
possible to rewrite their costs as follows:

C(a1) = VA − εA
C(a2) = VA + εA

Without loss of generality, assume that C(a1) < C(a2)
for any εA > 0, and that VA is half the length of the cy-
cle defined by the paths a1 and a2. Similarly, for agent
B: C(b1) = VB − εB , C(b2) = VB + εB . Suppose that
εB > εA (in other words, that agent B is closer to its goal
than agent A). Next, assume that the desirable strategy pro-
file is {a2, b1}, which must be achieved through the regret
minimization framework (i.e., the agent with the shortest
path to its goal continues to move along it, while the other
agent takes a different, potentially suboptimal, route).

Initially, the only information available to A is C(a1) and
C(a2), causing it to select the greedy choice of choosing a1
as C(a1) < C(a2). Similarly, agent B will also select b1.
Each agent then simultaneously plays their selected actions
and observes what the other agents are playing. The idea is
that at each step of the game, each agent observes one an-
other and then computes a loss vector for its corresponding
choices. The definition of the loss vector includes a multipli-
cation factor η called the learning rate, which goes beyond
penalizing an action purely on how much distance the two
agents approached each other by.

Thus, after the first iteration, the loss function for agent
A (and similarly for agent B) looks like this: l1(a1) = 2η1δ
(since both agents approached each other) and l1(a2) = 0,
where δ is how much the two agents moved between step
0 and step 1. The agents are assumed to be moving on a
1-dimensional circle.

Then after k iterations during which the two agents have
not changed strategies, the regret-loss vector (LR) will be:

LRk(a1) = 2kη1δ LRk(b1) = 2kη2δ

LRk(a2) = 2kδ + 2ε1 LRk(b2) = 2kδ + 2ε2 (1)
In order for agent A to switch actions through regret mini-
mization and end in the desired strategy profile of {a2, b1},
it is necessary that: LRk(a1) > LRk(a2) and LRk(b1) <
LRk(b2). Substituting values in and solving for k results in
the following inequality:

ε1
δ(η1 − 1)

< k <
ε2

δ(η2 − 1)

By setting the learning rate to be

ηi =
δ

εi
+ 1 (2)

it is then possible to achieve the following time constraint on
when the agents will achieve a switch in strategy:

ε21
δ2

< k <
ε22
δ2

(3)

Therefore, if ε2 − ε1 > 0 and ε2 > δ, then there is an
iteration k for which the first agent will switch to a2, while
the second agent will remain on b1. Then, at iteration k + 1,
the loss vectors for the agents will be:

lk+1(a1) = 2(k + 1)η1δ lk+1(b1) = 2kη2δ

lk+1(a2) = 0 lk+1(b2) = 2η2δ

Thus agent A will continue to penalize action a1, while
agent B starts penalizing b2. After this point, it is clear that
the agents will keep selecting the actions {a2, b1}.

General Motion Coordination Games
Now that a method for solving a specific motion coordina-
tion game using regret minimization has been described, the
generalization of this solution is presented. Each of the fol-
lowing sections provides details on extending the example
formulation to work in a general path planning format.

Replanning Framework
Replanning has the effect of turning a standard path planning
problem into a repeated game, rather than a single game,
which thus matches the formulation specified in the proto-
typical motion coordination example. Each agent is given a
small amount of time, dt, which is the agent’s planning cy-
cle and represents how long the algorithm has before it must
return an action for the agent to select. The planning cycle
also represents the frequency with which the agent senses
its environment, and consequently how often it obtains in-
formation about its neighbors.

Action Set Computation
While it was straightforward to see which two actions
an agent had in the example problem, it is not as easy
in a general setting, since there is an infinite number of
paths an agent could traverse. However, only the trajecto-
ries belonging to distinct least-cost homotopy classes need
to be considered. There are many methods available that
can accomplish homotopic class computations [Jaillet and
Simeon2006] [Bhattacharya, Kumar, and Likhachev2010].
In order to construct the agent’s action set with these least-
cost homotopy classes, the notion of path separation [Green
and Kelley2007] is utilized. The resulting algorithm is some-
what heuristic in nature, with regards to not guaranteeing
different homotopic paths, however the variety of paths it
computes provides agents with a sparse but descriptive ac-
tion set. An algorithm for computing an agent’s action set is
given in Algorithm 1.

