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ABSTRACT
Remote driving brings human operators with sophisticated per-
ceptual and cognitive skills into an over-the-network control
loop, with the hope of addressing the challenging aspects of
vehicular autonomy based exclusively on artificial intelligence
(AI). This paper studies the human behavior in a remote driv-
ing setup, i.e., how human remote drivers perform and assess
their workload under the state-of-the-art network conditions.
To explore this, we build a scaled remote driving prototype
and conduct a controlled human study with varying network
delays based on current commercial LTE network technology.
The study demonstrates that remote driving over LTE is not
immediately feasible, primarily caused by network delay vari-
ability rather than delay magnitude. In addition, our findings
indicate that the negative effects of remote driving over LTE
can be mitigated by a video frame arrangement strategy that
regulates delay magnitude to achieve a smoother display.
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CCS Concepts
•Human-centered computing → Empirical studies in HCI;
•Computer systems organization → External interfaces
for robotics;

INTRODUCTION
Beyond the development of fully autonomous vehicles based
on AI [14, 22], many research efforts focus on unmanned
driving through teleoperation. This process is referred to here
as “remote driving”, where a human remote driver indirectly
perceives the vehicle’s environment or controls the vehicle
through telecommunication networks. Several automobile
companies and research institutes have built remotely driven
cars and some of them are targeted to be controlled from
miles away [4, 21, 29], for driving on real roads [20, 6, 29,
15]. It is argued that remote driving reduces the equipment
investment required by fully computerized autonomy [32, 4,
15]. More importantly, computerized driving environment
perception and path planning correspond to daunting AI tasks,
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which may cause failures in fully autonomous systems [5, 16].
Including a human in the control loop increases reliability and
effectiveness when dealing with complex situations [4, 6, 15].

There is some research in remote driving system aspects, such
as mechanical control [4, 20] and path planning [27, 26], but
less on the visual display aspect. Existing work in this area
mainly focuses on the presentation and augmentation of each
frame that is received from the remotely driven vehicle [9,
25, 24, 41]. Nevertheless, the arrangement of the frames, i.e.,
the timestamps of presenting the delayed frames, is largely
ignored. Since the magnitude and the pattern (e.g., variable
or stable) of the feedback delay influence remote human driv-
er’s driving performance [40, 11, 37], properly arranging the
frames in the timeline is a key point in the display design of
remote driving systems under the current network condition.

In this paper, remote driving human behaviors under the state-
of-the-art commercial network condition (i.e., LTE) are stud-
ied. Since the feedback delay over LTE networks is a random
variable, we investigate two visual information display ar-
rangement strategies: (i) presenting display frames to a remote
driver as soon as the frames arrive to minimize the delay mag-
nitude, or (ii) smoothing the display by adding additional delay
when necessary to the received frame to mitigate the delay
variance, i.e., postponing each frame with the max possible
delay. Specifically, we build a remote driving platform and use
it to quantitatively study human drivers’ performance and their
self-reported workload assessment of remote driving under
various delays based on LTE networks. The results demon-
strate that the major challenge that causes the degradation of
the remote driver’s driving performance is the variability of
feedback delay. Moreover, the second visual information dis-
play arrangement strategy, i.e., eliminating the delay variance
of the display frames by adding additional delay, mitigates the
negative effect of feedback delay incurred by LTE networks.

RELATED WORK
Prior studies have revealed that human’s remote driving perfor-
mances are strongly dependent on the magnitude and variance
of the feedback delay [8]. Small constant delays (e.g. <170
ms) are found to have mild influences on the remote driving
performance [8], while driving performances are substantially
affected when the delay exceeds 700 ms [12]. In particular,
when the delays go beyond one second, the effective real-time
interactions through teleoperation are largely restricted [40].
These findings are also confirmed by the model recently built
between driving performance degradation and constant time
delay [42]. Variable delays are believed to have a worse im-

https://doi.org/10.1145/3122986.3123008


Figure 1. Remote driving prototype and test track.

pact on the driving performance than constant delays [34,
12]. However, prior studies only compared the variable delay
and the constant delay of the same magnitude [34, 12]. More-
over, depending on various variability patterns, small variances
(<=0.5) have controversial effects on the teleoperation per-
formance (i.e., significant impact in [12] but insignificant in
[34]). While prior studies choose delay values subjectively,
our study tests human’s remote driving performances based on
the delay learned from real LTE network measurements. More
importantly, our study compares the remote driving perfor-
mance under variable delays to that under constant but longer
delays, implying that a UI design that mitigates delay variance
at the expense of increased magnitude reduces the challenges
perceived by the remote driver.

Display interface design is an important research issue for
remote driving. Prior studies have looked into the field of view
(FoV) [20], the augmentation of display frames, e.g. including
the safety zoom [41] or the prediction of vehicle position [9,
25, 12] in the display scene, and the incorporation of virtual
reality interface [24]. Nevertheless, these studies focus on the
form or the content displayed in each frame, without touching
the frame arrangement problem studied in this paper.

HUMAN PERFORMANCE AND PERCEPTION STUDY
In this section, we conduct controlled experiments in which
participants control a scaled remote driving prototype in a lab
environment. The network delay is manually controlled to
simulate the measured delay in the LTE network.

Prototype System
For a more realistic driving perception, we put together a 1/10
scale car as our basic experiment platform (shown in Figure
1(a)) as opposed to utilizing driving simulators. Inspired by
the ABR project [36], the speed and steering of the car are
controlled by an IOIO micro-controller board, which accepts
the remote driving commands. An Android smartphone works
as the on-board Internet access point, connecting to a remote
driving station via cellular networks or WiFi. Three cameras
are mounted on the scaled car, where one front-facing camera
and two side cameras represent the front windshield view and
side mirrors of a real car, respectively. Each camera provides
an 85-degree horizontal and 70-degree vertical FoV.

The remote driving station is built on a commodity computer
with 8GB memory and an Intel i7-3520 dual-core proces-
sor. It consists of three monitors (arrangement shown in
Fig.1(b)). The video caught by the front-facing on-board
camera is displayed on a 24-inch monitor with a 178-degree
horizontal/vertical FoV. The video frames from the two side
cameras are connected to two 17-inch monitors that have a

170-degree horizontal and 160-degree vertical FoV. Based
on video frames displayed on the monitors, a remote driver
controls the car using a Logitech G27 racing wheel controller.

In the lab environment, we connect the driving station and
the car to a private TP-Link N600 router using an Ethernet
cable and WiFi, respectively. To emulate various network
settings, the routing rules were manipulated such that the
packets between the remote control station and the remotely
driven car must first go through a WANem [2] virtual machine,
where various additional delays can be inserted.

Emulate LTE Network
The network communication incurs additional feedback de-
lays, which cause the performance degradation of remote driv-
ing. Based on prior studies, a local Internet (i.e., distance <
1000 mile) can provide at least 4 Mbps bandwidth and less
than 16 ms RTT (Round Trip Time) [35]. Moreover, LTE
wireless networks cover over 99.4% of the U.S. population in
2014 [19], providing around 16.02 Mbps download and 7.43
Mbps upload bandwidth [38, 28] with the mean RTT ranging
from 75 ms to 83 ms [18]. Based on the statistics, remote
driving over regional Internet and LTE networks could expect
a network delay of 100 ms for video transmission in 720p
quality (based on the frame bit rate of Youtube [1]).

To simulate remote driving under the LTE network, we also
collected real data in a field test, modeled the data and generat-
ed the random delays. During the field test, the remote driving
prototype was mounted on a real car that traveled around a
university campus for 22 miles. While traveling, the proto-
type continuously captured 240p video frames and transmitted
them to the remote driving station over a tier 1 LTE network.
Each frame was about 10 kB and was sent using UDP. Up-
on receiving each frame, the server immediately replied with
an ACK message to measure the RTT at the remote driving
prototype. The measured RTT values ranged from 56 ms to
358 ms, with the mean value and standard deviation of 97.73
ms and 47.47 ms, respectively. Based on the test results and
the empirical study of NetEm in [30], we found that a Pareto
distribution with the mean value of 95 ms and jitter of 55 ms
in WANem best modeled the delay in LTE.

Participants and Procedure
We recruited eleven volunteers, aged 21 to 36 (median 28) to
participate in the experiment. Participants were asked to op-
erate the remote driving prototype and drive through a scaled
test track (shown in Figure 1(c)). The test track was built to
simulate a 400-meter lap with the speed limit of 30 km/h and
the standard 3.6-meter lane width (as suggested by US Fed-
eral Highway Administration). To match the 1/10 scaled car,
the test track and speed limit were accordingly scaled down
by 10 times. Note that the curves were considerably sharper
than regular streets: the radius of each curve was 3/4 of the
safety value suggested by the American Association of State
Highway and Transportation Officials [3] in the left half of the
track and 1/2 in the right half track; no straight sections were
included to reduce the length of the course.