Algorithm 1: Action Set Computation
Data: A roadmap of the environment: G(V,E),
Agent i’s start and goal states: qiniti , qgoali
Number of candidate actions and final actions: N , M
Result: The agent’s action set Ai

1 A′i = ∅
2 while |A′i| < N do
3 τ = RESOLVE QUERY(G, qiniti , qgoali)
4 A′i = {A′i, τ}
5 Ai = {A′i(0)}
6 while |Ai| < M do
7 Pcandidate = ∅
8 foreach Action a ∈ Ai do
9 b = MAX SEPARATION(a,A′i)

10 Pcandidate = {Pcandidate, b}
11 τnew = argmaxτ (Pcandidate)
12 Ai = {Ai, τnew}
13 Return Ai

Initially, Algorithm 1 is given a roadmap G(V,E) along
with the start and goal configurations of the agent as input
parameters. Although any roadmap generating method will
work, a PRM∗ [Karaman and Frazzoli2011] was used as it
provided a dense roadmap which asymptotically can provide
optimal solutions. The other two input parameters, N and
M , determine the following: N gives a bound on how many
paths from the roadmap are added to the candidate action
set, while M is the number of actions in the final action set.

Next, the roadmap is repeatedly queried with the agent’s
start and goal positions for N iterations (Lines 2- 4). After
each query, the resulting shortest path is returned and stored
into A′i, while the edges of the roadmap along this resulting
path has its corresponding edge weight set to a very large
value (Line 3). Setting these edges to a large value heuristi-
cally guarantees that successive queries on the roadmap will
generate different paths. Next, the first computed path in the
candidate action set is removed and inserted into the agent’s
final action set. Until the final action set hasM actions, con-
tinue with the following: for each action a in Ai, find the
path b that has the largest separation to a (Lines 8-10). Sep-
aration is computed by summing the Euclidean distance be-
tween each time-paired configuration (i.e., configurations at
time 0, configurations at time 1, etc.) in a and b. b is then
added to the candidate path set Pcandidate. The trajectory
with the largest separation value is found and appended onto
the final action set (Lines 11-12).

Regret Minimization with Learning
Once an agent has computed their action set, the regret mini-
mization approach is applied in order to compute the agent’s
action. As in the motion coordination example, for the first
step t = 1, agents will choose their greedy action (the action
with the lowest cost path to their goal). Then, ∀t > 1, the
agents use the method shown in Algorithm 2.

In order to update the learning vector, for each trajectory
τa : a ∈ Ai, apply τa to the agent’s previous configura-

Algorithm 2: Learned Regret Minimization
Data: The agent’s action set Ai
Result: The minimized learned regret action: amin

1 UPDATE LEARNING VECTOR(li)
2 UPDATE ACTIONS(Ai)
3 foreach Action a ∈ Ai do
4 Action Cost C(a) = length(a)
5 Best Cost C(a∗) = min C(a)
6 foreach Action a ∈ Ai do
7 Learned Regret LR(a) = C(a)− C(a∗) + li(a)
8 amin = argmina LR(a).

tion qi(t − 1) to obtain a new configuration qnewi (t). δ is
measured as the distance between qnewi (t) and each of the
neighboring agents’ configurations (Line 1). As agents move
through the environment, the paths in the agent’s action set
may no longer be applicable due to avoiding unexpected ob-
stacles. Thus, a reconnection strategy, which updates the ho-
motopic paths, must be employed. For each path τa corre-
sponding to action a, a portion of the beginning of the tra-
jectory is removed, and a path connecting the current config-
uration to τa is appended (Line 2). The cost of each action
is estimated by computing the length of the corresponding
paths. Standard regret minimization is then utilized to com-
pute the selected action (Lines 3-8) .

Simulations
The approach was implemented on a simulation software
platform used to develop motion planning algorithms, called
PRACSYS [Kimmel et al.2012]. The approach was evaluated
for two agents in the corridor environment from the proto-
typical motion coordination example, as well as a random
environment populated with varying sized circular obstacles.

The experiments were run on a single computer with a
3.1 GHz Intel i3 processor and 8GB of RAM. The proposed
framework was compared against the greedy choice, where
the agents move along the shortest path on the roadmap com-
puted by PRM∗. Both methods were evaluated in perfor-
mance with regards to the following metrics: average so-
lution time (each agent has reached their goal) in seconds
Savg , total number of obstructive interactions with agents
during the entire experiment Ctot, and average computation
time (in seconds) per planning cycle Tavg .