Before the experiments, participants were trained to drive
the prototype until they reported that they were familiar with



the device. During the experiments, they iterated among the
no-delay setting, the simulated LTE setting (random-delay),
and the max-delay setting in a random order and in each
setting they drove five laps. The max-delay setting used a
constant delay of 358 ms, the highest value observed in our
field test. Note that, the random-delay setting corresponds to
presenting the frames as soon as they are received. In contrast,
the max-delay setting essentially corresponds to postponing
the presentation of each video frame by the max possible
delay compared to the frame’s capture timestamp to smooth
the display. Assuming the received frames are marked with
their timestamps, the max-delay arrangement can always be
realized even if the frame’s arrival time at the remote driving
station is affected by the random network latency. The no-
delay experiment is included as the baseline (the oracle case).

Participants were notified before the experiments that both
the time elapsed per lap and the number of cross-lane errors
would be recorded to evaluate their performances but staying
within the lane should be their first priority. While driving, par-
ticipants perceived the driving environment only through the
video stream and the range finder readings (i.e., distance to ob-
stacles) and they were not told of the value of the delay. After
each experiment, participants were required to submit a subjec-
tive questionnaire using the NASA Task Loading Index [23],
reporting their self-perceived workload in six dimensions, in-
cluding mental demand, physical demand, temporal demand,
performance, effort, and frustration. They were also instructed
that the workload of real driving should be used as the baseline
with score 10 in each dimension.

Results

Figure 2. Mean and standard devi-
ation of lap time.

Figure 3. Mean and standard devi-
ation of cross-lane errors.

Fig. 2 and Fig. 3 illustrate the mean and standard deviation
of the time taken per lap and that of the number of cross-
lane errors per lap under different experiment settings. Re-
peated measures ANOVA shows significant differences be-
tween the three experiments in both the time taken per lap
(F2,20 = 65.28, p < 0.0001) and the number of errors per lap
(F2,20 = 60.59, p < 0.0001). The result from the no-delay ex-
periment is the best among the three experiments. However,
variable delays cast enormous difficulty on remote driving:
The random-delay experiment shows doubled average time
and tripled cross-lane errors comparing to the no-delay experi-
ment. In the max-delay experiment, where the magnitude of
the delay is over two times higher than the mean value of ran-
dom delay, the average lap time and cross-lane errors are only
1.5 times and 2 times as high as the values from the no-delay
experiment, respectively. The significant differences in the

Figure 4. Mean and standard deviation of self-reported workload in
different experiments.

overall effect under various settings are also consolidated by
the pairwise comparison results (presented in Table 1).

Fig. 4 illustrates the self-reported workload of remote driving
under different delay conditions. Repeated measures ANO-
VA shows that three experiments have significant differences
on participants’ mental (F2,20 = 41.18, p < 0.0001), physi-
cal (F2,20 = 15.52, p < 0.0001), temporal (F2,20 = 8.86, p =
0.0018), effort requirements (F2,20 = 24.54, p < 0.001) and
incurred frustration (F2,20 = 36.56, p < 0.0001). These five
dimensions follow the same pattern: the no-delay experiment
is the least demanding, followed by the max-delay experiment,
and finally the random-delay experiment is the hardest. In par-
ticular, the difficulty of remote driving in a simulated LTE envi-
ronment is almost two times as hard as driving without network
delays in the mental, physical, effort and frustration dimension-
s. Interestingly, for the self-rated performance, the repeated
measures are marginally significant (F2,20 = 3.24, p= 0.0604).
Post hoc analysis on the pairwise comparison consolidates the
overall effect results (shown in Table 1): while the random-
delay experiment is significantly or near-significantly different
from the no-delay experiment (p = 0.0238) and the max-delay
experiment (p = 0.0816) in self-rated performance, the max-
delay experiment has no significant differences from the no-
delay experiment (p = 0.5478).

We conduct a post hoc power analysis for the overall effect
using G*power [17] and find that the power ranges from 94.6%
to 99.5% (α = 0.05) for all measurements except for the self-
reported performance (power = 47.0%).

DISCUSSION
Feasibility and the Major Barrier The results show that
pure remote driving is still questionable over the current net-
work if no compensations are added to deal with the delay.
While remote driving with no-delay shows moderate demands
in driver’s mental, physical, temporal, effort, and frustration,
the demands in all these dimensions are substantially boosted
in the random-delay experiment. The performance measured
by the lap travel time and the cross-lane error also demonstrate
large degradations caused by the random delay.

Comparing the results from the random-delay experiment and
the max-delay experiment, we believe that it is the variability
of the network delay rather than the magnitude that primarily
cause the performance degradation. Even though the max
delay is over three times as high as the mean of random delays,
when participants are confronted with not the max delay but



Pairwise comparison Lap
time

Cross-lane
errors

Mental Physical Temporal Performance Effort Frustration

no delay vs. random delay -77.8 -4.5 -8.0 -6.5 -4.5 -3.6 -7.2 -8.2
no delay vs. max delay -37.9 -2.7 -2.3 -2.9 -1.4† -0.9§ -2.6 -3.0

random delay vs. max delay 39.9 1.8 5.7 3.5 3.1 2.7‡ 4.5 5.2
Note: All estimates have p < 0.05 except for values labeled by †(p=0.2231), §(p=0.5478) and ‡(p=0.0816).

Table 1. Pairwise differences of least squares means for various measurements.

the random delay, they are uncertain “whether their driving
commands have taken effect” and “where the car really is
compared to what is seen through the video”. Moreover, it is
only reported under random delay that some of the participants
tend to be irritated or start to adapt a stop-and-go pattern to
control the car, which according to prior work happens only
when the constant delay exceeds one second [8, 10].

Human Adaptation A particularly interesting observation is
found in the max-delay experiment: although both the lap driv-
ing time and the cross-lane errors increase, the self-reported
performance and temporal requirement are not significantly
different from that in the no-delay experiment. By looking
into the time cost and errors committed per lap, we find that
participants’ driving time first increases and then decreases,
while the cross-lane errors keep dropping. This is because
most drivers conceive that “remote driving in the max-delay
experiment is as easy as in the no-delay experiment by just
viewing the video”. Consequently, they drive fast in the begin-
ning laps but make much more errors than their expectation.
After they recognize this, the self-adaptation initiates and the
participants finally can finish a lap with only slightly longer
time and a little increased cross-lane error count, compared to
the no-delay experiment. As a result, participants are satisfied
with their performance. Self-adaptation incurs increased self-
reported workload. However, in most dimensions, the demand
is slightly higher than the baseline (i.e., no-delay). In contrast,
in the random-delay experiment, though participants try even
harder to adapt to the varying delay, they still cannot manage
the remote diving to a satisfactory level at last. Therefore, all
six dimensions have increased value in the self-report survey.
Moreover, the driving time and the cross-lane error count are
high in all laps in the random-delay experiment.

Display Frame Arrangement for Remote Driving While
pure teleoperation relying on real-time feedback (e.g., video)
is not ready over the current network, there is high potential if
proper visual information display arrangement techniques are
applied. In the max-delay experiment, we completely elimi-
nate the delay variability by shifting every video frame using
the largest possible delay. This method significantly improves
both the driving performance and the demands to the remote
driver. Based on the latest network research, e.g., [33, 7], there
is a high potential that the realtime network delay can be pre-
dicted. Since previous studies suggest that reducing frame rate
has weaker negative impacts on vehicle teleoperation [8, 13],
we can design smarter frame arrangement algorithms by bal-
ancing the magnitude and the variability of network delay in
LTE networks. The new method is likely to achieve even more
benefits than the method we use in the max-delay experiment.

The suggested arrangement method can also be combined with
other methods, such as predictive displays [12, 39] and adding
semi-autonomy [31], to improve the user experience of re-
mote driving. However, compared with predictive display and
adding autonomy, our method works in the signal processing
level and does not need to deal with complex computer vision
and path planning problems. Thus it is easier to implement.

Limitations In the current study, we use a scaled car as the
testing platform, which may have different driving perceptions
than a full-size car. Moreover, due to the space limitation
on the scaled car, we implement the remote driving platform
with simple hardware, e.g. cameras with limited FoV. We ac-
knowledge that both above factors may affect the participants’
driving performance during the experiment. However, since
all three settings are conducted using the same platform, we
believe the comparison results regarding the two visual infor-
mation display arrangement strategies still hold when remotely
driving a real car. We plan to validate and extend the findings
using real autonomous cars on real road settings.

CONCLUSION AND FUTURE WORK
This paper conducts a human study to evaluate two visual
information display arrangement strategies, through which a
driver remotely controls a car via indirect vision over LTE
networks. The result shows that the immediate feasibility of
remote driving over LTE is hindered primarily by the high vari-
ability of the network delay. Two main implications for future
remote driving systems are drawn from the result: (i) Prop-
erly trading off the timeliness (i.e. increasing delay of some
frame) or frame rate while achieving a smooth driving environ-
ment perception may work as a compensation method in the
signal processing level, in parallel with other high-level com-
pensation methods. (ii) While reducing the absolute network
delay is useful, enabling stable and predictive delay under LTE
networks has even higher priority for remote driving systems.

For future work, we plan to conduct multiple test runs to
assess the learning effect and study the human reactions when
introducing sudden incidents from the varying network latency
setups. In addition, the trade-off function between the delay
magnitude and variability will also be explored to direct the
UI design in future remote driving systems.
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