Either method can use a reactive method for collision
avoidance. Since this choice directly affects the solution
time of the agents, collision avoidance was removed from
both methods, and instead the number of obstructive inter-
actions was measured. Thus, the metrics computed are unbi-
ased.

Corridor Experiments
The purpose of the corridor experiments was to validate the
proposed approach in the prototypical example. A mock up
of the environment is shown in Figure 2. In the experiment,
the agents are given two actions, one for each corridor. Three
different cases of the corridor environment were tested. Case

1: One agent is ε committed to a corridor. Case 2: Both
agents are ε committed to the same corridor. Case 3: Nei-
ther agent is ε committed to a corridor. For each case, ten
experiments were run and averaged, with agents placed in
random configuration but within constraints of the case. The
results are shown in Table 3.

Figure 2: The environment from the prototypical motion
coordination example. It contains two least-cost homotopic
classes of paths, each corresponding to a different corridor.

In nearly all of the experiments, the agents moving with-
out coordination ended up in an obstructive interaction. Al-
though acting without coordination required no additional
computation time, the additional overhead from the pro-
posed framework was relatively small (agents were given
0.5 seconds per planning cycle). As for the path costs, coor-
dination performed better in case 1, but did not perform so
well in case 3. The reason for this is that both agents are not
ε committed to a particular corridor, thus some oscillations
occur until one agent continues down the same corridor.

Without Coordination With Coordination
Savg Ctot Tavg Savg Ctot Tavg

Case 1 20.04 7 0 19.74 0 0.27
Case 2 20.36 10 0 21.99 0 0.27
Case 3 18.47 5 0 23.82 0 0.27

Table 3: Experimental results for two agents in three differ-
ent cases of the corridor environment.

Random Obstacle Experiments
The purpose of the random obstacle experiments was to test
the proposed approach in a different setting. A mock up of
the environment is shown in Figure 3. In the experiment, the
agents are given five different actions, which covered dif-
ferent least-cost homotopic classes. The two different cases
correspond to different arrangements of obstacles. For each
case, ten experiments were run and averaged, with the re-
sults shown in Table 4.

Without Coordination With Coordination
Savg Ctot Tavg Savg Ctot Tavg

Case 1 20.93 5 0 27.28 0 0.60
Case 2 22.04 10 0 23.01 0 0.56

Table 4: Experimental results for two agents in two different
randomly generated environments

Figure 3: This environment contains randomly placed, vary-
ing sized circular obstacles. It contains several least-cost ho-
motopic classes of paths.

As in the previous set of experiments, the coordinating
agents were once again able to avoid all obstructive inter-
actions. Although the proposed motion coordination frame-
work ended up producing paths that were longer, and also
ended up taking more time (0.6 seconds out of a 0.8 second
planning cycle) due to the increased number of actions and
obstacles, it successfully kept agents from obstructing one
another.

Discussion
As this is a work in-progress, there are many aspects of the
framework that can be improved upon. Rather than using
the heuristic method of generating different homotopic paths
during action set generation, the framework could benefit
from approaches that actually do compute homotopy classes
[Bhattacharya, Kumar, and Likhachev2010]. For large num-
bers of actions, another possible avenue of extension is
through the use of a regret-based probability distribution (i.e.
mixed strategy, rather than pure strategy) over the agent’s ac-
tions, which could help achieve a better overall utility [Nisan
et al.2007].

References
Bhattacharya, S.; Kumar, V.; and Likhachev, M. 2010. Search-
based path planning with homotopy class constraints. In Third An-
nual Symposium on Combinatorial Search.
Ehtamo, H., and Raivio, T. 2001. On applied nonlinear and bilevel
programming for pursuit-evasion games. Journal of Optimization
Theory and Applications 108:65–96.
Excelente-Toledo, C. B., and Jennings, N. R. 2004. The dynamic
selection of coordination mechanisms. Autonomous Agents and
Multi-Agent Systems 9(1-2):55–85.
Filiot, E.; Le Gall, T.; and Raskin, J.-F. 2010. Iterated regret min-
imization in game graphs. In Mathematical Foundations of Com-
puter Science 2010. Springer. 342–354.
Fiorini, P., and Shiller, Z. 1998. Motion planning in dynamic en-
vironments using velocity obstacles. Int. Journal of Robotics Re-
search 17(7).
Ghrist, R.; O’Kane, J. M.; and LaValle, S. M. 2005. Computing
pareto optimal coordinations on roadmaps. The International Jour-
nal of Robotics Research 24(11):997–1010.

Green, C. J., and Kelley, A. 2007. Toward Optimal Sampling In
the Space of Paths. International Symposium on Robotics Research
(ISRR).
Halpern, J. Y., and Pass, R. 2012. Iterated regret minimization: A
new solution concept. Games and Economic Behavior 74(1):184–
207.
Hatcher, A. 2002. Algebraic Topology. Cambridge University
Press.
Isaacs, R. 1965. Differential Games. Wiley.
Isler, V.; Sun, D.; and Sastry, S. 2005. Roadmap-based pursuit-
evasion and collision avoidance. In Robotics: Science and Systems.
Jaillet, L., and Simeon, T. 2006. Path Deformation Roadmaps. In
WAFR.
Kaminka, G. A.; Erusalimchik, D.; and Kraus, S. 2010. Adap-
tive multi-robot coordination: A game-theoretic perspective. In
Robotics and Automation (ICRA), 2010 IEEE International Con-
ference on, 328–334. IEEE.
Karaman, S., and Frazzoli, E. 2010. Incremental sampling-based
algorithms for a class of pursuit evasion games. In Workhop on the
Algorithmic Foundations of Robotics (WAFR).
Karaman, S., and Frazzoli, E. 2011. Sampling-based Algorithms
for Optimal Motion Planning. In IJRR.
Kimmel, A.; Dobson, A.; Littlefield, Z.; Krontiris, A.; Marble, J.;
and Bekris, K. E. 2012. Pracsys: An extensible architecture for
composing motion controllers and planners. In Simulation, Model-
ing and Programming for Autonomous Robots (SIMPAR).
Knepper, R. A., and Rus, D. 2012. Pedestrian-inspired sampling-
based multi-robot collision avoidance. In RO-MAN, 2012 IEEE,
94–100. IEEE.
Lachner, R.; Breitner, M. H.; and Pesch, H. J. 1995. Three-
dimensional air combat: Numerical solution of complete differen-
tial games. In Olsder, G. J., ed., New Trends in Dynamic Games
and Applications. Birkhauser.
Lavalle, S. M. 1995. A game-theoretic framework for robot motion
planning. Ph.D. Dissertation, University of Illinois.
Nisan, N.; Roughgarden, T.; Tardos, E.; and Vazirani, V. V. 2007.
Algorithmic game theory. Cambridge University Press.
Shi, D.; Collins, E.; Donate, A.; Liu, X.; Goldiez, B.; and Dunlap,
D. 2008. Human-aware robot motion planning with velocity con-
straints. In Collaborative Technologies and Systems, 2008. CTS
2008. International Symposium on, 490–497. IEEE.
Stone, P.; Kaminka, G. A.; and Rosenschein, J. S. 2010. Leading
a best-response teammate in an ad hoc team. In Agent-Mediated
Electronic Commerce. Designing Trading Strategies and Mecha-
nisms for Electronic Markets. Springer. 132–146.
van den Berg, J.; Snape, J.; Guy, S.; and Manocha, D. 2011. Recip-
rocal Collision Avoidance with Acceleration-Velocity Obstacles.
In IEEE Int. Conf. on Robotics and Automation (ICRA).
van den Berg, J.; Lin, M.; and Manocha, D. 2008. Reciprocal
velocity obstacles for real-time multi-agent navigation. In Proc. of
the IEEE Int. Conf. on Robotics and Automation (ICRA).
Vanek, O.; Bosansky, B.; Jacob, M.; and Pechoucek, M. 2010.
Transiting areas patrolled by a mobile adversary. In Proc. IEEE
Conf. on Computational Intelligent and Games.
Wunder, M.; Kaisers, M.; Yaros, J. R.; and Littman, M. 2011.
Using iterated reasoning to predict opponent strategies. In The
10th International Conference on Autonomous Agents and Multi-
agent Systems-Volume 2, 593–600. International Foundation for
Autonomous Agents and Multiagent Systems.

